1
|
Bécret J, Gomez-Bravo C, Michaud C, Assali A, Chenais NAL, Kankadze I, Roche F, Couvet S, Fassier C, Nicol X. Point contact-restricted cAMP signaling controls ephrin-A5-induced axon repulsion. J Cell Sci 2025; 138:JCS263480. [PMID: 39775847 DOI: 10.1242/jcs.263480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Signal transduction downstream of axon guidance molecules is essential for steering developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive. Subcellular compartmentation has emerged as a flexible strategy to reach such a specificity. Here, we show that point contact-restricted cAMP signals control ephrin-A5-evoked axon repulsion in vitro by modulating focal adhesion kinase (FAK; also known as PTK2) phosphorylation and the assembly and disassembly rate of point contacts. Consistent with this, preventing point contact-specific cAMP signals in developing retinal ganglion cells in vivo alters the refinement of their terminal axonal arbor in the brain. Altogether, our study identifies point contacts as a compartment containing a local cAMP signal required for ephrin-A5-dependent axon guidance and highlights the crucial role of such subcellularly restricted second messenger signals in the wiring of neuronal circuits.
Collapse
Affiliation(s)
- Johann Bécret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Claudia Gomez-Bravo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Camille Michaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Ahlem Assali
- Sorbonne Université, Inserm, Institut du Fer à Moulin, 17 rue du Fer à Moulin, F-75005 Paris, France
| | - Naïg A L Chenais
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Izeta Kankadze
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Coralie Fassier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
2
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2025; 82:12-31. [PMID: 38801098 PMCID: PMC11599474 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kyle M. Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Ebbing P. De Jong
- Proteomics Core facility, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
3
|
Wegner SV, Raab CA. Analysis of Light-Controlled Artificial Cell-Cell Adhesions. Methods Mol Biol 2025; 2840:245-254. [PMID: 39724357 DOI: 10.1007/978-1-0716-4047-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The precise spatial and temporal regulation of cell-cell adhesions is crucial for understanding the underlying biological processes and for assembling multicellular structures in tissue engineering. Traditional approaches have relied on chemical membrane functionalization and regulated gene expression of native cell adhesion molecules (CAMs), but these methods lack the necessary control and can be detrimental to cells. In contrast, engineered photoswitchable cell-cell adhesions offer a reversible and dynamic regulation at a single-cell resolution. This is achieved by expressing different photodimerizers as artificial CAMs on the cell surfaces. Here, we describe a straightforward method for the functional analysis of these photoswitchable cell-cell adhesions in a 3D suspension culture.
Collapse
Affiliation(s)
- Seraphine V Wegner
- University of Münster Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany.
| | - Christopher A Raab
- University of Münster Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany
| |
Collapse
|
4
|
Rockenbach JAZ, Nader GPF, Antoku S, Gundersen GG. The kinesin KIF3AC recycles endocytosed integrin to polarize adhesion formation towards the leading edge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627580. [PMID: 39713396 PMCID: PMC11661233 DOI: 10.1101/2024.12.09.627580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The recycling of integrin endocytosed during focal adhesion (FA) disassembly is critical for cell migration and contributes to the polarized formation of new FAs toward the leading edge. How this occurs is unclear. Here, we sought to identify the kinesin motor protein(s) that is involved in recycling endocytosed integrin back to the plasma membrane. We show that the kinesin-2 heterodimer, KIF3AC and the Rab11 adaptor protein RCP are required for FA reformation after the disassembly of FAs in mouse and human fibroblasts. In the absence of KIF3AC, integrin does not return to the cell surface after FA disassembly and is found in the Rab11 endocytic recycling compartment. Biochemical pulldowns revealed that KIF3C associated with β1 integrin in an RCP dependent fashion, but only after FA disassembly. KIF3AC knockdown inhibited cell migration, trafficking of RCP toward the leading edge, and polarized formation of FAs at the leading edge. These results show that KIF3AC promotes cell migration by recycling integrin so that it generates new FAs in a polarized fashion. Summary The study reveals that the heterodimeric kinesin-2 motor KIF3AC and its adaptor RCP are crucial for polarized formation of focal adhesions at the front of migrating fibroblasts. KIF3AC and RCP associate with intracellularly recycling integrin to promote its return to the cell surface after its endocytosis from disassembled focal adhesions.
Collapse
|
5
|
Cai R, Bai P, Quan M, Ding Y, Wei W, Liu C, Yang A, Xiong Z, Li G, Li B, Deng Y, Tian R, Zhao YG, Wu C, Sun Y. Migfilin promotes autophagic flux through direct interaction with SNAP29 and Vamp8. J Cell Biol 2024; 223:e202312119. [PMID: 39283311 PMCID: PMC11404564 DOI: 10.1083/jcb.202312119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024] Open
Abstract
Autophagy plays a crucial role in cancer cell survival by facilitating the elimination of detrimental cellular components and the recycling of nutrients. Understanding the molecular regulation of autophagy is critical for developing interventional approaches for cancer therapy. In this study, we report that migfilin, a focal adhesion protein, plays a novel role in promoting autophagy by increasing autophagosome-lysosome fusion. We found that migfilin is associated with SNAP29 and Vamp8, thereby facilitating Stx17-SNAP29-Vamp8 SNARE complex assembly. Depletion of migfilin disrupted the formation of the SNAP29-mediated SNARE complex, which consequently blocked the autophagosome-lysosome fusion, ultimately suppressing cancer cell growth. Restoration of the SNARE complex formation rescued migfilin-deficiency-induced autophagic flux defects. Finally, we found depletion of migfilin inhibited cancer cell proliferation. SNARE complex reassembly successfully reversed migfilin-deficiency-induced inhibition of cancer cell growth. Taken together, our study uncovers a new function of migfilin as an autophagy-regulatory protein and suggests that targeting the migfilin-SNARE assembly could provide a promising therapeutic approach to alleviate cancer progression.
Collapse
Affiliation(s)
- Renwei Cai
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Panzhu Bai
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Meiling Quan
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yanyan Ding
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Wenjie Wei
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chengmin Liu
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Aihua Yang
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Zailin Xiong
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Guizhen Li
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Binbin Li
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yi Deng
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, China
| | - Yan G. Zhao
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Sun
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Driscoll MK, Welf ES, Weems A, Sapoznik E, Zhou F, Murali VS, García-Arcos JM, Roh-Johnson M, Piel M, Dean KM, Fiolka R, Danuser G. Proteolysis-free amoeboid migration of melanoma cells through crowded environments via bleb-driven worrying. Dev Cell 2024; 59:2414-2428.e8. [PMID: 38870943 PMCID: PMC11421976 DOI: 10.1016/j.devcel.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.
Collapse
Affiliation(s)
- Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Felix Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Minna Roh-Johnson
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Li X, Combs JD, Salaita K, Shu X. Polarized focal adhesion kinase activity within a focal adhesion during cell migration. Nat Chem Biol 2023; 19:1458-1468. [PMID: 37349581 PMCID: PMC10732478 DOI: 10.1038/s41589-023-01353-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.
Collapse
Affiliation(s)
- Xiaoquan Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Awanis G, Banerjee S, Johnson R, Raveenthiraraj S, Elmeligy A, Warren D, Gavrilovic J, Sobolewski A. HGF/c-Met/β1-integrin signalling axis induces tunneling nanotubes in A549 lung adenocarcinoma cells. Life Sci Alliance 2023; 6:e202301953. [PMID: 37550007 PMCID: PMC10427768 DOI: 10.26508/lsa.202301953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Tunneling nanotubes (TNTs) are thin cytoplasmic extensions involved in long-distance intercellular communication and can transport intracellular organelles and signalling molecules. In cancer cells, TNT formation contributes to cell survival, chemoresistance, and malignancy. However, the molecular mechanisms underlying TNT formation are not well defined, especially in different cancers. TNTs are present in non-small cell lung cancer (NSCLC) patients with adenocarcinoma. In NSCLC, hepatocyte growth factor (HGF) and its receptor, c-Met, are mutationally upregulated, causing increased cancer cell growth, survival, and invasion. This study identifies c-Met, β1-integrin, and paxillin as novel components of TNTs in A549 lung adenocarcinoma cells, with paxillin localised at the protrusion site of TNTs. The HGF-induced TNTs in our study demonstrate the ability to transport lipid vesicles and mitochondria. HGF-induced TNT formation is mediated by c-Met and β1-integrin in conjunction with paxillin, followed by downstream activation of MAPK and PI3K pathways and the Arp2/3 complex. These findings demonstrate a potential novel approach to inhibit TNT formation through targeting HGF/c-Met receptor and β1-integrin signalling interactions, which has implications for multi-drug targeting in NSCLC.
Collapse
Affiliation(s)
| | | | - Robert Johnson
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | - Aya Elmeligy
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Jelena Gavrilovic
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | |
Collapse
|
10
|
Zhang H, Zhu DS, Zhu J. Family-wide analysis of integrin structures predicted by AlphaFold2. Comput Struct Biotechnol J 2023; 21:4497-4507. [PMID: 37753178 PMCID: PMC10518446 DOI: 10.1016/j.csbj.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Recent advances in protein structure prediction using AlphaFold2, known for its high efficiency and accuracy, have opened new avenues for comprehensive analysis of all structures within a single protein family. In this study, we evaluated the capabilities of AphaFold2 in analyzing integrin structures. Integrins are heterodimeric cell surface receptors composed of a combination of 18 α and 8 β subunits, resulting in a family of 24 different members. Both α and β subunits consist of a large extracellular domain, a short transmembrane domain, and typically, a short cytoplasmic tail. Integrins play a pivotal role in a wide range of cellular functions by recognizing diverse ligands. Despite significant advances in integrin structural studies in recent decades, high-resolution structures have only been determined for a limited subsets of integrin members, thus limiting our understanding of the entire integrin family. Here, we first analyzed the single-chain structures of 18 α and 8 β integrins in the AlphaFold2 protein structure database. We then employed the newly developed AlphaFold2-multimer program to predict the α/β heterodimer structures of all 24 human integrins. The predicted structures show a high level of accuracy for the subdomains of both α and β subunits, offering high-resolution structure insights for all integrin heterodimers. Our comprehensive structural analysis of the entire integrin family unveils a potentially diverse range of conformations among the 24 members, providing a valuable structure database for studies related to integrin structure and function. We further discussed the potential applications and limitations of the AlphaFold2-derived integrin structures.
Collapse
Affiliation(s)
- Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Daniel S. Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Zhang H, Zhu DS, Zhu J. Family-wide analysis of integrin structures predicted by AlphaFold2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539023. [PMID: 37205578 PMCID: PMC10187181 DOI: 10.1101/2023.05.02.539023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in protein structure prediction using AlphaFold2, known for its high efficiency and accuracy, have opened new avenues for comprehensive analysis of all structures within a single protein family. In this study, we evaluated the capabilities of AphaFold2 in analyzing integrin structures. Integrins are heterodimeric cell surface receptors composed of a combination of 18 α and 8 β subunits, resulting in a family of 24 different members. Both α and β subunits consist of a large extracellular domain, a short transmembrane domain, and typically, a short cytoplasmic tail. Integrins play a pivotal role in a wide range of cellular functions by recognizing diverse ligands. Despite significant advances in integrin structural studies in recent decades, high-resolution structures have only been determined for a limited subsets of integrin members, thus limiting our understanding of the entire integrin family. Here, we first analyzed the single-chain structures of 18 α and 8 β integrins in the AlphaFold2 protein structure database. We then employed the newly developed AlphaFold2-multimer program to predict the α/β heterodimer structures of all 24 human integrins. The predicted structures show a high level of accuracy for the subdomains of both α and β subunits, offering high-resolution structure insights for all integrin heterodimers. Our comprehensive structural analysis of the entire integrin family unveils a potentially diverse range of conformations among the 24 members, providing a valuable structure database for studies related to integrin structure and function. We further discussed the potential applications and limitations of the AlphaFold2-derived integrin structures.
Collapse
Affiliation(s)
- Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Daniel S. Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Tachibana H, Minoura K, Omachi T, Nagao K, Ichikawa T, Kimura Y, Kono N, Shimanaka Y, Arai H, Ueda K, Kioka N. The plasma membrane of focal adhesions has a high content of cholesterol and phosphatidylcholine with saturated acyl chains. J Cell Sci 2023; 136:jcs260763. [PMID: 37470177 DOI: 10.1242/jcs.260763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.
Collapse
Affiliation(s)
- Hiroshi Tachibana
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kodai Minoura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiro Omachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuta Shimanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Kumar S, Stainer A, Dubrulle J, Simpkins C, Cooper JA. Cas phosphorylation regulates focal adhesion assembly. eLife 2023; 12:e90234. [PMID: 37489578 PMCID: PMC10435235 DOI: 10.7554/elife.90234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated and associated with its Crk/CrkL effectors in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin β1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin β1 is activated and core focal adhesion proteins including vinculin, talin, kindlin, and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs, and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin β1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.
Collapse
Affiliation(s)
- Saurav Kumar
- Fred Hutchinson Cancer CenterSeattleUnited States
| | | | | | | | | |
Collapse
|
14
|
Matsubara H, Fukunaga H, Saito T, Ikezaki K, Iwaki M. A Programmable DNA Origami Nanospring That Reports Dynamics of Single Integrin Motion, Force Magnitude and Force Orientation in Living Cells. ACS NANO 2023. [PMID: 37394270 PMCID: PMC10373515 DOI: 10.1021/acsnano.2c12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mechanical forces are critical for regulating many biological processes such as cell differentiation, proliferation, and death. Probing the continuously changing molecular force through integrin receptors provides insights into the molecular mechanism of rigidity sensing in cells; however, the force information is still limited. Here, we built a coil-shaped DNA origami (DNA nanospring, NS) as a force sensor that reports the dynamic motion of single integrins as well as the magnitude and orientation of the force through integrins in living cells. We monitored the extension with nanometer accuracy and the orientation of the NS linked with a single integrin by the shape of the fluorescence spots. We used acoustic force spectroscopy to estimate the force-extension curve of the NS and determined the force with an ∼10% force error at a broad detectable range from subpicoNewtons (pN) to ∼50 pN. We found single integrins tethered with the NS moved several tens of nanometers, and the contraction and relaxation speeds were load dependent at less than ∼20 pN but robust over ∼20 pN. Fluctuations of the traction force orientation were suppressed with increasing load. Our assay system is a potentially powerful tool for studying mechanosensing at the molecular level.
Collapse
Affiliation(s)
- Hitomi Matsubara
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Hiroki Fukunaga
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Takahiro Saito
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Keigo Ikezaki
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Mitsuhiro Iwaki
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 6512492, Japan
| |
Collapse
|
15
|
Campbell S, Mendoza MC, Rammohan A, McKenzie ME, Bidone TC. Computational model of integrin adhesion elongation under an actin fiber. PLoS Comput Biol 2023; 19:e1011237. [PMID: 37410718 PMCID: PMC10325090 DOI: 10.1371/journal.pcbi.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Cells create physical connections with the extracellular environment through adhesions. Nascent adhesions form at the leading edge of migrating cells and either undergo cycles of disassembly and reassembly, or elongate and stabilize at the end of actin fibers. How adhesions assemble has been addressed in several studies, but the exact role of actin fibers in the elongation and stabilization of nascent adhesions remains largely elusive. To address this question, here we extended our computational model of adhesion assembly by incorporating an actin fiber that locally promotes integrin activation. The model revealed that an actin fiber promotes adhesion stabilization and elongation. Actomyosin contractility from the fiber also promotes adhesion stabilization and elongation, by strengthening integrin-ligand interactions, but only up to a force threshold. Above this force threshold, most integrin-ligand bonds fail, and the adhesion disassembles. In the absence of contraction, actin fibers still support adhesions stabilization. Collectively, our results provide a picture in which myosin activity is dispensable for adhesion stabilization and elongation under an actin fiber, offering a framework for interpreting several previous experimental observations.
Collapse
Affiliation(s)
- Samuel Campbell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Michelle C. Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Aravind Rammohan
- Corning Life Sciences, Tewksburry, Massachusetts, United States of America
| | - Matthew E. McKenzie
- Corning Research and Development Corporation, Corning, New York, United States of America
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
16
|
Peruzzu D, Boussadia Z, Fratini F, Spadaro F, Bertuccini L, Sanchez M, Carollo M, Matarrese P, Falchi M, Iosi F, Raggi C, Parolini I, Carè A, Sargiacomo M, Gagliardi MC, Fecchi K. Inhibition of cholesterol transport impairs Cav-1 trafficking and small extracellular vesicles secretion, promoting amphisome formation in melanoma cells. Traffic 2023; 24:76-94. [PMID: 36519961 DOI: 10.1111/tra.12878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.
Collapse
Affiliation(s)
- Daniela Peruzzu
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Fratini
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Spadaro
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Carollo
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome
| | - Francesca Iosi
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- National Center for the control and evaluation of Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Parolini
- Department Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sargiacomo
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
17
|
Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment. Int J Mol Sci 2023; 24:ijms24032444. [PMID: 36768766 PMCID: PMC9916732 DOI: 10.3390/ijms24032444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.
Collapse
|
18
|
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood DA. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods Mol Biol 2023; 2608:17-38. [PMID: 36653699 PMCID: PMC9999384 DOI: 10.1007/978-1-0716-2887-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled exocytosis and endocytosis of integrin adhesion receptors is required for normal cell adhesion, migration, and signaling. In this chapter, we describe the design of functional β1 integrins carrying extracellular fluorescent or chemically traceable tags (ecto-tag) and methods for their use to image β1 integrin trafficking in cells. We provide approaches to generate cells in which endogenous β1 integrins are replaced by ecto-tagged integrins containing a pH-sensitive fluorophore pHluorin or a HaloTag and describe strategies using photobleaching, selective extracellular/intracellular labeling, and chase, quenching, and blocking to reveal β1 integrin exocytosis, endocytosis, and recycling by live total internal reflection fluorescence (TIRF) microscopy.
Collapse
Affiliation(s)
- Clotilde Huet-Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Derek Toomre
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - David A Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Bilches Medinas D, Malik S, Yıldız‐Bölükbaşı E, Borgonovo J, Saaranen MJ, Urra H, Pulgar E, Afzal M, Contreras D, Wright MT, Bodaleo F, Quiroz G, Rozas P, Mumtaz S, Díaz R, Rozas C, Cabral‐Miranda F, Piña R, Valenzuela V, Uyan O, Reardon C, Woehlbier U, Brown RH, Sena‐Esteves M, Gonzalez‐Billault C, Morales B, Plate L, Ruddock LW, Concha ML, Hetz C, Tolun A. Mutation in protein disulfide isomerase A3 causes neurodevelopmental defects by disturbing endoplasmic reticulum proteostasis. EMBO J 2022; 41:e105531. [PMID: 34904718 PMCID: PMC8762563 DOI: 10.15252/embj.2020105531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.
Collapse
|
20
|
Papalazarou V, Drew J, Juin A, Spence HJ, Whitelaw J, Nixon C, Salmeron-Sanchez M, Machesky LM. Collagen VI expression is negatively mechanosensitive in pancreatic cancer cells and supports the metastatic niche. J Cell Sci 2022; 135:jcs259978. [PMID: 36546396 PMCID: PMC9845737 DOI: 10.1242/jcs.259978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is a deadly and highly metastatic disease, although how metastatic lesions establish is not fully understood. A key feature of pancreatic tumours is extensive fibrosis and deposition of extracellular matrix (ECM). While pancreatic cancer cells are programmed by stimuli derived from a stiff ECM, metastasis requires loss of attachment and adaptation to a softer microenvironment at distant sites. Growing evidence suggests that stiff ECM influences pancreatic cancer cell behaviour. Here, we argue that this influence is reversible and that pancreatic cancer cells can be reprogrammed upon sensing soft substrates. Using engineered polyacrylamide hydrogels with tuneable mechanical properties, we show that collagen VI is specifically upregulated in pancreatic cancer cells on soft substrates, due to a lack of integrin engagement. Furthermore, the expression of collagen VI is inversely correlated with mechanosensing and activity of YAP (also known as YAP1), which might be due to a direct or indirect effect on transcription of genes encoding collagen VI. Collagen VI supports migration in vitro and metastasis formation in vivo. Metastatic nodules formed by pancreatic cancer cells lacking Col6a1 display stromal cell-derived collagen VI deposition, suggesting that collagen VI derived from either cancer cells or the stroma is an essential component of the metastatic niche. This article has an associated First Person interview with Vasileios Papalazarou, joint first author of the paper.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Centre for the Cellular Microenvironment, University of Glasgow,Glasgow G11 6EW, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - James Drew
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Amelie Juin
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Heather J. Spence
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jamie Whitelaw
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | - Laura M. Machesky
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|
21
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
22
|
Chen C, Chu CH, Chu Y, Chang TY, Chen SW, Liang SY, Tsai YC, Chen BC, Tu HL, Cheng PL. Neuronal paxillin and drebrin mediate BDNF-induced force transduction and growth cone turning in a soft-tissue-like environment. Cell Rep 2022; 40:111188. [PMID: 35977504 DOI: 10.1016/j.celrep.2022.111188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Soft tissue environments govern neuronal morphogenesis. However, the precise molecular mechanisms underlying chemotropism-directed axonal growth cone movement in extremely soft environments remain unclear. Here, we show that drebrin, a growth cone T-zone protein, modulates growth cone turning in response to brain-derived neurotrophic factor (BDNF) coated on a soft substrate. Structurally, axonal growth cones of rodent hippocampal neurons grown on 0.1 kPa hydrogels possess an expanded T zone in which drebrin is highly integrated with both F-actin and microtubules. Biochemically, we identify paxillin as interacting with drebrin in cells grown on 0.1 kPa hydrogels but not on glass coverslips. When grown on 0.1 kPa substrates, growth cones asymmetrically exposed to BDNF-bound stripes exhibit enhanced paxillin-drebrin interaction on the side facing the stripes, an activity that is PKA and AAK1 dependent but independent of Src kinase. Functionally, we show that BDNF-induced growth cone turning and force generation on soft substrates require drebrin phosphorylation and paxillin-drebrin association.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chien-Hsin Chu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ying Chu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ting-Ya Chang
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Sheng-Wen Chen
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Shu-Yang Liang
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yun-Chi Tsai
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
23
|
Yamaguchi N, Knaut H. Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo. Development 2022; 149:dev200647. [PMID: 35587444 PMCID: PMC9188754 DOI: 10.1242/dev.200647] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
24
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
25
|
Zhao AJ, Montes-Laing J, Perry WMG, Shiratori M, Merfeld E, Rogers SL, Applewhite DA. The Drosophila spectraplakin Short stop regulates focal adhesion dynamics by crosslinking microtubules and actin. Mol Biol Cell 2022; 33:ar19. [PMID: 35235367 PMCID: PMC9282009 DOI: 10.1091/mbc.e21-09-0434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spectraplakin family of proteins includes ACF7/MACF1 and BPAG1/dystonin in mammals, VAB-10 in Caenorhabditis elegans, Magellan in zebrafish, and Short stop (Shot), the sole Drosophila member. Spectraplakins are giant cytoskeletal proteins that cross-link actin, microtubules, and intermediate filaments, coordinating the activity of the entire cytoskeleton. We examined the role of Shot during cell migration using two systems: the in vitro migration of Drosophila tissue culture cells and in vivo through border cell migration. RNA interference (RNAi) depletion of Shot increases the rate of random cell migration in Drosophila tissue culture cells as well as the rate of wound closure during scratch-wound assays. This increase in cell migration prompted us to analyze focal adhesion dynamics. We found that the rates of focal adhesion assembly and disassembly were faster in Shot-depleted cells, leading to faster adhesion turnover that could underlie the increased migration speeds. This regulation of focal adhesion dynamics may be dependent on Shot being in an open confirmation. Using Drosophila border cells as an in vivo model for cell migration, we found that RNAi depletion led to precocious border cell migration. Collectively, these results suggest that spectraplakins not only function to cross-link the cytoskeleton but may regulate cell–matrix adhesion.
Collapse
Affiliation(s)
- Andrew J Zhao
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Julia Montes-Laing
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wick M G Perry
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Mari Shiratori
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Emily Merfeld
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Stephen L Rogers
- Department of Biology & Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Campus Box 3280, 422 Fordham Hall, Chapel Hill, NC 27599-3280, USA
| | - Derek A Applewhite
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
26
|
Samson SC, Khan AM, Mendoza MC. ERK signaling for cell migration and invasion. Front Mol Biosci 2022; 9:998475. [PMID: 36262472 PMCID: PMC9573968 DOI: 10.3389/fmolb.2022.998475] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The RAS - Extracellular signal-regulated kinase (RAS-ERK) pathway plays a conserved role in promoting cell migration and invasion. Growth factors, adhesion, and oncogenes activate ERK. While historically studied with respect to its control of cell proliferation and differentiation, the signaling pattern and effectors specific for cell migration are now coming to light. New advances in pathway probes have revealed how steady-state ERK activity fluctuates within individual cells and propagates to neighboring cells. We review new findings on the different modes of ERK pathway stimulation and how an increased baseline level of activity promotes single cell and collective migration and invasion. We discuss how ERK drives actin polymerization and adhesion turnover for edge protrusion and how cell contraction stimulates cell movement and ERK activity waves in epithelial sheets. With the steady development of new biosensors for monitoring spatial and temporal ERK activity, determining how cells individually interpret the multiple in vivo signals to ERK is within reach.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Akib M Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Sivaraman K, Muthukumar K, Shanthi C. Adhesion and proliferation properties of type I collagen-derived peptide for possible use in skin tissue engineering application. Cell Biol Int 2021; 46:391-402. [PMID: 34882901 DOI: 10.1002/cbin.11737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/27/2021] [Accepted: 12/04/2021] [Indexed: 11/08/2022]
Abstract
The surface properties of three-dimensional scaffolds are improved by coating or covalently linking certain adhesion-promoting proteins or peptides. In the present study, the effect of type I collagen-derived peptide (GKNGDDGEA) on adhesion and proliferation of HaCaT keratinocytes and NIH3T3 murine fibroblast cell lines was studied to assess its suitability for possible skin tissue engineering applications. Cell adhesion and proliferation of HaCaT and NIH3T3 were found to be enhanced by peptide coating. The optimum peptide coating densities to obtain the best cell adhesion and proliferation were found to be 0.827 µmoles/cm2 and 0.62 µmoles/cm2 for HaCaT and NIH3T3, respectively. Cell adhesion, in the presence of anti-integrin α1 antibody, inhibited attachment of NIH3T3 cells indicating the involvement of integrin α1 receptor. However, the attachment of HaCaT cells was not affected by anti-integrin treatment. The higher expression of paxillin confirmed the effect of the peptide in mediating focal adhesion kinases (FAKs) in cell adhesion and proliferation. Gene expression analysis was performed on cell migration proteins like Rho, Rac, Cdc42, integrin receptor α1, and β1, and the extracellular matrix modulating proteins like MMP2, TIMP, and COL1A1 to validate their role on the peptide-mediated cell proliferation. Immunofluorescence analysis showed the distribution and localisation of phospho-FAK on cells cultured on the peptide-coated surfaces. Results support the role of peptides in enhancing cell adhesion and proliferation properties.
Collapse
Affiliation(s)
- K Sivaraman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - K Muthukumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - C Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
28
|
Sherrard KM, Cetera M, Horne-Badovinac S. DAAM mediates the assembly of long-lived, treadmilling stress fibers in collectively migrating epithelial cells in Drosophila. eLife 2021; 10:e72881. [PMID: 34812144 PMCID: PMC8610420 DOI: 10.7554/elife.72881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Stress fibers (SFs) are actomyosin bundles commonly found in individually migrating cells in culture. However, whether and how cells use SFs to migrate in vivo or collectively is largely unknown. Studying the collective migration of the follicular epithelial cells in Drosophila, we found that the SFs in these cells show a novel treadmilling behavior that allows them to persist as the cells migrate over multiple cell lengths. Treadmilling SFs grow at their fronts by adding new integrin-based adhesions and actomyosin segments over time. This causes the SFs to have many internal adhesions along their lengths, instead of adhesions only at the ends. The front-forming adhesions remain stationary relative to the substrate and typically disassemble as the cell rear approaches. By contrast, a different type of adhesion forms at the SF's terminus that slides with the cell's trailing edge as the actomyosin ahead of it shortens. We further show that SF treadmilling depends on cell movement and identify a developmental switch in the formins that mediate SF assembly, with Dishevelled-associated activator of morphogenesis acting during migratory stages and Diaphanous acting during postmigratory stages. We propose that treadmilling SFs keep each cell on a linear trajectory, thereby promoting the collective motility required for epithelial migration.
Collapse
Affiliation(s)
- Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Maureen Cetera
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
29
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
30
|
Neeli-Venkata R, Diaz CM, Celador R, Sanchez Y, Minc N. Detection of surface forces by the cell-wall mechanosensor Wsc1 in yeast. Dev Cell 2021; 56:2856-2870.e7. [PMID: 34666001 DOI: 10.1016/j.devcel.2021.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Surface receptors of animal cells, such as integrins, promote mechanosensation by forming clusters as signaling hubs that transduce tensile forces. Walled cells of plants and fungi also feature surface sensors, with long extracellular domains that are embedded in their cell walls (CWs) and are thought to detect injuries and promote repair. How these sensors probe surface forces remains unknown. By studying the conserved CW sensor Wsc1 in fission yeast, we uncovered the formation of micrometer-sized clusters at sites of force application onto the CW. Clusters assembled within minutes of CW compression, in dose dependence with mechanical stress and disassembled upon relaxation. Our data support that Wsc1 accumulates to sites of enhanced mechanical stress through reduced lateral diffusivity, mediated by the binding of its extracellular WSC domain to CW polysaccharides, independent of canonical polarity, trafficking, and downstream CW regulatory pathways. Wsc1 may represent an autonomous module to detect and transduce local surface forces onto the CW.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Celia Municio Diaz
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Ruben Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Yolanda Sanchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
31
|
Han SJ, Azarova EV, Whitewood AJ, Bachir A, Guttierrez E, Groisman A, Horwitz AR, Goult BT, Dean KM, Danuser G. Pre-complexation of talin and vinculin without tension is required for efficient nascent adhesion maturation. eLife 2021; 10:66151. [PMID: 33783351 PMCID: PMC8009661 DOI: 10.7554/elife.66151] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Talin and vinculin are mechanosensitive proteins that are recruited early to integrin-based nascent adhesions (NAs). In two epithelial cell systems with well-delineated NA formation, we find these molecules concurrently recruited to the subclass of NAs maturing to focal adhesions. After the initial recruitment under minimal load, vinculin accumulates in maturing NAs at a ~ fivefold higher rate than in non-maturing NAs, and is accompanied by a faster traction force increase. We identify the R8 domain in talin, which exposes a vinculin-binding-site (VBS) in the absence of load, as required for NA maturation. Disruption of R8 domain function reduces load-free vinculin binding to talin, and reduces the rate of additional vinculin recruitment. Taken together, these data show that the concurrent recruitment of talin and vinculin prior to mechanical engagement with integrins is essential for the traction-mediated unfolding of talin, exposure of additional VBSs, further recruitment of vinculin, and ultimately, NA maturation.
Collapse
Affiliation(s)
- Sangyoon J Han
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biomedical Engineering, Michigan Technological University, Houghton, United States
| | - Evgenia V Azarova
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | | | - Alexia Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Edgar Guttierrez
- Department of Physics, University of California San Diego, San Diego, United States
| | - Alex Groisman
- Department of Physics, University of California San Diego, San Diego, United States
| | - Alan R Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
32
|
The 14-3-3ζ-c-Src-integrin-β3 complex is vital for platelet activation. Blood 2021; 136:974-988. [PMID: 32584951 DOI: 10.1182/blood.2019002314] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Several adaptor molecules bind to cytoplasmic tails of β-integrins and facilitate bidirectional signaling, which is critical in thrombosis and hemostasis. Interfering with integrin-adaptor interactions spatially or temporally to inhibit thrombosis without affecting hemostasis is an attractive strategy for the development of safe antithrombotic drugs. We show for the first time that the 14-3-3ζ-c-Src-integrin-β3 complex is formed during platelet activation. 14-3-3ζ-c-Src interaction is mediated by the -PIRLGLALNFSVFYYE- fragment (PE16) on the 14-3-3ζ and SH2-domain on c-Src, whereas the 14-3-3ζ-integrin-β3 interaction is mediated by the -ESKVFYLKMKGDYYRYL- fragment (EL17) on the 14-3-3ζ and -KEATSTF- fragment (KF7) on the β3-integrin cytoplasmic tail. The EL17-motif inhibitor, or KF7 peptide, interferes with the formation of the 14-3-3ζ-c-Src-integrin-β3 complex and selectively inhibits β3 outside-in signaling without affecting the integrin-fibrinogen interaction, which suppresses thrombosis without causing significant bleeding. This study characterized a previously unidentified 14-3-3ζ-c-Src-integrin-β3 complex in platelets and provided a novel strategy for the development of safe and effective antithrombotic treatments.
Collapse
|
33
|
Schiweck J, Murk K, Ledderose J, Münster-Wandowski A, Ornaghi M, Vida I, Eickholt BJ. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun 2021; 12:1490. [PMID: 33674568 PMCID: PMC7935889 DOI: 10.1038/s41467-021-21662-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The brain of mammals lacks a significant ability to regenerate neurons and is thus particularly vulnerable. To protect the brain from injury and disease, damage control by astrocytes through astrogliosis and scar formation is vital. Here, we show that brain injury in mice triggers an immediate upregulation of the actin-binding protein Drebrin (DBN) in astrocytes, which is essential for scar formation and maintenance of astrocyte reactivity. In turn, DBN loss leads to defective astrocyte scar formation and excessive neurodegeneration following brain injuries. At the cellular level, we show that DBN switches actin homeostasis from ARP2/3-dependent arrays to microtubule-compatible scaffolds, facilitating the formation of RAB8-positive membrane tubules. This injury-specific RAB8 membrane compartment serves as hub for the trafficking of surface proteins involved in astrogliosis and adhesion mediators, such as β1-integrin. Our work shows that DBN-mediated membrane trafficking in astrocytes is an important neuroprotective mechanism following traumatic brain injury in mice.
Collapse
Affiliation(s)
- Juliane Schiweck
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Murk
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Ledderose
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marta Ornaghi
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- grid.6363.00000 0001 2218 4662Institute of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta J. Eickholt
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
35
|
Castro-Córdova P, Mora-Uribe P, Reyes-Ramírez R, Cofré-Araneda G, Orozco-Aguilar J, Brito-Silva C, Mendoza-León MJ, Kuehne SA, Minton NP, Pizarro-Guajardo M, Paredes-Sabja D. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nat Commun 2021; 12:1140. [PMID: 33602902 PMCID: PMC7893008 DOI: 10.1038/s41467-021-21355-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5β1 and vitronectin-αvβ1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.
Collapse
Affiliation(s)
- Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Paola Mora-Uribe
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Glenda Cofré-Araneda
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Josué Orozco-Aguilar
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Christian Brito-Silva
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - María José Mendoza-León
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Sarah A Kuehne
- School of Dentistry and Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, UK
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
36
|
Legerstee K, Abraham TE, van Cappellen WA, Nigg AL, Slotman JA, Houtsmuller AB. Growth factor dependent changes in nanoscale architecture of focal adhesions. Sci Rep 2021; 11:2315. [PMID: 33504939 PMCID: PMC7841166 DOI: 10.1038/s41598-021-81898-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 01/21/2023] Open
Abstract
Focal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.
Collapse
Affiliation(s)
- Karin Legerstee
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Tsion E Abraham
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Wiggert A van Cappellen
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands. .,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.
| |
Collapse
|
37
|
Wu S, Chen M, Huang J, Zhang F, Lv Z, Jia Y, Cui YZ, Sun LZ, Wang Y, Tang Y, Verhoeft KR, Li Y, Qin Y, Lin X, Guan XY, Lam KO. ORAI2 Promotes Gastric Cancer Tumorigenicity and Metastasis through PI3K/Akt Signaling and MAPK-Dependent Focal Adhesion Disassembly. Cancer Res 2020; 81:986-1000. [PMID: 33310726 DOI: 10.1158/0008-5472.can-20-0049] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
The ubiquitous second messenger Ca2+ has long been recognized as a key regulator in cell migration. Locally confined Ca2+, in particular, is essential for building front-to-rear Ca2+ gradient, which serves to maintain the morphologic polarity required in directionally migrating cells. However, little is known about the source of the Ca2+ and the mechanism by which they crosstalk between different signaling pathways in cancer cells. Here, we report that calcium release-activated calcium modulator 2 (ORAI2), a poorly characterized store-operated calcium (SOC) channel subunit, predominantly upregulated in the lymph node metastasis of gastric cancer, supports cell proliferation and migration. Clinical data reveal that a high frequency of ORAI2-positive cells in gastric cancer tissues significantly correlated with poor differentiation, invasion, lymph node metastasis, and worse prognosis. Gain- and loss-of-function showed that ORAI2 promotes cell motility, tumor formation, and metastasis in both gastric cancer cell lines and mice. Mechanistically, ORAI2 mediated SOC activity and regulated tumorigenic properties through the activation of the PI3K/Akt signaling pathways. Moreover, ORAI2 enhanced the metastatic ability of gastric cancer cells by inducing FAK-mediated MAPK/ERK activation and promoted focal adhesion disassembly at rear-edge of the cell. Collectively, our results demonstrate that ORAI2 is a novel gene that plays an important role in the tumorigenicity and metastasis of gastric cancer. SIGNIFICANCE: These findings describe the critical role of ORAI2 in gastric cancer cell migration and tumor metastasis and uncover the translational potential to advance drug discovery along the ORAI2 signaling pathway.
Collapse
Affiliation(s)
- Shayi Wu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Miao Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Feifei Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhaojie Lv
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yongxu Jia
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yu-Zhu Cui
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Liang-Zhan Sun
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Ying Wang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Krista R Verhoeft
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Yanru Qin
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ka-On Lam
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
38
|
Zanetti C, Krause DS. "Caught in the net": the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp Hematol 2020; 89:13-25. [PMID: 32755619 DOI: 10.1016/j.exphem.2020.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
The influence of the bone marrow microenvironment on normal hematopoiesis, but also leukemia, has largely been accepted. However, the focus has been predominantly on the role of various cell types or cytokines maintaining hematopoietic stem cells or protecting leukemia stem cells from different therapies. A frequently overlooked component of the bone marrow microenvironment is the extracellular matrix, which not only provides a mechanical scaffold, but also serves as a source of growth factors. We discuss here how extracellular matrix proteins directly or indirectly modulate hematopoietic stem cell physiology and influence leukemia progression. It is hoped that existing and future studies on this topic may propel forward the possibility of augmenting normal hematopoiesis and improving therapies for leukemia, for instance, by targeting of the extracellular matrix in the bone marrow.
Collapse
Affiliation(s)
- Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Daniela S Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany; Frankfurt Cancer Institute, Frankfurt, Germany; Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.
| |
Collapse
|
39
|
Edwards DN, Salmeron K, Lukins DE, Trout AL, Fraser JF, Bix GJ. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1695-1708. [PMID: 31575337 PMCID: PMC7370357 DOI: 10.1177/0271678x19880161] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stroke remains a leading cause of death and disability with limited therapeutic options. Endothelial cell β1 integrin receptors play a direct role in blood-brain barrier (BBB) dysfunction through regulation of tight junction proteins and infiltrating leukocytes, potentially mediated by β1 integrins. Following tandem transient common carotid artery/middle cerebral artery occlusion on wild-type mice, we administered the integrin a5b1 inhibitor, ATN-161, intraperitoneal (IP) injection at 1 mg/kg acutely after reperfusion, on post-stroke day (PSD)1 and PSD2. Systemic changes (heart rate, pulse distension, and body temperature) were determined. Additionally, infarct volume and edema were determined by 2,3-triphenyltetrazolium chloride and magnetic resonance imaging, while neurological changes were evaluated using an 11-point Neuroscore. Brain immunohistochemistry was performed for claudin-5, α5β1, IgG, and CD45 + cells, and quantitative polymerase chain reaction (qPCR) was performed for matrix metalloproteinase-9 (MMP-9), interleukin (IL)-1β, collagen IV, and CXCL12. ATN-161 significantly reduced integrin α5β1 expression in the surrounding peri-infarct region with no systemic changes. Infarct volume, edema, and functional deficit were significantly reduced in ATN-161-treated mice. Furthermore, ATN-161 treatment reduced IgG extravasation into the parenchyma through conserved claudin-5, collagen IV, CXCL12 while reducing MMP-9 transcription. Additionally, IL-1β and CD45 + cells were reduced in the ipsilateral cortex following ATN-161 administration. Collectively, ATN-161 may be a promising novel stroke therapy by reducing post-stroke inflammation and BBB permeability.
Collapse
Affiliation(s)
| | - Kathleen Salmeron
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Physiology, University of Kentucky, Lexington, USA
| | | | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, USA
| | - Justin F Fraser
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Radiology, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA
| | - Gregory J Bix
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| |
Collapse
|
40
|
Lakoduk AM, Kadlecova Z, Schmid SL. A functionally neutral single chain antibody to measure beta-1 integrin uptake and recycling. Traffic 2020; 21:590-602. [PMID: 32613646 PMCID: PMC7442622 DOI: 10.1111/tra.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Integrin‐mediated cell adhesion and signaling are critical for many physiological processes. The dynamic turnover of integrins and their associated adhesion complexes through endocytic and recycling pathways has emerged as an important mechanism for controlling cell migration and invasion in cancer. Thus, the regulation of integrin trafficking and how this may be altered by disease‐specific molecular mechanisms has generated considerable interest. However, current tools available to study integrin trafficking may cause artifacts and/or do not provide adequate kinetic information. Here, we report the generation of a functionally neutral and monovalent single chain antibody to quantitatively and qualitatively measure β1 integrin trafficking in cells. Our novel probe can be used in a variety of assays and allows for the biochemical characterization of rapid recycling of endogenous integrins. We also demonstrate its potential utility in live cell imaging, providing proof of principle to guide future integrin probe design. The dynamic turnover of integrins through endocytic trafficking pathways has emerged as a key mechanism for cell migration and invasion. Lakoduk et al. report the generation of a functionally neutral and monovalent antibody‐based probe to track and measure endogenous beta‐1 integrin uptake and fast recycling in multiple cell types. Their tool, scFvK20, serves as proof of principle inspiration for future integrin probe design.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zuzana Kadlecova
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Santa-Cruz Mateos C, Valencia-Expósito A, Palacios IM, Martín-Bermudo MD. Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks. PLoS Genet 2020; 16:e1008717. [PMID: 32479493 PMCID: PMC7263567 DOI: 10.1371/journal.pgen.1008717] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Forces generated by the actomyosin cytoskeleton are key contributors to many morphogenetic processes. The actomyosin cytoskeleton organises in different types of networks depending on intracellular signals and on cell-cell and cell-extracellular matrix (ECM) interactions. However, actomyosin networks are not static and transitions between them have been proposed to drive morphogenesis. Still, little is known about the mechanisms that regulate the dynamics of actomyosin networks during morphogenesis. This work uses the Drosophila follicular epithelium, real-time imaging, laser ablation and quantitative analysis to study the role of integrins on the regulation of basal actomyosin networks organisation and dynamics and the potential contribution of this role to cell shape. We find that elimination of integrins from follicle cells impairs F-actin recruitment to basal medial actomyosin stress fibers. The available F-actin redistributes to the so-called whip-like structures, present at tricellular junctions, and into a new type of actin-rich protrusions that emanate from the basal cortex and project towards the medial region. These F-actin protrusions are dynamic and changes in total protrusion area correlate with periodic cycles of basal myosin accumulation and constriction pulses of the cell membrane. Finally, we find that follicle cells lacking integrin function show increased membrane tension and reduced basal surface. Furthermore, the actin-rich protrusions are responsible for these phenotypes as their elimination in integrin mutant follicle cells rescues both tension and basal surface defects. We thus propose that the role of integrins as regulators of stress fibers plays a key role on controlling epithelial cell shape, as integrin disruption promotes reorganisation into other types of actomyosin networks, in a manner that interferes with proper expansion of epithelial basal surfaces. Morphogenesis involves global changes in tissue architecture driven by cell shape changes. Mechanical forces generated by actomyosin networks and force transmission through adhesive complexes power these changes. The actomyosin cytoskeleton organises in different types of networks, which localise to precise regions and perform distinct roles. However, they are rarely independent and, often, reorganisation of a given structure can promote the formation of another, conversions proposed to underlie many morphogenetic processes. Nonetheless, the mechanisms controlling actomyosin network dynamics during morphogenesis remain poorly characterised. Here, using the Drosophila follicular epithelium, we show that cell-ECM interactions mediated by integrins are required for the correct distribution of actin in the different actin networks. Elimination of integrins results in redistribution of actin from stress fibers into a new type of protrusions that dynamically emanate from the cortex and extend into the stress fibers. Changes in area protrusions correlate with bursts of myosin accumulated in stress fibers and constriction pulses of the cell membrane. We also found that integrin mutant cells show increased membrane tension and reduced basal cell surface. As these defects are rescued by eliminating the F-actin protrusions, we believe these structures prevent proper basal surface growth. Thus, we propose that integrin function as regulators of stress fibers assembly and maintenance controls epithelial cell shape, as its disruption promotes reorganisation into other actomyosin networks, conversions that interfere with proper epithelial basal surface expansion.
Collapse
Affiliation(s)
- Carmen Santa-Cruz Mateos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
| | - Isabel M. Palacios
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera,Sevilla, Spain
- * E-mail:
| |
Collapse
|
42
|
Alghamdi AAA, Benwell CJ, Atkinson SJ, Lambert J, Johnson RT, Robinson SD. NRP2 as an Emerging Angiogenic Player; Promoting Endothelial Cell Adhesion and Migration by Regulating Recycling of α5 Integrin. Front Cell Dev Biol 2020; 8:395. [PMID: 32528960 PMCID: PMC7264094 DOI: 10.3389/fcell.2020.00395] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on β3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organization. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN.
Collapse
Affiliation(s)
- Abdullah A A Alghamdi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Samuel J Atkinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jordi Lambert
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Robert T Johnson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Stephen D Robinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
43
|
Kiepas A, Voorand E, Senecal J, Ahn R, Annis MG, Jacquet K, Tali G, Bisson N, Ursini-Siegel J, Siegel PM, Brown CM. The SHCA adapter protein cooperates with lipoma-preferred partner in the regulation of adhesion dynamics and invadopodia formation. J Biol Chem 2020; 295:10535-10559. [PMID: 32299913 DOI: 10.1074/jbc.ra119.011903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor β (TGFβ)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFβ enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFβ-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFβ-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFβ. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFβ, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada.,Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada
| | - Ryuhjin Ahn
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada
| | - George Tali
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada.,PROTEO Network and Cancer Research Centre, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Oncology, McGill University, Montréal H4A 3T2, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada .,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada .,Advanced BioImaging Facility (ABIF), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
44
|
Optogenetic control of mRNA localization and translation in live cells. Nat Cell Biol 2020; 22:341-352. [PMID: 32066905 DOI: 10.1038/s41556-020-0468-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Despite efforts to visualize the spatio-temporal dynamics of single messenger RNAs, the ability to precisely control their function has lagged. This study presents an optogenetic approach for manipulating the localization and translation of specific mRNAs by trapping them in clusters. This clustering greatly amplified reporter signals, enabling endogenous RNA-protein interactions to be clearly visualized in single cells. Functionally, this sequestration reduced the ability of mRNAs to access ribosomes, markedly attenuating protein synthesis. A spatio-temporally resolved analysis indicated that sequestration of endogenous β-actin mRNA attenuated cell motility through the regulation of focal-adhesion dynamics. These results suggest a mechanism highlighting the indispensable role of newly synthesized β-actin protein for efficient cell migration. This platform may be broadly applicable for use in investigating the spatio-temporal activities of specific mRNAs in various biological processes.
Collapse
|
45
|
Chang SS, Rape AD, Wong SA, Guo WH, Wang YL. Migration regulates cellular mechanical states. Mol Biol Cell 2019; 30:3104-3111. [PMID: 31693433 PMCID: PMC6938245 DOI: 10.1091/mbc.e19-02-0099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies indicate that adherent cells are keenly sensitive to external physical environment, such as substrate rigidity and topography, and internal physical states, such as cell shape and spreading area. Many of these responses are believed to involve coupled output and input of mechanical forces, which may constitute the key sensing mechanism to generate downstream regulatory signals for cell growth and differentiation. Here, we show that the state of cell migration also plays a regulatory role. Compared with migrating cells, stationary cells generate stronger, less dynamic, and more peripherally localized traction forces. These changes are coupled to reduced focal adhesion turnover and enhanced paxillin phosphorylation. Further, using cells migrating along checkerboard micropatterns, we show that the appearance of new focal adhesions directly in front of existing focal adhesions is associated with the down-regulation of existing focal adhesions and associated traction forces. Together, our results imply a mechanism where cell migration regulates traction forces by promoting dynamic turnover of focal adhesions, which may then regulate processes such as wound healing and embryogenesis where cell differentiation must coordinate with migration state and proper localization.
Collapse
Affiliation(s)
- Stephanie S Chang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Andrew D Rape
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Stephanie A Wong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Wei-Hui Guo
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Yu-Li Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
46
|
Monemian Esfahani A, Rosenbohm J, Reddy K, Jin X, Bouzid T, Riehl B, Kim E, Lim JY, Yang R. Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion. Tissue Eng Part C Methods 2019; 25:631-640. [PMID: 31407627 PMCID: PMC6859692 DOI: 10.1089/ten.tec.2019.0098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. This mechanochemical coupling in cell-cell adhesion is required for a large number of cell behaviors, and perturbations of the cell-cell adhesion structure or related mechanotransduction pathways can lead to critical pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been a widely used method to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. These studies aimed to reveal the biophysical processes governing cell proliferation, wound healing, gene expression regulation, and cell differentiation in various tissues, including cardiac, muscle, vascular, and bone. This review explores techniques in mechanical stretching in two-dimensional settings with different stretching regimens on different cell types. The mechanotransduction responses from these different cell types will be discussed with an emphasis on their biophysical transformations during mechanical stretching and the cross talk between the cell-cell and cell-ECM adhesion complexes. Therapeutic aspects of mechanical stretching are reviewed considering these cellular responses after the application of mechanical forces, with a focus on wound healing and tissue regeneration. Impact Statement Mechanical stretching has been proposed as a therapeutic option for tissue regeneration and wound healing. It has been accepted that mechanotransduction processes elicited by mechanical stretching govern cellular response and behavior, and these studies have predominantly focused on the cell-extracellular matrix (ECM) sites. This review serves the mechanobiology community by shifting the focus of mechanical stretching effects from cell-ECM adhesions to the less examined cell-cell adhesions, which we believe play an equally important role in orchestrating the response pathways.
Collapse
Affiliation(s)
- Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Keerthana Reddy
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Brandon Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
47
|
Erusappan P, Alam J, Lu N, Zeltz C, Gullberg D. Integrin α11 cytoplasmic tail is required for FAK activation to initiate 3D cell invasion and ERK-mediated cell proliferation. Sci Rep 2019; 9:15283. [PMID: 31653900 PMCID: PMC6814791 DOI: 10.1038/s41598-019-51689-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Integrin α11β1 is a collagen-binding integrin, which is receiving increasing attention in the context of wound healing and fibrosis. Although α11β1 integrin displays similar collagen specificity to α2β1 integrin, both integrins have distinct in vivo functions. In this context, the contribution of α11 subunit cytoplasmic tail interactions to diverse molecular signals and biological functions is largely unknown. In the current study, we have deleted the α11 cytoplasmic tail and studied the effect of this deletion on α11 integrin function. Compared to wild-type cells, C2C12 cells expressing tail-less α11 attached normally to collagen I, but formed fewer focal contacts. α11-tail-less cells furthermore displayed a reduced capacity to invade and reorganize a 3D collagen matrix and to proliferate. Analysis of cell signaling showed that FAK and ERK phosphorylation was reduced in cells expressing tail-less α11. Inhibition of ERK and FAK activation decreased α11-mediated cell proliferation, whereas α11-mediated cell invasion was FAK-dependent and occurred independently of ERK signaling. In summary, our data demonstrate that the integrin α11 cytoplasmic tail plays a central role in α11 integrin-specific functions, including FAK-dependent ERK activation to promote cell proliferation.
Collapse
Affiliation(s)
- Pugazendhi Erusappan
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Ning Lu
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Cédric Zeltz
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Donald Gullberg
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| |
Collapse
|
48
|
Klapproth S, Bromberger T, Türk C, Krüger M, Moser M. A kindlin-3-leupaxin-paxillin signaling pathway regulates podosome stability. J Cell Biol 2019; 218:3436-3454. [PMID: 31537712 PMCID: PMC6781449 DOI: 10.1083/jcb.201903109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Kindlin-3 regulates podosome stability by recruiting leupaxin to podosomes, which in turn controls PTP-PEST activity and paxillin phosphorylation. Kindlin-3 deficiency allows formation of initial adhesion patches containing talin, vinculin, and paxillin, whereas paxillin family proteins are dispensable for podosome formation. Binding of kindlins to integrins is required for integrin activation, stable ligand binding, and subsequent intracellular signaling. How hematopoietic kindlin-3 contributes to the assembly and stability of the adhesion complex is not known. Here we report that kindlin-3 recruits leupaxin into podosomes and thereby regulates paxillin phosphorylation and podosome turnover. We demonstrate that the activity of the protein tyrosine phosphatase PTP-PEST, which controls paxillin phosphorylation, requires leupaxin. In contrast, despite sharing the same binding mode with leupaxin, paxillin recruitment into podosomes is kindlin-3 independent. Instead, we found paxillin together with talin and vinculin in initial adhesion patches of kindlin-3–null cells. Surprisingly, despite its presence in these early adhesion patches, podosomes can form in the absence of paxillin or any paxillin member. In conclusion, our findings show that kindlin-3 not only activates and clusters integrins into podosomes but also regulates their lifetime by recruiting leupaxin, which controls PTP-PEST activity and thereby paxillin phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Sarah Klapproth
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Bromberger
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany .,Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
49
|
Sengupta S, Rothenberg KE, Li H, Hoffman BD, Bursac N. Altering integrin engagement regulates membrane localization of K ir2.1 channels. J Cell Sci 2019; 132:jcs225383. [PMID: 31391240 PMCID: PMC6771140 DOI: 10.1242/jcs.225383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.
Collapse
Affiliation(s)
- Swarnali Sengupta
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
50
|
Louzao-Martinez L, van Dijk CG, Xu YJ, Korn A, Bekker NJ, Brouwhuis R, Nicese MN, Demmers JA, Goumans MJT, Masereeuw R, Duncker DJ, Verhaar MC, Cheng C. A proteome comparison between human fetal and mature renal extracellular matrix identifies EMILIN1 as a regulator of renal epithelial cell adhesion. Matrix Biol Plus 2019; 4:100011. [PMID: 33543009 PMCID: PMC7852202 DOI: 10.1016/j.mbplus.2019.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022] Open
Abstract
Cell-based approaches using tissue engineering and regenerative medicine to replace damaged renal tissue with 3D constructs is a promising emerging therapy for kidney disease. Besides living cells, a template provided by a scaffold based on biomaterials and bioactive factors is needed for successful kidney engineering. Nature's own template for a scaffolding system is the extracellular matrix (ECM). Research has focused on mapping the mature renal ECM; however, the developing fetal ECM matches more the active environment required in 3D renal constructs. Here, we characterized the differences between the human fetal and mature renal ECM using spectrometry-based proteomics of decellularized tissue. We identified 99 different renal ECM proteins of which the majority forms an overlapping core, but also includes proteins enriched in either the fetal or mature ECM. Relative protein quantification showed a significant dominance of EMILIN1 in the fetal ECM. We functionally tested the role of EMILIN1 in the ECM using a novel methodology that permits the reliable anchorage of native cell-secreted ECM to glass coverslips. Depletion of EMILIN1 from the ECM layer using siRNA mediated knock-down technologies does not affect renal epithelial cell growth, but does promote migration. Lack of EMILIN1 in the ECM layer reduces the adhesion strength of renal epithelial cells, shown by a decrease in focal adhesion points and associated stress fibers. We showed in this study the importance of a human renal fetal and mature ECM catalogue for identifying promising ECM components that have high implementation potential in scaffolds for 3D renal constructs. Proteomics revealed the differences between the renal fetal and mature extracellular matrix. EMILIN1 has a significant dominance in the fetal extracellular matrix. EMILIN1 depletion from the extracellular matrix reduces the adhesion strength and promotes migration of renal epithelial cells.
Collapse
Affiliation(s)
- Laura Louzao-Martinez
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Christian G.M. van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Yan Juan Xu
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Amber Korn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Nicolaas J. Bekker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Romi Brouwhuis
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Maria Novella Nicese
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | | | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, the Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
- Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, the Netherlands
- Corresponding author at: Department of Nephrology and Hypertension, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, the Netherlands, Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|