1
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The Sole Essential Low Molecular Weight Tropomyosin Isoform of Caenorhabditis elegans Is Essential for Pharyngeal Muscle Function. Cytoskeleton (Hoboken) 2025. [PMID: 40078096 DOI: 10.1002/cm.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms regulate the contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here that C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants lacking all other short isoforms are viable, with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating that the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The sole essential low molecular weight tropomyosin isoform of Caenorhabditis elegans is essential for pharyngeal muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628433. [PMID: 39764053 PMCID: PMC11702560 DOI: 10.1101/2024.12.13.628433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants disrupted for all other short isoforms are viable with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle, and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| |
Collapse
|
3
|
Lambert MR, Gussoni E. Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy. Skelet Muscle 2023; 13:18. [PMID: 37936227 PMCID: PMC10629095 DOI: 10.1186/s13395-023-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Lewis M, Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. The α-arrestin SUP-13/ARRD-15 promotes isoform turnover of actin-interacting protein 1 in Caenorhabditis elegans striated muscle. PNAS NEXUS 2023; 2:pgad330. [PMID: 37869480 PMCID: PMC10590129 DOI: 10.1093/pnasnexus/pgad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Precise arrangement of actin, myosin, and other regulatory components in a sarcomeric pattern is critical for producing contractile forces in striated muscles. Actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), is one of essential factors that regulate sarcomeric assembly of actin filaments. In the nematode Caenorhabditis elegans, mutation in unc-78, encoding one of the two AIP1 isoforms, causes severe disorganization of sarcomeric actin filaments and near paralysis, but mutation in sup-13 suppresses the unc-78-mutant phenotypes to restore nearly normal sarcomeric actin organization and worm motility. Here, we identified that sup-13 is a nonsense allele of arrd-15 encoding an α-arrestin. The sup-13/arrd-15 mutation suppressed the phenotypes of unc-78 null mutant but required aipl-1 that encodes a second AIP1 isoform. aipl-1 was normally expressed highly in embryos and downregulated in mature muscle. However, in the sup-13/arrd-15 mutant, the AIPL-1 protein was maintained at high levels in adult muscle to compensate for the absence of the UNC-78 protein. The sup-13/arrd-15 mutation caused accumulation of ubiquitinated AIPL-1 protein, suggesting that a normal function of sup-13/arrd-15 is to enhance degradation of ubiquitinated AIPL-1, thereby promoting transition of AIP1 isoforms from AIPL-1 to UNC-78 in developing muscle. These results suggest that α-arrestin is a novel factor to promote isoform turnover by enhancing protein degradation.
Collapse
Affiliation(s)
- Mario Lewis
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Fazal M, Prentice DA, Kho LK, Fysh E. Nivolumab-associated myositis myocarditis and myasthenia and anti-striated muscle antibodies. Intern Med J 2020; 50:1003-1006. [PMID: 33306231 DOI: 10.1111/imj.14946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/29/2020] [Accepted: 02/09/2020] [Indexed: 01/10/2023]
Abstract
An 82-year-old man was treated with neo-adjuvant nivolumab (programmed cell death protein 1 or PD-1 inhibitor) for local recurrence of melanoma developed myositis, myocarditis and a myasthenic-like syndrome with a fatal outcome. The occurrence of these three conditions may constitute a new immune checkpoint-induced syndrome. The relevance of the clinical features and the immunology is discussed. This case highlights the special role of anti-striated muscle antibodies as a predictor of mortality.
Collapse
Affiliation(s)
- Marium Fazal
- General Medicine Department, St John of God Midland Public Hospital, Perth, Western Australia, Australia
| | - David A Prentice
- General Medicine Department, St John of God Midland Public Hospital, Perth, Western Australia, Australia
| | - Lay K Kho
- Neurology Department, St John of God Midland Public Hospital, Perth, Western Australia, Australia
| | - Edward Fysh
- Respiratory Department, St John of God Midland Public Hospital, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Zaenker P, Prentice D, Ziman M. Tropomyosin autoantibodies associated with checkpoint inhibitor myositis. Oncoimmunology 2020; 9:1804703. [PMID: 32923166 PMCID: PMC7458639 DOI: 10.1080/2162402x.2020.1804703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This brief report details the measurement and identification of IgA antibodies to tropomyosin in a case of presumed ocular myositis with paraspinal myositis in a patient with metastatic uveal melanoma treated with checkpoint inhibitors. High-throughput functional protein microarray analysis and pathway analysis was conducted to identify IgG and IgA antibodies of interest. Antibody levels were compared to generic antibody screening results and levels of the antibodies in a cohort of melanoma patients without myositis (n = 100) at baseline prior to undergoing immunotherapy. The finding of specific muscle antibodies in this clinical case indicates the pathogenic potential of anti-tropomyosin IgA in the development of checkpoint inhibitor associated myositis and requires further investigation.
Collapse
Affiliation(s)
- Pauline Zaenker
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - David Prentice
- General Medicine Department, St John of God Midland Public Hospital, Midland, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Department of Biomedical Science, The University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
8
|
Kee AJ, Chagan J, Chan JY, Bryce NS, Lucas CA, Zeng J, Hook J, Treutlein H, Laybutt DR, Stehn JR, Gunning PW, Hardeman EC. On-target action of anti-tropomyosin drugs regulates glucose metabolism. Sci Rep 2018; 8:4604. [PMID: 29545590 PMCID: PMC5854615 DOI: 10.1038/s41598-018-22946-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
The development of novel small molecule inhibitors of the cancer-associated tropomyosin 3.1 (Tpm3.1) provides the ability to examine the metabolic function of specific actin filament populations. We have determined the ability of these anti-Tpm (ATM) compounds to regulate glucose metabolism in mice. Acute treatment (1 h) of wild-type (WT) mice with the compounds (TR100 and ATM1001) led to a decrease in glucose clearance due mainly to suppression of glucose-stimulated insulin secretion (GSIS) from the pancreatic islets. The impact of the drugs on GSIS was significantly less in Tpm3.1 knock out (KO) mice indicating that the drug action is on-target. Experiments in MIN6 β-cells indicated that the inhibition of GSIS by the drugs was due to disruption to the cortical actin cytoskeleton. The impact of the drugs on insulin-stimulated glucose uptake (ISGU) was also examined in skeletal muscle ex vivo. In the absence of drug, ISGU was decreased in KO compared to WT muscle, confirming a role of Tpm3.1 in glucose uptake. Both compounds suppressed ISGU in WT muscle, but in the KO muscle there was little impact of the drugs. Collectively, this data indicates that the ATM drugs affect glucose metabolism in vivo by inhibiting Tpm3.1's function with few off-target effects.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jayshan Chagan
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christine A Lucas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jun Zeng
- MedChemSoft Solutions, Level 3 Brandon Park Drive, Wheelers Hill, 3150, VIC, Australia
| | - Jeff Hook
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Herbert Treutlein
- Sanoosa Pty. Ltd., 35 Collins Street, Melbourne, 3000, VIC, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Justine R Stehn
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Novogen Pty Ltd, 502/20 George St, Hornsby, NSW, 2077, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
O'Rourke AR, Lindsay A, Tarpey MD, Yuen S, McCourt P, Nelson DM, Perrin BJ, Thomas DD, Spangenburg EE, Lowe DA, Ervasti JM. Impaired muscle relaxation and mitochondrial fission associated with genetic ablation of cytoplasmic actin isoforms. FEBS J 2018; 285:481-500. [PMID: 29265728 DOI: 10.1111/febs.14367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
While α-actin isoforms predominate in adult striated muscle, skeletal muscle-specific knockouts (KOs) of nonmuscle cytoplasmic βcyto - or γcyto -actin each cause a mild, but progressive myopathy effected by an unknown mechanism. Using transmission electron microscopy, we identified morphological abnormalities in both the mitochondria and the sarcoplasmic reticulum (SR) in aged muscle-specific βcyto - and γcyto -actin KO mice. We found βcyto - and γcyto -actin proteins to be enriched in isolated mitochondrial-associated membrane preparations, which represent the interface between mitochondria and sarco-endoplasmic reticulum important in signaling and mitochondrial dynamics. We also measured significantly elongated and interconnected mitochondrial morphologies associated with a significant decrease in mitochondrial fission events in primary mouse embryonic fibroblasts lacking βcyto - and/or γcyto -actin. Interestingly, mitochondrial respiration in muscle was not measurably affected as oxygen consumption was similar in skeletal muscle fibers from 12 month-old muscle-specific βcyto - and γcyto -actin KO mice. Instead, we found that the maximal rate of relaxation after isometric contraction was significantly slowed in muscles of 12-month-old βcyto - and γcyto -actin muscle-specific KO mice. Our data suggest that impaired Ca2+ re-uptake may presage development of the observed SR morphological changes in aged mice while providing a potential pathological mechanism for the observed myopathy.
Collapse
Affiliation(s)
- Allison R O'Rourke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Angus Lindsay
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Tarpey
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Samantha Yuen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Preston McCourt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, IN, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Dawn A Lowe
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Vrhovski B, McKay K, Schevzov G, Gunning PW, Weinberger RP. Smooth Muscle-specific α Tropomyosin Is a Marker of Fully Differentiated Smooth Muscle in Lung. J Histochem Cytochem 2016; 53:875-83. [PMID: 15995146 DOI: 10.1369/jhc.4a6504.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tropomyosin (Tm) is one of the major components of smooth muscle. Currently it is impossible to easily distinguish the two major smooth muscle (sm) forms of Tm at a protein level by immunohistochemistry due to lack of specific antibodies. α-sm Tm contains a unique 2a exon not found in any other Tm. We have produced a polyclonal antibody to this exon that specifically detects α-sm Tm. We demonstrate here the utility of this antibody for the study of smooth muscle. The tissue distribution of α-sm Tm was shown to be highly specific to smooth muscle. α-sm Tm showed an identical profile and tissue colocalization with α-sm actin both by Western blotting and immunohistochemistry. Using lung as a model organ system, we examined the developmental appearance of α-sm Tm in comparison to α-sm actin in both the mouse and human. α-sm Tm is a late-onset protein, appearing much later than actin in both species. There were some differences in onset of appearance in vascular and airway smooth muscle with airway appearing earlier. α-sm Tm can therefore be used as a good marker of mature differentiated smooth muscle cells. Along with α-sm actin and sm-myosin antibodies, α-sm Tm is a valuable tool for the study of smooth muscle.
Collapse
Affiliation(s)
- Bernadette Vrhovski
- The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
| | | | | | | | | |
Collapse
|
11
|
Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O'neill GM, Yang N, Verrills NM, Kavallaris M, Gunning PW. Tissue-specific Tropomyosin Isoform Composition. J Histochem Cytochem 2016; 53:557-70. [PMID: 15872049 DOI: 10.1369/jhc.4a6505.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells ( Gunning et al. 1998b ). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Robaszkiewicz K, Ostrowska Z, Marchlewicz K, Moraczewska J. Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins. FEBS J 2015; 283:723-37. [DOI: 10.1111/febs.13626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| | - Zofia Ostrowska
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| | - Kamila Marchlewicz
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| |
Collapse
|
13
|
Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J Muscle Res Cell Motil 2015; 36:501-15. [DOI: 10.1007/s10974-015-9421-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
|
14
|
Fiorillo AA, Heier CR, Novak JS, Tully CB, Brown KJ, Uaesoontrachoon K, Vila MC, Ngheim PP, Bello L, Kornegay JN, Angelini C, Partridge TA, Nagaraju K, Hoffman EP. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy. Cell Rep 2015; 12:1678-90. [PMID: 26321630 DOI: 10.1016/j.celrep.2015.07.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/28/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022] Open
Abstract
The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.
Collapse
Affiliation(s)
- Alyson A Fiorillo
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Christopher R Heier
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Christopher B Tully
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Kristy J Brown
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Kitipong Uaesoontrachoon
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Maria C Vila
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Peter P Ngheim
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Luca Bello
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Fondazione Ospedale S. Camillo, IRCCS, Lido Venice 30126, Italy
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | | | - Terence A Partridge
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
15
|
Kee AJ, Yang L, Lucas CA, Greenberg MJ, Martel N, Leong GM, Hughes WE, Cooney GJ, James DE, Ostap EM, Han W, Gunning PW, Hardeman EC. An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake. Traffic 2015; 16:691-711. [PMID: 25783006 PMCID: PMC4945106 DOI: 10.1111/tra.12282] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.
Collapse
Affiliation(s)
- Anthony J. Kee
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Lingyan Yang
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Michael J. Greenberg
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Nick Martel
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
| | - Gary M. Leong
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
- Department of Paediatric Endocrinology and DiabetesMater Children's HospitalSouth BrisbaneQLD4010Australia
| | - William E. Hughes
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Gregory J. Cooney
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - David E. James
- Charles Perkins Centre, School of Molecular BioscienceUniversity of SydneySydneyNSW2006Australia
| | - E. Michael Ostap
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Weiping Han
- Singapore Bioimaging ConsortiumAgency for Science, Technology and Research (A*STAR)Singapore138667Singapore
| | - Peter W. Gunning
- Oncology Research UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| |
Collapse
|
16
|
Falcone S, Roman W, Hnia K, Gache V, Didier N, Lainé J, Auradé F, Marty I, Nishino I, Charlet-Berguerand N, Romero NB, Marazzi G, Sassoon D, Laporte J, Gomes ER. N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 2015; 6:1455-75. [PMID: 25262827 PMCID: PMC4237471 DOI: 10.15252/emmm.201404436] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in amphiphysin-2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis-splicing of amphiphysin-2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin-2 orchestrates nuclear positioning and triad organization and how CNM-associated mutations lead to muscle dysfunction remains elusive. We find that N-WASP interacts with amphiphysin-2 in myofibers and that this interaction and N-WASP distribution are disrupted by amphiphysin-2 CNM mutations. We establish that N-WASP functions downstream of amphiphysin-2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b-dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N-WASP and amphiphysin-2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N-WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N-WASP in amphiphysin-2-dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology.
Collapse
Affiliation(s)
- Sestina Falcone
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - William Roman
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Karim Hnia
- IGBMC-CNRS, UMR 7104 INSERM U964, Illkirch, France
| | - Vincent Gache
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nathalie Didier
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Jeanne Lainé
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Frederic Auradé
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Isabelle Marty
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble, France
| | - Ichizo Nishino
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | - Giovanna Marazzi
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - David Sassoon
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | | | - Edgar R Gomes
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Masedunskas A, Appaduray M, Gunning PW, Hardeman EC. Lighting up microtubule cytoskeleton dynamics in skeletal muscle. INTRAVITAL 2014; 3:e29293. [PMID: 28243508 PMCID: PMC5312709 DOI: 10.4161/intv.29293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/02/2022]
Abstract
In the past few decades, live cell microscopy techniques in combination with fluorescent tagging have provided a true explosion in our knowledge of the inner functioning of the cell. Dynamic phenomena can be observed inside living cells and the behavior of individual molecules participating in those events can be documented. However, our preference for simple or easy model systems such as cell culture, has come at a cost of chasing artifacts and missing out on understanding real biology as it happens in complex multicellular organisms. We are now entering a new era where developing meaningful, but also tractable model systems to study biological phenomenon dynamically in vivo in a mammal is not only possible; it will become the gold standard for scientific quality and translational potential.1,2 A study by Oddoux et al. describing the dynamics of the microtubule (MT) cytoskeleton in skeletal muscle is one example that demonstrates the power of developing in vivo/ex vivo models.3 MTs have long attracted attention as targets for cancer therapeutics 4 and more recently as mediators of Duchene muscular dystrophy.5 The muscle fiber MT cytoskeleton forms an intricate rectilinear lattice beneath the sarcolemma and is essential for the structural integrity of the muscle. Cultured cells do not develop such a specialized organization of the MT cytoskeleton and our understanding of it has come from static snapshots of muscle sections.6 In this context, the methodology and the findings reported by Oddoux et al. are a significant step forward.
Collapse
Affiliation(s)
- Andrius Masedunskas
- Oncology Research Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| | - Mark Appaduray
- Neuromuscular and Regenerative Medicine Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| | - Peter W Gunning
- Oncology Research Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| | - Edna C Hardeman
- Neuromuscular and Regenerative Medicine Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| |
Collapse
|
19
|
Rosado M, Barber CF, Berciu C, Feldman S, Birren SJ, Nicastro D, Goode BL. Critical roles for multiple formins during cardiac myofibril development and repair. Mol Biol Cell 2014; 25:811-27. [PMID: 24430873 PMCID: PMC3952851 DOI: 10.1091/mbc.e13-08-0443] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/13/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022] Open
Abstract
Cardiac and skeletal muscle function depends on the proper formation of myofibrils, which are tandem arrays of highly organized actomyosin contractile units called sarcomeres. How the architecture of these colossal molecular assemblages is established during development and maintained over the lifetime of an animal is poorly understood. We investigate the potential roles in myofibril formation and repair of formin proteins, which are encoded by 15 different genes in mammals. Using quantitative real-time PCR analysis, we find that 13 formins are differentially expressed in mouse hearts during postnatal development. Seven formins immunolocalize to sarcomeres in diverse patterns, suggesting that they have a variety of functional roles. Using RNA interference silencing, we find that the formins mDia2, DAAM1, FMNL1, and FMNL2 are required nonredundantly for myofibrillogenesis. Knockdown phenotypes include global loss of myofibril organization and defective sarcomeric ultrastructure. Finally, our analysis reveals an unanticipated requirement specifically for FMNL1 and FMNL2 in the repair of damaged myofibrils. Together our data reveal an unexpectedly large number of formins, with diverse localization patterns and nonredundant roles, functioning in myofibril development and maintenance, and provide the first evidence of actin assembly factors being required to repair myofibrils.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Animals, Newborn
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Differentiation
- Formins
- Gene Expression Regulation, Developmental
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/antagonists & inhibitors
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microtubule-Associated Proteins/antagonists & inhibitors
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Muscle Development/genetics
- Myocardium/cytology
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- NADPH Dehydrogenase/antagonists & inhibitors
- NADPH Dehydrogenase/genetics
- NADPH Dehydrogenase/metabolism
- Primary Cell Culture
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sarcomeres/metabolism
- Sarcomeres/ultrastructure
- Thiazolidines/pharmacology
- Wound Healing/genetics
- rho GTP-Binding Proteins/antagonists & inhibitors
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
| | | | - Cristina Berciu
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Steven Feldman
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Susan J. Birren
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Daniela Nicastro
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Bruce L. Goode
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
20
|
A novel actin mRNA splice variant regulates ACTG1 expression. PLoS Genet 2013; 9:e1003743. [PMID: 24098136 PMCID: PMC3789816 DOI: 10.1371/journal.pgen.1003743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic actins are abundant, ubiquitous proteins in nucleated cells. However, actin expression is regulated in a tissue- and development-specific manner. We identified a novel cytoplasmic-γ-actin (Actg1) transcript that includes a previously unidentified exon (3a). Inclusion of this exon introduces an in-frame termination codon. We hypothesized this alternatively-spliced transcript down-regulates γ-actin production by targeting these transcripts for nonsense-mediated decay (NMD). To address this, we investigated conservation between mammals, tissue-specificity in mice, and developmental regulation using C2C12 cell culture. Exon 3a is 80% similar among mammals and varies in length from 41 nucleotides in humans to 45 in mice. Though the predicted amino acid sequences are not similar between all species, inclusion of exon 3a consistently results in the in the introduction of a premature termination codon within the alternative Actg1 transcript. Of twelve tissues examined, exon 3a is predominantly expressed in skeletal muscle, cardiac muscle, and diaphragm. Splicing to include exon 3a is concomitant with previously described down-regulation of Actg1 in differentiating C2C12 cells. Treatment of differentiated C2C12 cells with an inhibitor of NMD results in a 7-fold increase in exon 3a-containing transcripts. Therefore, splicing to generate exon 3a-containing transcripts may be one component of Actg1 regulation. We propose that this post-transcriptional regulation occurs via NMD, in a process previously described as “regulated unproductive splicing and translation” (RUST). Actin is a well-studied protein that plays an essential role in nearly all cell types. Cytoplasmic actins are considered to be ubiquitously expressed in most tissues of the body with the exception of developing skeletal muscle, where muscle specific actins are up-regulated and γ-actin is repressed. Interest in the regulation of this transcript led to the hypothesis that intron retention is responsible for down-regulation of cytoplasmic γ-actin in skeletal muscle during development. Since the publication of the sequence of γ-actin cDNA over two and a half decades ago, no additional splice variants or cDNAs of this gene have been described. In this paper, we identify an alternatively spliced transcript in muscle that allowed us to elucidate how the γ-actin is downregulated during the important transition from myoblast to differentiated muscle cells. This is the first description of regulation of an actin transcript by regulated unproductive splicing and translation.
Collapse
|
21
|
Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil 2013; 34:261-74. [PMID: 23904035 PMCID: PMC3843815 DOI: 10.1007/s10974-013-9355-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/09/2013] [Indexed: 01/12/2023]
Abstract
The actin cytoskeleton plays a central role in many essential cellular processes. Its involvement requires actin filaments to form multiple populations with different structural and therefore functional properties in specific subcellular locations. This diversity is facilitated through the interaction between actin and a number of actin binding proteins. One family of proteins, the tropomyosins, are absolutely essential in regulating actin's ability to form such diverse structures. In this review we integrate studies from different organisms and cell types in an attempt to provide a unifying view of tropomyosin dependent regulation of the actin cytoskeleton.
Collapse
|
22
|
Complex tropomyosin and troponin T isoform expression patterns in orbital and global fibers of adult dog and rat extraocular muscles. J Muscle Res Cell Motil 2013; 34:211-31. [PMID: 23700265 DOI: 10.1007/s10974-013-9346-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
We reported marked differences in the myosin heavy and light chain (MHC and MLC) isoform composition of fast and slow fibers between the global and orbital layers of dog extraocular muscles. Many dog extraocular fibers, especially orbital fibers, have MHC and MLC isoform patterns that are distinct from those in limb skeletal muscles. Additional observations suggested possible differences in the tropomyosin (Tm) and troponin T (TnT) isoform composition of global and orbital fibers. Therefore, we tested, using SDS-PAGE and immunoblotting, whether differences in Tm and TnT isoform expression do, in fact, exist between global and orbital layers of dog and rat EOMs and to compare expression patterns among identified fast and slow single fibers from both muscle layers. The Tm isoforms expressed in global fast and slow fibers are the same as in limb fast (α-Tm and β-Tm) and slow (γ-Tm and β-Tm) fibers, respectively. Orbital slow orbital fibers, on the other hand, each co-express all three sarcomeric Tm isoforms (α, β and γ). The results indicate that fast global and orbital fibers express only fast isoforms of TnT, but the relative amounts of the individual isoforms are different from those in limb fast muscle fibers and an abundant fast TnT isoform in the orbital layer was not detected in fast limb muscles. Slow fibers in both layers express slow TnT isoforms and the relative amounts also differ from those in limb slow fibers. Unexpectedly, significant amounts of cardiac TnT isoforms were also detected in slow fibers, especially in the orbital layer in both species. TnI and TnC isoform patterns are the same as in fast and slow fibers in limb muscles. These results expand the understanding of the elaborate diversity in contractile protein isoform expression in mammalian extraocular muscle fibers and suggest that major differences in calcium-activation properties exist among these fibers, based upon Tm and TnT isoform expression patterns.
Collapse
|
23
|
Feng HZ, Wang Q, Reiter RS, Lin JLC, Lin JJC, Jin JP. Localization and function of Xinα in mouse skeletal muscle. Am J Physiol Cell Physiol 2013; 304:C1002-12. [PMID: 23485711 DOI: 10.1152/ajpcell.00005.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Xin repeat-containing proteins were originally found in the intercalated discs of cardiac muscle with implicated roles in cardiac development and function. A pair of paralogous genes, Xinα (Xirp1) and Xinβ (Xirp2), is present in mammals. Ablation of the mouse Xinα (mXinα) did not affect heart development but caused late-onset adulthood cardiac hypertrophy and cardiomyopathy with conductive defects. Both mXinα and mXinβ are also found in the myotendinous junction (MTJ) of skeletal muscle. Here we investigated the structural and functional significance of mXinα in skeletal muscle. In addition to MTJ and the contact sites between muscle and perimysium, mXinα but not mXinβ was found in the blood vessel walls, whereas both proteins were absent in neuromuscular junctions and nerve fascicles. Coimmunoprecipitation suggested association of mXinα with talin, vinculin, and filamin, but not β-catenin, in adult skeletal muscle, consistent with our previous report of colocalization of mXinα with vinculin. Loss of mXinα in mXinα-null mice had subtle effects on the MTJ structure and the levels of several MTJ components. Diaphragm muscle of mXinα-null mice showed hypertrophy. Compared with wild-type controls, mouse extensor digitorum longus (EDL) muscle lacking mXinα exhibited no overt change in contractile and relaxation velocities or maximum force development but better tolerance to fatigue. Loaded fatigue contractions generated stretch injury in wild-type EDL muscle as indicated by a fragmentation of troponin T. This effect was blunted in mXinα-null EDL muscle. The results suggest that mXinα play a role in MTJ conductance of contractile and stretching forces.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
24
|
Shum AMY, Mahendradatta T, Taylor RJ, Painter AB, Moore MM, Tsoli M, Tan TC, Clarke SJ, Robertson GR, Polly P. Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting. Aging (Albany NY) 2012; 4:133-43. [PMID: 22361433 PMCID: PMC3314175 DOI: 10.18632/aging.100436] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/20/2012] [Indexed: 12/25/2022]
Abstract
Cancer cachexia is a highly debilitating paraneoplastic disease observed in more than 50% of patients with advanced cancers and directly contributes to 20% of cancer deaths. Loss of skeletal muscle is a defining characteristic of patients with cancer cachexia and is associated with poor survival. The present study reveals the involvement of a myogenic transcription factor Myocyte Enhancer Factor (MEF) 2C in cancer-induced skeletal muscle wasting. Increased skeletal muscle mRNA expression of Suppressor of Cytokine Signaling (Socs) 3 and the IL-6 receptor indicative of active IL-6 signaling was seen in skeletal muscle of mice bearing the Colon 26 (C26) carcinoma. Loss of skeletal muscle structural integrity and distorted mitochondria were also observed using electron microscopy. Gene and protein expression of MEF2C was significantly downregulated in skeletal muscle from C26-bearing mice. MEF2C gene targets myozenin and myoglobin as well as myokinase were also altered during cachexia, suggesting dysregulated oxygen transport capacity and ATP regeneration in addition to distorted structural integrity. In addition, reduced expression of calcineurin was observed which suggested a potential pathway of MEF2C dysregulation. Together, these effects may limit sarcomeric contractile ability and also predispose skeletal muscle to structural instability; associated with muscle wasting and fatigue in cachexia.
Collapse
MESH Headings
- Animals
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Calcineurin/metabolism
- Cell Line, Tumor
- Down-Regulation
- Interleukin-6/metabolism
- MEF2 Transcription Factors
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Microscopy, Electron, Transmission
- Mitochondria, Muscle/pathology
- Models, Neurological
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myogenic Regulatory Factors/genetics
- Myogenic Regulatory Factors/metabolism
- Neoplasms, Experimental/complications
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sarcomeres/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Angie M. Y. Shum
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| | - Theodore Mahendradatta
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ryland J. Taylor
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| | - Arran B. Painter
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| | - Melissa M. Moore
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| | - Maria Tsoli
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| | - Timothy C. Tan
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephen J. Clarke
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| | - Graham R. Robertson
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| | - Patsie Polly
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Cancer Pharmacology Unit, ANZAC Research Institute, University of Sydney at Concord Repatriation and General Hospital, Sydney, NSW, 2139, Australia
| |
Collapse
|
25
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
26
|
Tropomodulin capping of actin filaments in striated muscle development and physiology. J Biomed Biotechnol 2011; 2011:103069. [PMID: 22013379 PMCID: PMC3196151 DOI: 10.1155/2011/103069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.
Collapse
|
27
|
Gokhin DS, Fowler VM. Cytoplasmic gamma-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. ACTA ACUST UNITED AC 2011; 194:105-20. [PMID: 21727195 PMCID: PMC3135406 DOI: 10.1083/jcb.201011128] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tropomodulins, cytoplasmic γ-actin, and small ankyrin 1.5 mechanically stabilize the sarcoplasmic reticulum and maintain myofibril alignment in skeletal muscle fibers. The sarcoplasmic reticulum (SR) serves as the Ca2+ reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γcyto-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γcyto-actin and Tmod3 defined an SR microdomain that was distinct from another Z line–flanking SR microdomain containing Tmod1 and Tmod4. The γcyto-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γcyto-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3–γcyto-actin–sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca2+ release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γcyto-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. BIOARCHITECTURE 2011; 1:135-164. [PMID: 22069507 DOI: 10.4161/bioa.1.4.17897] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/18/2011] [Accepted: 08/26/2011] [Indexed: 12/29/2022]
Abstract
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, NSW Australia
| | | | | | | | | |
Collapse
|
29
|
Perrin BJ, Ervasti JM. The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 2010; 67:630-4. [PMID: 20737541 PMCID: PMC2949686 DOI: 10.1002/cm.20475] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/23/2010] [Accepted: 07/30/2010] [Indexed: 01/07/2023]
Abstract
Although actin is often thought of as a single protein, in mammals it actually consists of six different isoforms encoded by separate genes. Each isoform is remarkably similar to every other isoform, with only slight variations in amino acid sequence. Nevertheless, recent work indicates that actin isoforms carry out unique cellular functions. Here, we review evidence drawn from localization studies, mouse models, and biochemical characterization to suggest a model for how in vivo mixing of actin isoforms may influence cytoskeletal function in cells.
Collapse
Affiliation(s)
- Benjamin J Perrin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
30
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
31
|
Kee AJ, Gunning PW, Hardeman EC. Diverse roles of the actin cytoskeleton in striated muscle. J Muscle Res Cell Motil 2009; 30:187-97. [PMID: 19997772 DOI: 10.1007/s10974-009-9193-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/24/2009] [Indexed: 12/14/2022]
Abstract
In addition to the highly specialized contractile apparatus, it is becoming increasingly clear that there is an extensive actin cytoskeleton which underpins a wide range of functions in striated muscle. Isoforms of cytoskeletal actin and actin-associated proteins (non-muscle myosins, cytoskeletal tropomyosins, and cytoskeletal alpha-actinins) have been detected in a number of regions of striated muscle: the sub-sarcolemmal costamere, the Z-disc and the T-tubule/sarcoplasmic reticulum membranes. As the only known function of these proteins is through association with actin filaments, their presence in striated muscles indicates that there are spatially and functionally distinct cytoskeletal actin filament systems in these tissues. These filaments are likely to have important roles in mechanical support, ion channel function, myofibrillogenenous and vesicle trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
32
|
Kee AJ, Gunning PW, Hardeman EC. A cytoskeletal tropomyosin can compromise the structural integrity of skeletal muscle. ACTA ACUST UNITED AC 2009; 66:710-20. [PMID: 19530183 DOI: 10.1002/cm.20400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have identified a number of extra-sarcomeric actin filaments defined by cytoskeletal tropomyosin (Tm) isoforms. Expression of a cytoskeletal Tm (Tm3) not normally present in skeletal muscle in a transgenic mouse resulted in muscular dystrophy. In the present report we show that muscle pathology in this mouse is late onset (between 2 and 6 months of age) and is predominately in the back and paraspinal muscles. In the Tm3 mice, Evans blue dye uptake in muscle and serum levels of creatine kinase were markedly increased following downhill exercise, and the force drop following a series of lengthening contractions in isolated muscles (extensor digitorum longus) was also significantly increased in these mice. These results demonstrate that expression of an inappropriate Tm in skeletal muscle results in increased susceptibility to contraction-induced damage. The extra-sarcomeric actin cytoskeleton therefore may have an important role in protecting the muscle from contractile stress.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
33
|
Vlahovich N, Kee AJ, Van der Poel C, Kettle E, Hernandez-Deviez D, Lucas C, Lynch GS, Parton RG, Gunning PW, Hardeman EC. Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation-contraction coupling in skeletal muscle. Mol Biol Cell 2009; 20:400-9. [PMID: 19005216 PMCID: PMC2613127 DOI: 10.1091/mbc.e08-06-0616] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/17/2008] [Accepted: 10/31/2008] [Indexed: 01/11/2023] Open
Abstract
The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation-contraction coupling in skeletal muscle.
Collapse
Affiliation(s)
- Nicole Vlahovich
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- University of Western Sydney, Parramatta, NSW, Australia
| | - Anthony J. Kee
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Chris Van der Poel
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Emma Kettle
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Delia Hernandez-Deviez
- Institute for Molecular Biosciences, University of Queensland and Centre for Microscopy and Microanalysis, Brisbane, QLD, Australia
| | - Christine Lucas
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Gordon S. Lynch
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Robert G. Parton
- Institute for Molecular Biosciences, University of Queensland and Centre for Microscopy and Microanalysis, Brisbane, QLD, Australia
| | - Peter W. Gunning
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
- **Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; and
| | - Edna C. Hardeman
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Papponen H, Kaisto T, Leinonen S, Kaakinen M, Metsikkö K. Evidence for γ-actin as a Z disc component in skeletal myofibers. Exp Cell Res 2009; 315:218-25. [DOI: 10.1016/j.yexcr.2008.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/22/2008] [Accepted: 10/11/2008] [Indexed: 11/16/2022]
|
35
|
Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur J Cell Biol 2008; 87:709-20. [DOI: 10.1016/j.ejcb.2008.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 12/18/2022] Open
|
36
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
37
|
|
38
|
Tropomodulin/Tropomyosin Interactions Regulate Actin Pointed End Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:283-92. [DOI: 10.1007/978-0-387-85766-4_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Martin C, Gunning P. Isoform sorting of tropomyosins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:187-200. [PMID: 19209823 DOI: 10.1007/978-0-387-85766-4_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytoskeletal tropomyosin (Tm) isoforms show extensive intracellular sorting, resulting in spatially distinct actin-filament populations. Sorting of Tm isoforms has been observed in a number of cell types, including fibroblasts, epithelial cells, osteoclasts, neurons and muscle cells. Different Tm isoforms have differential impact on the activity of a number of actin-binding proteins and can therefore differentially regulate actin filament function. Functionally distinct sub-populations of actin filaments can therefore be defined on the basis of the Tm isoforms associated with the filaments. The mechanisms that underlie Tm sorting are not yet well understood, but it is clear that Tm sorting is a very fluid and dynamic process, with changes in sorting occurring throughout development and cell differentiation. For this reason, it is unlikely that Tm localization is determined by an intrinsic sorting signal that directs particular isoforms to a single geographical location. Rather, a molecular sink model where isoforms accumulate in actin-based structures where they have the highest affinity, is most consistent with current data. This model would predict Tm sorting to be influenced by changes to actin filament dynamics and organization and collaboration with other actin-binding proteins.
Collapse
Affiliation(s)
- Claire Martin
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | |
Collapse
|
40
|
Tropomyosin Gene Expression in Vivo and in Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-85766-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Gunning P. Emerging Issues for Tropomyosin Structure, Regulation, Function and Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:293-8. [DOI: 10.1007/978-0-387-85766-4_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Human tropomyosin isoforms in the regulation of cytoskeleton functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:201-22. [PMID: 19209824 DOI: 10.1007/978-0-387-85766-4_16] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Over the past two decades, extensive molecular studies have identified multiple tropomyosin isoforms existing in all mammalian cells and tissues. In humans, tropomyosins are encoded by TPM1 (alpha-Tm, 15q22.1), TPM2 (beta-Tm, 9p13.2-p13.1), TPM3 (gamma-Tm, 1q21.2) and TPM4 (delta-Tm, 19p13.1) genes. Through the use of different promoters, alternatively spliced exons and different sites of poly(A) addition signals, at least 22 different tropomyosin cDNAs with full-length open reading frame have been cloned. Compelling evidence suggests that these isoforms play important determinants for actin cytoskeleton functions, such as intracellular vesicle movement, cell migration, cytokinesis, cell proliferation and apoptosis. In vitro biochemical studies and in vivo localization studies suggest that different tropomyosin isoforms have differences in their actin-binding properties and their effects on other actin-binding protein functions and thus, in their specification ofactin microfilaments. In this chapter, we will review what has been learned from experimental studies on human tropomyosin isoforms about the mechanisms for differential localization and functions of tropomyosin. First, we summarize current information concerning human tropomyosin isoforms and relate this to the functions of structural homologues in rodents. We will discuss general strategies for differential localization oftropomyosin isoforms, particularly focusing on differential protein turnover and differential isoform effects on other actin binding protein functions. We will then review tropomyosin functions in regulating cell motility and in modulating the anti-angiogenic activity of cleaved high molecular weight kininogen (HKa) and discuss future directions in this area.
Collapse
|
43
|
Tropomyosins in skeletal muscle diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:143-57. [PMID: 19209820 DOI: 10.1007/978-0-387-85766-4_12] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A number of congenital muscle diseases and disorders are caused by mutations in genes that encode the proteins present in or associated with the thin filaments of the muscle sarcomere. These genes include alpha-skeletal actin (ACTA1), beta-tropomyosin (TPM2), alpha-tropomyosin slow (TPM3), nebulin (NEB), troponin I fast (TNNI2), troponin T slow (TNNT1), troponin T fast (TNNT3) and cofilin (CFL2). Mutations in two of the four tropomyosin (Tm) genes, TPM2 and TPM3, result in at least three different skeletal muscle diseases and one disorder as distinguished by the presence of specific clinical features and/or structural abnormalities--nemaline myopathy (TPM2 and TPM3), distal arthrogryposis (TPM2), cap disease (TPM2) and congenital fiber type disproportion (TPM3). These diseases have overlapping clinical features and pathologies and there are cases of family members who have the same mutation, but different diseases (Table 1). The relatively recent discovery of nonmuscle or cytoskeletal Tms in skeletal muscle adds to this complexity since it is now possible that a disease-causing mutation could be in a striated isoform and a cytoskeletal isoform both present in muscle.
Collapse
|
44
|
Wang J, Sanger JM, Kang S, Thurston H, Abbott LZ, Dube DK, Sanger JW. Ectopic expression and dynamics of TPM1alpha and TPM1kappa in myofibrils of avian myotubes. ACTA ACUST UNITED AC 2007; 64:767-76. [PMID: 17705267 DOI: 10.1002/cm.20221] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Schevzov G, Fath T, Vrhovski B, Vlahovich N, Rajan S, Hook J, Joya JE, Lemckert F, Puttur F, Lin JJC, Hardeman EC, Wieczorek DF, O'Neill GM, Gunning PW. Divergent regulation of the sarcomere and the cytoskeleton. J Biol Chem 2007; 283:275-283. [PMID: 17951248 DOI: 10.1074/jbc.m704392200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, Sydney, New South Wales 2006, Australia
| | - Thomas Fath
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, Sydney, New South Wales 2006, Australia
| | - Bernadette Vrhovski
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Nicole Vlahovich
- Muscle Development Unit, The Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia, the
| | - Sudarsan Rajan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524
| | - Jeff Hook
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Josephine E Joya
- Muscle Development Unit, The Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia, the
| | - Frances Lemckert
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Franz Puttur
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Jim J-C Lin
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1324
| | - Edna C Hardeman
- Muscle Development Unit, The Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia, the; Faculty of Medicine, University of Sydney, Sydney, New South Wales 2006, Australia, the
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524
| | - Geraldine M O'Neill
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, Sydney, New South Wales 2006, Australia
| | - Peter W Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
46
|
Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG, Pelin K, Wallgren-Pettersson C. Cap disease caused by heterozygous deletion of the β-tropomyosin gene TPM2. Neuromuscul Disord 2007; 17:433-42. [PMID: 17434307 DOI: 10.1016/j.nmd.2007.02.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/14/2007] [Accepted: 02/22/2007] [Indexed: 01/14/2023]
Abstract
"Cap myopathy" or "cap disease" is a congenital myopathy characterised by cap-like structures at the periphery of muscle fibres, consisting of disarranged thin filaments with enlarged Z discs. Here we report a deletion in the beta-tropomyosin (TPM2) gene causing cap disease in a 36-year-old male patient with congenital muscle weakness, myopathic facies and respiratory insufficiency. The mutation identified in this patient is an in-frame deletion (c.415_417delGAG) of one codon in exon 4 of TPM2 removing a single glutamate residue (p.Glu139del) from the beta-tropomyosin protein. This is expected to disrupt the seven-amino acid repeat essential for making a coiled coil, and thus to impair tropomyosin-actin interaction. Missense mutations in TPM2 have previously been found to cause rare cases of nemaline myopathy and distal arthrogryposis. This mutation is one not previously described and the first genetic cause identified for cap disease.
Collapse
Affiliation(s)
- Vilma-Lotta Lehtokari
- The Folkhälsan Institute of Genetics and the Department of Medical Genetics, University of Helsinki, Helsinki, Finland, and Division of Neurology, University Hospital of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Vlahovich N, Schevzov G, Nair-Shaliker V, Ilkovski B, Artap ST, Joya JE, Kee AJ, North KN, Gunning PW, Hardeman EC. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle. ACTA ACUST UNITED AC 2007; 65:73-85. [PMID: 17968984 DOI: 10.1002/cm.20245] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nicole Vlahovich
- Muscle Development Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2006; 15:333-41. [PMID: 15953552 DOI: 10.1016/j.tcb.2005.04.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/12/2005] [Accepted: 04/26/2005] [Indexed: 01/14/2023]
Abstract
Actin filament functional diversity is paralleled by variation in the composition of isoforms of tropomyosin in these filaments. Although the role of tropomyosin is well understood in skeletal muscle, where it regulates the actin-myosin interaction, its role in the cytoskeleton has been obscure. The intracellular sorting of tropomyosin isoforms indicated a role in spatial specialization of actin filament function. Genetic manipulation and protein chemistry studies have confirmed that these isoforms are functionally distinct. Tropomyosins differ in their recruitment of myosin motors and their interaction with actin filament regulators such as ADF-cofilin. Tropomyosin isoforms have therefore provided a powerful mechanism to diversify actin filament function in different intracellular compartments.
Collapse
Affiliation(s)
- Peter W Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead NSW 2145, Australia.
| | | | | | | |
Collapse
|
49
|
Issa LL, Palmer SJ, Guven KL, Santucci N, Hodgson VRM, Popovic K, Joya JE, Hardeman EC. MusTRD can regulate postnatal fiber-specific expression. Dev Biol 2006; 293:104-15. [PMID: 16494860 DOI: 10.1016/j.ydbio.2006.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 12/21/2005] [Accepted: 01/20/2006] [Indexed: 02/09/2023]
Abstract
Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.
Collapse
Affiliation(s)
- Laura L Issa
- Muscle Development Unit, Children's Medical Research Institute, Wentworthville, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hanft LM, Rybakova IN, Patel JR, Rafael-Fortney JA, Ervasti JM. Cytoplasmic gamma-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci U S A 2006; 103:5385-90. [PMID: 16565216 PMCID: PMC1459364 DOI: 10.1073/pnas.0600980103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dystrophin mechanically links the costameric cytoskeleton and sarcolemma, yet dystrophin-deficient muscle exhibits abnormalities in cell signaling, gene expression, and contractile function that are not clearly understood. We generated new antibodies specific for cytoplasmic gamma-actin and confirmed that gamma-actin most predominantly localized to the sarcolemma and in a faint reticular lattice within normal muscle cells. However, we observed that gamma-actin levels were increased 10-fold at the sarcolemma and within the cytoplasm of striated muscle cells from dystrophin-deficient mdx mice. Transgenic overexpression of the dystrophin homologue utrophin, or functional dystrophin constructs in mdx muscle, restored gamma-actin to normal levels, whereas gamma-actin remained elevated in mdx muscle expressing nonfunctional dystrophin constructs. We conclude that increased cytoplasmic gamma-actin in dystrophin-deficient muscle may be a compensatory response to fortify the weakened costameric lattice through recruitment of parallel mechanical linkages. However, the presence of excessive myoplasmic gamma-actin may also contribute to altered cell signaling or gene expression in dystrophin-deficient muscle.
Collapse
Affiliation(s)
- Laurin M. Hanft
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
| | - Inna N. Rybakova
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
| | | | - Jill A. Rafael-Fortney
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210
| | - James M. Ervasti
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
- To whom correspondence should be addressed at:
Department of Physiology, University of Wisconsin, 127 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706. E-mail:
| |
Collapse
|