1
|
Hanna MG, Rodriguez Cruz HO, Fujise K, Wu Y, Xu CS, Pang S, Li Z, Monetti M, De Camilli P. BLTP3A is associated with membranes of the late endocytic pathway and is an effector of CASM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.28.615015. [PMID: 39386594 PMCID: PMC11463362 DOI: 10.1101/2024.09.28.615015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Recent studies have identified a family of rod-shaped proteins thought to mediate lipid transfer at intracellular membrane contacts by a bridge-like mechanism. We show one such protein, bridge-like lipid transfer protein 3A (BLTP3A)/UHRF1BP1 binds VAMP7 vesicles via its C-terminal region and anchors them to lysosomes via its chorein domain containing N-terminal region to Rab7. Upon lysosome damage, BLTP3A-positive vesicles rapidly (within minutes) dissociate from lysosomes. Lysosome damage is known to activate the CASM (Conjugation of ATG8 to Single Membranes) pathway leading to lipidation and recruitment to lysosomes of mammalian ATG8 (mATG8) proteins. We find that this process drives the reassociation of BLTP3A with damaged lysosomes via an interaction of its LIR motif with mATG8 which coincides with a dissociation from the vesicles. Our findings reveal that BLTP3A is an effector of CASM, potentially as part of a mechanism to help repair or minimize lysosome damage.
Collapse
Affiliation(s)
- Michael G. Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Hely O. Rodriguez Cruz
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Song Pang
- Yale University School of Medicine, New Haven, CT
| | - Zhuonging Li
- Proteomics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mara Monetti
- Proteomics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
2
|
Hata R, Sugawara A, Fukuda M. Rab10 function in tubular endosome formation requires the N-terminal K3 residue and is disrupted by N-terminal tagging. J Cell Sci 2025; 138:JCS263649. [PMID: 39783278 DOI: 10.1242/jcs.263649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Various N-terminal tags have often been used to identify the functions and localization of Rab small GTPases, but their impact on Rab proteins themselves has been poorly investigated. Here, we used a knockout (KO)-rescue approach to systematically evaluate the effect of N-terminal tagging of two Rabs, Rab10 and Rab27A, on RAB10-KO HeLa cells and Rab27A-deficient melanocytes (melan-ash cells), respectively. The results showed that all of the N-terminal-tagged Rab27A proteins mediated actin-based melanosome transport in the melan-ash cells, but none of the N-terminal-tagged Rab10 proteins fully rescued the defect in tubular endosome formation in RAB10-KO cells. Although the N-terminal-tagged Rab10 proteins had the ability to localize tubular endosomes in wild-type HeLa cells, they sometimes exhibited a dominant-negative effect on tubular endosome formation. We also found that a conserved lysine residue at amino acid position 3 (K3) in the Rab10 proteins of different species is required for tubular endosome formation. Thus, it will be important to determine whether other Rab isoforms with N-terminal tags behave similarly to their corresponding untagged isoforms by performing appropriate KO-rescue experiments in future studies.
Collapse
Affiliation(s)
- Rinka Hata
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Akira Sugawara
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
3
|
Kundavaram R, Kadiri H, Khurana U, Chaudhary NK, Dhingra B, Bargir U, Malik S. Recurrent Hospitalisation in a Child With Hypopigmented Hair: Inborn Errors of Immunity Emerge. Cureus 2024; 16:e76554. [PMID: 39881889 PMCID: PMC11774631 DOI: 10.7759/cureus.76554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/31/2025] Open
Abstract
Griscelli syndrome is a rare autosomal recessive disorder characterised by pigmentary dilution of skin and hair, recurrent skin and pulmonary infections, neurological manifestations, and immunodeficiency. We present a four-month-old female child with hypopigmented silvery hair and a history of recurrent hospitalisations for respiratory illness. The child was extensively evaluated for inborn errors of immunity (IEI), and the final diagnosis of type 2 Griscelli syndrome was made only after genetic testing. Antibiotic and antifungal prophylaxis was initiated, and the child is currently in good health. The family was counselled regarding haematopoietic stem cell transplant (HSCT) as the only curative option and the need for prenatal testing in further pregnancies. This case emphasises the need for a high index of clinical suspicion in diagnosing IEI and also highlights the limited therapeutic options and the role of genetic counselling.
Collapse
Affiliation(s)
| | - Harish Kadiri
- Pediatrics, All India Institute of Medical Sciences, Bhopal, IND
| | - Ujjawal Khurana
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhopal, IND
| | | | - Bhavna Dhingra
- Pediatrics, All India Institute of Medical Sciences, Bhopal, IND
| | - Umair Bargir
- Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology, Mumbai, IND
| | - Shikha Malik
- Pediatrics, All India Institute of Medical Sciences, Bhopal, IND
| |
Collapse
|
4
|
Abu Ghedda S, Alkadamani S, Sabouni R, Mahmoud J. Griscelli syndrome: a diagnostic challenge of a rare disease: a case report. Ann Med Surg (Lond) 2024; 86:6164-6168. [PMID: 39359785 PMCID: PMC11444549 DOI: 10.1097/ms9.0000000000002462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Griscelli syndrome (GS) is a rare autosomal recessive genetic disorder that primarily manifests as hair and skin hypopigmentation, with three types differentiated by their specific genetic defects as well as by their clinical features. Clinically, GS type 1 is characterized by early neurological alterations, while GS type 2 is characterized by immunodeficiency and could present with neurological symptoms, and type 3 is characterized by a chromosomal anomaly without a specific clinical profile besides hypopigmentation. This article details the challenges faced in the diagnosis of a patient with GS who presents with neurological symptoms followed by immunological deficits. Case presentation A 7-month-old female presented with complaints of developmental delay following an otitis media infection. Upon examination, she exhibited signs of psychomotor developmental regression and had pale bronze skin and silvery-gray hair, as well as hepatosplenomegaly. The examination of her hair shaft revealed a pattern consistent with GS. During her hospitalization, the patient developed an intermittent fever and signs of hemophagocytic lymphohistiocytosis (HLH). She subsequently developed recurrent seizures treated with phenytoin and Aciclovir. Shortly she succumbed to respiratory distress syndrome and multisystem failure. Discussion The presence of HLH confirms the type of GS. However, in some cases, the HLH criteria could not be fulfilled, presenting a diagnostic challenge. Conclusion The genetic examination is the only way to differentiate GS type 1 from type 2. However, when it is not available, the presence of specific symptoms and features may assist in the classification. Furthermore, treatments should be administered when GS type 2 is suspected since they have the potential to improve life quality through treating HLH, delaying and altering the neurological symptoms.
Collapse
Affiliation(s)
| | | | | | - Jaber Mahmoud
- Department of Gastroenterology & Interventional Endoscopy Pediatric, Damascus University, Pediatric Hospital and Syrian Specialty Hospital, Damascus, Syria
| |
Collapse
|
5
|
Raeker MÖ, Perera ND, Karoukis AJ, Chen L, Feathers KL, Ali RR, Thompson DA, Fahim AT. Reduced Retinal Pigment Epithelial Autophagy Due to Loss of Rab12 Prenylation in a Human iPSC-RPE Model of Choroideremia. Cells 2024; 13:1068. [PMID: 38920696 PMCID: PMC11201631 DOI: 10.3390/cells13121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.
Collapse
Affiliation(s)
- Maide Ö. Raeker
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Nirosha D. Perera
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Athanasios J. Karoukis
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Lisheng Chen
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kecia L. Feathers
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Robin R. Ali
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- KCL Center for Cell and Gene Therapy, London WC2R 2LS, UK
| | - Debra A. Thompson
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abigail T. Fahim
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| |
Collapse
|
6
|
Kim DH, Lee J, Ko JK, Lee K. Melanophilin regulates dendritogenesis in melanocytes for feather pigmentation. Commun Biol 2024; 7:592. [PMID: 38760591 PMCID: PMC11101434 DOI: 10.1038/s42003-024-06284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Limited studies using animal models with a few natural mutations in melanophilin (Mlph) provided partial functions of Mlph in melanosome trafficking. To investigate cellular functions of Mlph, especially ZnF motif of Mlph, we analyzed all three Mlph knockout (KO) quail lines, one and two base pair (bp) deletions as models for total KO, and three bp deletion causing deletion of one Cysteine (C84del) in the ZnF motif. All quail lines had diluted feather pigmentation with impaired dendritogenesis and melanosome transport in melanocytes. In vitro studies revealed capability of binding of the ZnF motif to PIP3, and impairment of PI3P binding and mislocalization of MLPH proteins with ZnF motif mutations. The shortened melanocyte dendrites by the C84del mutation were rescued by introducing WT Mlph in vitro. These results revealed the diluted feather pigmentation by Mlph mutations resulted from congregation of melanosomes in the cell bodies with impairment of the dendritogenesis and the transport of melanosomes to the cell periphery.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Jae-Kyun Ko
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
8
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
9
|
Rab32/38-Dependent and -Independent Transport of Tyrosinase to Melanosomes in B16-F1 Melanoma Cells. Int J Mol Sci 2022; 23:ijms232214144. [PMID: 36430618 PMCID: PMC9695596 DOI: 10.3390/ijms232214144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
B16-F1 melanoma cells have often been used as a model to investigate melanogenesis, but the evidence that melanosome biogenesis and transport occur by the same mechanisms in normal melanocytes and B16-F1 cells is insufficient. In this study, we established knockout B16-F1 cells for each of several key factors in melanogenesis, i.e., tyrosinase (Tyr), Hps4, Rab27A, and Rab32·Rab38 (Rab32/38), and then compared their phenotypes with the phenotypes of corresponding mutant mouse melanocyte cell lines, i.e., melan-c, melan-le, melan-ash, and Rab32-deficient melan-cht cells, respectively. The results showed that Tyr and Rab27A are also indispensable for melanin synthesis and peripheral melanosome distribution, respectively, in B16-F1 cells, but that Hps4 or its downstream targets Rab32/38 are not essential for Tyr transport in B16-F1 cells, suggesting the existence of a Rab32/38-independent Tyr transport mechanism in B16-F1 cells. We then performed comprehensive knockdown screening of Rab small GTPases and identified Rab10 and Rab24, previously uncharacterized Rabs in melanocytes, as being involved in Tyr transport under Rab32/38-null conditions. Our findings indicate a difference between the Tyr transport mechanism in melanocytes and B16-F1 cells in terms of Rab32/38-dependency and a limitation in regard to using melanoma cells as a model for melanocytes, especially when investigating the mechanism of endosomal Tyr transport.
Collapse
|
10
|
Kageyama T, Shimizu A, Anakama R, Nakajima R, Suzuki K, Okubo Y, Fukuda J. Reprogramming of three-dimensional microenvironments for in vitro hair follicle induction. SCIENCE ADVANCES 2022; 8:eadd4603. [PMID: 36269827 PMCID: PMC9586475 DOI: 10.1126/sciadv.add4603] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/02/2022] [Indexed: 06/08/2023]
Abstract
During embryonic development, reciprocal interactions between epidermal and mesenchymal layers trigger hair follicle morphogenesis. This study revealed that microenvironmental reprogramming via control over these interactions enabled hair follicle induction in vitro. A key approach is to modulate spatial distributions of epithelial and mesenchymal cells in their spontaneous organization. The de novo hair follicles with typical morphological features emerged in aggregates of the two cell types, termed hair follicloids, and hair shafts sprouted with near 100% efficiency in vitro. The hair shaft length reached ~3 mm in culture. Typical trichogenic signaling pathways were up-regulated in hair follicloids. Owing to replication of hair follicle morphogenesis in vitro, melanosome production and transportation were also monitored in the hair bulb region. This in vitro hair follicle model might be valuable for better understanding hair follicle induction, evaluating hair growth and inhibition of hair growth by drugs, and modeling gray hairs in a well-defined environment.
Collapse
Affiliation(s)
- Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiro Shimizu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Riki Anakama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Rikuma Nakajima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kohei Suzuki
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Nissan Chemical Corporation, 2-5-1 Nihonbashi, Chuo-ku, Tokyo 103-6119, Japan
| | - Yusuke Okubo
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| |
Collapse
|
11
|
Rovira M, Sereda R, Pladevall‐Morera D, Ramponi V, Marin I, Maus M, Madrigal‐Matute J, Díaz A, García F, Muñoz J, Cuervo AM, Serrano M. The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell 2022; 21:e13707. [PMID: 36087066 PMCID: PMC9577959 DOI: 10.1111/acel.13707] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/31/2023] Open
Abstract
Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.
Collapse
Affiliation(s)
- Miguel Rovira
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Rebecca Sereda
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - David Pladevall‐Morera
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Valentina Ramponi
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Ines Marin
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Mate Maus
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Julio Madrigal‐Matute
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Instituto Biomédico de Nutrición y SaludEldaSpain
| | - Antonio Díaz
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Fernando García
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
| | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Ana María Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Manuel Serrano
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
12
|
The Combination of Niacinamide, Vitamin C, and PDRN Mitigates Melanogenesis by Modulating Nicotinamide Nucleotide Transhydrogenase. Molecules 2022; 27:molecules27154923. [PMID: 35956878 PMCID: PMC9370691 DOI: 10.3390/molecules27154923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.
Collapse
|
13
|
Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Sci Rep 2022; 12:9837. [PMID: 35701443 PMCID: PMC9197848 DOI: 10.1038/s41598-022-13557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
Collapse
|
14
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
15
|
Myung CH, Lee JE, Jo CS, Park JI, Hwang JS. Regulation of Melanophilin (Mlph) gene expression by the glucocorticoid receptor (GR). Sci Rep 2021; 11:16813. [PMID: 34413386 PMCID: PMC8376885 DOI: 10.1038/s41598-021-96276-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Mlph plays a crucial role in regulating skin pigmentation through the melanosome transport process. Although Mlph is a major component involved in melanosome transport, the mechanism that regulates the expression of the Mlph gene has not been identified. In this study, we demonstrate that Mlph expression is regulated by the glucocorticoid receptor (GR). Alteration of GR activity using a specific GR agonist or antagonist only regulated the expression of Mlph among the 3 key melanosome transport proteins. Translocation of GR from the cytosol into the nucleus following Dex treatment was confirmed by separating the cytosol and nuclear fractions and by immunofluorescence staining. In ChIP assays, Dex induced GR binding to the Mlph promoter and we determined that Dex induced the GR binding motif on the Mlph promoter. Our findings contribute to understanding the regulation of Mlph expression and to the novel role of GR in Mlph gene expression.
Collapse
Affiliation(s)
- Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Chan Song Jo
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
16
|
Gotesman R, Ramien M, Armour CM, Pham-Huy A, Kirshen C. Cutaneous granulomas as the presenting manifestation of Griscelli syndrome type 2. Pediatr Dermatol 2021; 38:194-197. [PMID: 32965739 DOI: 10.1111/pde.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/16/2023]
Abstract
Griscelli syndrome type 2 is a rare autosomal recessive disorder characterized by hypopigmentation, silvery hair, and immunological dysfunction with no primary neurological impairment. We report an 18-month-old girl with Griscelli syndrome type 2 who presented to the dermatology department for cutaneous granulomas that developed following live-attenuated vaccination. Two compound heterozygous variants in the RAB27A gene were subsequently identified. She developed hemophagocytic lymphohistiocytosis, the key immunological concern, at age 5 years.
Collapse
Affiliation(s)
- Ryan Gotesman
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michele Ramien
- Division of Community Pediatrics, Department of Pediatrics, Alberta Children's Hospital, Calgary, AB, Canada
| | - Christine M Armour
- Regional Genetics Program, Children's Hospital of Eastern Ontario, and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Anne Pham-Huy
- Division of Infectious Diseases, Immunology and Allergy, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Carly Kirshen
- Division of Dermatology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
18
|
Koike S, Yamasaki K. Melanogenesis Connection with Innate Immunity and Toll-Like Receptors. Int J Mol Sci 2020; 21:ijms21249769. [PMID: 33371432 PMCID: PMC7767451 DOI: 10.3390/ijms21249769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
The epidermis is located in the outermost layer of the living body and is the place where external stimuli such as ultraviolet rays and microorganisms first come into contact. Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage. Pigmentary disorders are observed in diseases associated with immunodeficiency such as Griscelli syndrome, indicating molecular sharing between immune systems and the machineries of pigment formation. Melanocytes express functional toll-like receptors (TLRs), and innate immune stimulation via TLRs affects melanin synthesis and melanosome transport to modulate skin pigmentation. TLR2 enhances melanogenetic gene expression to augment melanogenesis. In contrast, TLR3 increases melanosome transport to transfer to keratinocytes through Rab27A, the responsible molecule of Griscelli syndrome. TLR4 and TLR9 enhance tyrosinase expression and melanogenesis through p38 MAPK (mitogen-activated protein kinase) and NFκB signaling pathway, respectively. TLR7 suppresses microphthalmia-associated transcription factor (MITF), and MITF reduction leads to melanocyte apoptosis. Accumulating knowledge of the TLRs function of melanocytes has enlightened the link between melanogenesis and innate immune system.
Collapse
Affiliation(s)
- Saaya Koike
- Shiseido Global Innovation Center, Kanagawa 220-0011, Japan;
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Miyagi 980-8574, Japan
- Correspondence: ; Tel.: +81-(22)-717-7271
| |
Collapse
|
19
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
20
|
Xi Y, Liu H, Li L, Xu Q, Liu Y, Wang L, Ma S, Wang J, Bai L, Zhang R, Han C. Transcriptome Reveals Multi Pigmentation Genes Affecting Dorsoventral Pattern in Avian Body. Front Cell Dev Biol 2020; 8:560766. [PMID: 33117797 PMCID: PMC7559526 DOI: 10.3389/fcell.2020.560766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Certain animals exhibit a special dorsoventral pattern with a lighter ventral side compared to the dorsal one and this phenomenon was preserved in the long-term evolution process. Birds also retain this trait. Recently, Inaba et al. (2019) found that ASIP (agouti signal protein) regulated interconversion between different melanocyte types leads to dorsal stripe pattern, which may partly explain the birds' dorsoventral plumage color difference. In this study, we used the embryo samples of LBM (light brown mottling) ducks (Anas platyrhynchos) with white ventral and dark dorsal body parts to investigate the mechanism of dorsoventral color variation. Firstly, melanin deposition process of duck embryos was investigated. The result indicated that E13 and E16 were the active stages of melanin synthesis. Moreover, the melanin deposition on the dorsum of LBM ducks was higher than that on the ventral side throughout. Then, RNA-seq was conducted for the dorsal and ventral skin tissues from E7 (early), E13 (middle) and E19 (late) of LBM ducks. Expression pattern analysis showed that the mRNA expression of most melanin synthesis related genes were at the highest level at E13, which was consistent with the section analysis. A correlation was found between melanogenesis pathway and dorsoventral color difference by co-expression analysis. In the DEG (differentially expressed gene) analysis, we added the dorsal skin transcriptome of embryonic white and black duck of same subspecies (Anas platyrhynchos domestica) for horizontal comparison. The results showed that 8 melanogenesis related genes (TYR, TYRP1, MLANA, RAB38, OCA2, TSPAN10, MC1R, and MSLN) were the common DEGs (Differential expressed genes) in the comparisons of body parts and breeds suggesting that the underlying molecular regulatory mechanism of dorsoventral plumage color difference may be similar to that of albino and melanic duck, which were caused by the different expression of multiple genes in melanin synthesis pathway. In addition, the molecular regulation of melanin synthesis pathway in the dorsal and ventral side of LBM ducks was analyzed. In this pathway, ASIP, MC1R, TYR, and TYRP1 have differential mRNA expression. ASIP, as an upstream gene in this pathway, was likely to play a decisive role in determining the dorsoventral plumage pattern.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nepal A, Wolfson DL, Ahluwalia BS, Jensen I, Jørgensen J, Iliev DB. Intracellular distribution and transcriptional regulation of Atlantic salmon (Salmo salar) Rab5c, 7a and 27a homologs by immune stimuli. FISH & SHELLFISH IMMUNOLOGY 2020; 99:119-129. [PMID: 32014587 DOI: 10.1016/j.fsi.2020.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Rab GTPases control trafficking of intracellular vesicles and are key regulators of endocytic and secretory pathways. Due to their specific distribution, they may serve as markers for different endolysosomal compartments. Since Rab GTPases are involved in uptake and trafficking of endocytosed ligands and cell receptors, as well as secretion of immune mediators, they have been implicated in diverse immunological processes and their functions are often exploited by intracellular pathogens such as viruses. While Rab proteins have been studied extensively in mammals, their functions in vesicle trafficking in teleosts are not well known. In the present work, Atlantic salmon Rab5c, Rab7a and Rab27a homologs were studied in terms of intracellular distribution and gene expression. Structured illumination microscopy demonstrated that transgenic, GFP-tagged salmon Rab5c and Rab7a are, predominantly, located within early endosomes and late endosomes/lysosomes, respectively. In contrast, Rab27a showed a broader distribution, which indicates that it associates with diverse intracellular vesicles and organelles. Infection of salmon with Salmonid alphavirus subtype 3 (SAV3) enhanced the mRNA levels of all of the studied Rab isoforms in heart and head kidney and most of them were upregulated in spleen. This may reflect the capacity of the virus to exploit the functions of these rab proteins. It is also possible that the transcriptional regulation of Rab proteins in SAV3-infected organs may play a role in the antiviral immune response. The latter was further supported by in vitro experiments with adherent head kidney leukocytes. The expression of Rab5c and Rab27a was upregulated in these cells following stimulation with TLR ligands including CpG oligonucleotides and polyI:C. The expression of most of the analyzed Rab isoforms in the primary leukocytes was also enhanced by stimulation with type I IFN. Interestingly, IFN-gamma had a negative effect on Rab7a expression which may be linked to the priming activity of this cytokine on monocytes and macrophages. Overall, these data demonstrate that the intracellular distribution of Rab5c, Rab7a and Rab27a is phylogenetically conserved within vertebrates and that these molecules might be implicated in viral infections and the regulation of the antiviral immune response in Atlantic salmon.
Collapse
Affiliation(s)
- Arpita Nepal
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Deanna L Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dimitar B Iliev
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway; Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
22
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
23
|
Kim M, Lee CS, Lim KM. Rhododenol Activates Melanocytes and Induces Morphological Alteration at Sub-Cytotoxic Levels. Int J Mol Sci 2019; 20:ijms20225665. [PMID: 31726751 PMCID: PMC6888388 DOI: 10.3390/ijms20225665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Rhododenol (RD), a whitening cosmetic ingredient, was withdrawn from the market due to RD-induced leukoderma (RIL). While many attempts have been made to clarify the mechanism underlying RIL, RIL has not been fully understood yet. Indeed, affected subjects showed uneven skin pigmentation, but the features are different from vitiligo, a skin hypopigmentary disorder, alluding to events more complex than simple melanocyte cytotoxicity. Here, we discovered that rhododenol treatment reduced the number of melanocytes in a pigmented 3D human skin model, Melanoderm™, confirming the melanocyte toxicity of RD. Of note, melanocytes that survived in the RD treated tissues exhibited altered morphology, such as extended dendrites and increased cell sizes. Consistently with this, sub-cytotoxic level of RD increased cell size and elongated dendrites in B16 melanoma cells. Morphological changes of B16 cells were further confirmed in the immunocytochemistry of treated cells for actin and tubulin. Even more provoking, RD up-regulated the expression of tyrosinase and TRP1 in the survived B16 cells. Evaluation of mRNA expression of cytoskeletal proteins suggests that RD altered the cytoskeletal dynamic favoring cell size expansion and melanosome maturation. Collectively, these results suggest that RD not only induces cytotoxicity in melanocytes but also can lead to a profound perturbation of melanocyte integrity even at sub-cytotoxic levels.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Chang-Seok Lee
- Department of Beauty and Cosmetic Science, College of Health Science, Eulji University, Seongnam-si 13135, Korea
- Correspondence: (C.-S.L.); (K.-M.L.)
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (C.-S.L.); (K.-M.L.)
| |
Collapse
|
24
|
Yamada H, Hakozaki M, Uemura A, Yamashita T. Effect of fatty acids on melanogenesis and tumor cell growth in melanoma cells. J Lipid Res 2019; 60:1491-1502. [PMID: 31345992 PMCID: PMC6718436 DOI: 10.1194/jlr.m090712] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Fatty acids have various physiological effects on melanoma. For example, palmitic acid (PA) increases melanin levels; linoleic acid and DHA decrease melanin levels; and DHA suppresses tumor growth. In this study, we focused on the relationship between the structure of fatty acids and their physiological effects in melanoma to examine the likely mechanisms of action. We showed that saturated fatty acids and PUFAs display opposing effects on melanin content in melanoma cells. Likewise, PA and EPA have opposing effects in terms of actin polymerization. Our findings suggest that PA and EPA change melanin content in melanoma to alter melanosome trafficking by modulating actin polymerization. Here, we also examined the mechanism of the anti-tumor effect of DHA. We found that DHA interacts with receptor for activated C kinase 1 and represses melanoma cell proliferation by suppressing protein kinase C signaling. Our results suggest a new mechanism to explain the physiological effects of fatty acids.
Collapse
Affiliation(s)
- Hidetoshi Yamada
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan.
| | - Mayuka Hakozaki
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry and Food Sciences Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
25
|
Robinson CL, Evans RD, Sivarasa K, Ramalho JS, Briggs DA, Hume AN. The adaptor protein melanophilin regulates dynamic myosin-Va:cargo interaction and dendrite development in melanocytes. Mol Biol Cell 2019; 30:742-752. [PMID: 30699046 PMCID: PMC6589771 DOI: 10.1091/mbc.e18-04-0237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The regulation of organelle transport by the cytoskeleton is fundamental for eukaryotic survival. Cytoskeleton motors are typically modular proteins with conserved motor and diverse cargo-binding domains. Motor:cargo interactions are often indirect and mediated by adaptor proteins, for example, Rab GTPases. Rab27a, via effector melanophilin (Mlph), recruits myosin-Va (MyoVa) to melanosomes and thereby disperses them into melanocyte dendrites. To better understand how adaptors regulate motor:cargo interaction, we used single melanosome fluorescence recovery after photobleaching (smFRAP) to characterize the association kinetics among MyoVa, its adaptors, and melanosomes. We found that MyoVa and Mlph rapidly recovered after smFRAP, whereas Rab27a did not, indicating that MyoVa and Mlph dynamically associate with melanosomes and Rab27a does not. This suggests that dynamic Rab27a:effector interaction rather than Rab27a melanosome:cytosol cycling regulates MyoVa:melanosome association. Accordingly, a Mlph-Rab27a fusion protein reduced MyoVa smFRAP, indicating that it stabilized melanosomal MyoVa. Finally, we tested the functional importance of dynamic MyoVa:melanosome interaction. We found that whereas a MyoVa-Rab27a fusion protein dispersed melanosomes in MyoVa-deficient cells, dendrites were significantly less elongated than in wild-type cells. Given that dendrites are the prime sites of melanosome transfer from melanocytes to keratinocytes, we suggest that dynamic MyoVa:melanosome interaction is important for pigmentation in vivo.
Collapse
Affiliation(s)
| | - Richard D Evans
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Kajana Sivarasa
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jose S Ramalho
- CEDOC Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
26
|
McKay BS. Pigmentation and vision: Is GPR143 in control? J Neurosci Res 2019; 97:77-87. [PMID: 29761529 PMCID: PMC6235735 DOI: 10.1002/jnr.24246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
Albinism, typically characterized by decreased melanin synthesis, is associated with significant visual deficits owing to developmental changes during neurosensory retina development. All albinism is caused by genetic mutations in a group of diverse genes including enzymes, transporters, G-protein coupled receptor. Interestingly, these genes are not expressed in the neurosensory retina. Further, regardless of cause of albinism, all forms of albinism have the same retinal pathology, the extent of which is variable. In this review, we explore the possibility that this similarity in retinal phenotype is because all forms of albinism funnel through the same final common pathway. There are currently seven known genes linked to the seven forms of ocular cutaneous albinism. These types of albinism are the most common, and result in changes to all pigmented tissues (hair, skin, eyes). We will discuss the incidence and mechanism, where known, to develop a picture as to how the mutations cause albinism. Next, we will examine the one form of albinism which causes tissue-specific pathology, ocular albinism, where the eye exhibits the retinal albinism phenotype despite near normal melanin synthesis. We will discuss a potential way to treat the disease and restore normal retinal development. Finally, we will briefly discuss the possibility that this same pathway may intersect with the most common cause of permanent vision loss in the elderly.
Collapse
Affiliation(s)
- Brian S McKay
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
27
|
Li Z, Fang R, Fang J, He S, Liu T. Functional implications of Rab27 GTPases in Cancer. Cell Commun Signal 2018; 16:44. [PMID: 30081925 PMCID: PMC6080553 DOI: 10.1186/s12964-018-0255-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background The Rab27 family of small GTPases promotes the progression of breast cancer, melanoma, and other human cancers. In this review, we discuss the role of Rab27 GTPases in cancer progression and the potential applications of these targets in cancer treatment. Main body Elevated expression of Rab27 GTPases is associated with poor prognosis and cancer metastasis. Moreover, these GTPases govern a variety of oncogenic functions, including cell proliferation, cell motility, and chemosensitivity. In addition, small GTPases promote tumor growth and metastasis by enhancing exosome secretion, which alters intracellular microRNA levels, signaling molecule expression, and the tumor microenvironment. Conclusion Rab27 GTPases may have applications as prognostic markers and therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Fang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Fang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Tang Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Patrício MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther 2018; 18:807-820. [DOI: 10.1080/14712598.2018.1484448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
29
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
30
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:196-207. [DOI: 10.1002/mds.27270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Gabrielle R. Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Matthew J. Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre of Applied Neurogenetics, Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
31
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
32
|
Taira N, Katsuyama Y, Yoshioka M, Okano Y, Masaki H. 3-O-Glyceryl-2-O-hexyl ascorbate suppresses melanogenesis by interfering with intracellular melanosome transport and suppressing tyrosinase protein synthesis. J Cosmet Dermatol 2017; 17:1209-1215. [PMID: 29115012 DOI: 10.1111/jocd.12451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ascorbic acid (AsA) has multifunctional benefits on skin beauty, such as the reduction in oxidative stress and the induction of collagen production. Among them, the prevention and improvement of skin pigmentation by AsA is a most important benefit for people. However, it is well known that AsA not only is quite unstable in formulations but it also has a low capability of skin penetration due to its hydrophilic property. In addition, existing water-soluble AsA derivatives that were developed to improve its stability also have low skin penetration. AIM To investigate the potential of a newly synthesized amphiphilic derivative of AsA, 3-O-Glyceryl-2-O-hexyl ascorbate (VC-HG), which has an added glyceryl group and a hexyl group, on skin beauty focusing on its skin lightening/whitening effects. METHODS DNA microarray analysis and real-time PCR were used to clarify the effects of VC-HG on melanogenesis using B16 mouse melanoma cells. The effects of VC-HG on melanin synthesis, tyrosinase protein levels, and the inhibition of tyrosinase activity were evaluated. RESULTS DNA microarray analysis revealed that treatment with VC-HG downregulated the expression of genes encoding tyrosinase and MyosinVa. Further, real-time PCR analysis showed the downregulation of tyrosinase, MyosinVa, Rab27a, and Kinesin mRNAs following VC-HG treatment. In addition, VC-HG caused decreases in tyrosinase protein levels and melanin synthesis. CONCLUSION We conclude that VC-HG has an impact on skin lightening/whitening by inhibiting tyrosinase protein synthesis and interfering with intracellular melanosome transport.
Collapse
Affiliation(s)
| | | | | | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Japan
| |
Collapse
|
33
|
Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 2017; 131:342-352. [PMID: 29074498 DOI: 10.1182/blood-2017-02-768580] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
Ferritin turnover plays a major role in tissue iron homeostasis, and ferritin malfunction is associated with impaired iron homeostasis and neurodegenerative diseases. In most eukaryotes, ferritin is considered an intracellular protein that stores iron in a nontoxic and bioavailable form. In insects, ferritin is a classically secreted protein and plays a major role in systemic iron distribution. Mammalian ferritin lacks the signal peptide for classical endoplasmic reticulum-Golgi secretion but is found in serum and is secreted via a nonclassical lysosomal secretion pathway. This study applied bioinformatics and biochemical tools, alongside a protein trafficking mouse models, to characterize the mechanisms of ferritin secretion. Ferritin trafficking via the classical secretion pathway was ruled out, and a 2:1 distribution of intracellular ferritin between membrane-bound compartments and the cytosol was observed, suggesting a role for ferritin in the vesicular compartments of the cell. Focusing on nonclassical secretion, we analyzed mouse models of impaired endolysosomal trafficking and found that ferritin secretion was decreased by a BLOC-1 mutation but increased by BLOC-2, BLOC-3, and Rab27A mutations of the cellular trafficking machinery, suggesting multiple export routes. A 13-amino-acid motif unique to ferritins that lack the secretion signal peptide was identified on the BC-loop of both subunits and plays a role in the regulation of ferritin secretion. Finally, we provide evidence that secretion of iron-rich ferritin was mediated via the multivesicular body-exosome pathway. These results enhance our understanding of the mechanism of ferritin secretion, which is an important piece in the puzzle of tissue iron homeostasis.
Collapse
|
34
|
Katsuyama Y, Taira N, Yoshioka M, Okano Y, Masaki H. Disruption of melanosome transport in melanocytes treated with theophylline causes their degradation by autophagy. Biochem Biophys Res Commun 2017; 485:126-130. [DOI: 10.1016/j.bbrc.2017.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/07/2023]
|
35
|
Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci 2016; 130:541-550. [PMID: 27927751 DOI: 10.1242/jcs.195479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Exocytosis of secretory granules entails budding from the trans-Golgi network, sorting and maturation of cargo proteins, and trafficking and fusion to the plasma membrane. Rab27a regulates the late steps in this process, such as granule recruitment to the fusion site, whereas Rab2a functions in the early steps, such as granule biogenesis and maturation. Here, we demonstrate that these two small GTPases simultaneously bind to Noc2 (also known as RPH3AL) in a GTP-dependent manner, although Rab2a binds only after Rab27a has bound. In pancreatic β-cells, the ternary Rab2a-Noc2-Rab27a complex specifically localizes on perinuclear immature granules, whereas the binary Noc2-Rab27a complex localizes on peripheral mature granules. In contrast to the wild type, Noc2 mutants defective in binding to Rab2a or Rab27a fail to promote glucose-stimulated insulin secretion. Although knockdown of any component of the ternary complex markedly inhibits insulin secretion, only knockdown of Rab2a or Noc2, and not that of Rab27a, impairs cargo processing from proinsulin to insulin. These results suggest that the dual effector, Noc2, regulates the transition from Rab2a-mediated granule biogenesis to Rab27a-mediated granule exocytosis.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan .,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
36
|
Bello OD, Cappa AI, de Paola M, Zanetti MN, Fukuda M, Fissore RA, Mayorga LS, Michaut MA. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs. Exp Cell Res 2016; 347:42-51. [PMID: 27423421 DOI: 10.1016/j.yexcr.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.
Collapse
Affiliation(s)
- Oscar Daniel Bello
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Andrea Isabel Cappa
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Matilde de Paola
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - María Natalia Zanetti
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Luis S Mayorga
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Marcela A Michaut
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
37
|
Ma R, Zhang J, Liu X, Li L, Liu H, Rui R, Gu L, Wang Q. Involvement of Rab6a in organelle rearrangement and cytoskeletal organization during mouse oocyte maturation. Sci Rep 2016; 6:23560. [PMID: 27030207 PMCID: PMC4814827 DOI: 10.1038/srep23560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
Rab GTPases have been reported to define the identity and transport routes of vesicles. Rab6 is one of the most extensively studied Rab proteins involved in regulating organelle trafficking and integrity maintenance. However, to date, the function of Rab6 in mammalian oocytes has not been addressed. Here we report severe disorganization of endoplasmic reticulum upon specific knockdown of Rab6a in mouse oocytes. In line with this finding, intracellular Ca2+ stores are accordingly reduced in Rab6a-depleted oocytes. Furthermore, in these oocytes, we observe the absence of cortical granule free domain, which is a kind of special organelle in matured oocytes and its exocytosis is calcium dependent. On the other hand, following Rab6a knockdown, the prominent defects of cytoskeletal structures are detected during oocyte meiosis. In particular, the majority of Rab6a-depleted oocytes fail to form the actin cap, and the frequency of spindle defects and chromosome misalignment is significantly elevated. In summary, our data reveal that Rab6a not only participates in modulating the organization of oocyte organelles, but also is a novel regulator of meiotic apparatus in mammalian oocytes.
Collapse
Affiliation(s)
- Rujun Ma
- College of Animal Science &Technology, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaohui Liu
- College of Animal Science &Technology, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Honglin Liu
- College of Animal Science &Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ling Gu
- College of Animal Science &Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Hanovice NJ, Daly CMS, Gross JM. N-Ethylmaleimide-Sensitive Factor b (nsfb) Is Required for Normal Pigmentation of the Zebrafish Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2016; 56:7535-44. [PMID: 26618645 DOI: 10.1167/iovs.15-17704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Despite the number of albinism-causing mutations identified in human patients and animal models, there remain a significant number of cases for which no mutation has been identified, suggesting that our understanding of melanogenesis is incomplete. Previously, we identified two oculocutaneous albinism mutations in zebrafish, au13 and au18. Here, we sought to identify the mutated loci and determine how the affected proteins contribute to normal pigmentation of the retinal pigment epithelium (RPE). METHODS Complementation analyses revealed that au13 and au18 belonged to a single complementation group, suggesting that they affected the same locus. Whole-genome sequencing and single nucleotide polymorphism (SNP) analysis was performed to identify putative mutations, which were confirmed by cDNA sequencing and mRNA rescue. Transmission electron microscopy (TEM) and image quantification were used to identify the cellular basis of hypopigmentation. RESULTS Whole-genome sequencing and SNP mapping identified a nonsense mutation in the N-ethylmaleimide-sensitive factor b (nsfb) gene in au18 mutants. Complementary DNA sequencing confirmed the presence of the mutation (C893T), which truncates the nsfb protein by roughly two-thirds (Y297X). No coding sequence mutations were identified in au13, but quantitative PCR revealed a significant decrease in nsfb expression, and nsfb mRNA injection rescued the hypopigmentation phenotype, suggesting a regulatory mutation. In situ hybridization revealed that nsfb is broadly expressed during embryonic development, including in the RPE. Transmission electron microscopy analyses indicated that average melanosome density and maturity were significantly decreased in nsfb mutants. CONCLUSIONS au18 and au13 contain mutations in nsfb, which encodes a protein that is required for the maturation of melanosomes in zebrafish RPE.
Collapse
|
39
|
Yamaoka M, Ishizaki T, Kimura T. Interplay between Rab27a effectors in pancreatic β-cells. World J Diabetes 2015; 6:508-516. [PMID: 25897360 PMCID: PMC4398906 DOI: 10.4239/wjd.v6.i3.508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
The small GTPase Rab27a is a member of the Rab family that is involved in membrane trafficking in various kinds of cells. Rab27a has GTP- and GDP-bound forms, and their interconversion regulates intracellular signaling pathways. Typically, only a GTP-bound GTPase binds its specific effectors with the resulting downstream signals controlling specific cellular functions. We previously identified novel Rab27a-interacting proteins. Surprisingly, some of these proteins interacted with GDP-bound Rab27a. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in the secretory process. In pancreatic β-cells, GTP-bound Rab27a regulates insulin secretion at the pre-exocytotic stages via its GTP-specific effectors such as Exophilin8/Slac2-c/MyRIP and Slp4/Granuphilin. Glucose stimulation causes insulin exocytosis. Glucose stimulation also converts Rab27a from its GTP- to its GDP-bound form. GDP-bound Rab27a interacts with GDP-specific effectors and controls endocytosis of the secretory membrane. Thus, Rab27a cycling between GTP- and GDP-bound forms synchronizes with the recycling of secretory membrane to re-use the membrane and keep the β-cell volume constant.
Collapse
|
40
|
Macpherson IR, Rainero E, Mitchell LE, van den Berghe PVE, Speirs C, Dozynkiewicz MA, Chaudhary S, Kalna G, Edwards J, Timpson P, Norman JC. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J Cell Sci 2014; 127:3893-901. [PMID: 25015290 DOI: 10.1242/jcs.135947] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chloride intracellular channel 3 (CLIC3) drives invasiveness of pancreatic and ovarian cancer by acting in concert with Rab25 to regulate the recycling of α5β1 integrin from late endosomes to the plasma membrane. Here, we show that in two estrogen receptor (ER)-negative breast cancer cell lines, CLIC3 has little influence on integrin recycling, but controls trafficking of the pro-invasive matrix metalloproteinase MT1-MMP (also known as MMP14). In MDA-MB-231 cells, MT1-MMP and CLIC3 are localized primarily to late endosomal/lysosomal compartments located above the plane of adhesion and near the nucleus. MT1-MMP is transferred from these late endosomes to sites of cell-matrix adhesion in a CLIC3-dependent fashion. Correspondingly, CLIC3-knockdown opposes MT1-MMP-dependent invasive processes. These include the disruption of the basement membrane as acini formed from MCF10DCIS.com cells acquire invasive characteristics in 3D culture, and the invasion of MDA-MB-231 cells into Matrigel or organotypic plugs of type I collagen. Consistent with this, expression of CLIC3 predicts poor prognosis in ER-negative breast cancer. The identification of MT1-MMP as a cargo of a CLIC3-regulated pathway that drives invasion highlights the importance of late endosomal sorting and trafficking in breast cancer.
Collapse
Affiliation(s)
- Iain R Macpherson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Elena Rainero
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Louise E Mitchell
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Claire Speirs
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Suman Chaudhary
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Gabriela Kalna
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
41
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
42
|
Evans RD, Robinson C, Briggs DA, Tooth DJ, Ramalho JS, Cantero M, Montoliu L, Patel S, Sviderskaya EV, Hume AN. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport. Curr Biol 2014; 24:1743-50. [PMID: 25065759 PMCID: PMC4131108 DOI: 10.1016/j.cub.2014.06.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023]
Abstract
In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the "highways and local roads" model for transport along microtubule and actin tracks. The "cooperative capture" model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning.
Collapse
Affiliation(s)
- Richard D Evans
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - David J Tooth
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jose S Ramalho
- CEDOC Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Marta Cantero
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid 28049, Spain; CIBERER-ISCIII, Madrid 28029, Spain
| | - Lluis Montoliu
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid 28049, Spain; CIBERER-ISCIII, Madrid 28029, Spain
| | - Shyamal Patel
- Cell Signalling Research Centre, Division of Biomedical Sciences, St. George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Cell Signalling Research Centre, Division of Biomedical Sciences, St. George's, University of London, London SW17 0RE, UK
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
43
|
Booth AEG, Tarafder AK, Hume AN, Recchi C, Seabra MC. A role for Na+,K+-ATPase α1 in regulating Rab27a localisation on melanosomes. PLoS One 2014; 9:e102851. [PMID: 25051489 PMCID: PMC4106853 DOI: 10.1371/journal.pone.0102851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022] Open
Abstract
The mechanism(s) by which Rab GTPases are specifically recruited to distinct intracellular membranes remains elusive. Here we used Rab27a localisation onto melanosomes as a model to investigate Rab targeting. We identified the α1 subunit of Na+,K+-ATPase (ATP1a1) as a novel Rab27a interacting protein in melanocytes and showed that this interaction is direct with the intracellular M4M5 loop of ATP1a1 and independent of nucleotide bound status of the Rab. Knockdown studies in melanocytes revealed that ATP1a1 plays an essential role in Rab27a-dependent melanosome transport. Specifically, expression of ATP1a1, like the Rab27a GDP/GTP exchange factor (Rab3GEP), is essential for targeting and activation of Rab27a to melanosomes. Finally, we showed that the ability of Rab27a mutants to target to melanosomes correlates with the efficiency of their interaction with ATP1a1. Altogether these studies point to a new role for ATP1a1 as a regulator of Rab27a targeting and activation.
Collapse
Affiliation(s)
- Antonia E. G. Booth
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Abul K. Tarafder
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Alistair N. Hume
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- School of Biomedical Sciences, University of Nottingham, Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | - Chiara Recchi
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Miguel C. Seabra
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- CEDOC, Faculdade de Ciencias Medicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
44
|
Tarafder AK, Bolasco G, Correia MS, Pereira FJC, Iannone L, Hume AN, Kirkpatrick N, Picardo M, Torrisi MR, Rodrigues IP, Ramalho JS, Futter CE, Barral DC, Seabra MC. Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis. J Invest Dermatol 2014; 134:1056-1066. [PMID: 24141907 DOI: 10.1038/jid.2013.432] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 12/30/2022]
Abstract
The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.
Collapse
Affiliation(s)
- Abul K Tarafder
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal; Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Giulia Bolasco
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria S Correia
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Francisco J C Pereira
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Lucio Iannone
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alistair N Hume
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Niall Kirkpatrick
- Craniofacial and Orbito-Palpebral Surgery Unit at Chelsea and Westminster Hospital, London, UK
| | - Mauro Picardo
- Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano, IFO, Rome, Italy
| | - Maria R Torrisi
- Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano, IFO, Rome, Italy; Dipartimento di Medicina Clinica e Molecolare, Azienda Ospedaliera Sant'Andrea, Università di Roma 'La Sapienza', Rome, Italy
| | - Inês P Rodrigues
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José S Ramalho
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Clare E Futter
- Institute of Ophthalmology, University College London, London, UK
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal; Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
45
|
Ishida M, Arai SP, Ohbayashi N, Fukuda M. The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol: development of a novel melanosome-targetinG tag. J Biol Chem 2014; 289:11059-11067. [PMID: 24584932 DOI: 10.1074/jbc.m114.552281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small GTPase Rab27A is a crucial regulator of actin-based melanosome transport in melanocytes, and functionally defective Rab27A causes human Griscelli syndrome type 2, which is characterized by silvery hair. A GTPase-deficient, constitutively active Rab27A(Q78L) mutant has been shown to act as an inhibitor of melanosome transport and to induce perinuclear aggregation of melanosomes, but the molecular mechanism by which Rab27A(Q78L) inhibits melanosome transport remained to be determined. In this study, we attempted to identify the primary cause of the perinuclear melanosome aggregation induced by Rab27A(Q78L). The results showed that Rab27A(Q78L) is unable to localize on mature melanosomes and that its inhibitory activity on melanosome transport is completely dependent on its binding to the Rab27A effector Slac2-a/melanophilin. When we forcibly expressed Rab27A(Q78L) on mature melanosomes by using a novel melanosome-targeting tag that we developed in this study and named the MST tag, the MST-Rab27A(Q78L) fusion protein behaved in the same manner as wild-type Rab27A. It localized on mature melanosomes without inducing melanosome aggregation and restored normal peripheral melanosome distribution in Rab27A-deficient cells. These findings indicate that the GTPase activity of Rab27A is required for its melanosome localization but is not required for melanosome transport.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Saki P Arai
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
46
|
Schafer JC, Baetz NW, Lapierre LA, McRae RE, Roland JT, Goldenring JR. Rab11-FIP2 interaction with MYO5B regulates movement of Rab11a-containing recycling vesicles. Traffic 2014; 15:292-308. [PMID: 24372966 DOI: 10.1111/tra.12146] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 12/28/2022]
Abstract
A tripartite association of Rab11a with both Rab11-FIP2 and MYO5B regulates recycling endosome trafficking. We sought to define the intermolecular interactions required between Rab11-FIP2 and MYO5B. Using a random mutagenesis strategy, we identified point mutations at S229P or G233E in Rab11-FIP2 that caused loss of interaction with MYO5B in yeast two-hybrid assays as well as loss of interaction of Rab11-FIP2(129-356) with MYO5B tail when expressed in HeLa cells. Single mutations or the double S229P/G233E mutation failed to alter the association of full-length Rab11-FIP2 with MYO5B tail in HeLa cells. While EGFP-Rab11-FIP2 wild type colocalized with endogenous MYO5B staining in MDCK cells, EGFP-Rab11-FIP2(S229P/G233E) showed a significant decrease in localization with endogenous MYO5B. Analysis of Rab11a-containing vesicle movement in live HeLa cells demonstrated that when the MYO5B/Rab11-FIP2 association is perturbed by mutation or by Rab11-FIP2 knockdown, vesicle movement is increased in both speed and track length, consistent with an impairment of MYO5B tethering at the cytoskeleton. These results support a critical role for the interaction of MYO5B with Rab11-FIP2 in stabilizing the functional complex with Rab11a, which regulates dynamic movements of membrane recycling vesicles.
Collapse
Affiliation(s)
- Jenny C Schafer
- Section of Surgical Sciences and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
47
|
Shin DH, Cha YJ, Joe GJ, Yang KE, Jang IS, Kim BH, Kim JM. Whitening effect of Sophora flavescens extract. PHARMACEUTICAL BIOLOGY 2013; 51:1467-1476. [PMID: 24106757 DOI: 10.3109/13880209.2013.799708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Sophora flavescens Ait. (Leguminosae) has been proposed as a new whitening agent for cosmetics, because it has a strong ability to inhibit tyrosinase, a key enzyme in the formation of melanin. OBJECTIVE We conducted a study to determine whether ethanol extract of the roots of S. flavescens has the potential for use as a whitening cosmetic agent by investigating its underlying mechanisms of action. MATERIALS AND METHODS To elucidate the mechanism of action of S. flavescens extract, we used DNA microarray technology. We investigated the changes in the mRNA levels of genes associated with the formation and transport of melanosomes. We also identified the formation and transport of melanosomes with immunohistochemistry and immunofluorescence analyses. Finally, the skin-whitening effect in vivo of S. flavescens extract was analyzed on human skin. RESULTS We found that S. flavescens extract strongly inhibited tyrosinase activity (IC50, 10.4 μg/mL). Results also showed that key proteins involved in the formation and transport of melanosomes were dramatically downregulated at both mRNA and protein level in keratinocytes exposed to S. flavescens extract. In addition, a clinical trial of a cream containing 0.05% S. flavescens extract on human skin showed it had a significant effect on skin whitening by mechanical and visual evaluation (1.14-fold). DISCUSSION AND CONCLUSION This study provides important clues toward understanding the effects of S. flavescens extract on the formation and transport of melanosomes. From these results, we suggest that naturally occurring S. flavescens extract might be useful as a new whitening agent in cosmetics.
Collapse
Affiliation(s)
- Dae Hyun Shin
- R&D Center, Somang Cosmetics Corporation , Namdong-gu, Incheon , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim JD, Willetts L, Ochkur S, Srivastava N, Hamburg R, Shayeganpour A, Seabra MC, Lee JJ, Moqbel R, Lacy P. An essential role for Rab27a GTPase in eosinophil exocytosis. J Leukoc Biol 2013; 94:1265-74. [PMID: 23986549 DOI: 10.1189/jlb.0812431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil degranulation has been implicated in inflammatory processes associated with allergic asthma. Rab27a, a Rab-related GTPase, is a regulatory intracellular signaling molecule expressed in human eosinophils. We postulated that Rab27a regulates eosinophil degranulation. We investigated the role of Rab27a in eosinophil degranulation within the context of airway inflammation. Rab27a expression and localization in eosinophils were investigated by using subcellular fractionation combined with Western blot analysis, and the results were confirmed by immunofluorescence analysis of Rab27a and the granule membrane marker CD63. To determine the function of eosinophil Rab27a, we used Ashen mice, a strain of Rab27a-deficient animals. Ashen eosinophils were tested for degranulation in response to PAF and calcium ionophore by measuring released EPX activity. Airway EPX release was also determined by intratracheal injection of eosinophils into mice lacking EPX. Rab27a immunoreactivity colocalized with eosinophil crystalloid granules, as determined by subcellular fractionation and immunofluorescence analysis. PAF induced eosinophil degranulation in correlation with redistribution of Rab27a(+) structures, some of which colocalized with CD63(+) crystalloid granules at the cell membrane. Eosinophils from mice had significantly reduced EPX release compared with normal WT eosinophils, both in vitro and in vivo. In mouse models, Ashen mice demonstrated reduced EPX release in BAL fluid. These findings suggest that Rab27a has a key role in eosinophil degranulation. Furthermore, these findings have implications for Rab27a-dependent eosinophil degranulation in airway inflammation.
Collapse
Affiliation(s)
- John Dongil Kim
- 2.559 HMRC, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Higdon CW, Mitra RD, Johnson SL. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLoS One 2013; 8:e67801. [PMID: 23874447 PMCID: PMC3706446 DOI: 10.1371/journal.pone.0067801] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/23/2013] [Indexed: 01/05/2023] Open
Abstract
In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.
Collapse
Affiliation(s)
- Charles W. Higdon
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| | - Robi D. Mitra
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Stephen L. Johnson
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| |
Collapse
|
50
|
Fukuda M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013; 14:949-63. [PMID: 23678941 DOI: 10.1111/tra.12083] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin-like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13-4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A-mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|