1
|
Potts C, Yang C, Liaw L. NOTCH Signaling Networks in Perivascular Adipose Tissue. Arterioscler Thromb Vasc Biol 2025. [PMID: 40270257 DOI: 10.1161/atvbaha.124.321690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Over a hundred years ago, mutants were detected in Drosophila melanogaster that led to a NOTCH in the wing tip. This original phenotype was reflected in the nomenclature of the gene family that was later cloned and characterized in the 1980s and found to be conserved across metazoans. NOTCH signaling relies on transmembrane ligands and receptors that require cellular contact for receptor activation, reflecting its role in multicellular organisms as an intercellular signaling strategy. In humans, mutations in genes encoding NOTCH and their ligands have been shown to promote human disease; these aspects have been extensively reviewed. Notch signaling plays important roles in vascular development (vasculogenesis and angiogenesis) and homeostasis. NOTCH signaling is also active in adipose tissue and contributes to adipocyte differentiation. In addition, NOTCH activity regulates functions of other metabolic organs. This review focuses on NOTCH activity in perivascular adipose tissue within the vascular microenvironment as defined by mouse studies and summarizes expression and potential signaling of the NOTCH signaling network in human perivascular adipose tissue. Due to the strong activity of NOTCH in regulation of metabolic function, activation of the NOTCH network in specific cell types in perivascular adipose tissue has implications for signaling to the underlying blood vessel and control of vascular health and disease.
Collapse
Affiliation(s)
- Christian Potts
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough
| | - Chenhao Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough
| |
Collapse
|
2
|
Guerin DJ, Gutierrez B, Zhang B, Tseng KAS. Notch Is Required for Neural Progenitor Proliferation During Embryonic Eye Regrowth. Int J Mol Sci 2025; 26:2637. [PMID: 40141279 PMCID: PMC11942531 DOI: 10.3390/ijms26062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
The ability of an organism to regrow tissues is regulated by various signaling pathways. One such pathway that has been studied widely both in the context of regeneration and development is the Notch signaling pathway. Notch is required for the development of the eye and regeneration of tissues in multiple organisms, but it is unknown if Notch plays a role in the regulation of Xenopus laevis embryonic eye regrowth. We found that Notch1 is required for eye regrowth and regulates retinal progenitor cell proliferation. Chemical and molecular inhibition of Notch1 significantly decreased eye regrowth by reducing retinal progenitor cell proliferation without affecting retinal differentiation. Temporal inhibition studies showed that Notch function is required during the first day of regrowth. Interestingly, Notch1 loss-of-function phenocopied the effects of the inhibition of the proton pump, vacuolar-type ATPase (V-ATPase), where retinal proliferation but not differentiation was blocked during eye regrowth. Overexpression of a form of activated Notch1, the Notch intracellular domain (NICD) rescued the loss of eye regrowth due to V-ATPase inhibition. These findings highlight the importance of the Notch signaling pathway in eye regeneration and its role in inducing retinal progenitor cell proliferation in response to injury.
Collapse
|
3
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
4
|
Sen P, Ghosh SS. The Intricate Notch Signaling Dynamics in Therapeutic Realms of Cancer. ACS Pharmacol Transl Sci 2023; 6:651-670. [PMID: 37200816 PMCID: PMC10186364 DOI: 10.1021/acsptsci.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 05/20/2023]
Abstract
The Notch pathway is remarkably simple without the interventions of secondary messengers. It possesses a unique receptor-ligand interaction that imparts signaling upon cleavage of the receptor followed by the nuclear localization of its cleaved intracellular domain. It is found that the transcriptional regulator of the Notch pathway lies at the intersection of multiple signaling pathways that enhance the aggressiveness of cancer. The preclinical and clinical evidence supports the pro-oncogenic function of Notch signaling in various tumor subtypes. Owing to its oncogenic role, the Notch signaling pathway assists in enhanced tumorigenesis by facilitating angiogenesis, drug resistance, epithelial to mesenchymal transition, etc., which is also attributed to the poor outcome in patients. Therefore, it is extremely vital to discover a suitable inhibitor to downregulate the signal-transducing ability of Notch. The Notch inhibitory agents, such as receptor decoys, protease (ADAM and γ-secretase) inhibitors, and monoclonal/bispecific antibodies, are being investigated as candidate therapeutic agents. Studies conducted by our group exemplify the promising results in ablating tumorigenic aggressiveness by inhibiting the constituents of the Notch pathway. This review deals with the detailed mechanism of the Notch pathways and their implications in various malignancies. It also bestows us with the recent therapeutic advances concerning Notch signaling in the context of monotherapy and combination therapy.
Collapse
Affiliation(s)
- Plaboni Sen
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
5
|
Basavarajappa HD, Irimia JM, Bauer BM, Fueger PT. The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. Int J Mol Sci 2023; 24:ijms24043308. [PMID: 36834720 PMCID: PMC9959170 DOI: 10.3390/ijms24043308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Avoiding the loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective here was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacted dynamically with NumbL, whereas Mig6 associated with NumbL under NG, and this interaction was disrupted under GLT conditions. Further, we demonstrated that the siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking the activation of NF-κB signaling. Using co-immunoprecipitation experiments, we observed that NumbL's interactions with TRAF6, a key component of NFκB signaling, were increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 were dynamic and context-dependent. We proposed a model wherein these interactions activated pro-apoptotic NF-κB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicated that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.
Collapse
Affiliation(s)
- Halesha D. Basavarajappa
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M. Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Brandon M. Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-218-0620
| |
Collapse
|
6
|
Okubo Y, Ohtake F, Igarashi K, Yasuhiko Y, Hirabayashi Y, Saga Y, Kanno J. Cleaved Delta like 1 intracellular domain regulates neural development via Notch signal-dependent and -independent pathways. Development 2021; 148:272156. [PMID: 34519339 PMCID: PMC8513606 DOI: 10.1242/dev.193664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.
Collapse
Affiliation(s)
- Yusuke Okubo
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Fumiaki Ohtake
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.,Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuhide Igarashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.,Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yukuto Yasuhiko
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yoko Hirabayashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan.,Department of Biological Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
7
|
Huang SC, Vu LV, Yu FH, Nguyen DT, Benz EJ. Multifunctional protein 4.1R regulates the asymmetric segregation of Numb during terminal erythroid maturation. J Biol Chem 2021; 297:101051. [PMID: 34364872 PMCID: PMC8408529 DOI: 10.1016/j.jbc.2021.101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 10/25/2022] Open
Abstract
The asymmetric cell division of stem or progenitor cells generates daughter cells with distinct fates that balance proliferation and differentiation. Asymmetric segregation of Notch signaling regulatory protein Numb plays a crucial role in cell diversification. However, the molecular mechanism remains unclear. Here, we examined the unequal distribution of Numb in the daughter cells of murine erythroleukemia cells (MELCs) that undergo DMSO-induced erythroid differentiation. In contrast to the cytoplasmic localization of Numb during uninduced cell division, Numb is concentrated at the cell boundary in interphase, near the one-spindle pole in metaphase, and is unequally distributed to one daughter cell in anaphase in induced cells. The inheritance of Numb guides this daughter cell toward erythroid differentiation while the other cell remains a progenitor cell. Mitotic spindle orientation, critical for distribution of cell fate determinants, requires complex communication between the spindle microtubules and the cell cortex mediated by the NuMA-LGN-dynein/dynactin complex. Depletion of each individual member of the complex randomizes the position of Numb relative to the mitotic spindle. Gene replacement confirms that multifunctional erythrocyte protein 4.1R (4.1R) functions as a member of the NuMA-LGN-dynein/dynactin complex and is necessary for regulating spindle orientation, in which interaction between 4.1R and NuMA plays an important role. These results suggest that mispositioning of Numb is the result of spindle misorientation. Finally, disruption of the 4.1R-NuMA-LGN complex increases Notch signaling and decreases the erythroblast population. Together, our results identify a critical role for 4.1R in regulating the asymmetric segregation of Numb to mediate erythropoiesis.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dan T Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts, USA; Leukemia Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Wu G, Cheng Zhang C. Membrane protein CAR promotes hematopoietic regeneration upon stress. Haematologica 2021; 106:2180-2190. [PMID: 32586901 PMCID: PMC8327706 DOI: 10.3324/haematol.2019.243998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Adult hematopoietic stem cells (HSC) are quiescent most of the time, and how HSC switch from quiescence to proliferation following hematopoietic stress is unclear. Here we demonstrate that upon stress the coxsackievirus and adenovirus receptor CAR (also known as CXADR) is upregulated in HSC and critical for HSC entry into the cell cycle. Wild-type HSC were detected with more rapid repopulation ability than the CAR knockout counterparts. After fluorouracil treatment, CAR knockout HSC had lower levels of Notch1 expression and elevated protein level of Numb, a Notch antagonist. The Notch signaling inhibitor DAPT, dominant negative form of MAML (a transcriptional coactivator of Notch), or dominant negative mutant of LNX2 (an E3 ligase that acts on Numb and binds to CAR), all were capable of abrogating the function of CAR in HSC. We conclude that CAR activates Notch1 signaling by downregulating Numb protein expression to facilitate entry of quiescent HSC into the cell cycle during regeneration.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Arnardottir S, Del Gaudio F, Klironomos S, Braune EB, Lombraña AA, Oliveira DV, Jin S, Karlström H, Lendahl U, Sjöstrand C. Novel Cysteine-Sparing Hypomorphic NOTCH3 A1604T Mutation Observed in a Family With Migraine and White Matter Lesions. NEUROLOGY-GENETICS 2021; 7:e584. [PMID: 33898742 PMCID: PMC8063633 DOI: 10.1212/nxg.0000000000000584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Objective To conduct a clinical study of a family with neurologic symptoms and findings carrying a novel NOTCH3 mutation and to analyze the molecular consequences of the mutation. Methods We analyzed a family with complex neurologic symptoms by MRI and neurologic examinations. Exome sequencing of the NOTCH3 locus was conducted, and whole-genome sequencing was performed to identify COL4A1, COL4A2, and HTRA1 mutations. Cell lines expressing the normal or NOTCH3A1604T receptors were analyzed to assess proteolytic processing, cell morphology, receptor routing, and receptor signaling. Results Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary form of cerebral small vessel disease (SVD) and caused by mutations in the NOTCH3 gene. Most CADASIL mutations alter the number of cysteine residues in the extracellular domain of the NOTCH3 receptor, but in this article, we describe a family in which some members carry a novel cysteine-sparing NOTCH3 mutation (c.4810 G>A, p.Ala1604Thr). Two of 3 siblings heterozygous for the NOTCH3A1604T mutation presented with migraine and white matter lesions (WMLs), the latter of a type related to but distinct from what is normally observed in CADASIL. Two other members instead carried a novel COL4A1 missense mutation (c.4795 G>A; p.(Ala1599Thr)). The NOTCH3A1604T receptor was aberrantly processed, showed reduced presence at the cell surface, and less efficiently activated Notch downstream target genes. Conclusions We identify a family with migraine and WML in which some members carry a cysteine-sparing hypomorphic NOTCH3 mutation. Although a causal relationship is not established, we believe that the observations contribute to the discussion on dysregulated Notch signaling in cerebral SVDs.
Collapse
Affiliation(s)
- Snjolaug Arnardottir
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Francesca Del Gaudio
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Stefanos Klironomos
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Eike-Benjamin Braune
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Ariane Araujo Lombraña
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Daniel V Oliveira
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Shaobo Jin
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Helena Karlström
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Urban Lendahl
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| | - Christina Sjöstrand
- Division of Neurology (S.A., S.K., C.S.), Department of Clinical Neuroscience, Karolinska Institutet; Department of Cell and Molecular Biology (F.D.G., E.-B.B., A.A.L., S.J., U.L.), Karolinska Institutet; and Department of Neurobiology, Care Sciences and Society (D.O., H.K., U.L.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Landor SKJ, Santio NM, Eccleshall WB, Paramonov VM, Gagliani EK, Hall D, Jin SB, Dahlström KM, Salminen TA, Rivero-Müller A, Lendahl U, Kovall RA, Koskinen PJ, Sahlgren C. PIM-induced phosphorylation of Notch3 promotes breast cancer tumorigenicity in a CSL-independent fashion. J Biol Chem 2021; 296:100593. [PMID: 33775697 PMCID: PMC8100066 DOI: 10.1016/j.jbc.2021.100593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Dysregulation of the developmentally important Notch signaling pathway is implicated in several types of cancer, including breast cancer. However, the specific roles and regulation of the four different Notch receptors have remained elusive. We have previously reported that the oncogenic PIM kinases phosphorylate Notch1 and Notch3. Phosphorylation of Notch1 within the second nuclear localization sequence of its intracellular domain (ICD) enhances its transcriptional activity and tumorigenicity. In this study, we analyzed Notch3 phosphorylation and its functional impact. Unexpectedly, we observed that the PIM target sites are not conserved between Notch1 and Notch3. Notch3 ICD (N3ICD) is phosphorylated within a domain, which is essential for formation of a transcriptionally active complex with the DNA-binding protein CSL. Through molecular modeling, X-ray crystallography, and isothermal titration calorimetry, we demonstrate that phosphorylation of N3ICD sterically hinders its interaction with CSL and thereby inhibits its CSL-dependent transcriptional activity. Surprisingly however, phosphorylated N3ICD still maintains tumorigenic potential in breast cancer cells under estrogenic conditions, which support PIM expression. Taken together, our data indicate that PIM kinases modulate the signaling output of different Notch paralogs by targeting distinct protein domains and thereby promote breast cancer tumorigenesis via both CSL-dependent and CSL-independent mechanisms.
Collapse
Affiliation(s)
- Sebastian K J Landor
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Niina M Santio
- Department of Biology, University of Turku, Turku, Finland
| | - William B Eccleshall
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biology, University of Turku, Turku, Finland
| | - Valeriy M Paramonov
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Ellen K Gagliani
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Ohio, USA
| | - Daniel Hall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Ohio, USA
| | - Shao-Bo Jin
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Käthe M Dahlström
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi, Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi, Turku, Finland
| | - Adolfo Rivero-Müller
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biology, University of Turku, Turku, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Ohio, USA
| | | | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
11
|
Wu D, Wang S, Oliveira DV, Del Gaudio F, Vanlandewijck M, Lebouvier T, Betsholtz C, Zhao J, Jin S, Lendahl U, Karlström H. The infantile myofibromatosis NOTCH3 L1519P mutation leads to hyperactivated ligand-independent Notch signaling and increased PDGFRB expression. Dis Model Mech 2021; 14:dmm.046300. [PMID: 33509954 PMCID: PMC7927659 DOI: 10.1242/dmm.046300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Infantile myofibromatosis (IMF) is a benign tumor form characterized by the development of nonmetastatic tumors in skin, bone, muscle and sometimes viscera. Autosomal dominant forms of IMF are caused by mutations in the PDGFRB gene, but a family carrying a L1519P mutation in the NOTCH3 gene has also recently been identified. In this report, we address the molecular consequences of the NOTCH3L1519P mutation and the relationship between the NOTCH and PDGFRB signaling in IMF. The NOTCH3L1519P receptor generates enhanced downstream signaling in a ligand-independent manner. Despite the enhanced signaling, the NOTCH3L1519P receptor is absent from the cell surface and instead accumulates in the endoplasmic reticulum. Furthermore, the localization of the NOTCH3L1519P receptor in the bipartite, heterodimeric state is altered, combined with avid secretion of the mutated extracellular domain from the cell. Chloroquine treatment strongly reduces the amount of secreted NOTCH3L1519P extracellular domain and decreases signaling. Finally, NOTCH3L1519P upregulates PDGFRB expression in fibroblasts, supporting a functional link between Notch and PDGF dysregulation in IMF. Collectively, our data define a NOTCH3-PDGFRB axis in IMF, where an IMF-mutated NOTCH3 receptor elevates PDGFRB expression. The functional characterization of a ligand-independent gain-of-function NOTCH3 mutation is important for Notch therapy considerations for IMF, including strategies aimed at altering lysosome function.
Collapse
Affiliation(s)
- Dan Wu
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Sweden
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, People's Republic of China
| | - Sailan Wang
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Sweden
- Department of Medicine, Solna, Karolinska Institutet, Sweden
| | - Daniel V Oliveira
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Sweden
| | | | - Michael Vanlandewijck
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden
- Integrated Cardio Metabolic Center (ICMC), Huddinge, Karolinska Institutet, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
- Inserm U1171, University of Lille, CHU, Memory Center, Distalz, F-59000 Lille, France
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden
- Integrated Cardio Metabolic Center (ICMC), Huddinge, Karolinska Institutet, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Sweden
| | - ShaoBo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, Sweden
| | - Urban Lendahl
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Sweden
- Integrated Cardio Metabolic Center (ICMC), Huddinge, Karolinska Institutet, Sweden
| | - Helena Karlström
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Sweden
| |
Collapse
|
12
|
Dong Y, Li J, Liu R, Zhao Z, Wang S, Cui K. Musashi1 expression is negatively correlated with numb expression in brain metastases. Medicine (Baltimore) 2020; 99:e22000. [PMID: 33120728 PMCID: PMC7581019 DOI: 10.1097/md.0000000000022000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022] Open
Abstract
The expression of tumor stem cell markers musashi1 (msi1) and numb in brain metastases were detected to explore their roles in the development of brain metastases.A total of 51 cases of brain metastasis, 29 cases of primary tumor and 15 cases of normal brain tissue were selected. Immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) were used to detect msi1 and numb expression at the protein and mRNA levels. Correlation between msi1 and numb in brain metastases were evaluated.Immunohistochemistry and RT-PCR showed that no significant difference in the expression of msi1 and numb between brain metastases and primary tumors was observed (P > .05); the expression of msi1 and numb in brain metastases was significantly higher than that in normal brain tissues (P < .05); and the expression of msi1 and numb in primary tumors was significantly higher than that in normal brain tissues (P < .05). In general, the expression of msi1 gene was negatively correlated with the expression of numb at mRNA level by Pearson correlation analysis (r = -0.345, P < .05). Additionally, the expression of msi1 and numb in brain metastases was not related to gender, age, and tissue origin (P > .05).Msi1 is highly expressed in brain metastases and primary tumors, while numb is lowly expressed in brain metastases and primary tumors; msi1 and numb are negatively correlated in brain metastases, suggesting that msi1 and numb may have regulatory mechanisms in the development of brain metastases.
Collapse
|
13
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
14
|
Wang Z, Kawaguchi K, Honda M, Hashimoto S, Shirasaki T, Okada H, Orita N, Shimakami T, Yamashita T, Sakai Y, Mizukoshi E, Murakami S, Kaneko S. Notch signaling facilitates hepatitis B virus covalently closed circular DNA transcription via cAMP response element-binding protein with E3 ubiquitin ligase-modulation. Sci Rep 2019; 9:1621. [PMID: 30733490 PMCID: PMC6367350 DOI: 10.1038/s41598-018-38139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Notch1 is regulated by E3 ubiquitin ligases, with proteasomal degradation of the Notch intracellular domain affecting the transcription of target genes. cAMP response element-binding protein (CREB) mediates the transcription of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA). We assessed the relationship between HBV cccDNA and Notch signaling activities. HBV cccDNA levels and relative gene expression were evaluated in HBV-replicating cells treated with Jagged1 shRNA and a γ-secretase inhibitor. The effects of these factors in surgically resected clinical samples were also assessed. Notch inhibition suppressed HBV cccDNA and CREB-related expression but increased ITCH and NUMB levels. Proteasome inhibitor augmented HBV cccDNA, restored Notch and CREB expression, and inhibited ITCH and NUMB function. Increased HBV cccDNA was observed after ITCH and NUMB blockage, even after treatment with the adenylate cyclase activator forskolin; protein kinase A (PKA) inhibitor had the opposite effect. Notch activation and E3 ligase inactivation were observed in HBV-positive cells in clinical liver tissue. Collectively, these findings reveal that Notch signaling activity facilitates HBV cccDNA transcription via CREB to trigger the downstream PKA-phospho-CREB cascade and is regulated by E3 ubiquitin ligase-modulation of the Notch intracellular domain.
Collapse
Affiliation(s)
- Zijing Wang
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shinichi Hashimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Seishi Murakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
15
|
NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts. Bone Res 2018; 6:32. [PMID: 30455992 PMCID: PMC6226489 DOI: 10.1038/s41413-018-0030-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
The adaptor protein NUMB is involved in asymmetric division and cell fate determination and recognized as an antagonist of Notch. Previous studies have proved that Notch activation in osteoblasts contributes to a high bone mass. In this study, however, an osteopenic phenotype was found in 9-week-old mice using osteoblastic specific Col1a1–2.3-Cre to ablate both Numb and its homologue Numbl . The trabecular bone mass decreased dramatically while the cortical bone mass was unaffected. Here, the Notch signal was not activated, while the tensin homologue deleted on human chromosome 10 (PTEN), which dephosphorylates phosphatidylinositide 3-kinases, was elevated, attenuating protein kinase B (Akt). The ubiquitination assay revealed that NUMB may physiologically promote PTEN ubiquitination in the presence of neural precursor cell-expressed developmentally downregulated protein 4–1. In addition, the deficiency of Numb/Numbl also activated the Hedgehog pathway through GLI1. This process was found to improve the ratio of the receptor activator of nuclear factor-kB ligand to osteoprotegerin, which enhanced the differentiation of osteoclasts and bone resorption . In conclusion, this study provides an insight into new functons of NUMB and NUMBL on bone homeostasis. The related proteins NUMB and NUMBL maintain the survival of bone-generating osteoblast cells. NUMB was previously recognized to antagonize Notch signaling pathway ; In this study, it observes that genetically altered mice, unable to express the two proteins, suffered from degraded bone quality. This suggests that the two proteins play a more complex, nuanced role in the process of bone mass maintenance. The team’s studies showed that NUMB and NUMBL suppression inhibits a signaling pathway important to skeletal development and protein synthesis in osteoblasts, though raise that further investigations are essential to elucidate the exact mechanistic action of these proteins. The authors of this study suggest that NUMB constitutes a potential target for therapies targeting bone loss and reduced bone strength in patients with osteoporosis.
Collapse
|
16
|
Notch signaling promotes a HIF2α-driven hypoxic response in multiple tumor cell types. Oncogene 2018; 37:6083-6095. [PMID: 29993038 PMCID: PMC6237764 DOI: 10.1038/s41388-018-0400-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 05/07/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
Hyperactivation of Notch signaling and the cellular hypoxic response are frequently observed in cancers, with increasing reports of connections to tumor initiation and progression. The two signaling mechanisms are known to intersect, but while it is well established that hypoxia regulates Notch signaling, less is known about whether Notch can regulate the cellular hypoxic response. We now report that Notch signaling specifically controls expression of HIF2α, a key mediator of the cellular hypoxic response. Transcriptional upregulation of HIF2α by Notch under normoxic conditions leads to elevated HIF2α protein levels in primary breast cancer cells as well as in human breast cancer, medulloblastoma, and renal cell carcinoma cell lines. The elevated level of HIF2α protein was in certain tumor cell types accompanied by downregulation of HIF1α protein levels, indicating that high Notch signaling may drive a HIF1α-to-HIF2α switch. At the transcriptome level, the presence of HIF2α was required for approximately 21% of all Notch-induced genes: among the 1062 genes that were upregulated by Notch in medulloblastoma cells during normoxia, upregulation was abrogated in 227 genes when HIF2α expression was knocked down by HIF2α siRNA. In conclusion, our data show that Notch signaling affects the hypoxic response via regulation of HIF2α, which may be important for future cancer therapies.
Collapse
|
17
|
Santio NM, Landor SKJ, Vahtera L, Ylä-Pelto J, Paloniemi E, Imanishi SY, Corthals G, Varjosalo M, Manoharan GB, Uri A, Lendahl U, Sahlgren C, Koskinen PJ. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget 2017; 7:43220-43238. [PMID: 27281612 PMCID: PMC5190019 DOI: 10.18632/oncotarget.9215] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/23/2016] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis is a multistep process involving co-operation between several deregulated oncoproteins. In this study, we unravel previously unrecognized interactions and crosstalk between Pim kinases and the Notch signaling pathway, with implications for both breast and prostate cancer. We identify Notch1 and Notch3, but not Notch2, as novel Pim substrates and demonstrate that for Notch1, the serine residue 2152 is phosphorylated by all three Pim family kinases. This target site is located in the second nuclear localization sequence (NLS) of the Notch1 intracellular domain (N1ICD), and is shown to be important for both nuclear localization and transcriptional activity of N1ICD. Phosphorylation-dependent stimulation of Notch1 signaling promotes migration of prostate cancer cells, balances glucose metabolism in breast cancer cells, and supports in vivo growth of both types of cancer cells on chick embryo chorioallantoic membranes. Furthermore, Pim-induced growth of orthotopic prostate xenografts in mice is associated with enhanced nuclear Notch1 activity. Finally, simultaneous inhibition of Pim and Notch abrogates the cellular responses more efficiently than individual treatments, opening up new vistas for combinatorial cancer therapy.
Collapse
Affiliation(s)
- Niina M Santio
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.,Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | - Sebastian K-J Landor
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Vahtera
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Jani Ylä-Pelto
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.,Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | | | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Current address: Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Garry Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Current address: Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Päivi J Koskinen
- Section of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Hussain M, Xu C, Ahmad M, Yang Y, Lu M, Wu X, Tang L, Wu X. Notch Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Mol Pharmacol 2017; 92:676-693. [PMID: 29025966 DOI: 10.1124/mol.117.110254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
Lung development is mediated by assorted signaling proteins and orchestrated by complex mesenchymal-epithelial interactions. Notch signaling is an evolutionarily conserved cell-cell communication mechanism that exhibits a pivotal role in lung development. Notably, both aberrant expression and loss of regulation of Notch signaling are critically linked to the pathogenesis of various lung diseases, in particular, pulmonary fibrosis, lung cancer, pulmonary arterial hypertension, and asthmatic airway remodeling; implying that precise regulation of intensity and duration of Notch signaling is imperative for appropriate lung development. Moreover, evidence suggests that Notch signaling links embryonic lung development and asthmatic airway remodeling. Herein, we summarized all-recent advances associated with the mechanistic role of Notch signaling in lung development, consequences of aberrant expression or deletion of Notch signaling in linking early-impaired lung development and asthmatic airway remodeling, and all recently investigated potential therapeutic strategies to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Chengyun Xu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Mashaal Ahmad
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Youping Yang
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Meiping Lu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Xiling Wu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Lanfang Tang
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Ximei Wu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| |
Collapse
|
19
|
Zhang H, Wang L, Wong EYM, Tsang SL, Xu PX, Lendahl U, Sham MH. An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis. eLife 2017; 6:30126. [PMID: 29140246 PMCID: PMC5705218 DOI: 10.7554/elife.30126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023] Open
Abstract
Craniofacial morphogenesis requires proper development of pharyngeal arches and epibranchial placodes. We show that the epibranchial placodes, in addition to giving rise to cranial sensory neurons, generate a novel lineage-related non-neuronal cell population for mouse pharyngeal arch development. Eya1 is essential for the development of epibranchial placodes and proximal pharyngeal arches. We identify an Eya1-Notch regulatory axis that specifies both the neuronal and non-neuronal commitment of the epibranchial placode, where Notch acts downstream of Eya1 and promotes the non-neuronal cell fate. Notch is regulated by the threonine phosphatase activity of Eya1. Eya1 dephosphorylates p-threonine-2122 of the Notch1 intracellular domain (Notch1 ICD), which increases the stability of Notch1 ICD and maintains Notch signaling activity in the non-neuronal epibranchial placodal cells. Our data unveil a more complex differentiation program in epibranchial placodes and an important role for the Eya1-Notch axis in craniofacial morphogenesis.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Wang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Elaine Yee Man Wong
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, United States
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mai Har Sham
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
20
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Grabiec M, Hříbková H, Vařecha M, Střítecká D, Hampl A, Dvořák P, Sun YM. Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Res 2016; 17:330-341. [PMID: 27608170 DOI: 10.1016/j.scr.2016.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/13/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022] Open
Abstract
This study elucidated the stage-specific roles of FGF2 signaling during neural development using in-vitro human embryonic stem cell-based developmental modeling. We found that the dysregulation of FGF2 signaling prior to the onset of neural induction resulted in the malformation of neural rosettes (a neural tube-like structure), despite cells having undergone neural induction. The aberrant neural rosette formation may be attributed to the misplacement of ZO-1, which is a polarized tight junction protein and shown co-localized with FGF2/FGFR1 in the apical region of neural rosettes, subsequently led to abnormal neurogenesis. Moreover, the FGF2 signaling inhibition at the stage of neural rosettes caused a reduction in cell proliferation, an increase in numbers of cells with cell-cycle exit, and premature neurogenesis. These effects may be mediated by NUMB, to which expression was observed enriched in the apical region of neural rosettes after FGF2 signaling inhibition coinciding with the disappearance of PAX6+/Ki67+ neural stem cells and the emergence of MAP2+ neurons. Moreover, our results suggested that the hESC-based developmental system reserved a similar neural stem cell niche in vivo.
Collapse
Affiliation(s)
- Marta Grabiec
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Vařecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Střítecká
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvořák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yuh-Man Sun
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
22
|
Fujiwara T, Zhou J, Ye S, Zhao H. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis 2016; 7:e2300. [PMID: 27441652 PMCID: PMC4973353 DOI: 10.1038/cddis.2016.213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/29/2023]
Abstract
The Musashi family of RNA-binding proteins, Musashi1 and Musashi2, regulate self-renewal and differentiation of neuronal and hematopoietic stem cells by modulating protein translation. It has been recently reported that Musashi2, not Musashi1, regulates hematopoietic stem cells. Although osteoclasts are derived from hematopoietic cells, the expression and functions of Musashi proteins in osteoclast lineage cells remain unknown. In this study, we have uncovered that Musashi2 is the predominant isoform of Musashi proteins in osteoclast precursors and its expression is upregulated by receptor activator of NF-κB ligand (RANKL) during osteoclast differentiation. Knocking down the expression of Musashi2 in osteoclast lineage cells by shRNAs attenuates nuclear factor of activated T cells 1 (NFATc1) expression and osteoclast formation in vitro. Mechanistically, loss of Musashi2 inhibits Notch signaling during osteoclast differentiation and induces apoptosis in pre-osteoclasts. In contrast, depletion of Musashi2 has no effects on cell cycle progression and p21WAF-1 protein expression in macrophages. Furthermore, depletion of Notch2 and its downstream target Hes1 in osteoclast precursors by shRNAs abrogates osteoclastogenesis by inhibiting NFATc1. Finally, absence of Musashi2 in osteoclast precursors promotes apoptosis and inhibits RANKL-induced nuclear factor-κB (NF-κB) activation, which is essential for osteoclast survival, Thus, Musashi2 is required for cell survival and optimal osteoclastogenesis by affecting Notch signaling and NF-κB activation.
Collapse
Affiliation(s)
- T Fujiwara
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Zhou
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Zhao
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
23
|
Liu C, Liu L, Chen X, Cheng J, Zhang H, Shen J, Shan J, Xu Y, Yang Z, Lai M, Qian C. Sox9 regulates self-renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma. Hepatology 2016; 64:117-29. [PMID: 26910875 DOI: 10.1002/hep.28509] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/14/2016] [Indexed: 01/20/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is a highly aggressive liver tumor containing cancer stem cells (CSCs) that participate in tumor propagation, resistance to conventional therapy, and promotion of tumor recurrence, causing poor patient outcomes. The protein SRY (sex determining region Y)-box 9 (Sox9) is a transcription factor expressed in some solid tumors, including HCC. However, the molecular mechanisms underlying Sox9 function in liver CSCs remain unclear. Here, we show that Sox9 is highly expressed in liver CSCs and that high levels of Sox9 predict a decreased probability of survival in HCC patients. We demonstrate that Sox9 is required for maintaining proliferation, self-renewal, and tumorigenicity in liver CSCs. Overexpression of exogenous Sox9 in liver non-CSCs restored self-renewal capacity. Additionally, a reduction in the asymmetrical cell division of spheroid-cultured liver CSCs was observed when compared with differentiated cancer cells or liver CSCs with inhibited Notch signaling. Furthermore, we demonstrate that Sox9 is responsible for the asymmetrical-to-symmetrical cell division switch in liver CSCs. Sox9 also negatively regulates Numb expression, contributing to a feedback circuit that maintains Notch activity and directs symmetrical cell division. Clinical analyses revealed that the Sox9(High) Numb(Low) profile is associated with poor prognosis in human HCC patients. CONCLUSION We demonstrate that Sox9 plays a critical role in self-renewal and tumor propagation of liver CSCs and identify the molecular mechanisms regulated by Sox9 that link tumor initiation and cell division. (Hepatology 2016;64:117-129).
Collapse
Affiliation(s)
- Chungang Liu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuejiao Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiamin Cheng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Heng Zhang
- Institute of Urology Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
24
|
Xiao L, Lee KKH. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation. Biol Open 2016; 5:100-11. [PMID: 26740569 PMCID: PMC4823978 DOI: 10.1242/bio.012450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7+ satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion. Summary: BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation, probably by protecting CXCR4 from degradation.
Collapse
Affiliation(s)
- Lihai Xiao
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Kenneth Ka Ho Lee
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
25
|
XIE CHENGZHI, LU ZHENHUI, LIU GUOXING, FANG YU, LIU JIEFENG, HUANG ZHAO, WANG FUSHENG, WU XIAOLONG, LEI XIAOHUA, LI XIAOCHENG, ZHANG YUEMING, HU ZECHENG, QIAN KE, HU JIXIONG, HUANG SHENGFU, ZHONG DEWU, XU XUNDI. Numb downregulation suppresses cell growth and is associated with a poor prognosis of human hepatocellular carcinoma. Int J Mol Med 2015; 36:653-60. [PMID: 26165304 PMCID: PMC4533774 DOI: 10.3892/ijmm.2015.2279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Numb, an endocytic adaptor, is a known cell fate determinant that participates in asymmetric cell division. The present study aimed to explore the potential roles of Numb in hepatocarcinogenesis. Numb expression was investigated in hepatocellular carcinomas (HCC) with reverse transcription‑quantitative polymerase chain reaction and immunohistochemical examination; its association with the prognosis of HCC patients was analyzed. In addition, the effects of Numb deletion on proliferation of HCC cells and its relevant molecules were evaluated in Huh7 and HepG2 cells. Numb overexpression was observed in 62% of adjacent non‑tumor tissues and 46% of tumor tissues. Overexpression of Numb in HCC was associated with histological grade, portal vein invasion and the number of tumors (P=0.001, 0.022 and 0.034 respectively). Multivariate analysis revealed that Numb expression was an independent prognostic indicator of HCC patients. Methylation of the Numb promoter contributed to hepatocarcinogenesis. In vitro assays demonstrated that Numb silencing resulted in inhibition of cell proliferation, induction of apoptosis, downregulation of cyclin‑dependent protein kinase 4 (CDK4) and S‑phase kinase‑associated protein 2 (SKP2), and upregulation of Bcl‑2 homologous antagonist/killer (BAK) and cyclin‑dependent kinase inhibitor 1 (p21). The present study suggests that downregulation of Numb inhibits colony formation and cell proliferation, induces apoptosis of HCC cells and independently predicts the poor prognosis of HCC patients. Thus, Numb has a potential role in the development and progression of HCC.
Collapse
Affiliation(s)
- CHENGZHI XIE
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Department of General Surgery, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - ZHENHUI LU
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - GUOXING LIU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - YU FANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - JIEFENG LIU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - ZHAO HUANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - FUSHENG WANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XIAOLONG WU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XIAOHUA LEI
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XIAOCHENG LI
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - YUEMING ZHANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - ZECHENG HU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - KE QIAN
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - JIXIONG HU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - SHENGFU HUANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - DEWU ZHONG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XUNDI XU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
26
|
Chivukula IV, Ramsköld D, Storvall H, Anderberg C, Jin S, Mamaeva V, Sahlgren C, Pietras K, Sandberg R, Lendahl U. Decoding breast cancer tissue-stroma interactions using species-specific sequencing. Breast Cancer Res 2015; 17:109. [PMID: 26265142 PMCID: PMC4534116 DOI: 10.1186/s13058-015-0616-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Decoding transcriptional effects of experimental tissue-tissue or cell-cell interactions is important; for example, to better understand tumor-stroma interactions after transplantation of human cells into mouse (xenografting). Transcriptome analysis of intermixed human and mouse cells has, however, frequently relied on the need to separate the two cell populations prior to transcriptome analysis, which introduces confounding effects on gene expression. METHODS To circumvent this problem, we here describe a bioinformatics-based, genome-wide transcriptome analysis technique, which allows the human and mouse transcriptomes to be decoded from a mixed mouse and human cell population. The technique is based on a bioinformatic separation of the mouse and human transcriptomes from the initial mixed-species transcriptome resulting from sequencing an excised tumor/stroma specimen without prior cell sorting. RESULTS Under stringent separation criteria, i.e., with a read misassignment frequency of 0.2 %, we show that 99 % of the genes can successfully be assigned to be of mouse or human origin, both in silico, in cultured cells and in vivo. We use a new species-specific sequencing technology-referred to as S(3) ("S-cube")-to provide new insights into the Notch downstream response following Notch ligand-stimulation and to explore transcriptional changes following transplantation of two different breast cancer cell lines (luminal MCF7 and basal-type MDA-MB-231) into mammary fat pad tissue in mice of different immunological status. We find that MCF7 and MDA-MB-231 respond differently to fat pad xenografting and the stromal response to transplantation of MCF7 and MDA-MB-231 cells was also distinct. CONCLUSIONS In conclusion, the data show that the S(3) technology allows for faithful recording of transcriptomic changes when human and mouse cells are intermixed and that it can be applied to address a broad spectrum of research questions.
Collapse
Affiliation(s)
- Indira V Chivukula
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, SE-17177, Stockholm, Sweden.
| | - Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, SE-17177, Stockholm, Sweden.
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.
- Present address: Rheumatology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Helena Storvall
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, SE-17177, Stockholm, Sweden.
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Charlotte Anderberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Present address: Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Shaobo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, SE-17177, Stockholm, Sweden.
| | - Veronika Mamaeva
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Kristian Pietras
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Present address: Department of Laboratory Medicine, Medicon Village, Lund University, Lund, Sweden.
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, SE-17177, Stockholm, Sweden.
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, SE-17177, Stockholm, Sweden.
| |
Collapse
|
27
|
Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol 2015; 5:45. [PMID: 25767773 PMCID: PMC4341543 DOI: 10.3389/fonc.2015.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling EMT or certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to micro-environmental cues, ultimately impacting on physiological and pathological processes, first and foremost cancer progression.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| | - Martina Zobel
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy ; Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia , Milan , Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
28
|
Localisation of the Notch family in the human endometrium of fertile and infertile women. J Mol Histol 2014; 45:697-706. [DOI: 10.1007/s10735-014-9587-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
29
|
Pastò A, Serafin V, Pilotto G, Lago C, Bellio C, Trusolino L, Bertotti A, Hoey T, Plateroti M, Esposito G, Pinazza M, Agostini M, Nitti D, Amadori A, Indraccolo S. NOTCH3 signaling regulates MUSASHI-1 expression in metastatic colorectal cancer cells. Cancer Res 2014; 74:2106-18. [PMID: 24525742 DOI: 10.1158/0008-5472.can-13-2022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MUSASHI-1 (MSI-1) is a well-established stem cell marker in both normal and malignant colon cells and it acts by positively regulating the NOTCH pathway through inactivation of NUMB, a NOTCH signaling repressor. To date, the mechanisms of regulation of MSI-1 levels remain largely unknown. Here, we investigated the regulation of MSI-1 by NOTCH signaling in colorectal cancer cell lines and in primary cultures of colorectal cancer metastases. Stimulation by the NOTCH ligand DLL4 was associated with an increase of MSI-1 mRNA and protein levels, and this phenomenon was prevented by the addition of an antibody neutralizing NOTCH2/3 but not NOTCH1. Moreover, forced expression of activated NOTCH3 increased MSI-1 levels, whereas silencing of NOTCH3 by short hairpin RNA reduced MSI-1 levels in both colorectal cancer cells and CRC tumor xenografts. Consistent with these findings, enforced NOTCH3 expression or stimulation by DLL4 increased levels of activated NOTCH1 in colorectal cell lines. Finally, treatment of colorectal cancer cells with anti-NOTCH2/3 antibody increased NUMB protein while significantly reducing formation of tumor cell spheroids. This novel feed-forward circuit involving DLL4, NOTCH3, MSI-1, NUMB, and NOTCH1 may be relevant for regulation of NOTCH signaling in physiologic processes as well as in tumor development. With regard to therapeutic implications, NOTCH3-specific drugs could represent a valuable strategy to limit NOTCH signaling in the context of colorectal cancers overexpressing this receptor.
Collapse
Affiliation(s)
- Anna Pastò
- Authors' Affiliations: Department of Surgery, Oncology and Gastroenterology, University of Padova; Istituto Oncologico Veneto IRCCS, Padova; IRCC, Institute for Cancer Research and Treatment, Candiolo; Department of Oncology, University of Torino School of Medicine, Torino, Italy; OncoMed Pharmaceuticals Inc., Redwood City, California; and Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sjöqvist M, Antfolk D, Ferraris S, Rraklli V, Haga C, Antila C, Mutvei A, Imanishi SY, Holmberg J, Jin S, Eriksson JE, Lendahl U, Sahlgren C. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner. Cell Res 2014; 24:433-50. [PMID: 24662486 DOI: 10.1038/cr.2014.34] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/23/2022] Open
Abstract
Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.
Collapse
Affiliation(s)
- Marika Sjöqvist
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Daniel Antfolk
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Saima Ferraris
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Vilma Rraklli
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| | - Cecilia Haga
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Christian Antila
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Anders Mutvei
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Johan Holmberg
- 1] Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden [2] Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shaobo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - John E Eriksson
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Cecilia Sahlgren
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland [3] Department of Biomedical Engineering, Technical University of Eindhoven, 2612 Eindhoven, The Netherlands
| |
Collapse
|
31
|
James AC, Szot JO, Iyer K, Major JA, Pursglove SE, Chapman G, Dunwoodie SL. Notch4 reveals a novel mechanism regulating Notch signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1272-84. [PMID: 24667410 DOI: 10.1016/j.bbamcr.2014.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Notch4 is a divergent member of the Notch family of receptors that is primarily expressed in the vasculature. Its expression implies an important role for Notch4 in the vasculature; however, mice homozygous for the Notch4(d1) knockout allele are viable. Since little is known about the role of Notch4 in the vasculature and how it functions, we further investigated Notch4 in mice and in cultured cells. We found that the Notch4(d1) allele is not null as it expresses a truncated transcript encoding most of the NOTCH4 extracellular domain. In cultured cells, NOTCH4 did not signal in response to ligand. Moreover, NOTCH4 inhibited signalling from the NOTCH1 receptor. This is the first report of cis-inhibition of signalling by another Notch receptor. The NOTCH4 extracellular domain also inhibits NOTCH1 signalling when expressed in cis, raising the possibility that reported Notch4 phenotypes may not be due to loss of NOTCH4 function. To better address the role of NOTCH4 in vivo, we generated a Notch4 null mouse in which the entire coding region was deleted. Notch4 null mice exhibited slightly delayed vessel growth in the retina, consistent with our novel finding that NOTCH4 protein is expressed in the newly formed vasculature. These findings indicate a role of NOTCH4 in fine-tuning the forming vascular plexus.
Collapse
Affiliation(s)
- A C James
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - J O Szot
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, Australia.
| | - K Iyer
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - J A Major
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - S E Pursglove
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - G Chapman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.
| | - S L Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, Australia.
| |
Collapse
|
32
|
Expression and function of NUMB in odontogenesis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:182965. [PMID: 23841055 PMCID: PMC3690219 DOI: 10.1155/2013/182965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 01/19/2023]
Abstract
NUMB is a multifunctional protein implicated to function in self-renewal and differentiation of progenitors in several tissues. To characterize the transcripts and to analyze the expression pattern of NUMB in odontogenesis, we isolated 2 full-length clones for NUMB from mouse dental pulp mRNA. One novel sequence contained 200 bp insertion in the phosphotyrosine binding domain (PTB). Confocal microscopy analysis showed strong NUMB expression in human dental pulp stem cells (hDPSC) and preameloblasts. Western blot analysis indicated that NUMB isoforms were differentially expressed in various dental tissues. Immunohistochemical analysis showed that in postnatal mouse tooth germs, NUMB was differentially expressed in the preameloblasts, odontoblasts, cervical loop region, and in the dental pulp stem cells during development. Interestingly, overexpression of NUMB in HAT-7, a preameloblast cell line, had dramatic antagonizing effects on the protein expression level of activated Notch 1. Further analysis of the Notch signaling pathway showed that NUMB significantly downregulates sonic hedgehog (Shh) expression in preameloblasts. Therefore, we propose that NUMB maintains ameloblast progenitor phenotype at the cervical loop by downregulating the activated Notch1 protein and thereby inhibiting the mRNA expression of Shh.
Collapse
|
33
|
Vlachostergios PJ, Voutsadakis IA, Papandreou CN. The role of ubiquitin-proteasome system in glioma survival and growth. Growth Factors 2013; 31:106-13. [PMID: 23688106 DOI: 10.3109/08977194.2013.799156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High-grade gliomas represent a group of aggressive brain tumors with poor prognosis due to an inherent capacity of persistent cell growth and survival. The ubiquitin-proteasome system (UPS) is an intracellular machinery responsible for protein turnover. Emerging evidence implicates various proteins targeted for degradation by the UPS in key survival and proliferation signaling pathways of these tumors. In this review, we discuss the involvement of UPS in the regulation of several mediators and effectors of these pathways in malignant gliomas.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece.
| | | | | |
Collapse
|
34
|
Zhang CC, Yan Z, Zong Q, Fang DD, Painter C, Zhang Q, Chen E, Lira ME, John-Baptiste A, Christensen JG. Synergistic effect of the γ-secretase inhibitor PF-03084014 and docetaxel in breast cancer models. Stem Cells Transl Med 2013; 2:233-42. [PMID: 23408105 PMCID: PMC3659764 DOI: 10.5966/sctm.2012-0096] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023] Open
Abstract
Notch signaling mediates breast cancer cell survival and chemoresistance. In this report, we aimed to evaluate the antitumor efficacy of PF-03084014 in combination with docetaxel in triple-negative breast cancer models. The mechanism of action was investigated. PF-03084014 significantly enhanced the antitumor activity of docetaxel in multiple xenograft models including HCC1599, MDA-MB-231Luc, and AA1077. Docetaxel activated the Notch pathway by increasing the cleaved Notch1 intracellular domain and suppressing the endogenous Notch inhibitor NUMB. PF-03084014 used in combination with docetaxel reversed these effects and demonstrated early-stage synergistic apoptosis. Docetaxel elicited chemoresistance by elevating cytokine release and expression of survivin and induced an endothelial mesenchymal transition (EMT) phenotype by increasing the expressions of Snail, Slug, and N-cadherin. When reimplanted, the docetaxel-residual cells not only became much more tumorigenic, as evidenced by a higher fraction of tumor-initiating cells (TICs), but also showed higher metastatic potential compared with nontreated cells, leading to significantly shortened survival. In contrast, PF-03084014 was able to suppress expression of survivin and MCL1, reduce ABCB1 and ABCC2, upregulate BIM, reverse the EMT phenotype, and diminish the TICs. Additionally, the changes to the ALDH(+) and CD133(+)/CD44(+) subpopulations following therapy corresponded with the TIC self-renewal assay outcome. In summary, PF-03084014 demonstrated synergistic effects with docetaxel through multiple mechanisms. This work provides a strong preclinical rationale for the clinical utility of PF-03084014 to improve taxane therapy.
Collapse
Affiliation(s)
- Cathy C Zhang
- Pfizer Global Research and Development, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D'Amato G, MacGrogan D, Gonzalez-Rajal A, Dobarro D, Torroja C, Martinez F, Izquierdo-García JL, Fernández-Friera L, Sabater-Molina M, Kong YY, Pizarro G, Ibañez B, Medrano C, García-Pavía P, Gimeno JR, Monserrat L, Jiménez-Borreguero LJ, de la Pompa JL. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 2013; 19:193-201. [PMID: 23314057 DOI: 10.1038/nm.3046] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/26/2012] [Indexed: 02/07/2023]
Abstract
Left ventricular noncompaction (LVNC) causes prominent ventricular trabeculations and reduces cardiac systolic function. The clinical presentation of LVNC ranges from asymptomatic to heart failure. We show that germline mutations in human MIB1 (mindbomb homolog 1), which encodes an E3 ubiquitin ligase that promotes endocytosis of the NOTCH ligands DELTA and JAGGED, cause LVNC in autosomal-dominant pedigrees, with affected individuals showing reduced NOTCH1 activity and reduced expression of target genes. Functional studies in cells and zebrafish embryos and in silico modeling indicate that MIB1 functions as a dimer, which is disrupted by the human mutations. Targeted inactivation of Mib1 in mouse myocardium causes LVNC, a phenotype mimicked by inactivation of myocardial Jagged1 or endocardial Notch1. Myocardial Mib1 mutants show reduced ventricular Notch1 activity, expansion of compact myocardium to proliferative, immature trabeculae and abnormal expression of cardiac development and disease genes. These results implicate NOTCH signaling in LVNC and indicate that MIB1 mutations arrest chamber myocardium development, preventing trabecular maturation and compaction.
Collapse
Affiliation(s)
- Guillermo Luxán
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ahn HR, Kim GJ. The ascidian numb gene involves in the formation of neural tissues. Dev Reprod 2012; 16:371-8. [PMID: 25949112 PMCID: PMC4282237 DOI: 10.12717/dr.2012.16.4.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/19/2012] [Accepted: 11/17/2012] [Indexed: 11/17/2022]
Abstract
Notch signaling plays fundamental roles in various animal development. It has been suggested that Hr-Notch, a Notch homologue in the ascidian Halocynthia roretzi, is involved in the formation of peripheral neurons by suppressing the neural fates and promoting the epidermal differentiation. However, roles of Notch signaling remain controversial in the formation of nervous system in ascidian embryos. To precisely investigate functions of Notch signaling, we have isolated and characterized Hr-Numb, a Numb homologue which is a negative regulator of Notch signaling, in H. roretzi. Maternal expression of Hr-Numb mRNAs was detected in egg cytoplasm and the transcripts were inherited by the animal blastomeres. Its zygotic expression became evident by the early neurula stage and the transcripts were detected in dorsal neural precursor cells. Suppression of Hr-Numb function by an antisense morpholino oligonucleotide resulted in larvae with defect in brain vesicle and palps formation. Similar results have been obtained by overexpression of the constitutively activated Hr-Notch forms. Therefore, these results suggest that Hr-Numb is involved in Notch signaling during ascidian embryogenesis.
Collapse
Affiliation(s)
- Hong Ryul Ahn
- Present address: Functional Food Center, Korea Institute of Science and Technology, Gangneung Institute, Gangneung 210-340, Korea
| | - Gil Jung Kim
- Dept. of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung 210-702, Korea
| |
Collapse
|
37
|
Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene 2012. [PMID: 23178494 PMCID: PMC3795477 DOI: 10.1038/onc.2012.517] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch signaling is frequently hyperactivated in breast cancer, but how the enhanced signaling contributes to the tumor process is less well understood. In this report, we identify the proinflammatory cytokine interleukin-6 (IL-6) as a novel Notch target in breast tumor cells. Enhanced Notch signaling upregulated IL-6 expression, leading to activation of autocrine and paracrine Janus kinase/signal transducers and activators of transcription signaling. IL-6 upregulation was mediated by non-canonical Notch signaling, as it could be effectuated by a cytoplasmically localized Notch intracellular domain and was independent of the DNA-binding protein CSL. Instead, Notch-mediated IL-6 upregulation was controlled by two proteins in the nuclear factor (NF)-κB signaling cascade, IKKα and IKKβ (inhibitor of nuclear factor kappa-B kinase subunit alpha and beta, respectively), as well as by p53. Activation of IL-6 by Notch required IKKα/IKKβ function, but interestingly, did not engage canonical NF-κB signaling, in contrast to IL-6 activation by inflammatory agents such as lipopolysaccharide. With regard to p53 status, IL-6 expression was upregulated by Notch when p53 was mutated or lost, and restoring wild-type p53 into p53-mutated or -deficient cells abrogated the IL-6 upregulation. Furthermore, Notch-induced transcriptomes from p53 wild-type and -mutated breast tumor cell lines differed extensively, and for a subset of genes upregulated by Notch in a p53-mutant cell line, this upregulation was reduced by wild-type p53. In conclusion, we identify IL-6 as a novel non-canonical Notch target gene, and reveal roles for p53 and IKKα/IKKβ in non-canonical Notch signaling in breast cancer and in the generation of cell context-dependent diversity in the Notch signaling output.
Collapse
|
38
|
Nteliopoulos G, Gordon MY. Protein segregation between dividing hematopoietic progenitor cells in the determination of the symmetry/asymmetry of cell division. Stem Cells Dev 2012; 21:2565-80. [PMID: 22455336 DOI: 10.1089/scd.2011.0467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the present study, we investigated how the symmetry/asymmetry of cell division in mitotic CD34(+) cells can be evaluated by determining the plane of cell division and the potential distribution of proteins between daughter cells. The orientation of the mitotic spindle is dependent upon the positioning of the centrosomes, which determine the plane of cell division and the sharing of proteins. If the functions of unequally shared proteins are relevant to the kinetics of cell division, they could determine whether the daughter cells undergo self-renewal or differentiation. The kinetic function of the proteins of interest was investigated using a colony-replating assay and carboxyfluorescein succinimidyl ester (CFSE) staining. We used Notch/Numb as a model system, since they have a role in balancing symmetric/asymmetric divisions. Mitotic cells were examined microscopically and centrosomal markers γ-tubulin/pericentrin were used with activated Notch-1 and Numb. We monitored the first crucial divisions by CFSE staining and found an inverse relationship between activated Notch and Numb expression, suggesting a reciprocal regulation. We suggest that the subpopulations expressing activated Notch or Numb have different cell fates. To determine the influence of Notch signaling on progenitor cell self-renewal, we used the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl ester (DAPT). DAPT influences self-renewal/differentiation outcome by affecting the frequency of symmetric renewal divisions without affecting the rate of divisions. Overall, the purpose of this study was to establish a cellular system for predicting the symmetry/asymmetry of hematopoietic progenitor divisions at the level of centrosomes and protein distribution and to investigate the influence of these proteins on progenitor cell kinetics.
Collapse
Affiliation(s)
- Georgios Nteliopoulos
- Department of Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom.
| | | |
Collapse
|
39
|
MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One 2012; 7:e38562. [PMID: 22701667 PMCID: PMC3372529 DOI: 10.1371/journal.pone.0038562] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/08/2012] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) function is required for normal animal development, in particular in differentiation pathways from stem cell and precursor populations. In neurogenesis, it is becoming increasingly appreciated that miRNAs act at many stages to ensure proper progression. In this study we examined the role of miR-34a in neural progenitor cells (NPC) derived from murine embryonic cortex. We found that over-expression of miR-34a in NPC significantly reduced the neuron yield upon in vitro induction of differentiation. MiR-34a has several predicted targets in the Notch pathway, which operates to balance progenitor self-renewal and differentiation during cortical neurogenesis. We tested several Notch pathway players for regulation by miR-34a in undifferentiated NPC, and found that mRNA and protein levels of Numbl, a negative regulator of Notch signaling, as well as two downstream pro-neural genes usually blocked by Notch signaling, NeuroD1 and Mash1, were diminished, while Notch1 and Cbf1 transcripts were enhanced by miR-34a over-expression. Using a luciferase reporter assay, we verified the Numbl 3′-UTR as a direct miR-34a target. Correspondingly, knock-down of endogenous miR-34a resulted in increased Numbl, NeuroD1 and Mash1, and reduced Notch1 transcript levels. Together these results implicate Numbl as a physiologically relevant target of miR-34a in NPC, allowing for enhanced Notch signaling and inhibition of neuronal differentiation. This work extends our understanding of miR-34a-mediated control of cell differentiation from cancer to mammalian nervous system development.
Collapse
|
40
|
El-Hashash AHK, Turcatel G, Varma S, Berika M, Al Alam D, Warburton D. Eya1 protein phosphatase regulates tight junction formation in lung distal epithelium. J Cell Sci 2012; 125:4036-48. [PMID: 22685326 DOI: 10.1242/jcs.102848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Little is known about the regulatory mechanisms underlying lung epithelial tight junction (TJ) assembly, which is inextricably linked to the preservation of epithelial polarity, and is highly coordinated by proteins that regulate epithelial cell polarity, such as aPKCζ. We recently reported that Eya1 phosphatase functions through aPKCζ-Notch1 signaling to control cell polarity in the lung epithelium. Here, we have extended these observations to TJ formation to demonstrate that Eya1 is crucial for the maintenance of TJ protein assembly in the lung epithelium, probably by controlling aPKCζ phosphorylation levels, aPKCζ-mediated TJ protein phosphorylation and Notch1-Cdc42 activity. Thus, TJs are disassembled after interfering with Eya1 function in vivo or during calcium-induced TJ assembly in vitro. These effects are reversed by reintroduction of wild-type Eya1 or partially inhibiting aPKCζ in Eya1siRNA cells. Moreover, genetic activation of Notch1 rescues Eya1(-/-) lung epithelial TJ defects. These findings uncover novel functions for the Eya1-aPKCζ-Notch1-Cdc42 pathway as a crucial regulatory mechanism of TJ assembly and polarity of the lung epithelium, providing a conceptual framework for future mechanistic and translational studies in this area.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, 4661 Sunset Boulevard, Los Angeles, CA 90027, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Afshar Y, Miele L, Fazleabas AT. Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates. Endocrinology 2012; 153:2884-96. [PMID: 22535768 PMCID: PMC3359612 DOI: 10.1210/en.2011-2122] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
No other tissue in the body undergoes such a vast and extensive growth and remodeling in a relatively short period of time as the primate endometrium. Endometrial integrity is coordinated by ovarian hormones, namely, estrogens, progesterone, and the embryonic hormone chorionic gonadotropin (CG). These regulated events modulate the menstrual cycle and decidualization. The Notch family of transmembrane receptors regulate cellular proliferation, differentiation, and apoptosis, cellular processes required to maintain endometrial integrity. In two primate models, the human and the simulated pregnant baboon model, we demonstrated that Notch1 is increased during the window of uterine receptivity, concomitant with CG. Furthermore, CG combined with estrogens and progesterone up-regulate the level of Notch1, whereas progesterone increases the intracellular transcriptionally competent Notch1, which binds in a complex with progesterone receptor. Inhibition of Notch1 prevented decidualization, and alternatively, when decidualization is biochemically recapitulated in vitro, Notch1 is down-regulated. A focused microarray demonstrated that the Notch inhibitor, Numb, dramatically increased when Notch1 decreased during decidualization. We propose that in the endometrium, Notch has a dual role during the window of uterine receptivity. Initially, Notch1 mediates a survival signal in the uterine endometrium in response to CG from the implanting blastocyst and progesterone, so that menstrual sloughing is averted. Subsequently, Notch1 down-regulation may be critical for the transition of stromal fibroblast to decidual cells, which is essential for the establishment of a successful pregnancy.
Collapse
Affiliation(s)
- Yalda Afshar
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
42
|
Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing. Transl Neurodegener 2012; 1:8. [PMID: 23211096 PMCID: PMC3514095 DOI: 10.1186/2047-9158-1-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 03/22/2012] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.
Collapse
Affiliation(s)
- Zhongcong Xie
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060, USA.
| | | | | | | | | |
Collapse
|
43
|
Chi Z, Zhang J, Tokunaga A, Harraz MM, Byrne ST, Dolinko A, Xu J, Blackshaw S, Gaiano N, Dawson TM, Dawson VL. Botch promotes neurogenesis by antagonizing Notch. Dev Cell 2012; 22:707-20. [PMID: 22445366 DOI: 10.1016/j.devcel.2012.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 10/25/2011] [Accepted: 02/24/2012] [Indexed: 01/08/2023]
Abstract
Regulation of self-renewal and differentiation of neural stem cells is still poorly understood. Here we investigate the role of a developmentally expressed protein, Botch, which blocks Notch, in neocortical development. Downregulation of Botch in vivo leads to cellular retention in the ventricular and subventricular zones, whereas overexpression of Botch drives neural stem cells into the intermediate zone and cortical plate. In vitro neurosphere and differentiation assays indicate that Botch regulates neurogenesis by promoting neuronal differentiation. Botch prevents cell surface presentation of Notch by inhibiting the S1 furin-like cleavage of Notch, maintaining Notch in the immature full-length form. Understanding the function of Botch expands our knowledge regarding both the regulation of Notch signaling and the complex signaling mediating neuronal development.
Collapse
Affiliation(s)
- Zhikai Chi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gulino A, Di Marcotullio L, Canettieri G, De Smaele E, Screpanti I. Hedgehog/Gli Control by Ubiquitination/Acetylation Interplay. HEDGEHOG SIGNALING 2012; 88:211-27. [DOI: 10.1016/b978-0-12-394622-5.00009-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Notch and the p53 clan of transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:223-40. [PMID: 22399351 DOI: 10.1007/978-1-4614-0899-4_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Notch 1 to 4 and the p53 clan, comprising p53, p63 and p73 plus numerous isoforms thereof, are gene transcription regulators that are critically involved in various aspects of cell differentiation, stem cell maintenance and tumour suppression. It is thus perhaps no surprise that extensive crosstalk between the Notch and p53 pathways is implemented during these processes. Typically, Notch together with p53 and even more so with transactivation competent p63 or p73, drives differentiation, whereas Notch combined with transactivation impaired p63 or p73 helps maintain undifferentiated stem cell compartments. With regard to cancer, it seems that Notch acts as a tumour suppressor in cellular contexts where Notch signalling supports p53 activation and both together can bring on its way an anti-proliferative programme of differentiation, senescence or apoptosis. In contrast, Notch often acts as an oncoprotein in contexts where it suppresses p53 activation and activity and where differentiation is unwanted. It is no accident that the latter pathways-the inhibition by Notch of p53 and differentiation-are operative in somatic stem cells as well as in tumour cells.
Collapse
|
46
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 712] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
47
|
Liu L, Lanner F, Lendahl U, Das D. Numblike and Numb differentially affect p53 and Sonic Hedgehog signaling. Biochem Biophys Res Commun 2011; 413:426-31. [DOI: 10.1016/j.bbrc.2011.08.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 01/28/2023]
|
48
|
Abstract
MSI2 is highly expressed in human myeloid leukemia (AML) cell lines, and high expression of MSI2 mRNA is associated with decreased survival in AML, suggesting its use as a new prognostic marker. To test this, we measured MSI2 protein level by immunohistochemistry in 120 AML patients. Most cases (70%) showed some nuclear or cytoplasmic positivity, but the percentage of positive cells was low in most cases. Despite this, MSI2 protein expression was negatively associated with outcome, particularly for patients with good cytogenetic subgroup. For practical diagnostic purposes, the strongest significance of association was seen in cases with > 1% of cells showing strong MSI2 staining, these having a very poor outcome (P < .0001). Multivariate analysis with cytogenetic category, age, white cell count, and French-American-British subtype demonstrated that nuclear MSI2 levels were independently predictive of outcome (P = .0497). These results confirm the association of MSI2 expression with outcome in AML at the protein level and demonstrate the utility of MSI2 protein as a clinical prognostic biomarker. In addition, although positive at some level in most cases, its prognostic power derived from few positive cells, supporting its role in control of normal hematopoietic stem cell function and highlighting its role in disease progression.
Collapse
|
49
|
El-Hashash AHK, Turcatel G, Al Alam D, Buckley S, Tokumitsu H, Bellusci S, Warburton D. Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium. Development 2011; 138:1395-407. [PMID: 21385765 DOI: 10.1242/dev.058479] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4661 Sunset Boulevard, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hansson EM, Lanner F, Das D, Mutvei A, Marklund U, Ericson J, Farnebo F, Stumm G, Stenmark H, Andersson ER, Lendahl U. Control of Notch-ligand endocytosis by ligand-receptor interaction. J Cell Sci 2011; 123:2931-42. [PMID: 20720151 DOI: 10.1242/jcs.073239] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Notch signaling, cell-bound ligands activate Notch receptors on juxtaposed cells, but the relationship between ligand endocytosis, ubiquitylation and ligand-receptor interaction remains poorly understood. To study the specific role of ligand-receptor interaction, we identified a missense mutant of the Notch ligand Jagged1 (Nodder, Ndr) that failed to interact with Notch receptors, but retained a cellular distribution that was similar to wild-type Jagged1 (Jagged1(WT)) in the absence of active Notch signaling. Both Jagged1(WT) and Jagged1(Ndr) interacted with the E3 ubiquitin ligase Mind bomb, but only Jagged1(WT) showed enhanced ubiquitylation after co-culture with cells expressing Notch receptor. Cells expressing Jagged1(WT), but not Jagged1(Ndr), trans-endocytosed the Notch extracellular domain (NECD) into the ligand-expressing cell, and NECD colocalized with Jagged1(WT) in early endosomes, multivesicular bodies and lysosomes, suggesting that NECD is routed through the endocytic degradation pathway. When coexpressed in the same cell, Jagged1(Ndr) did not exert a dominant-negative effect over Jagged1(WT) in terms of receptor activation. Finally, in Jag1(Ndr/Ndr) mice, the ligand was largely accumulated at the cell surface, indicating that engagement of the Notch receptor is important for ligand internalization in vivo. In conclusion, the interaction-dead Jagged1(Ndr) ligand provides new insights into the specific role of receptor-ligand interaction in the intracellular trafficking of Notch ligands.
Collapse
Affiliation(s)
- Emil M Hansson
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|