1
|
Sakamaki K, Sakamoto N, Tsujimura Y, Iwasaki T, Kawamura T, Nakabayashi J, D'Souza RS, Jannat A, Takeshima KI, Takeda H, Koyamada K, Yokota H. Caspase-mediated cleavage of a scaffold protein, MPRIP, yields a truncated form that is involved in repetitive bleb formation. FEBS J 2025; 292:2287-2305. [PMID: 40344468 DOI: 10.1111/febs.17422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 01/20/2025] [Indexed: 05/11/2025]
Abstract
Membrane blebbing is a hallmark of apoptotic cell death. However, the molecular mechanism that regulates this event has not been fully elucidated. To understand this underlying mechanism, we developed visualization systems suitable for spatiotemporal analysis. By monitoring the plasma membrane labeled with a fluorescent protein and reconstructing the image data as three-dimensional (3D) volumes based on the rendering technique, we observed that dying cells exhibit cycles of bleb formation at the same region of the cell surface. In addition, a Förster Resonance Energy Transfer (FRET)-based biosensor incorporating a regulatory myosin light chain (RMLC) displayed phosphorylation at the base of the retracting bleb, and dephosphorylation before re-expansion, implying the involvement of not only a kinase but also a phosphatase in the regulation of RMLC. To extend these observations, we focused on a scaffold protein, myosin phosphatase Rho interacting protein (MPRIP), which interacts with RhoA and myosin phosphatase targeting subunit 1 (MYPT1), involved in activation of Rho-associated coiled-coil kinase-I (ROCK-I) or protein phosphatase 1 (PP1), respectively. We found that MPRIP is cleaved both in dying cells and in an in vitro cleavage assay in a caspase-dependent manner. A cleaved C-terminal peptide fragment maintains the interaction with MYPT1. Cytological analysis showed that this fragment forms a complex with MYPT1 and myosin after translocating to the cytoplasm. These results suggest that this complex formation promotes the dephosphorylation of RMLC. Collectively, our study indicates that repetitive bleb formation, which is unique to apoptosis, is regulated by both phosphorylation and dephosphorylation of RMLC through MPRIP in a coordinated manner.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Naohisa Sakamoto
- Center for Promotion of Excellence in High Education, Kyoto University, Japan
| | - Yuki Tsujimura
- Image Processing Research Team, Center for Advanced Photonics, Riken, Wako, Japan
| | | | - Takuma Kawamura
- Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Japan
| | - Jun Nakabayashi
- Liberal Arts and Sciences, Mathematics, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Rhea S D'Souza
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Arooma Jannat
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Ken-Ichiro Takeshima
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | | | - Koji Koyamada
- Center for Promotion of Excellence in High Education, Kyoto University, Japan
| | - Hideo Yokota
- Image Processing Research Team, Center for Advanced Photonics, Riken, Wako, Japan
| |
Collapse
|
2
|
Scholey JM. Mitotic spindle membranes. Mol Biol Cell 2025; 36:re1. [PMID: 40067152 PMCID: PMC12005112 DOI: 10.1091/mbc.e24-10-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
The mitotic spindle, which uses microtubules (MTs) and MT-based motor proteins to separate sister chromosomes prior to cell division, contains abundant membranes, organelles, and protein assemblies derived from the familiar interphase intracellular membrane network. In this essay, mainly with reference to selected animal and fungal cells, I summarize current ideas about the reciprocal functional relationship between these mitotic spindle-associated membranes and the spindle MT cytoskeleton, in which; 1) spindle membranes control the composition, Ca++ ion concentration and mechanical performance of the spindle MT cytoskeleton; and conversely 2) the spindle MT cytoskeleton contributes to membrane/organelle partitioning and inheritance during cell division and serves as a reservoir of membranes, organelles, and vesicles for delivery to the interphase cytoplasm, plasma membrane, and cleavage furrow.
Collapse
Affiliation(s)
- Jonathan M. Scholey
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
3
|
Brunner A, Morero NR, Zhang W, Hossain MJ, Lampe M, Pflaumer H, Halavatyi A, Peters JM, Beckwith KS, Ellenberg J. Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis. J Cell Biol 2025; 224:e202405169. [PMID: 39786339 PMCID: PMC11716112 DOI: 10.1083/jcb.202405169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/14/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures. By contrast, the more abundant Cohesin-STAG2 accumulates on chromosomes only gradually later in G1, is responsible for compaction inside TAD structures, and forms paired complexes upon completed nuclear import. Our quantitative time-resolved mapping of mitotic and interphase loop extruders in single cells reveals that the nested loop architecture formed by the sequential action of two Condensins in mitosis is seamlessly replaced by a less compact but conceptually similar hierarchically nested loop architecture driven by the sequential action of two Cohesins.
Collapse
Affiliation(s)
- Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Natalia Rosalía Morero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wanlu Zhang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - M. Julius Hossain
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Hannah Pflaumer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kai S. Beckwith
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Science for Life Laboratory (SciLifeLab), Solna, Sweden
| |
Collapse
|
4
|
Tang W, Costantino L, Stocsits R, Wutz G, Ladurner R, Hudecz O, Mechtler K, Peters JM. Cohesin positions the epigenetic reader Phf2 within the genome. EMBO J 2025; 44:736-766. [PMID: 39748119 PMCID: PMC11790891 DOI: 10.1038/s44318-024-00348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Genomic DNA is assembled into chromatin by histones, and extruded into loops by cohesin. These mechanisms control important genomic functions, but whether histones and cohesin cooperate in genome regulation is poorly understood. Here we identify Phf2, a member of the Jumonji-C family of histone demethylases, as a cohesin-interacting protein. Phf2 binds to H3K4me3 nucleosomes at active transcription start sites (TSSs), but also co-localizes with cohesin. Cohesin depletion reduces Phf2 binding at sites lacking H3K4me3, and depletion of Wapl and CTCF re-positions Phf2 together with cohesin in the genome, resulting in the accumulation of both proteins in chromosomal regions called vermicelli and cohesin islands. Conversely, Phf2 depletion reduces cohesin binding at TSSs lacking CTCF and decreases the number of short cohesin loops, while increasing the length of heterochromatic B compartments. These results suggest that Phf2 is an 'epigenetic reader', which is translocated through the genome by cohesin-mediated DNA loop extrusion, and which recruits cohesin to active TSSs and limits the size of B compartments. These findings reveal an unexpected degree of cooperativity between epigenetic and architectural mechanisms of eukaryotic genome regulation.
Collapse
Affiliation(s)
- Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Lorenzo Costantino
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Roman Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Rene Ladurner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Otto Hudecz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
5
|
Fang Y, Tang Y, Xie P, Hsieh K, Nam H, Jia M, Reyes AV, Liu Y, Xu S, Xu X, Gu Y. Nucleoporin PNET1 coordinates mitotic nuclear pore complex dynamics for rapid cell division. NATURE PLANTS 2025; 11:295-308. [PMID: 39890949 PMCID: PMC11850076 DOI: 10.1038/s41477-025-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
The nuclear pore complex (NPC) is a cornerstone of eukaryotic cell functionality, orchestrating the nucleocytoplasmic shuttling of macromolecules. Here we report that Plant Nuclear Envelope Transmembrane 1 (PNET1), a transmembrane nucleoporin, is an adaptable NPC component that is mainly expressed in actively dividing cells. PNET1's selective incorporation into the NPC is required for rapid cell growth in highly proliferative meristem and callus tissues in Arabidopsis. We demonstrate that the cell cycle-dependent phosphorylation of PNET1 coordinates mitotic disassembly and post-mitotic reassembly of NPCs during the cell cycle. PNET1 hyperphosphorylation disrupts its interaction with the NPC scaffold, facilitating NPC dismantling and nuclear membrane breakdown to trigger mitosis. In contrast, nascent, unphosphorylated PNET1 is incorporated into the nuclear pore membrane in the daughter cells, where it restores interactions with scaffolding nucleoporins for NPC reassembly. The expression of the human PNET1 homologue is required for and markedly upregulated during cancer cell growth, suggesting that PNET1 plays a conserved role in facilitating rapid cell division during open mitosis in highly proliferative tissues.
Collapse
Affiliation(s)
- Yiling Fang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Peiqiao Xie
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kendall Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Heejae Nam
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Min Jia
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andres V Reyes
- Department of Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, USA
| | - Yuchen Liu
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Shouling Xu
- Department of Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, USA
| | - Xiaosa Xu
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Mella J, Volk R, Zaro B, Buchwalter A. C-terminal tagging, transmembrane domain hydrophobicity, and an ER retention motif influence the secretory trafficking of the inner nuclear membrane protein emerin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633811. [PMID: 39896633 PMCID: PMC11785080 DOI: 10.1101/2025.01.19.633811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The inner nuclear membrane (INM), a subdomain of the endoplasmic reticulum (ER), sequesters hundreds of transmembrane proteins within the nucleus. We previously found that one INM protein, emerin, can evade the INM by secretory transport to the lysosome, where it is degraded. In this work, we used targeted mutagenesis to identify intrinsic sequences that promote or inhibit emerin's secretory trafficking. By manipulating these sequences across several tag and expression level combinations, we now find that emerin's localization is sensitive to C-terminal GFP tagging. While emerin's long, hydrophobic C-terminal transmembrane domain facilitates trafficking to the lysosome, extending its lumenal terminus with a GFP tag biases the protein toward this pathway. In contrast, we identify a conserved ER retention sequence that stabilizes N- and C-terminally tagged emerin by limiting its lysosomal flux. These findings underscore long-standing concerns about tagging artifacts and reveal novel determinants of tail-anchored INM protein targeting.
Collapse
Affiliation(s)
- Jessica Mella
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Regan Volk
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Balyn Zaro
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Ptak C, Rehman S, Wozniak RW. Mechanisms of nuclear envelope expansion. Curr Opin Cell Biol 2024; 91:102425. [PMID: 39250858 DOI: 10.1016/j.ceb.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
In actively dividing eukaryotic cells, the nuclear envelope membrane (NEM) expands during the cell cycle to accommodate increases in nuclear volume and formation of two nuclei as a cell passes through mitosis to form daughter cells. NEM expansion is driven by glycerophospholipid (GPL) synthesis that is regulated by the lipin family of phosphatidic acid phosphatases (PAPs). How, and when during the cell cycle, PAPs regulate membrane expansion differs between organisms undergoing a closed or open mitosis. Here, we discuss recent studies that shed light on the mechanisms of NE expansion. Moreover, we examine evidence that NEM expansion not only employs GPLs synthesized in the ER but also lipids whose synthesis is regulated by events at the inner nuclear membrane.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Saif Rehman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Kors S, Schlaitz AL. Dynamic remodelling of the endoplasmic reticulum for mitosis. J Cell Sci 2024; 137:jcs261444. [PMID: 39584405 DOI: 10.1242/jcs.261444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic and continuous membrane network with roles in many cellular processes. The importance and maintenance of ER structure and function have been extensively studied in interphase cells, yet recent findings also indicate crucial roles of the ER in mitosis. During mitosis, the ER is remodelled significantly with respect to composition and morphology but persists as a continuous network. The ER interacts with microtubules, actin and intermediate filaments, and concomitant with the mitotic restructuring of all cytoskeletal systems, ER dynamics and distribution change. The ER is a metabolic hub and several examples of altered ER functions during mitosis have been described. However, we lack an overall understanding of the ER metabolic pathways and functions that are active during mitosis. In this Review, we will discuss mitotic changes to the ER at different organizational levels to explore how the mitotic ER, with its distinct properties, might support cell division.
Collapse
Affiliation(s)
- Suzan Kors
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Anne-Lore Schlaitz
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Belaadi N, Guilluy C. Life outside the LINC complex - Do SUN proteins have LINC-independent functions? Bioessays 2024; 46:e2400034. [PMID: 38798157 PMCID: PMC11262984 DOI: 10.1002/bies.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Sad1 and UNC84 (SUN) and Klarsicht, ANC-1, and Syne homology (KASH) proteins interact at the nuclear periphery to form the linker of nucleoskeleton and cytoskeleton (LINC) complex, spanning the nuclear envelope (NE) and connecting the cytoskeleton with the nuclear interior. It is now well-documented that several cellular functions depend on LINC complex formation, including cell differentiation and migration. Intriguingly, recent studies suggest that SUN proteins participate in cellular processes where their association with KASH proteins may not be required. Building on this recent research, we elaborate on the hypothesis that SUN proteins may perform LINC-independent functions and discuss the modalities that may allow SUN proteins to function at the INM when they are not forming LINC complex.
Collapse
Affiliation(s)
- Nejma Belaadi
- Altos Labs, Cambridge Institute of Science, Cambridge, CB21 6GP, UK
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, North Carolina State University, USA
| |
Collapse
|
12
|
Dass MA, Sherman CDH, van Oorschot RAH, Tuohey K, Hartman D, Carter G, Durdle A. Assessing eDNA capture method from aquatic environment to optimise recovery of human mt-eDNA. Forensic Sci Int 2024; 361:112085. [PMID: 38850619 DOI: 10.1016/j.forsciint.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Previous studies have shown that environmental DNA (eDNA) from human sources can be recovered from natural bodies of water, and the generation of DNA profiles from such environmental samples may assist in forensic investigations. However, fundamental knowledge gaps exist around the factors influencing the probability of detecting human eDNA and the design of optimal sampling protocols. One of these is understanding the particle sizes eDNA signals are most strongly associated with and the most appropriate filter size needed for efficiently capturing eDNA particles. This study assessed the amount of mitochondrial eDNA associated with different particle sizes from human blood and skin cells recovered from freshwater samples. Samples (300 mL) were taken from experimental 10 L tanks of freshwater spiked with 50 µL of human blood or skin cells deposited by vigorously rubbing hands together for two minutes in freshwater. Subsamples were collected by passing 250 mL of experimental water sample through six different filter pore sizes (from 0.1 to 8 µm). This process was repeated at four time intervals after spiking over 72 hours to assess if the particle size of the amount of eDNA recovered changes as the eDNA degrades. Using a human-specific quantitative polymerase chain reaction (qPCR) assay targeting the HV1 mitochondrial gene region, the total amount of mitochondrial eDNA associated with different particle size fractions was determined. In the case of human blood, at 0 h, the 0.45 µm filter pore size captured the greatest amount of mitochondrial eDNA, capturing 42 % of the eDNA detected. The pattern then changed after 48 h, with the 5 µm filter pore size capturing the greatest amount of eDNA (67 %), and 81 % of eDNA at 72 h. Notably, a ten-fold dilution proved to be a valuable strategy for enhancing eDNA recovery from the 8 µm filter at all time points, primarily due to the PCR inhibition observed in hemoglobin. For human skin cells, the greatest amounts of eDNA were recovered from the 8 µm filter pore size and were consistent through time (capturing 37 %, 56 %, and 88 % of eDNA at 0 hours, 48 hours, and 72 hours respectively). There is a clear variation in the amount of eDNA recovered between different cell types, and in some forensic scenarios, there is likely to be a mix of cell types present. These results suggest it would be best to use a 5 µm filter pore size to capture human blood and an 8 µm filter pore size to capture human skin cells to maximize DNA recovery from freshwater samples. Depending on the cell type contributing to the eDNA, a combination of different filter pore sizes may be employed to optimize the recovery of human DNA from water samples. This study provides the groundwork for optimizing a strategy for the efficient recovery of human eDNA from aquatic environments, paving the way for its broader application in forensic and environmental sciences.
Collapse
Affiliation(s)
- Marie Antony Dass
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia.
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kate Tuohey
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia
| | - Dadna Hartman
- Victorian Institute of Forensic Medicine, Southbank, VIC 3006, Australia; Department of Forensic Medicine, Monash University, Southbank, VIC 3006, Australia
| | - Gemma Carter
- Victorian Institute of Forensic Medicine, Southbank, VIC 3006, Australia
| | - Annalisa Durdle
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia
| |
Collapse
|
13
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
14
|
Fedorov D, Roas-Escalona N, Tolmachev D, Harmat AL, Scacchi A, Sammalkorpi M, Aranko AS, Linder MB. Triblock Proteins with Weakly Dimerizing Terminal Blocks and an Intrinsically Disordered Region for Rational Design of Condensate Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306817. [PMID: 37964343 DOI: 10.1002/smll.202306817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Condensates are molecular assemblies that are formed through liquid-liquid phase separation and play important roles in many biological processes. The rational design of condensate formation and their properties is central to applications, such as biosynthetic materials, synthetic biology, and for understanding cell biology. Protein engineering is used to make a triblock structure with varying terminal blocks of folded proteins on both sides of an intrinsically disordered mid-region. Dissociation constants are determined in the range of micromolar to millimolar for a set of proteins suitable for use as terminal blocks. Varying the weak dimerization of terminal blocks leads to an adjustable tendency for condensate formation while keeping the intrinsically disordered region constant. The dissociation constants of the terminal domains correlate directly with the tendency to undergo liquid-liquid phase separation. Differences in physical properties, such as diffusion rate are not directly correlated with the strength of dimerization but can be understood from the properties and interplay of the constituent blocks. The work demonstrates the importance of weak interactions in condensate formation and shows a principle for protein design that will help in fabricating functional condensates in a predictable and rational way.
Collapse
Affiliation(s)
- Dmitrii Fedorov
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Nelmary Roas-Escalona
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Dmitry Tolmachev
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Adam L Harmat
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Alberto Scacchi
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Applied Physics, Aalto University, P.O. Box 11000, Aalto, FI-00076, Finland
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
15
|
van Heerden D, Klima S, van den Bout I. How nuclear envelope dynamics can direct laminopathy phenotypes. Curr Opin Cell Biol 2024; 86:102290. [PMID: 38048657 DOI: 10.1016/j.ceb.2023.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
The nuclear envelope separates the genome from the cytoplasmic environment. However, the nuclear envelope is also physically associated with the genome and exerts influence on gene expression and genome modification. The nucleus is dynamic, changing shape and responding to cell movement, disassembling and assembling during cell division, and undergoing rupture and repair. These dynamics can be impacted by genetic disease, leading to a family of diseases called laminopathies. Their disparate phenotypes suggest that multiple processes are affected. We highlight three such processes here, which we believe can be used to classify most of the laminopathies. While much still needs to be learned, some commonalities between these processes, such as proteins involved in nuclear envelope formation and rupture repair, may drive a variety of laminopathies. Here we review the latest information regarding nuclear dynamics and its role in laminopathies related to mutations in the nuclear lamina and linker of nucleoskeleton and cytoskeleton complex (LINC) proteins.
Collapse
Affiliation(s)
- David van Heerden
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Stefanie Klima
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Iman van den Bout
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|
16
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
17
|
Abdel Fattah AR, Grebenyuk S, de Rooij LPMH, Salmon I, Ranga A. Neuroepithelial organoid patterning is mediated by a neighborhood watch mechanism. Cell Rep 2023; 42:113334. [PMID: 38511989 DOI: 10.1016/j.celrep.2023.113334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 03/22/2024] Open
Abstract
During epithelial tissue patterning, morphogens operate across multiple length scales to instruct cell identities. However, how cell fate changes are coordinated over these scales to establish spatial organization remains poorly understood. Here, we use human neural tube organoids as models of epithelial patterning and develop an in silico approach to define conditions permissive to patterning. By systematically varying morphogen position, diffusivity, and fate-inducing concentration levels, we show that cells follow a "neighborhood watch" (NW) mechanism that is deterministically dictated by initial morphogen source positions, reflecting scale-invariant in vitro phenotypes. We define how the frequency and local bias of morphogen sources stabilize pattern orientation. The model predicts enhanced patterning through floor plate inhibition, and receptor-ligand interaction analysis of single-cell RNA sequencing (scRNA-seq) data identifies wingless-related integration site (WNT) and bone morphogenic protein (BMP) as inhibition modulators, which we validate in vitro. These results suggest that developing neuroepithelia employ NW-based mechanisms to organize morphogen sources, define cellular identity, and establish patterns.
Collapse
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Sergei Grebenyuk
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Laura P M H de Rooij
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Idris Salmon
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Danovski G, Dyankova-Danovska T, Stamatov R, Aleksandrov R, Kanev PB, Stoynov S. CellTool: An Open-Source Software Combining Bio-Image Analysis and Mathematical Modeling for the Study of DNA Repair Dynamics. Int J Mol Sci 2023; 24:16784. [PMID: 38069107 PMCID: PMC10706408 DOI: 10.3390/ijms242316784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Elucidating the dynamics of DNA repair proteins is essential to understanding the mechanisms that preserve genomic stability and prevent carcinogenesis. However, the measurement and modeling of protein dynamics at DNA lesions via currently available image analysis tools is cumbersome. Therefore, we developed CellTool-a stand-alone open-source software with a graphical user interface for the analysis of time-lapse microscopy images. It combines data management, image processing, mathematical modeling, and graphical presentation of data in a single package. Multiple image filters, segmentation, and particle tracking algorithms, combined with direct visualization of the obtained results, make CellTool an ideal application for the comprehensive analysis of DNA repair protein dynamics. This software enables the fitting of obtained kinetic data to predefined or custom mathematical models. Importantly, CellTool provides a platform for easy implementation of custom image analysis packages written in a variety of programing languages. Using CellTool, we demonstrate that the ALKB homolog 2 (ALKBH2) demethylase is excluded from DNA damage sites despite recruitment of its putative interaction partner proliferating cell nuclear antigen (PCNA). Further, CellTool facilitates the straightforward fluorescence recovery after photobleaching (FRAP) analysis of BRCA1 associated RING domain 1 (BARD1) exchange at complex DNA lesions. In summary, the software presented herein enables the time-efficient analysis of a wide range of time-lapse microscopy experiments through a user-friendly interface.
Collapse
Affiliation(s)
| | | | | | | | | | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (T.D.-D.); (R.S.); (R.A.); (P.-B.K.)
| |
Collapse
|
19
|
Tsuda N, Fukagawa R, Sueda S. Does the nuclear envelope retain its identity during mitosis? FEBS Lett 2023; 597:682-692. [PMID: 36528783 DOI: 10.1002/1873-3468.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
During mitosis in metazoan species, the nuclear envelope (NE) undergoes breakdown, and its fragments are absorbed within the membranous network of the endoplasmic reticulum (ER). Past observations by fluorescence microscopy led researchers to think that the NE loses its identity when it is absorbed within the ER membrane. However, in our previous work, we developed a more specific labelling method and found evidence that the NE does not completely lose its identity during mitosis. In the present work, we conduct further experiments, the results of which support the idea that the NE partially retains its identity during mitosis.
Collapse
Affiliation(s)
- Natsumi Tsuda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan
| | - Ryohei Fukagawa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan
| | - Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan
| |
Collapse
|
20
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
21
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
22
|
Wesley CC, Levy DL. Differentiation-dependent changes in lamin B1 dynamics and lamin B receptor localization. Mol Biol Cell 2023; 34:ar10. [PMID: 36598800 PMCID: PMC9930530 DOI: 10.1091/mbc.e22-04-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nuclear lamina serves important roles in chromatin organization and structural support, and lamina mutations can result in laminopathies. Less is known about how nuclear lamina structure changes during cellular differentiation-changes that may influence gene regulation. We examined the structure and dynamics of the nuclear lamina in human-induced pluripotent stem cells (iPSCs) and differentiated germ layer cells, focusing on lamin B1. We report that lamin B1 dynamics generally increase as iPSCs differentiate, especially in mesoderm and ectoderm, and that lamin B receptor (LBR) partially redistributes from the nucleus to cytoplasm in mesoderm. Knocking down LBR in iPSCs led to an increase in lamin B1 dynamics, a change that was not observed for ELYS, emerin, or lamin B2 knockdown. LBR knockdown also affected expression of differentiation markers. These data suggest that differentiation-dependent tethering of lamin B1 either directly by LBR or indirectly via LBR-chromatin associations impacts gene expression.
Collapse
Affiliation(s)
- Chase C. Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071,*Address correspondence to: Daniel L. Levy ()
| |
Collapse
|
23
|
Anand D, Chaudhuri A. Grease in the Nucleus: Insights into the Dynamic Life of Nuclear Membranes. J Membr Biol 2022; 256:137-145. [PMID: 36331589 PMCID: PMC10082704 DOI: 10.1007/s00232-022-00272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
AbstractNucleus is at the center stage of cellular drama orchestrated in the life of a cell and the nucleoplasm is surrounded by a double membranous compartment constituting the Nuclear membrane/envelope (NE) that separates it from the cytoplasm in nucleated cells. The initial understanding of the NE was that of a border security entity between the nucleus and the cytoplasm, separating gene regulation and transcription in the nucleus from translation in the cytoplasm. However, the discovery of a wide array of inherited diseases caused by mutations in genes encoding proteins that reside or interact with NE diverted the interest into deciphering the lipid-protein-rich environment of the NE. Today, the NE is considered a dynamic organelle which forms a functional linkage between the nucleus and the rest of the cell. The exposure of NE to constant mechanical constraints by its connectivity to the large polymer network of the lamina and chromatin on one side, and to the cytoskeleton on the other side results, in a variety of shape changes. We discuss two such deformation, the formation of nuclear blebs and nucleoplasmic reticulum (NER). Although the protein and the lipid composition of NE comprises a small fraction of the total lipid-protein load of the cell, the ability to define the lipid-protein composition of Inner nuclear membrane (INM) and Outer nuclear membrane (ONM) with precision is crucial for obtaining a deeper mechanistic understanding of their lipid-protein interaction and the various signaling pathways that are triggered by them. In addition, this allows us to further understand the direct and indirect roles of NE machinery in the chromosomal organization and gene regulation.
Graphical Abstract
Collapse
Affiliation(s)
- Deepak Anand
- The Microbiology Group, Department of Biology, Biology Building, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Arunima Chaudhuri
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 19, 223 62, Lund, Sweden.
| |
Collapse
|
24
|
LaJoie D, Turkmen AM, Mackay DR, Jensen CC, Aksenova V, Niwa M, Dasso M, Ullman KS. A role for Nup153 in nuclear assembly reveals differential requirements for targeting of nuclear envelope constituents. Mol Biol Cell 2022; 33:ar117. [PMID: 36044344 PMCID: PMC9634965 DOI: 10.1091/mbc.e22-05-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
Assembly of the nucleus following mitosis requires rapid and coordinate recruitment of diverse constituents to the inner nuclear membrane. We have identified an unexpected role for the nucleoporin Nup153 in promoting the continued addition of a subset of nuclear envelope (NE) proteins during initial expansion of nascent nuclei. Specifically, disrupting the function of Nup153 interferes with ongoing addition of B-type lamins, lamin B receptor, and SUN1 early in telophase, after the NE has initially enclosed chromatin. In contrast, effects on lamin A and SUN2 were minimal, pointing to differential requirements for the ongoing targeting of NE proteins. Further, distinct mistargeting phenotypes arose among the proteins that require Nup153 for NE targeting. Thus, disrupting the function of Nup153 in nuclear formation reveals several previously undescribed features important for establishing nuclear architecture: 1) a role for a nuclear basket constituent in ongoing recruitment of nuclear envelope components, 2) two functionally separable phases of NE formation in mammalian cells, and 3) distinct requirements of individual NE residents for continued targeting during the expansion phase of NE reformation.
Collapse
Affiliation(s)
- Dollie LaJoie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Ayse M. Turkmen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Douglas R. Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Christopher C. Jensen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Katharine S. Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
25
|
Differential Intracellular Protein Distribution in Cancer and Normal Cells-Beta-Catenin and CapG in Gynecologic Malignancies. Cancers (Basel) 2022; 14:cancers14194788. [PMID: 36230711 PMCID: PMC9561979 DOI: 10.3390/cancers14194788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The distribution and mobility of proteins inside the living cell can be used to differentiate cancer from normal cells. This review highlights differential protein distribution of two exemplary proteins, beta-catenin and CapG, and their role in gynecologic cancers. Recognizing differential protein distribution in cancer cells may have diagnostic and therapeutic implications. Abstract It is well-established that cancer and normal cells can be differentiated based on the altered sequence and expression of specific proteins. There are only a few examples, however, showing that cancer and normal cells can be differentiated based on the altered distribution of proteins within intracellular compartments. Here, we review available data on shifts in the intracellular distribution of two proteins, the membrane associated beta-catenin and the actin-binding protein CapG. Both proteins show altered distributions in cancer cells compared to normal cells. These changes are noted (i) in steady state and thus can be visualized by immunohistochemistry—beta-catenin shifts from the plasma membrane to the cell nucleus in cancer cells; and (ii) in the dynamic distribution that can only be revealed using the tools of quantitative live cell microscopy—CapG shuttles faster into the cell nucleus of cancer cells. Both proteins may play a role as prognosticators in gynecologic malignancies: beta-catenin in endometrial cancer and CapG in breast and ovarian cancer. Thus, both proteins may serve as examples of altered intracellular protein distribution in cancer and normal cells.
Collapse
|
26
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
27
|
Kuznetsov IA, Berlew EE, Glantz ST, Hannanta-Anan P, Chow BY. Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment. CELL REPORTS METHODS 2022; 2:100245. [PMID: 35880018 PMCID: PMC9308134 DOI: 10.1016/j.crmeth.2022.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022]
Abstract
We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin E. Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Spencer T. Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pimkhuan Hannanta-Anan
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Brian Y. Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Stiekema M, Houben F, Verheyen F, Borgers M, Menzel J, Meschkat M, van Zandvoort MAMJ, Ramaekers FCS, Broers JLV. The Role of Lamins in the Nucleoplasmic Reticulum, a Pleiomorphic Organelle That Enhances Nucleo-Cytoplasmic Interplay. Front Cell Dev Biol 2022; 10:914286. [PMID: 35784476 PMCID: PMC9243388 DOI: 10.3389/fcell.2022.914286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the nuclear membrane occur in different shapes, sizes, and compositions. Part of these pleiomorphic invaginations make up the nucleoplasmic reticulum (NR), while others are merely nuclear folds. We define the NR as tubular invaginations consisting of either both the inner and outer nuclear membrane, or only the inner nuclear membrane. Specifically, invaginations of both the inner and outer nuclear membrane are also called type II NR, while those of only the inner nuclear membrane are defined as type I NR. The formation and structure of the NR is determined by proteins associated to the nuclear membrane, which induce a high membrane curvature leading to tubular invaginations. Here we review and discuss the current knowledge of nuclear invaginations and the NR in particular. An increase in tubular invaginations of the nuclear envelope is associated with several pathologies, such as laminopathies, cancer, (reversible) heart failure, and Alzheimer’s disease. Furthermore, viruses can induce both type I and II NR. In laminopathies, the amount of A-type lamins throughout the nucleus is generally decreased or the organization of lamins or lamin-associated proteins is disturbed. Also, lamin overexpression or modulation of lamin farnesylation status impacts NR formation, confirming the importance of lamin processing in NR formation. Virus infections reorganize the nuclear lamina via (de)phosphorylation of lamins, leading to an uneven thickness of the nuclear lamina and in turn lobulation of the nuclear membrane and the formation of invaginations of the inner nuclear membrane. Since most studies on the NR have been performed with cell cultures, we present additional proof for the existence of these structures in vivo, focusing on a variety of differentiated cardiovascular and hematopoietic cells. Furthermore, we substantiate the knowledge of the lamin composition of the NR by super-resolution images of the lamin A/C and B1 organization. Finally, we further highlight the essential role of lamins in NR formation by demonstrating that (over)expression of lamins can induce aberrant NR structures.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Frederik Houben
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Healthcare, PXL University College, Hasselt, Belgium
| | - Fons Verheyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marcel Borgers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Aachen, Germany
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- *Correspondence: Jos L. V. Broers,
| |
Collapse
|
29
|
Berlew EE, Yamada K, Kuznetsov IA, Rand EA, Ochs CC, Jaber Z, Gardner KH, Chow BY. Designing Single-Component Optogenetic Membrane Recruitment Systems: The Rho-Family GTPase Signaling Toolbox. ACS Synth Biol 2022; 11:515-521. [PMID: 34978789 PMCID: PMC8867532 DOI: 10.1021/acssynbio.1c00604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We describe the efficient creation of single-component optogenetic tools for membrane recruitment-based signaling perturbation using BcLOV4 technology. The workflow requires two plasmids to create six different domain arrangements of the dynamic membrane binder BcLOV4, a fluorescent reporter, and the fused signaling protein of interest. Screening of this limited set of genetic constructs for expression characteristics and dynamic translocation in response to one pulse of light is sufficient to identify viable signaling control tools. The reliability of this streamlined approach is demonstrated by the creation of an optogenetic Cdc42 GTPase and Rac1-activating Tiam1 GEF protein, which together with our other recently reported technologies, completes a toolbox for spatiotemporally precise induction of Rho-family GTPase signaling at the GEF or GTPase level, for driving filopodial protrusions, lamellipodial protrusions, and cell contractility, respectively mediated by Cdc42, Rac1, and RhoA.
Collapse
Affiliation(s)
- Erin E. Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Keisuke Yamada
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan 169-8050
| | - Ivan A. Kuznetsov
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Eleanor A. Rand
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,Department of Systems Biology, Harvard University Medical School, Boston MA 02115, USA
| | - Chandler C. Ochs
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Zaynab Jaber
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA,Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Kevin H. Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA,Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA,Ph.D. Programs in Biochemistry, Chemistry, and Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Brian Y. Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA,Correspondence: ; 210 S 33rd Street, Suite 240, Philadelphia, PA 19104; (+1) (215) 898-5159
| |
Collapse
|
30
|
Chen C, Li D, Li J, Chen X, Wei W, Wang X. Microstructure and biomolecules mobility of human milk fat globules by fluorescence recovery after photobleaching with confocal scanning laser microscope. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Warecki B, Bast I, Sullivan W. Visualizing the Dynamics of Cell Division by Live Imaging Drosophila Larval Brain Squashes. Methods Mol Biol 2022; 2415:37-46. [PMID: 34972944 DOI: 10.1007/978-1-0716-1904-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dramatic changes of subcellular structures during mitosis are best visualized by live imaging. In general, live imaging requires the expression of proteins of interest fused to fluorophores and a model system amenable to live microscopy. Drosophila melanogaster is an attractive model in which to perform live imaging because of the numerous transgenic stocks bearing fluorescently tagged transgenes as well as the ability to precisely manipulate gene expression. Traditionally, the early Drosophila embryo has been used for live fluorescent analysis of mitotic events such as spindle formation and chromosome segregation. More recent studies demonstrate that the Drosophila third instar neuroblasts have a number of properties that make them well suited for live analysis: (1) neuroblasts are distinct cells surrounded by plasma membranes; (2) neuroblasts undergo a complete cell cycle, consisting of G1, S, G2, and M phases; and (3) neuroblasts gene expression is not influenced by maternal load, and so the genetics are therefore relatively more simple. Finally, the Drosophila neuroblast is arguably the best system for live imaging asymmetric stem cell divisions. Here, we detail a method for live imaging Drosophila larval neuroblasts.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
32
|
Priyanka Damera D, Nag A. Exploring the membrane fluidity of phenyl boronic acid functionalized polymersomes using the FRAP technique and their application in the pH-sensitive release of curcumin. NEW J CHEM 2022. [DOI: 10.1039/d2nj01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FRAP study to examine alterations in the membrane fluidity of functionalized polymersomes and pH responsive targeted delivery of curcumin.
Collapse
Affiliation(s)
| | - Amit Nag
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India
| |
Collapse
|
33
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
34
|
Specific subdomain localization of ER resident proteins and membrane contact sites resolved by electron microscopy. Eur J Cell Biol 2021; 100:151180. [PMID: 34653930 DOI: 10.1016/j.ejcb.2021.151180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, single-copy, membrane-bound organelle that comprises an elaborate 3D network of diverse structural subdomains, including highly curved tubules, flat sheets, and parts that form contacts with nearly every other organelle. The dynamic and complex organization of the ER poses a major challenge on understanding how its functioning - maintenance of the structure, distribution of its functions and communication with other organelles - is orchestrated. In this study, we resolved a unique localization profile within the ER network for several resident ER proteins representing a broad range of functions associated with the ER using immuno-electron microscopy and calculation of a relative labeling index (RLI). Our results demonstrated the effect of changing cellular environment on protein localization and highlighted the importance of correct protein expression level when analyzing its localization at subdomain resolution. We present new software tools for anonymization of images for blind analysis and for quantitative assessment of membrane contact sites (MCSs) from thin section transmission electron microscopy micrographs. The analysis of ER-mitochondria contacts suggested the presence of at least three different types of MCSs that responded differently to changes in cellular lipid loading status.
Collapse
|
35
|
Pir Cakmak F, Marianelli AM, Keating CD. Phospholipid Membrane Formation Templated by Coacervate Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10366-10375. [PMID: 34398617 DOI: 10.1021/acs.langmuir.1c01562] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report the formation of coacervate-supported phospholipid membranes by hydrating a dried lipid film in the presence of coacervate droplets. Coacervate-supported membranes were characterized by fluorescence imaging, polarization, fluorescence recovery after photobleaching of labeled lipids, lipid quenching experiments, and solute uptake experiments. Our findings are consistent with the presence of lipid membranes around the coacervates, with many droplets fully coated by what appear to be continuous lipid bilayers. In contrast to traditional giant lipid vesicles formed by gentle hydration in the absence of coacervates, the coacervate-templated membrane vesicles are more uniform in size, shape, and apparent lamellarity. Due to their fully coacervate model cytoplasm, these simple artificial cells are macromolecularly crowded and can be easily pre-loaded with high concentrations of proteins or nucleic acids. Within the same population, in addition to coacervate droplets having intact lipid membrane coatings, other coacervate droplets are coated with membranes having defects or pores that permit solute entry, and some are coated with multilayered membranes. Membranes surrounding protein-based coacervate droplets provided protection from a protease added to the external solution. The simplicity of producing artificial cells having a coacervate model cytoplasm surrounded by a model membrane is at the same time interesting as a potential mechanism for prebiotic protocell formation and appealing for biotechnology. We anticipate that such structures could serve as a new type of model system for understanding interactions between intracellular phases and cell or organelle membranes, which are implicated in a growing number of processes ranging from neurotransmission to signaling.
Collapse
Affiliation(s)
- Fatma Pir Cakmak
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Allyson M Marianelli
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
36
|
The Cytoskeleton and Its Roles in Self-Organization Phenomena: Insights from Xenopus Egg Extracts. Cells 2021; 10:cells10092197. [PMID: 34571847 PMCID: PMC8465277 DOI: 10.3390/cells10092197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/11/2023] Open
Abstract
Self-organization of and by the cytoskeleton is central to the biology of the cell. Since their introduction in the early 1980s, cytoplasmic extracts derived from the eggs of the African clawed-frog, Xenopus laevis, have flourished as a major experimental system to study the various facets of cytoskeleton-dependent self-organization. Over the years, the many investigations that have used these extracts uniquely benefited from their simplified cell cycle, large experimental volumes, biochemical tractability and cell-free nature. Here, we review the contributions of egg extracts to our understanding of the cytoplasmic aspects of self-organization by the microtubule and the actomyosin cytoskeletons as well as the importance of cytoskeletal filaments in organizing nuclear structure and function.
Collapse
|
37
|
Parameter estimation in fluorescence recovery after photobleaching: quantitative analysis of protein binding reactions and diffusion. J Math Biol 2021; 83:1. [PMID: 34129100 PMCID: PMC8205911 DOI: 10.1007/s00285-021-01616-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/15/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a common experimental method for investigating rates of molecular redistribution in biological systems. Many mathematical models of FRAP have been developed, the purpose of which is usually the estimation of certain biological parameters such as the diffusivity and chemical reaction rates of a protein, this being accomplished by fitting the model to experimental data. In this article, we consider a two species reaction–diffusion FRAP model. Using asymptotic analysis, we derive new FRAP recovery curve approximation formulae, and formally re-derive existing ones. On the basis of these formulae, invoking the concept of Fisher information, we predict, in terms of biological and experimental parameters, sufficient conditions to ensure that the values all model parameters can be estimated from data. We verify our predictions with extensive computational simulations. We also use computational methods to investigate cases in which some or all biological parameters are theoretically inestimable. In these cases, we propose methods which can be used to extract the maximum possible amount of information from the FRAP data.
Collapse
|
38
|
Chou YY, Upadhyayula S, Houser J, He K, Skillern W, Scanavachi G, Dang S, Sanyal A, Ohashi KG, Di Caprio G, Kreutzberger AJB, Vadakkan TJ, Kirchhausen T. Inherited nuclear pore substructures template post-mitotic pore assembly. Dev Cell 2021; 56:1786-1803.e9. [PMID: 34129835 DOI: 10.1016/j.devcel.2021.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/09/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Nuclear envelope assembly during late mitosis includes rapid formation of several thousand complete nuclear pore complexes (NPCs). This efficient use of NPC components (nucleoporins or "NUPs") is essential for ensuring immediate nucleocytoplasmic communication in each daughter cell. We show that octameric subassemblies of outer and inner nuclear pore rings remain intact in the mitotic endoplasmic reticulum (ER) after NPC disassembly during prophase. These "inherited" subassemblies then incorporate into NPCs during post-mitotic pore formation. We further show that the stable subassemblies persist through multiple rounds of cell division and the accompanying rounds of NPC mitotic disassembly and post-mitotic assembly. De novo formation of NPCs from newly synthesized NUPs during interphase will then have a distinct initiation mechanism. We postulate that a yet-to-be-identified modification marks and "immortalizes" one or more components of the specific octameric outer and inner ring subcomplexes that then template post-mitotic NPC assembly during subsequent cell cycles.
Collapse
Affiliation(s)
- Yi-Ying Chou
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Justin Houser
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kangmin He
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Wesley Skillern
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Song Dang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kazuka G Ohashi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Giuseppe Di Caprio
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tegy John Vadakkan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Tiago T, Hummel B, Morelli FF, Basile V, Vinet J, Galli V, Mediani L, Antoniani F, Pomella S, Cassandri M, Garone MG, Silvestri B, Cimino M, Cenacchi G, Costa R, Mouly V, Poser I, Yeger-Lotem E, Rosa A, Alberti S, Rota R, Ben-Zvi A, Sawarkar R, Carra S. Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death Dis 2021; 12:452. [PMID: 33958580 PMCID: PMC8102500 DOI: 10.1038/s41419-021-03737-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.
Collapse
Affiliation(s)
- Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Valentina Basile
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Veronica Galli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesco Antoniani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Marco Cimino
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Vincent Mouly
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, F-75013, Paris, France
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Dewpoint Therapeutics GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, UK
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
40
|
Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021; 24:102385. [PMID: 33997675 PMCID: PMC8100630 DOI: 10.1016/j.isci.2021.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Here we identify human Kinesin-5, Kif11/HsEg5, as a cellular target of Zika protease. We show that Zika NS2B-NS3 protease targets several sites within the motor domain of HsEg5 irrespective of motor binding to microtubules. The native integral ER-membrane protease triggers mitotic spindle positioning defects and a prolonged metaphase delay in cultured cells. Our data support a model whereby loss of function of HsEg5 is mediated by Zika protease and is spatially restricted to the ER-mitotic spindle interface during mitosis. The resulting phenotype is distinct from the monopolar phenotype that typically results from uniform inhibition of HsEg5 by RNAi or drugs. In addition, our data reveal novel inter-organelle interactions between the mitotic apparatus and the surrounding reticulate ER network. Given that Kif11 is haplo-insufficient in humans, and reduced dosage results in microcephaly, we propose that Zika protease targeting of HsEg5 may be a key event in the etiology of Zika syndrome microcephaly. Zika protease cleavage of Kinesin-5 impairs mitotic progression Inter-organelle interactions spatially control Zika proteolysis of Kinesin-5 Native Zika protease affects mitosis differently than soluble Zika protease Zika protease may elicit fetal microcephaly and blindness via Kif11/Kinesin-5
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Micquel Downs
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Jesse Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
- The Proteomics Core Facility, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
41
|
Dey G, Baum B. Nuclear envelope remodelling during mitosis. Curr Opin Cell Biol 2021; 70:67-74. [PMID: 33421755 PMCID: PMC8129912 DOI: 10.1016/j.ceb.2020.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
The defining feature of the eukaryotic cell, the nucleus, is bounded by a double envelope. This envelope and the nuclear pores within it play a critical role in separating the genome from the cytoplasm. It also presents cells with a challenge. How are cells to remodel the nuclear compartment boundary during mitosis without compromising nuclear function? In the two billion years since the emergence of the first cells with a nucleus, eukaryotes have evolved a range of strategies to do this. At one extreme, the nucleus is disassembled upon entry into mitosis and then reassembled anew in the two daughter cells. At the other, cells maintain an intact nuclear compartment boundary throughout the division process. In this review, we discuss common features of the division process that underpin remodelling mechanisms, the topological challenges involved and speculate on the selective pressures that may drive the evolution of distinct modes of division.
Collapse
Affiliation(s)
- Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| | - Buzz Baum
- Lab of Molecular Biology, Cambridge, CB2 0QH, United Kingdom; Lab for Molecular Cell Biology, UCL, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
42
|
Batta G, Hajdu T, Nagy P. Characterization of the Effect of Sphingolipid Accumulation on Membrane Compactness, Dipole Potential, and Mobility of Membrane Components. Methods Mol Biol 2021; 2187:283-301. [PMID: 32770513 DOI: 10.1007/978-1-0716-0814-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Communication between cells and their environment is carried out through the plasma membrane including the action of most pharmaceutical drugs. Although such a communication typically involves specific binding of a messenger to a membrane receptor, the biophysical state of the lipid bilayer strongly influences the outcome of this interaction. Sphingolipids constitute an important part of the lipid membrane, and their mole fraction modifies the biophysical characteristics of the membrane. Here, we describe methods that can be used for measuring how sphingolipid accumulation alters the compactness, microviscosity, and dipole potential of the lipid bilayer and the mobility of membrane components.
Collapse
Affiliation(s)
- Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tímea Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
43
|
Goto C, Hara-Nishimura I, Tamura K. Regulation and Physiological Significance of the Nuclear Shape in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:673905. [PMID: 34177991 PMCID: PMC8222917 DOI: 10.3389/fpls.2021.673905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
The shape of plant nuclei varies among different species, tissues, and cell types. In Arabidopsis thaliana seedlings, nuclei in meristems and guard cells are nearly spherical, whereas those of epidermal cells in differentiated tissues are elongated spindle-shaped. The vegetative nuclei in pollen grains are irregularly shaped in angiosperms. In the past few decades, it has been revealed that several nuclear envelope (NE) proteins play the main role in the regulation of the nuclear shape in plants. Some plant NE proteins that regulate nuclear shape are also involved in nuclear or cellular functions, such as nuclear migration, maintenance of chromatin structure, gene expression, calcium and reactive oxygen species signaling, plant growth, reproduction, and plant immunity. The shape of the nucleus has been assessed both by labeling internal components (for instance chromatin) and by labeling membranes, including the NE or endoplasmic reticulum in interphase cells and viral-infected cells of plants. Changes in NE are correlated with the formation of invaginations of the NE, collectively called the nucleoplasmic reticulum. In this review, what is known and what is unknown about nuclear shape determination are presented, and the physiological significance of the control of the nuclear shape in plants is discussed.
Collapse
Affiliation(s)
- Chieko Goto
- Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Kentaro Tamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- *Correspondence: Kentaro Tamura,
| |
Collapse
|
44
|
Fluorescent Labeling of the Nuclear Envelope Without Relying on Inner Nuclear Membrane Proteins. Methods Mol Biol 2021; 2274:3-14. [PMID: 34050457 DOI: 10.1007/978-1-0716-1258-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nuclear envelope (NE), a double membrane that separates nuclear components from the cytoplasm, undergoes a breakdown and reformation during cell division. To trace NE dynamics, the NE needs to be labeled with a fluorescent marker, and for this purpose, markers based on inner nuclear membrane (INM) proteins are normally used. However, NE labeling with INM proteins has some limitations. Here, we introduce a protocol for fluorescent labeling and imaging of NE that does not rely on INM proteins, along with protocols for simultaneously imaging two nuclear components and for time-lapse imaging of labeled cells.
Collapse
|
45
|
Luithle N, de Bos JU, Hovius R, Maslennikova D, Lewis RTM, Ungricht R, Fierz B, Kutay U. Torsin ATPases influence chromatin interaction of the Torsin regulator LAP1. eLife 2020; 9:e63614. [PMID: 33320087 PMCID: PMC7773337 DOI: 10.7554/elife.63614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
The inner nuclear membrane is functionalized by diverse transmembrane proteins that associate with nuclear lamins and/or chromatin. When cells enter mitosis, membrane-chromatin contacts must be broken to allow for proper chromosome segregation; yet how this occurs remains ill-understood. Unexpectedly, we observed that an imbalance in the levels of the lamina-associated polypeptide 1 (LAP1), an activator of ER-resident Torsin AAA+-ATPases, causes a failure in membrane removal from mitotic chromatin, accompanied by chromosome segregation errors and changes in post-mitotic nuclear morphology. These defects are dependent on a hitherto unknown chromatin-binding region of LAP1 that we have delineated. LAP1-induced NE abnormalities are efficiently suppressed by expression of wild-type but not ATPase-deficient Torsins. Furthermore, a dominant-negative Torsin induces chromosome segregation defects in a LAP1-dependent manner. These results indicate that association of LAP1 with chromatin in the nucleus can be modulated by Torsins in the perinuclear space, shedding new light on the LAP1-Torsin interplay.
Collapse
Affiliation(s)
- Naemi Luithle
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
| | - Jelmi uit de Bos
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
- Molecular Life Sciences Ph.D. ProgramZurichSwitzerland
| | - Ruud Hovius
- Institute of Chemical Sciences and Engineering - ISIC, EPFLLausanneSwitzerland
| | - Daria Maslennikova
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
- Molecular Life Sciences Ph.D. ProgramZurichSwitzerland
| | - Renard TM Lewis
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
- Molecular Life Sciences Ph.D. ProgramZurichSwitzerland
| | - Rosemarie Ungricht
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering - ISIC, EPFLLausanneSwitzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
| |
Collapse
|
46
|
Lippincott-Schwartz J. The evolution of a cell biologist. Mol Biol Cell 2020; 31:2763-2767. [PMID: 33253077 PMCID: PMC7851866 DOI: 10.1091/mbc.e20-09-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
I am honored and humbled to receive the E. B. Wilson Medal and happy to share some reflections on my journey as a cell biologist. It took me a while to realize that my interest in biology would center on how cells are spatially and dynamically organized. From an initial fascination with cellular structures I came to appreciate that cells exhibit dynamism across all scales-from their molecules, to molecular complexes, to organelles. Uncovering the principles of this dynamism, including new ways to observe and quantify it, has been the guiding star of my work.
Collapse
|
47
|
Liu S, Pellman D. The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus 2020; 11:35-52. [PMID: 32208955 PMCID: PMC7289584 DOI: 10.1080/19491034.2020.1742064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023] Open
Abstract
The nuclear envelope (NE) is composed of two lipid bilayer membranes that enclose the eukaryotic genome. In interphase, the NE is perforated by thousands of nuclear pore complexes (NPCs), which allow transport in and out of the nucleus. During mitosis in metazoans, the NE is broken down and then reassembled in a manner that enables proper chromosome segregation and the formation of a single nucleus in each daughter cell. Defects in coordinating NE reformation and chromosome segregation can cause aberrant nuclear architecture. This includes the formation of micronuclei, which can trigger a catastrophic mutational process commonly observed in cancers called chromothripsis. Here, we discuss the current understanding of the coordination of NE reformation with chromosome segregation during mitotic exit in metazoans. We review differing models in the field and highlight recent work suggesting that normal NE reformation and chromosome segregation are physically linked through the timing of mitotic spindle disassembly.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
48
|
Nuclear Morphological Remodeling in Human Granulocytes Is Linked to Prenylation Independently from Cytoskeleton. Cells 2020; 9:cells9112509. [PMID: 33233551 PMCID: PMC7699803 DOI: 10.3390/cells9112509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear shape modulates cell behavior and function, while aberrant nuclear morphologies correlate with pathological phenotype severity. Nevertheless, functions of specific nuclear morphological features and underlying molecular mechanisms remain poorly understood. Here, we investigate a nucleus-intrinsic mechanism driving nuclear lobulation and segmentation concurrent with granulocyte specification, independently from extracellular forces and cytosolic cytoskeleton contributions. Transcriptomic regulation of cholesterol biosynthesis is equally concurrent with nuclear remodeling. Its putative role as a regulatory element is supported by morphological aberrations observed upon pharmacological impairment of several enzymatic steps of the pathway, most prominently the sterol ∆14-reductase activity of laminB-receptor and protein prenylation. Thus, we support the hypothesis of a nuclear-intrinsic mechanism for nuclear shape control with the putative involvement of the recently discovered GGTase III complex. Such process could be independent from or complementary to the better studied cytoskeleton-based nuclear remodeling essential for cell migration in both physiological and pathological contexts such as immune system function and cancer metastasis.
Collapse
|
49
|
Tenner B, Getz M, Ross B, Ohadi D, Bohrer CH, Greenwald E, Mehta S, Xiao J, Rangamani P, Zhang J. Spatially compartmentalized phase regulation of a Ca 2+-cAMP-PKA oscillatory circuit. eLife 2020; 9:e55013. [PMID: 33201801 PMCID: PMC7671691 DOI: 10.7554/elife.55013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023] Open
Abstract
Signaling networks are spatiotemporally organized to sense diverse inputs, process information, and carry out specific cellular tasks. In β cells, Ca2+, cyclic adenosine monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of feedback. Here, we describe a mode of regulation within this circuit involving a spatial dependence of the relative phase between cAMP, PKA, and Ca2+. We show that in mouse MIN6 β cells, nanodomain clustering of Ca2+-sensitive adenylyl cyclases (ACs) drives oscillations of local cAMP levels to be precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintain out-of-phase oscillations outside of the nanodomain. Disruption of this precise phase relationship perturbs Ca2+ oscillations, suggesting the relative phase within an oscillatory circuit can encode specific functional information. This work unveils a novel mechanism of cAMP compartmentation utilized for localized tuning of an oscillatory circuit and has broad implications for the spatiotemporal regulation of signaling networks.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Michael Getz
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
| | - Brian Ross
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Eric Greenwald
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Sohum Mehta
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Padmini Rangamani
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Jin Zhang
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
50
|
Sueda S. Enzyme-based protein-tagging systems for site-specific labeling of proteins in living cells. ACTA ACUST UNITED AC 2020; 69:156-166. [PMID: 32166307 DOI: 10.1093/jmicro/dfaa011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022]
Abstract
Various protein-labeling methods based on the specific interactions between genetically encoded tags and synthetic probes have been proposed to complement fluorescent protein-based labeling. In particular, labeling methods based on enzyme reactions have been intensively developed by taking advantage of the highly specific interactions between enzymes and their substrates. In this approach, the peptides or proteins are genetically attached to the target proteins as a tag, and the various labels are then incorporated into the tags by enzyme reactions with the substrates carrying those labels. On the other hand, we have been developing an enzyme-based protein-labeling system distinct from the existing ones. In our system, the substrate protein is attached to the target proteins as a tag, and the labels are incorporated into the tag by post-translational modification with an enzyme carrying those labels followed by tight complexation between the enzyme and the substrate protein. In this review, I summarize the enzyme-based protein-labeling systems with a focus on several typical methods and then describe our labeling system based on tight complexation between the enzyme and the substrate protein.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|