1
|
Rambaud B, Joseph M, Tsai FC, De Jamblinne C, Strakhova R, Del Guidice E, Sabelli R, Smith MJ, Bassereau P, Hipfner DR, Carréno S. Slik sculpts the plasma membrane into cytonemes to control cell-cell communication. EMBO J 2025; 44:2186-2210. [PMID: 40050674 PMCID: PMC12000455 DOI: 10.1038/s44318-025-00401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025] Open
Abstract
Cytonemes are signaling filopodia that facilitate long-range cell-cell communication by forming synapses between cells. Initially discovered in Drosophila for transporting morphogens during embryogenesis, they have since been identified in mammalian cells and implicated in carcinogenesis. Despite their importance, mechanisms controlling cytoneme biogenesis remain elusive. Here, we demonstrate that the Ser/Thr kinase Slik drives remote cell proliferation by promoting cytoneme formation. This function depends on the coiled-coil domain of Slik (SlikCCD), which directly sculpts membranes into tubules. Importantly, Slik plays opposing roles in cytoneme biogenesis: its membrane-sculpting activity promotes cytoneme formation, but this is counteracted by its kinase activity, which enhances actin association with the plasma membrane via Moesin phosphorylation. In vivo, SlikCCD enhances cytoneme formation in one epithelial layer of the wing disc to promote cell proliferation in an adjacent layer. Finally, this function relies on the STRIPAK complex, which controls cytoneme formation and governs proliferation at a distance by regulating Slik association with the plasma membrane. Our study unveils an unexpected structural role of a kinase in sculpting membranes, crucial for cytoneme-mediated control of cell proliferation.
Collapse
Affiliation(s)
- Basile Rambaud
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Mathieu Joseph
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, H2W 1R7, Canada
| | - Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, 75005, Paris, France
| | - Camille De Jamblinne
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Regina Strakhova
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Emmanuelle Del Guidice
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Renata Sabelli
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Département de Pathologie et Biologie cellulaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, 75005, Paris, France
| | - David R Hipfner
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, H2W 1R7, Canada.
- Département de Médecine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
- Département de Pathologie et Biologie cellulaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
2
|
Prifti DK, Lauzier A, Garand C, Calvo E, Devillers R, Roy S, Dos Santos A, Descombes L, Trudel B, Laplante M, Bordeleau F, Elowe S. ARHGEF17/TEM4 regulates the cell cycle through control of G1 progression. J Cell Biol 2025; 224:e202311194. [PMID: 39903211 PMCID: PMC11792891 DOI: 10.1083/jcb.202311194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
The Ras homolog (Rho) small GTPases coordinate diverse cellular functions including cell morphology, adhesion and motility, cell cycle progression, survival, and apoptosis via their role in regulating the actin cytoskeleton. The upstream regulators for many of these functions are unknown. ARHGEF17 (also known as TEM4) is a Rho family guanine nucleotide exchange factor (GEF) implicated in cell migration, cell-cell junction formation, and the mitotic checkpoint. In this study, we characterize the regulation of the cell cycle by TEM4. We demonstrate that TEM4-depleted cells exhibit multiple defects in mitotic entry and duration, spindle morphology, and spindle orientation. In addition, TEM4 insufficiency leads to excessive cortical actin polymerization and cell rounding defects. Mechanistically, we demonstrate that TEM4-depleted cells delay in G1 as a consequence of decreased expression of the proproliferative transcriptional co-activator YAP. TEM4-depleted cells that progress through to mitosis do so with decreased levels of cyclin B as a result of attenuated expression of CCNB1. Importantly, cyclin B overexpression in TEM4-depleted cells largely rescues mitotic progression and chromosome segregation defects in anaphase. Our study thus illustrates the consequences of Rho signaling imbalance on cell cycle progression and identifies TEM4 as the first GEF governing Rho GTPase-mediated regulation of G1/S.
Collapse
Affiliation(s)
- Diogjena Katerina Prifti
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Annie Lauzier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Eva Calvo
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Romain Devillers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - Suparba Roy
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Laurence Descombes
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Benjamin Trudel
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - François Bordeleau
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec City, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Sabine Elowe
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Département de Pédiatrie, Faculté de Médicine, Université Laval, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| |
Collapse
|
3
|
Sánchez-Sánchez BJ, Marcotti S, Salvador-Garcia D, Díaz-de-la-Loza MDC, Burki M, Davidson AJ, Wood W, Stramer BM. Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration. Nat Commun 2025; 16:1414. [PMID: 39915456 PMCID: PMC11802916 DOI: 10.1038/s41467-024-55510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Cells are thought to adopt mechanistically distinct migration modes depending on cell-type and environmental factors. These modes are assumed to be driven by mutually exclusive actin cytoskeletal organizations, which are either lamellar (flat, branched network) or cortical (crosslinked to the plasma membrane). Here we exploit Drosophila macrophage (hemocyte) developmental dispersal to reveal that these cells maintain both a lamellar actin network at their cell front and a cortical actin network at the rear. Loss of classical actin cortex regulators, such as Moesin, perturb hemocyte morphology and cell migration. Furthermore, cortical and lamellipodial actin networks are interregulated. Upon phosphorylation and binding to the plasma membrane, Moesin is advected to the rear by lamellar actin flow. Simultaneously, the cortical actin network feeds back on the lamella to help regulate actin flow speed and leading-edge dynamics. These data reveal that hemocyte motility requires both lamellipodial and cortical actin architectures in homeostatic equilibrium.
Collapse
Affiliation(s)
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - David Salvador-Garcia
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | | | - Mubarik Burki
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - Will Wood
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh Bioquarter, EH16 4UU, Edinburgh, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
4
|
Yang Y, Xu B, Lu W. Phosphorylated ERM regulates meiotic maturation in mouse oocytes. Biochem Biophys Res Commun 2024; 734:150602. [PMID: 39243677 DOI: 10.1016/j.bbrc.2024.150602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
The cytoskeleton of mammal oocytes provides structural support to the plasma membrane and contributes to critical cellular dynamic processes such as nuclear positioning, germinal vesicle breakdown, spindle orientation, chromosome segregation, polar body extrusion, and transmembrane signaling pathways. The ERM family (ezrin, radixin and moesin) well known as membrane-cytoskeletal crosslinkers play a crucial role in organizing plasma membrane domains through their capacity to interact with transmembrane proteins and the underlying cytoskeleton. Recent works mainly focused on the structural analysis of the ERM family members and their binding partners, together with multiple functions in cell mitosis, have significantly advanced our understanding of the importance of membrane-cytoskeletal interactions. In the present study, we documented that p-ERM was expressed and localized at cortical and nucleus during mouse oocyte meiosis. p-ERM and microfilaments were colocalized from GV to MII during mouse oocyte maturation. After being treated with cytochalasin B (CB), the F-actin was disassembled. Meanwhile, p-ERM exhibited a diffuse cytoplasmic distribution and no special staining was detected in either the oocyte membrane or condensed chromosomes. p-ERM depletion by trim-away caused the meiotic procedure arrest with a significantly lower polar body extrusion rate. Collectively, these data demonstrate that the subcellular distribution of p-ERM is correlated with microfilaments. Meanwhile, the p-ERM contributes to the first polar extrusion but does not regulate the microfilament assembly.
Collapse
Affiliation(s)
- Yifeng Yang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Wenfa Lu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Verdys P, Rey Barroso J, Girel A, Vermeil J, Bergert M, Sanchez T, Métais A, Mangeat T, Bellard E, Bigot C, Astarie-Dequeker C, Labrousse A, Girard JP, Maridonneau-Parini I, Vérollet C, Lagarrigue F, Diz-Muñoz A, Heuvingh J, Piel M, du Roure O, Le Cabec V, Carréno S, Poincloux R. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. EMBO J 2024; 43:4822-4845. [PMID: 39026000 PMCID: PMC11535515 DOI: 10.1038/s44318-024-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
Collapse
Affiliation(s)
- Perrine Verdys
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Javier Rey Barroso
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adeline Girel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joseph Vermeil
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Sanchez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claire Bigot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Lagarrigue
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julien Heuvingh
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Olivia du Roure
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Véronique Le Cabec
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
6
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
7
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
8
|
Wang D, Wang Y, Di X, Wang F, Wanninayaka A, Carnell M, Hardeman EC, Jin D, Gunning PW. Cortical tension drug screen links mitotic spindle integrity to Rho pathway. Curr Biol 2023; 33:4458-4469.e4. [PMID: 37875071 DOI: 10.1016/j.cub.2023.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Mechanical force generation plays an essential role in many cellular functions, including mitosis. Actomyosin contractile forces mediate changes in cell shape in mitosis and are implicated in mitotic spindle integrity via cortical tension. An unbiased screen of 150 small molecules that impact actin organization and 32 anti-mitotic drugs identified two molecular targets, Rho kinase (ROCK) and tropomyosin 3.1/2 (Tpm3.1/2), whose inhibition has the greatest impact on mitotic cortical tension. The converse was found for compounds that depolymerize microtubules. Tpm3.1/2 forms a co-polymer with mitotic cortical actin filaments, and its inhibition prevents rescue of multipolar spindles induced by anti-microtubule chemotherapeutics. We examined the role of mitotic cortical tension in this rescue mechanism. Inhibition of ROCK and Tpm3.1/2 and knockdown (KD) of cortical nonmuscle myosin 2A (NM2A), all of which reduce cortical tension, inhibited rescue of multipolar mitotic spindles, further implicating cortical tension in the rescue mechanism. GEF-H1 released from microtubules by depolymerization increased cortical tension through the RhoA pathway, and its KD also inhibited rescue of multipolar mitotic spindles. We conclude that microtubule depolymerization by anti-cancer drugs induces cortical-tension-based rescue to ensure integrity of the mitotic bipolar spindle mediated via the RhoA pathway. Central to this mechanism is the dependence of NM2A on Tpm3.1/2 to produce the functional engagement of actin filaments responsible for cortical tension.
Collapse
Affiliation(s)
- Dejiang Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yao Wang
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fan Wang
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Physics, Beihang University, Beijing 100191, P.R. China
| | - Amanda Wanninayaka
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michael Carnell
- Katharina Gaus Light Microscope Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Peter W Gunning
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Li C, Zhu X, Sun X, Guo X, Li W, Chen P, Shidlovskii YV, Zhou Q, Xue L. Slik maintains tissue homeostasis by preventing JNK-mediated apoptosis. Cell Div 2023; 18:16. [PMID: 37794497 PMCID: PMC10552427 DOI: 10.1186/s13008-023-00097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The c-Jun N-terminal kinase (JNK) pathway is an evolutionarily conserved regulator of cell death, which is essential for coordinating tissue homeostasis. In this study, we have characterized the Drosophila Ste20-like kinase Slik as a novel modulator of JNK pathway-mediated apoptotic cell death. RESULTS First, ectopic JNK signaling-triggered cell death is enhanced by slik depletion whereas suppressed by Slik overexpression. Second, loss of slik activates JNK signaling, which results in enhanced apoptosis and impaired tissue homeostasis. In addition, genetic epistasis analysis suggests that Slik acts upstream of or in parallel to Hep to regulate JNK-mediated apoptotic cell death. Moreover, Slik is necessary and sufficient for preventing physiologic JNK signaling-mediated cell death in development. Furthermore, introduction of STK10, the human ortholog of Slik, into Drosophila restores slik depletion-induced cell death and compromised tissue homeostasis. Lastly, knockdown of STK10 in human cancer cells also leads to JNK activation, which is cancelled by expression of Slik. CONCLUSIONS This study has uncovered an evolutionarily conserved role of Slik/STK10 in blocking JNK signaling, which is required for cell death inhibition and tissue homeostasis maintenance in development.
Collapse
Affiliation(s)
- Chenglin Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaojie Zhu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xinyue Sun
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ping Chen
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 8, bldg. 2 Trubetskaya St, Moscow, 119048, Russia
| | - Qian Zhou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China.
| |
Collapse
|
10
|
Quiogue AR, Sumiyoshi E, Fries A, Chuang CH, Bowerman B. Microtubules oppose cortical actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion. PLoS Genet 2023; 19:e1010984. [PMID: 37782660 PMCID: PMC10569601 DOI: 10.1371/journal.pgen.1010984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.
Collapse
Affiliation(s)
- Alyssa R. Quiogue
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Adam Fries
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
- Imaging Core, Office of the Vice President for Research University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| |
Collapse
|
11
|
Emery G. [I lead, follow me! How cells coordinate during collective migrations.]. Med Sci (Paris) 2023; 39:619-624. [PMID: 37695151 DOI: 10.1051/medsci/2023095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
During development and wound healing, cells frequently move in a so-called "collective cell migration" process. The same type of migration is used by some cancer cells during metastasis formation. A powerful model to study collective cell migration is the border cell cluster in Drosophila as it allows the observation and manipulation of a collective cell migration in its normal environment. This review describes the molecular machinery used by the border cells to migrate directionally, focusing on the mechanisms used to detect and reacts to chemoattractants, and to organise the group in leader and follower cells.
Collapse
Affiliation(s)
- Gregory Emery
- Unité de recherche en transport vésiculaire et signalisation cellulaire, Institut pour la recherche en immunologie et en cancérologie de l'université de Montréal (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada - Département de pathologie et biologie cellulaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
12
|
Quiogue AR, Sumiyoshi E, Fries A, Chuang CH, Bowerman B. Cortical microtubules oppose actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542508. [PMID: 37292632 PMCID: PMC10245968 DOI: 10.1101/2023.05.26.542508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During C. elegans oocyte meiosis I, cortical actomyosin is locally remodeled to assemble a contractile ring near the spindle. In contrast to mitosis, when most cortical actomyosin converges into a contractile ring, the small oocyte ring forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness are required for contractile ring assembly within the oocyte cortical actomyosin network. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a complex of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize to patches distributed throughout the oocyte cortex during meiosis I. By reducing their function, we further show that KNL-1 and BUB-1, like CLS-2, are required for cortical microtubule stability, to limit membrane ingression throughout the oocyte, and for meiotic contractile ring assembly and polar body extrusion. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules, respectively, leads to excess or decreased membrane ingression throughout the oocyte and defective polar body extrusion. Finally, genetic backgrounds that elevate cortical microtubule levels suppress the excess membrane ingression in cls-2 mutant oocytes. These results support our hypothesis that CLS-2, as part of a sub-complex of kinetochore proteins that also co-localize to patches throughout the oocyte cortex, stabilizes microtubules to stiffen the oocyte cortex and limit membrane ingression throughout the oocyte, thereby facilitating contractile ring dynamics and the successful completion of polar body extrusion during meiosis I.
Collapse
Affiliation(s)
| | | | - Adam Fries
- Institute of Molecular Biology
- Imaging Core, Office of the Vice President for Research, University of Oregon, Eugene, OR USA 97403
| | | | | |
Collapse
|
13
|
Song K, Jiang X, Xu X, Chen Y, Zhang J, Tian Y, Wang Q, Weng J, Liang Y, Ma W. Ste20-like kinase activity promotes meiotic resumption and spindle microtubule stability in mouse oocytes. Cell Prolif 2022; 56:e13391. [PMID: 36579845 PMCID: PMC10068952 DOI: 10.1111/cpr.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Ste20-like kinase (SLK) is involved in cell proliferation and migration in somatic cells. This study aims to explore SLK expression and function in mouse oocyte meiosis. Western blot, immunofluorescence, Co-immunoprecipitation, drug treatment, cRNA construct and in vitro transcription, microinjection of morpholino oilgo (MO) and cRNA were performed in oocytes. High and stable protein expression of SLK was detected in mouse oocyte meiosis, with dynamic distribution in the nucleus, chromosomes and spindle apparatus. SLK phosphorylation emerges around meiotic resumption and reaches a peak during metaphase I (MI) and metaphase II. SLK knockdown with MO or expression of kinase-dead SLK K63R dramatically delays meiotic resumption due to sequentially suppressed phosphorylation of Polo-like kinase 1 (Plk1) and cell division cycle 25C (CDC25C) and dephosphorylation of cyclin-dependent kinase 1 (CDK1). SLK depletion promotes ubiquitination-mediated degradation of paxillin, an antagonist to α-tubulin deacetylation, and thus destroys spindle assembly and chromosome alignment; these phenotypes can be substantially rescued by exogenous expression of SLK kinase active fragment. Additionally, exogenous SLK effectively promotes meiotic progression and spindle assembly in aging oocytes with reduced SLK. Collectively, this study reveals SLK is required for meiotic resumption and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Jiang
- Division of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Andrade V, Echard A. Mechanics and regulation of cytokinetic abscission. Front Cell Dev Biol 2022; 10:1046617. [PMID: 36506096 PMCID: PMC9730121 DOI: 10.3389/fcell.2022.1046617] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokinetic abscission leads to the physical cut of the intercellular bridge (ICB) connecting the daughter cells and concludes cell division. In different animal cells, it is well established that the ESCRT-III machinery is responsible for the constriction and scission of the ICB. Here, we review the mechanical context of abscission. We first summarize the evidence that the ICB is initially under high tension and explain why, paradoxically, this can inhibit abscission in epithelial cells by impacting on ESCRT-III assembly. We next detail the different mechanisms that have been recently identified to release ICB tension and trigger abscission. Finally, we discuss whether traction-induced mechanical cell rupture could represent an ancient alternative mechanism of abscission and suggest future research avenues to further understand the role of mechanics in regulating abscission.
Collapse
Affiliation(s)
- Virginia Andrade
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,Collège Doctoral, Sorbonne Université, Paris, France
| | - Arnaud Echard
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Arnaud Echard,
| |
Collapse
|
15
|
Winkenbach LP, Parker DM, Williams RTP, Nishimura EO. The ERM-1 membrane-binding domain directs erm-1 mRNA localization to the plasma membrane in the C. elegans embryo. Development 2022; 149:279335. [PMID: 36314842 PMCID: PMC9793419 DOI: 10.1242/dev.200930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
mRNA localization and transport are integral in regulating gene expression. In Caenorhabditis elegans embryos, the maternally inherited mRNA erm-1 (Ezrin/Radixin/Moesin) becomes concentrated in anterior blastomeres. erm-1 mRNA localizes within those blastomeres to the plasma membrane where the essential ERM-1 protein, a membrane-actin linker, is also found. We demonstrate that the localization of erm-1 mRNA to the plasma membrane is translation dependent and requires its encoded N-terminal, membrane-binding (FERM) domain. By perturbing translation through multiple methods, we found that erm-1 mRNA localization at the plasma membrane persisted only if the nascent peptide remained in complex with the translating mRNA. Indeed, re-coding the erm-1 mRNA coding sequence while preserving the encoded amino acid sequence did not disrupt erm-1 mRNA localization, corroborating that the information directing mRNA localization resides within its membrane-binding protein domain. A single-molecule inexpensive fluorescence in situ hybridization screen of 17 genes encoding similar membrane-binding domains identified three plasma membrane-localized mRNAs in the early embryo. Ten additional transcripts showed potential membrane localization later in development. These findings point to a translation-dependent pathway for localization of mRNAs encoding membrane-associated proteins.
Collapse
Affiliation(s)
- Lindsay P. Winkenbach
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dylan M. Parker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA,Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA
| | - Robert T. P. Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA,Author for correspondence ()
| |
Collapse
|
16
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
17
|
How do cells stiffen? Biochem J 2022; 479:1825-1842. [PMID: 36094371 DOI: 10.1042/bcj20210806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Collapse
|
18
|
Anillin governs mitotic rounding during early epidermal development. BMC Biol 2022; 20:145. [PMID: 35710398 PMCID: PMC9205045 DOI: 10.1186/s12915-022-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01345-9.
Collapse
|
19
|
Leguay K, Decelle B, Elkholi IE, Bouvier M, Côté JF, Carréno S. Interphase microtubule disassembly is a signaling cue that drives cell rounding at mitotic entry. J Cell Biol 2022; 221:213183. [PMID: 35482006 DOI: 10.1083/jcb.202109065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/03/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
At mitotic entry, reorganization of the actomyosin cortex prompts cells to round-up. Proteins of the ezrin, radixin, and moesin family (ERM) play essential roles in this process by linking actomyosin forces to the plasma membrane. Yet, the cell-cycle signal that activates ERMs at mitotic entry is unknown. By screening a compound library using newly developed biosensors, we discovered that drugs that disassemble microtubules promote ERM activation. We further demonstrated that disassembly of interphase microtubules at mitotic entry directs ERM activation and metaphase cell rounding through GEF-H1, a Rho-GEF inhibited by microtubule binding, RhoA, and its kinase effector SLK. We finally demonstrated that GEF-H1 and Ect2, another Rho-GEF previously identified to control actomyosin forces, act together to drive activation of ERMs and cell rounding in metaphase. In summary, we report microtubule disassembly as a cell-cycle signal that controls a signaling network ensuring that actomyosin forces are efficiently integrated at the plasma membrane to promote cell rounding at mitotic entry.
Collapse
Affiliation(s)
- Kévin Leguay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Université de Montréal, Montréal, Quebec, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Université de Montréal, Montréal, Quebec, Canada
| | - Islam E Elkholi
- Montréal Clinical Research Institute, Montréal, Quebec, Canada.,Cytoskeletal Organization and Cell Migration lab, Université de Montréal, Montréal, Quebec, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,institution>Molecular Pharmacology Lab, Université de Montréal, Montréal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Jean-François Côté
- Montréal Clinical Research Institute, Montréal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.,Department of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada.,Cytoskeletal Organization and Cell Migration lab, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
20
|
Salaün D, Verdier-Pinard P, Badache A. En forme pour la division. Med Sci (Paris) 2022; 38:514-516. [DOI: 10.1051/medsci/2022066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Bommanavar S, Kanetkar SR, Datkhile KD, More AL. Membrane-organizing extension spike protein and its role as an emerging biomarker in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2022; 26:82-86. [PMID: 35571321 PMCID: PMC9106235 DOI: 10.4103/jomfp.jomfp_182_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/05/2021] [Indexed: 12/02/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most malignant tumor worldwide with a relatively poor prognosis. This can be due to lack of using new specific biomarkers as a mode of pristine interventional therapy for detecting the lesions at an early stage, thereby not allowing it to proceed to a severe advanced stage. Biomarkers, being the products of malignant cells, can prove to be promising prognostic factors in understanding the molecular pathogenesis of oral cancer. One such biomarker is membrane-organizing extension spike protein (MOESIN). Belonging to the family of ezrin/radixin/MOESIN proteins, MOESIN acts as a structural linker between plasma membrane and actin filament of the cell moiety and is involved in regulating many fundamental cellular processes such as cell morphology, adhesion and motility. This narrative review is a systematic compilation on MOESIN and its role as an emerging biomarker in OSCC.
Collapse
Affiliation(s)
- Sushma Bommanavar
- Department of Oral Pathology and Microbiology, School of Dental Sciences, KIMSDU, Karad, Maharashtra, India
| | - Sujata R Kanetkar
- Department of Pathology, Krishna Institute of Medical Sciences, Karad, Maharashtra, India
| | - Kailas D Datkhile
- Department of Molecular Biology and Genetics, KIMSDU, Karad, Maharashtra, India
| | - Ashwini L More
- Department of Molecular Biology and Genetics, KIMSDU, Karad, Maharashtra, India
| |
Collapse
|
22
|
Mangon A, Salaün D, Bouali ML, Kuzmić M, Quitard S, Thuault S, Isnardon D, Audebert S, Puech PH, Verdier-Pinard P, Badache A. iASPP contributes to cell cortex rigidity, mitotic cell rounding, and spindle positioning. J Cell Biol 2021; 220:212730. [PMID: 34705028 PMCID: PMC8562848 DOI: 10.1083/jcb.202012002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/03/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
iASPP is a protein mostly known as an inhibitor of p53 pro-apoptotic activity and a predicted regulatory subunit of the PP1 phosphatase, which is often overexpressed in tumors. We report that iASPP associates with the microtubule plus-end binding protein EB1, a central regulator of microtubule dynamics, via an SxIP motif. iASPP silencing or mutation of the SxIP motif led to defective microtubule capture at the cortex of mitotic cells, leading to abnormal positioning of the mitotic spindle. These effects were recapitulated by the knockdown of the membrane-to-cortex linker Myosin-Ic (Myo1c), which we identified as a novel partner of iASPP. Moreover, iASPP or Myo1c knockdown cells failed to round up upon mitosis because of defective cortical stiffness. We propose that by increasing cortical rigidity, iASPP helps cancer cells maintain a spherical geometry suitable for proper mitotic spindle positioning and chromosome partitioning.
Collapse
Affiliation(s)
- Aurélie Mangon
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Danièle Salaün
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Mohamed Lala Bouali
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sabine Quitard
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sylvie Thuault
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Pierre-Henri Puech
- Laboratoire Adhésion et Inflammation, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Aix Marseille Université, Turing Center for Living Systems, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
23
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
24
|
Monster JL, Donker L, Vliem MJ, Win Z, Matthews HK, Cheah JS, Yamada S, de Rooij J, Baum B, Gloerich M. An asymmetric junctional mechanoresponse coordinates mitotic rounding with epithelial integrity. J Cell Biol 2021; 220:e202001042. [PMID: 33688935 PMCID: PMC7953256 DOI: 10.1083/jcb.202001042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelia are continuously self-renewed, but how epithelial integrity is maintained during the morphological changes that cells undergo in mitosis is not well understood. Here, we show that as epithelial cells round up when they enter mitosis, they exert tensile forces on neighboring cells. We find that mitotic cell-cell junctions withstand these tensile forces through the mechanosensitive recruitment of the actin-binding protein vinculin to cadherin-based adhesions. Surprisingly, vinculin that is recruited to mitotic junctions originates selectively from the neighbors of mitotic cells, resulting in an asymmetric composition of cadherin junctions. Inhibition of junctional vinculin recruitment in neighbors of mitotic cells results in junctional breakage and weakened epithelial barrier. Conversely, the absence of vinculin from the cadherin complex in mitotic cells is necessary to successfully undergo mitotic rounding. Our data thus identify an asymmetric mechanoresponse at cadherin adhesions during mitosis, which is essential to maintain epithelial integrity while at the same time enable the shape changes of mitotic cells.
Collapse
Affiliation(s)
- Jooske L. Monster
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisa Donker
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein J. Vliem
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zaw Win
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Helen K. Matthews
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Joleen S. Cheah
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Buzz Baum
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Veldsman WP, Ma KY, Hui JHL, Chan TF, Baeza JA, Qin J, Chu KH. Comparative genomics of the coconut crab and other decapod crustaceans: exploring the molecular basis of terrestrial adaptation. BMC Genomics 2021; 22:313. [PMID: 33931033 PMCID: PMC8086120 DOI: 10.1186/s12864-021-07636-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background The complex life cycle of the coconut crab, Birgus latro, begins when an obligate terrestrial adult female visits the intertidal to hatch zoea larvae into the surf. After drifting for several weeks in the ocean, the post-larval glaucothoes settle in the shallow subtidal zone, undergo metamorphosis, and the early juveniles then subsequently make their way to land where they undergo further physiological changes that prevent them from ever entering the sea again. Here, we sequenced, assembled and analyzed the coconut crab genome to shed light on its adaptation to terrestrial life. For comparison, we also assembled the genomes of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus, and the short-tailed marine-living red king crab, Paralithodes camtschaticus. Our selection of the latter two organisms furthermore allowed us to explore parallel evolution of the crab-like form in anomurans. Results All three assembled genomes are large, repeat-rich and AT-rich. Functional analysis reveals that the coconut crab has undergone proliferation of genes involved in the visual, respiratory, olfactory and cytoskeletal systems. Given that the coconut crab has atypical mitochondrial DNA compared to other anomurans, we argue that an abundance of kif22 and other significantly proliferated genes annotated with mitochondrial and microtubule functions, point to unique mechanisms involved in providing cellular energy via nuclear protein-coding genes supplementing mitochondrial and microtubule function. We furthermore detected in the coconut crab a significantly proliferated HOX gene, caudal, that has been associated with posterior development in Drosophila, but we could not definitively associate this gene with carcinization in the Anomura since it is also significantly proliferated in the ornate spiny lobster. However, a cuticle-associated coatomer gene, gammacop, that is significantly proliferated in the coconut crab, may play a role in hardening of the adult coconut crab abdomen in order to mitigate desiccation in terrestrial environments. Conclusion The abundance of genomic features in the three assembled genomes serve as a source of hypotheses for future studies of anomuran environmental adaptations such as shell-utilization, perception of visual and olfactory cues in terrestrial environments, and cuticle sclerotization. We hypothesize that the coconut crab exhibits gene proliferation in lieu of alternative splicing as a terrestrial adaptation mechanism and propose life-stage transcriptomic assays to test this hypothesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07636-9.
Collapse
Affiliation(s)
- Werner Pieter Veldsman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ka Yan Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jerome Ho Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
26
|
Taneja N, Bersi MR, Baillargeon SM, Fenix AM, Cooper JA, Ohi R, Gama V, Merryman WD, Burnette DT. Precise Tuning of Cortical Contractility Regulates Cell Shape during Cytokinesis. Cell Rep 2021; 31:107477. [PMID: 32268086 DOI: 10.1016/j.celrep.2020.03.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 03/13/2020] [Indexed: 01/30/2023] Open
Abstract
The mechanical properties of the actin cortex regulate shape changes during cell division, cell migration, and tissue morphogenesis. We show that modulation of myosin II (MII) filament composition allows tuning of surface tension at the cortex to maintain cell shape during cytokinesis. Our results reveal that MIIA generates cortex tension, while MIIB acts as a stabilizing motor and its inclusion in MII hetero-filaments reduces cortex tension. Tension generation by MIIA drives faster cleavage furrow ingression and bleb formation. We also show distinct roles for the motor and tail domains of MIIB in maintaining cytokinetic fidelity. Maintenance of cortical stability by the motor domain of MIIB safeguards against shape instability-induced chromosome missegregation, while its tail domain mediates cortical localization at the terminal stages of cytokinesis to mediate cell abscission. Because most non-muscle contractile systems are cortical, this tuning mechanism will likely be applicable to numerous processes driven by myosin-II contractility.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sophie M Baillargeon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - James A Cooper
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Molecular basis of functional exchangeability between ezrin and other actin-membrane associated proteins during cytokinesis. Exp Cell Res 2021; 403:112600. [PMID: 33862101 DOI: 10.1016/j.yexcr.2021.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023]
Abstract
The mechanism that mediates the interaction between the contractile ring and the plasma membrane during cytokinesis remains elusive. We previously found that ERM (Ezrin/Radixin/Moesin) proteins, which usually mediate cellular pole contraction, become over-accumulated at the cell equator and support furrow ingression upon the loss of other actin-membrane associated proteins, anillin and supervillin. In this study, we addressed the molecular basis of the exchangeability between ezrin and other actin-membrane associated proteins in mediating cortical contraction during cytokinesis. We found that depletion of anillin and supervillin caused over-accumulation of the membrane-associated FERM domain and actin-binding C-terminal domain (C-term) of ezrin at the cleavage furrow, respectively. This finding suggests that ezrin differentially shares its binding sites with these proteins on the actin cytoskeleton or inner membrane surface. Using chimeric mutants, we found that ezrin C-term, but not the FERM domain, can substitute for the corresponding anillin domains in cytokinesis and cell proliferation. On the other hand, either the membrane-associated or the actin/myosin-binding domains of anillin could not substitute for the corresponding ezrin domains in controlling cortical blebbing at the cell poles. Our results highlight specific designs of actin- or membrane-associated moieties of different actin-membrane associated proteins with limited exchangeability, which enables them to support diverse cortical activities on the shared actin-membrane interface during cytokinesis.
Collapse
|
28
|
Leguay K, Decelle B, He YY, Pagniez A, Hogue M, Kobayashi H, Le Gouill C, Bouvier M, Carréno S. Development of conformational BRET biosensors that monitor ezrin, radixin and moesin activation in real time. J Cell Sci 2021; 134:237806. [PMID: 33712451 DOI: 10.1242/jcs.255307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Ezrin, radixin and moesin compose the family of ERM proteins. They link actin filaments and microtubules to the plasma membrane to control signaling and cell morphogenesis. Importantly, their activity promotes invasive properties of metastatic cells from different cancer origins. Therefore, a precise understanding of how these proteins are regulated is important for the understanding of the mechanism controlling cell shape, as well as providing new opportunities for the development of innovative cancer therapies. Here, we developed and characterized novel bioluminescence resonance energy transfer (BRET)-based conformational biosensors, compatible with high-throughput screening, that monitor individual ezrin, radixin or moesin activation in living cells. We showed that these biosensors faithfully monitor ERM activation and can be used to quantify the impact of small molecules, mutation of regulatory amino acids or depletion of upstream regulators on their activity. The use of these biosensors allowed us to characterize the activation process of ERMs that involves a pool of closed-inactive ERMs stably associated with the plasma membrane. Upon stimulation, we discovered that this pool serves as a cortical reserve that is rapidly activated before the recruitment of cytoplasmic ERMs.
Collapse
Affiliation(s)
- Kévin Leguay
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Barbara Decelle
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Yu Yan He
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Anthony Pagniez
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Mireille Hogue
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Hiroyuki Kobayashi
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Christian Le Gouill
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Michel Bouvier
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Sébastien Carréno
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
29
|
De Jamblinne CV, Decelle B, Dehghani M, Joseph M, Sriskandarajah N, Leguay K, Rambaud B, Lemieux S, Roux PP, Hipfner DR, Carréno S. STRIPAK regulates Slik localization to control mitotic morphogenesis and epithelial integrity. J Cell Biol 2021; 219:152107. [PMID: 32960945 PMCID: PMC7594492 DOI: 10.1083/jcb.201911035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/17/2020] [Accepted: 08/20/2020] [Indexed: 02/01/2023] Open
Abstract
Proteins of the ezrin, radixin, and moesin (ERM) family control cell and tissue morphogenesis. We previously reported that moesin, the only ERM in Drosophila, controls mitotic morphogenesis and epithelial integrity. We also found that the Pp1-87B phosphatase dephosphorylates moesin, counteracting its activation by the Ste20-like kinase Slik. To understand how this signaling pathway is itself regulated, we conducted a genome-wide RNAi screen, looking for new regulators of moesin activity. We identified that Slik is a new member of the striatin-interacting phosphatase and kinase complex (STRIPAK). We discovered that the phosphatase activity of STRIPAK reduces Slik phosphorylation to promote its cortical association and proper activation of moesin. Consistent with this finding, inhibition of STRIPAK phosphatase activity causes cell morphology defects in mitosis and impairs epithelial tissue integrity. Our results implicate the Slik–STRIPAK complex in the control of multiple morphogenetic processes.
Collapse
Affiliation(s)
- Camille Valérie De Jamblinne
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Mehrnoush Dehghani
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Mathieu Joseph
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Neera Sriskandarajah
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Kévin Leguay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Basile Rambaud
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| | - David R Hipfner
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
30
|
Nunes V, Ferreira JG. From the cytoskeleton to the nucleus: An integrated view on early spindle assembly. Semin Cell Dev Biol 2021; 117:42-51. [PMID: 33726956 DOI: 10.1016/j.semcdb.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/01/2022]
Abstract
Accurate chromosome segregation requires a complete restructuring of cellular organization. Microtubules remodel to assemble a mitotic spindle and the actin cytoskeleton rearranges to form a stiff actomyosin cortex. These cytoplasmic events must be spatially and temporally coordinated with mitotic chromosome condensation and nuclear envelope permeabilization, in order to ensure mitotic timing and fidelity. Here, we discuss the main cytoskeletal and nuclear events that occur during mitotic entry in proliferating animal cells, focusing on their coordinated contribution for early mitotic spindle assembly. We will also explore recent progress in understanding their regulatory biochemical and mechanical pathways.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; BiotechHealth PhD Programe, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal.
| |
Collapse
|
31
|
Mechanochemical control of epidermal stem cell divisions by B-plexins. Nat Commun 2021; 12:1308. [PMID: 33637728 PMCID: PMC7910479 DOI: 10.1038/s41467-021-21513-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data define a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.
Collapse
|
32
|
Cdk1 phosphorylation negatively regulates the activity of Net1 towards RhoA during mitosis. Cell Signal 2021; 80:109926. [PMID: 33465404 DOI: 10.1016/j.cellsig.2021.109926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
The Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily guanine nucleotide exchange factor that is overexpressed in a number of cancers and contributes to cancer cell motility and proliferation. Net1 also plays a Rho GTPase independent role in mitotic progression, where it promotes centrosomal activation of Aurora A and Pak2, and aids in chromosome alignment during prometaphase. To understand regulatory mechanisms controlling the mitotic function of Net1, we examined whether it was phosphorylated by the mitotic kinase Cdk1. We observed that Cdk1 phosphorylated Net1 on multiple sites in its N-terminal regulatory domain and C-terminus in vitro. By raising phospho-specific antibodies to two of these sites, we also demonstrated that both endogenous and transfected Net1 were phosphorylated by Cdk1 in cells. Substitution of the major Cdk1 phosphorylation sites with aliphatic or acidic residues inhibited the interaction of Net1 with RhoA, and treatment of metaphase cells with a Cdk1 inhibitor increased Net1 activity. Cdk1 inhibition also increased Net1 localization to the plasma membrane and stimulated cortical F-actin accumulation. Moreover, Net1 overexpression caused spindle polarity defects that were reduced in frequency by acidic substitution of the major Cdk1 phosphorylation sites. These data indicate that Cdk1 phosphorylates Net1 during mitosis and suggest that this negatively regulates its ability to signal to RhoA and alter actin cytoskeletal organization.
Collapse
|
33
|
Fang X, Zhang K, Jiang M, Ma L, Liu J, Xu H, Yang Y, Wang C. Enhanced lymphatic delivery of nanomicelles encapsulating CXCR4-recognizing peptide and doxorubicin for the treatment of breast cancer. Int J Pharm 2020; 594:120183. [PMID: 33340596 DOI: 10.1016/j.ijpharm.2020.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023]
Abstract
Lymph node metastases in cancer patients are associated with high aggressiveness, poor prognosis, and short survival time. The chemokine receptor 4 (CXCR4)/stroma derived factor 1α (CXCL12) biological axis plays a critical role in the spread of cancer cells. Designing effective delivery systems that can successfully deliver CXCR4 antagonists to lymph nodes, which are rich in CXCR4-overexpressing cancer cells, for controlling cancer metastasis remain challenging. In this study, we demonstrated that such a challenge may be alleviated by developing nanometer-sized polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles for the co-delivery of the CXCR4 antagonistic peptide E5 and doxorubicin (M-E5-Dox). This nanomicelle platform enables the preferential accumulation of cargos into lymph nodes and thus can better inhibit cancer metastasis and enhance antitumor efficacy than either free drugs or single drug-loaded micelles in breast cancer-bearing mouse models. Hence, M-E5-Dox is expected to be a potential therapeutic agent that would improve the clinical benefits of breast cancer therapy and treatment of various CXCR4-overexpressing malignancies.
Collapse
Affiliation(s)
- Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyue Zhang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Jiang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Kaibori Y, Katayama K, Tanaka Y, Ikeuchi M, Ogawa M, Ikeda Y, Yuki R, Saito Y, Nakayama Y. Kinase activity-independent role of EphA2 in the regulation of M-phase progression. Exp Cell Res 2020; 395:112207. [PMID: 32750331 DOI: 10.1016/j.yexcr.2020.112207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 02/05/2023]
Abstract
Cell division is a tightly regulated, essential process for cell proliferation. Very recently, we reported that EphA2 is phosphorylated at Ser897, via the Cdk1/MEK/ERK/RSK pathway, during M phase and contributes to proper M-phase progression by maintaining cortical rigidity via the EphA2pSer897/ephexin4/RhoG pathway. Here, we show that EphA2 kinase activity is dispensable for M-phase progression. Although EphA2 knockdown delayed this progression, the delay was rescued by an EphA2 mutant expression with an Asp739 to Asn substitution, as well as by wild-type EphA2. Western blotting analysis confirmed that the Asp739Asn mutant lost its EphA2 kinase activity. Like wild-type EphA2, the Asp739Asn mutant was localized to the plasma membrane irrespective of cell cycle. While RhoG localization to the plasma membrane was decreased in EphA2 knockdown cells, it was rescued by re-expression of wild-type EphA2 but not via the mutant containing the Ser897 to Ala substitution. This confirmed our recent report that phosphorylation at Ser897 is responsible for RhoG localization to the plasma membrane. In agreement with the M-phase progression's rescue effect, the Asp739Asn mutant rescued RhoG localization in EphA2 knockdown cells. These results suggest that EphA2 regulates M-phase progression in a manner independent of its kinase activity.
Collapse
Affiliation(s)
- Yuichiro Kaibori
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Kiriko Katayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuka Tanaka
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Mika Ogawa
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuki Ikeda
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan.
| |
Collapse
|
35
|
Don't Fence Me In: How Cancer Cells Divide in Crowded Spaces. Dev Cell 2020; 52:541-542. [PMID: 32155433 DOI: 10.1016/j.devcel.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells in our body have to divide within a defined tissue space, which in tumors is more restricted than in normal tissue. In this issue of Developmental Cell, Matthews et al. (2020) reveal that oncogenic RasV12-mediated cell rounding and cortical stiffening promote cell division under confined conditions that are similar to those in tumors.
Collapse
|
36
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Taubenberger AV, Baum B, Matthews HK. The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol 2020; 8:687. [PMID: 32850812 PMCID: PMC7423972 DOI: 10.3389/fcell.2020.00687] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.
Collapse
Affiliation(s)
- Anna V. Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
38
|
Ramalho JJ, Sepers JJ, Nicolle O, Schmidt R, Cravo J, Michaux G, Boxem M. C-terminal phosphorylation modulates ERM-1 localization and dynamics to control cortical actin organization and support lumen formation during Caenorhabditiselegans development. Development 2020; 147:dev188011. [PMID: 32586975 PMCID: PMC10755404 DOI: 10.1242/dev.188011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/13/2020] [Indexed: 12/31/2023]
Abstract
ERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.
Collapse
Affiliation(s)
- João J Ramalho
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jorian J Sepers
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
39
|
Lam MSY, Lisica A, Ramkumar N, Hunter G, Mao Y, Charras G, Baum B. Isotropic myosin-generated tissue tension is required for the dynamic orientation of the mitotic spindle. Mol Biol Cell 2020; 31:1370-1379. [PMID: 32320325 PMCID: PMC7353144 DOI: 10.1091/mbc.e19-09-0545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
The ability of cells to divide along their longest axis has been proposed to play an important role in maintaining epithelial tissue homeostasis in many systems. Because the division plane is largely set by the position of the anaphase spindle, it is important to understand how spindles become oriented. While several molecules have been identified that play key roles in spindle orientation across systems, most notably Mud/NuMA and cortical dynein, the precise mechanism by which spindles detect and align with the long cell axis remain poorly understood. Here, in exploring the dynamics of spindle orientation in mechanically distinct regions of the fly notum, we find that the ability of cells to properly reorient their divisions depends on local tissue tension. Thus, spindles reorient to align with the long cell axis in regions where isotropic tension is elevated, but fail to do so in elongated cells within the crowded midline, where tension is low, or in regions that have been mechanically isolated from the rest of the tissue via laser ablation. Importantly, these differences in spindle behavior outside and inside the midline can be recapitulated by corresponding changes in tension induced by perturbations that alter nonmuscle myosin II activity. These data lead us to propose that isotropic tension within an epithelium provides cells with a mechanically stable substrate upon which localized cortical motor complexes can act on astral microtubules to orient the spindle.
Collapse
Affiliation(s)
| | - Ana Lisica
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
| | | | | | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| | - Guillaume Charras
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| |
Collapse
|
40
|
Rainey L, Deevi RK, McClements J, Khawaja H, Watson CJ, Roudier M, Van Schaeybroeck S, Campbell FC. Fundamental control of grade-specific colorectal cancer morphology by Src regulation of ezrin-centrosome engagement. J Pathol 2020; 251:310-322. [PMID: 32315081 DOI: 10.1002/path.5452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 11/11/2022]
Abstract
The phenotypic spectrum of colorectal cancer (CRC) is remarkably diverse, with seemingly endless variations in cell shape, mitotic figures and multicellular configurations. Despite this morphological complexity, histological grading of collective phenotype patterns provides robust prognostic stratification in CRC. Although mechanistic understanding is incomplete, previous studies have shown that the cortical protein ezrin controls diversification of cell shape, mitotic figure geometry and multicellular architecture, in 3D organotypic CRC cultures. Because ezrin is a substrate of Src tyrosine kinase that is frequently overexpressed in CRC, we investigated Src regulation of ezrin and morphogenic growth in 3D CRC cultures. Here we show that Src perturbations disrupt CRC epithelial spatial organisation. Aberrant Src activity suppresses formation of the cortical ezrin cap that anchors interphase centrosomes. In CRC cells with a normal centrosome number, these events lead to mitotic spindle misorientation, perturbation of cell cleavage, abnormal epithelial stratification, apical membrane misalignment, multilumen formation and evolution of cribriform multicellular morphology, a feature of low-grade cancer. In isogenic CRC cells with centrosome amplification, aberrant Src signalling promotes multipolar mitotic spindle formation, pleomorphism and morphological features of high-grade cancer. Translational studies in archival human CRC revealed associations between Src intensity, multipolar mitotic spindle frequency and high-grade cancer morphology. Collectively, our study reveals Src regulation of CRC morphogenic growth via ezrin-centrosome engagement and uncovers combined perturbations underlying transition to high-grade CRC morphology. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lisa Rainey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast and Belfast Health and Social Care Trust, Belfast, UK
| | - Ravi K Deevi
- Centre for Cancer Research and Cell Biology, Queen's University Belfast and Belfast Health and Social Care Trust, Belfast, UK
| | - Jane McClements
- Centre for Cancer Research and Cell Biology, Queen's University Belfast and Belfast Health and Social Care Trust, Belfast, UK
| | - Hajrah Khawaja
- Centre for Cancer Research and Cell Biology, Queen's University Belfast and Belfast Health and Social Care Trust, Belfast, UK
| | - Chris J Watson
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Martine Roudier
- Molecular Pathology Laboratory, AstraZeneca Oncology Translational Science, Cambridge, UK
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, Queen's University Belfast and Belfast Health and Social Care Trust, Belfast, UK
| | - Frederick C Campbell
- Centre for Cancer Research and Cell Biology, Queen's University Belfast and Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
41
|
Taskinen ME, Närvä E, Conway JR, Hinojosa LS, Lilla S, Mai A, De Franceschi N, Elo LL, Grosse R, Zanivan S, Norman JC, Ivaska J. MASTL promotes cell contractility and motility through kinase-independent signaling. J Cell Biol 2020; 219:e201906204. [PMID: 32311005 PMCID: PMC7265322 DOI: 10.1083/jcb.201906204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/03/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity.
Collapse
Affiliation(s)
- Maria Emilia Taskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elisa Närvä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - James R.W. Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura Soto Hinojosa
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, and Center for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Anja Mai
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Nicola De Franceschi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, and Center for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
42
|
Peterman E, Valius M, Prekeris R. CLIC4 is a cytokinetic cleavage furrow protein that regulates cortical cytoskeleton stability during cell division. J Cell Sci 2020; 133:jcs241117. [PMID: 32184265 PMCID: PMC7240295 DOI: 10.1242/jcs.241117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
During mitotic cell division, the actomyosin cytoskeleton undergoes several dynamic changes that play key roles in progression through mitosis. Although the regulators of cytokinetic ring formation and contraction are well established, proteins that regulate cortical stability during anaphase and telophase have been understudied. Here, we describe a role for CLIC4 in regulating actin and actin regulators at the cortex and cytokinetic cleavage furrow during cytokinesis. We first describe CLIC4 as a new component of the cytokinetic cleavage furrow that is required for successful completion of mitotic cell division. We also demonstrate that CLIC4 regulates the remodeling of the sub-plasma-membrane actomyosin network within the furrow by recruiting MST4 kinase (also known as STK26) and regulating ezrin phosphorylation. This work identifies and characterizes new molecular players involved in regulating cortex stiffness and blebbing during the late stages of cytokinetic furrowing.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius 10257, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Nunes V, Dantas M, Castro D, Vitiello E, Wang I, Carpi N, Balland M, Piel M, Aguiar P, Maiato H, Ferreira JG. Centrosome-nuclear axis repositioning drives the assembly of a bipolar spindle scaffold to ensure mitotic fidelity. Mol Biol Cell 2020; 31:1675-1690. [PMID: 32348198 PMCID: PMC7521851 DOI: 10.1091/mbc.e20-01-0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the initial stages of cell division, the cytoskeleton is extensively reorganized so that a bipolar mitotic spindle can be correctly assembled. This process occurs through the action of molecular motors, cytoskeletal networks, and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. To investigate how cell shape, cytoskeletal organization, and molecular motors cross-talk to regulate initial spindle assembly, we use a combination of micropatterning with high-resolution imaging and 3D cellular reconstruction. We show that during prophase, centrosomes and nucleus reorient so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. We also find that this orientation depends on a combination of centrosome movement controlled by Arp2/3-mediated regulation of microtubule dynamics and Dynein-generated forces on the NE that regulate nuclear reorientation. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Margarida Dantas
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Domingos Castro
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Elisa Vitiello
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Irène Wang
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Nicolas Carpi
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| |
Collapse
|
44
|
Aguilar‐Aragon M, Bonello TT, Bell GP, Fletcher GC, Thompson BJ. Adherens junction remodelling during mitotic rounding of pseudostratified epithelial cells. EMBO Rep 2020; 21:e49700. [PMID: 32030856 PMCID: PMC7132200 DOI: 10.15252/embr.201949700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.
Collapse
Affiliation(s)
| | - Teresa T Bonello
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| | - Graham P Bell
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
| | | | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| |
Collapse
|
45
|
Aguilar-Aragon M, Fletcher G, Thompson BJ. The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 2020; 459:126-137. [PMID: 31881198 PMCID: PMC7090908 DOI: 10.1016/j.ydbio.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Crumbs (Crb in Drosophila; CRB1-3 in mammals) is a transmembrane determinant of epithelial cell polarity and a regulator of Hippo signalling. Crb is normally localized to apical cell-cell contacts, just above adherens junctions, but how apical trafficking of Crb is regulated in epithelial cells remains unclear. We use the Drosophila follicular epithelium to demonstrate that polarized trafficking of Crb is mediated by transport along microtubules by the motor protein Dynein and along actin filaments by the motor protein Myosin-V (MyoV). Blocking transport of Crb-containing vesicles by Dynein or MyoV leads to accumulation of Crb within Rab11 endosomes, rather than apical delivery. The final steps of Crb delivery and stabilisation at the plasma membrane requires the exocyst complex and three apical FERM domain proteins - Merlin, Moesin and Expanded - whose simultaneous loss disrupts apical localization of Crb. Accordingly, a knock-in deletion of the Crb FERM-binding motif (FBM) also impairs apical localization. Finally, overexpression of Crb challenges this system, creating a sensitized background to identify components involved in cytoskeletal polarization, apical membrane trafficking and stabilisation of Crb at the apical domain.
Collapse
Affiliation(s)
- M Aguilar-Aragon
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - G Fletcher
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - B J Thompson
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom; The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| |
Collapse
|
46
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
47
|
Targeting centrosome amplification, an Achilles' heel of cancer. Biochem Soc Trans 2020; 47:1209-1222. [PMID: 31506331 PMCID: PMC6824836 DOI: 10.1042/bst20190034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
Due to cell-cycle dysregulation, many cancer cells contain more than the normal compliment of centrosomes, a state referred to as centrosome amplification (CA). CA can drive oncogenic phenotypes and indeed can cause cancer in flies and mammals. However, cells have to actively manage CA, often by centrosome clustering, in order to divide. Thus, CA is also an Achilles' Heel of cancer cells. In recent years, there have been many important studies identifying proteins required for the management of CA and it has been demonstrated that disruption of some of these proteins can cause cancer-specific inhibition of cell growth. For certain targets therapeutically relevant interventions are being investigated, for example, small molecule inhibitors, although none are yet in clinical trials. As the field is now poised to move towards clinically relevant interventions, it is opportune to summarise the key work in targeting CA thus far, with particular emphasis on recent developments where small molecule or other strategies have been proposed. We also highlight the relatively unexplored paradigm of reversing CA, and thus its oncogenic effects, for therapeutic gain.
Collapse
|
48
|
ERM Proteins at the Crossroad of Leukocyte Polarization, Migration and Intercellular Adhesion. Int J Mol Sci 2020; 21:ijms21041502. [PMID: 32098334 PMCID: PMC7073024 DOI: 10.3390/ijms21041502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.
Collapse
|
49
|
Serres MP, Samwer M, Truong Quang BA, Lavoie G, Perera U, Görlich D, Charras G, Petronczki M, Roux PP, Paluch EK. F-Actin Interactome Reveals Vimentin as a Key Regulator of Actin Organization and Cell Mechanics in Mitosis. Dev Cell 2020; 52:210-222.e7. [PMID: 31928973 PMCID: PMC6983945 DOI: 10.1016/j.devcel.2019.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 01/27/2023]
Abstract
Most metazoan cells entering mitosis undergo characteristic rounding, which is important for accurate spindle positioning and chromosome separation. Rounding is driven by contractile tension generated by myosin motors in the sub-membranous actin cortex. Recent studies highlight that alongside myosin activity, cortical actin organization is a key regulator of cortex tension. Yet, how mitotic actin organization is controlled remains poorly understood. To address this, we characterized the F-actin interactome in spread interphase and round mitotic cells. Using super-resolution microscopy, we then screened for regulators of cortex architecture and identified the intermediate filament vimentin and the actin-vimentin linker plectin as unexpected candidates. We found that vimentin is recruited to the mitotic cortex in a plectin-dependent manner. We then showed that cortical vimentin controls actin network organization and mechanics in mitosis and is required for successful cell division in confinement. Together, our study highlights crucial interactions between cytoskeletal networks during cell division. Comparison of the F-actin interactome in spread interphase and round mitotic cells Proteomics identifies vimentin and plectin as key regulators of the mitotic cortex Vimentin intermediate filaments localize under the actin cortex in mitosis Sub-cortical vimentin regulates actin cortex organization and mechanics in mitosis
Collapse
Affiliation(s)
- Murielle P Serres
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Matthias Samwer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Binh An Truong Quang
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal QC, H3T 1J4, Canada
| | - Upamali Perera
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Mark Petronczki
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal QC, H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
50
|
Katzemich A, Long JY, Panneton V, Fisher LAB, Hipfner D, Schöck F. Slik phosphorylation of Talin T152 is crucial for proper Talin recruitment and maintenance of muscle attachment in Drosophila. Development 2019; 146:dev.176339. [PMID: 31511253 DOI: 10.1242/dev.176339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
Abstract
Talin is the major scaffold protein linking integrin receptors with the actin cytoskeleton. In Drosophila, extended Talin generates a stable link between the sarcomeric cytoskeleton and the tendon matrix at muscle attachment sites. Here, we identify phosphorylation sites on Drosophila Talin by mass spectrometry. Talin is phosphorylated in late embryogenesis when muscles differentiate, especially on T152 in the exposed loop of the F1 domain of the Talin head. Localization of a mutated version of Talin (Talin-T150/T152A) is reduced at muscle attachment sites and can only partially rescue muscle attachment compared with wild-type Talin. We also identify Slik as the kinase phosphorylating Talin at T152. Slik localizes to muscle attachment sites, and the absence of Slik reduces the localization of Talin at muscle attachment sites causing phenotypes similar to Talin-T150/T152A. Thus, our results demonstrate that Talin phosphorylation by Slik plays an important role in fine-tuning Talin recruitment to integrin adhesion sites and maintaining muscle attachment.
Collapse
Affiliation(s)
- Anja Katzemich
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | - Jenny Yanyan Long
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Québec H2W 1R7, Canada.,Département de Médecine, Université de Montréal, Québec H3C 3J7, Canada
| | - Lucas A B Fisher
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | - David Hipfner
- Institut de Recherches Cliniques de Montréal, Québec H2W 1R7, Canada.,Département de Médecine, Université de Montréal, Québec H3C 3J7, Canada
| | - Frieder Schöck
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|