1
|
Rao VG, Shendge AA, D'Gama PP, Martis EAF, Mehta S, Coutinho EC, D'Souza JS. A-kinase anchoring proteins are enriched in the central pair microtubules of motile cilia in Chlamydomonas reinhardtii. FEBS Lett 2024; 598:457-476. [PMID: 38140814 DOI: 10.1002/1873-3468.14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Amruta A Shendge
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Percival P D'Gama
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Elvis A F Martis
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Santacruz (E), Mumbai, India
| | - Shraddha Mehta
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| | - Evans C Coutinho
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Santacruz (E), Mumbai, India
- St John Institute of Pharmacy and Research, Palghar (E), Maharashtra, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai, India
| |
Collapse
|
2
|
Zhang X, Sun J, Lu Y, Zhang J, Shimada K, Noda T, Zhao S, Koyano T, Matsuyama M, Zhou S, Wu J, Ikawa M, Liu M. LRRC23 is a conserved component of the radial spoke that is necessary for sperm motility and male fertility in mice. J Cell Sci 2021; 134:jcs259381. [PMID: 34585727 PMCID: PMC10658914 DOI: 10.1242/jcs.259381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023] Open
Abstract
Cilia and flagella are ancient structures that achieve controlled motor functions through the coordinated interaction based on microtubules and some attached projections. Radial spokes (RSs) facilitate the beating motion of these organelles by mediating signal transduction between dyneins and a central pair (CP) of singlet microtubules. RS complex isolation from Chlamydomonas axonemes enabled the detection of 23 radial spoke proteins (RSP1-RSP23), although the roles of some radial spoke proteins remain unknown. Recently, RSP15 has been reported to be bound to the stalk of RS2, but its homolog in mammals has not been identified. Herein, we show that Lrrc23 is an evolutionarily conserved testis-enriched gene encoding an RSP15 homolog in mice. We found that LRRC23 localizes to the RS complex within murine sperm flagella and interacts with RSPH3A and RSPH3B. The knockout of Lrrc23 resulted in male infertility due to RS disorganization and impaired motility in murine spermatozoa, whereas the ciliary beating was not significantly affected. These data indicate that LRRC23 is a key regulator that underpins the integrity of the RS complex within the flagella of mammalian spermatozoa, whereas it is dispensable in cilia. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jiang Sun
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Yonggang Lu
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 701-0202 Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 701-0202 Okayama, Japan
| | - Shushu Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jiayan Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871 Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, 565-0871 Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Modular Assembly of Phosphite Dehydrogenase and Phenylacetone Monooxygenase for Tuning Cofactor Regeneration. Biomolecules 2021; 11:biom11060905. [PMID: 34204515 PMCID: PMC8234031 DOI: 10.3390/biom11060905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023] Open
Abstract
The use of multienzyme complexes can facilitate biocatalytic cascade reactions by employing fusion enzymes or protein tags. In this study, we explored the use of recently developed peptide tags that promote complex formation of the targeted proteins: the dimerization-docking and anchoring domain (RIDD–RIAD) system. These peptides allow self-assembly based on specific protein–protein interactions between both peptides and allow tuning of the ratio of the targeted enzymes as the RIAD peptide binds to two RIDD peptides. Each of these tags were added to the C-terminus of a NADPH-dependent Baeyer–Villiger monooxygenase (phenylacetone monooxygenase, PAMO) and a NADPH-regenerating enzyme (phosphite dehydrogenase, PTDH). Several RIDD/RIAD-tagged PAMO and PTDH variants were successfully overproduced in E. coli and subsequently purified. Complementary tagged enzymes were mixed and analyzed for their oligomeric state, stability, and activity. Complexes were formed in the case of some specific combinations (PAMORIAD–PTDHRIDD and PAMORIAD/RIAD–PTDHRIDD). These enzyme complexes displayed similar catalytic activity when compared with the PTDH–PAMO fusion enzyme. The thermostability of PAMO in these complexes was retained while PTDH displayed somewhat lower thermostability. Evaluation of the biocatalytic performance by conducting conversions revealed that with a self-assembled PAMO–PTDH complex less PTDH was required for the same performance when compared with the PTDH–PAMO fusion enzyme.
Collapse
|
4
|
Grossman-Haham I, Coudray N, Yu Z, Wang F, Zhang N, Bhabha G, Vale RD. Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating. Nat Struct Mol Biol 2021; 28:20-28. [PMID: 33318704 PMCID: PMC7855469 DOI: 10.1038/s41594-020-00519-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 11/14/2022]
Abstract
Motile cilia power cell locomotion and drive extracellular fluid flow by propagating bending waves from their base to tip. The coordinated bending of cilia requires mechanoregulation by the radial spoke (RS) protein complexes and the microtubule central pair (CP). Despite their importance for ciliary motility across eukaryotes, the molecular function of the RSs is unknown. Here, we reconstituted the Chlamydomonas reinhardtii RS head that abuts the CP and determined its structure using single-particle cryo-EM to 3.1-Å resolution, revealing a flat, negatively charged surface supported by a rigid core of tightly intertwined proteins. Mutations in this core, corresponding to those involved in human ciliopathies, compromised the stability of the recombinant complex, providing a molecular basis for disease. Partially reversing the negative charge on the RS surface impaired motility in C. reinhardtii. We propose that the RS-head architecture is well-suited for mechanoregulation of ciliary beating through physical collisions with the CP.
Collapse
Affiliation(s)
- Iris Grossman-Haham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Nan Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Ronald D Vale
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
5
|
Poghosyan E, Iacovache I, Faltova L, Leitner A, Yang P, Diener DR, Aebersold R, Zuber B, Ishikawa T. The structure and symmetry of the radial spoke protein complex in Chlamydomonas flagella. J Cell Sci 2020; 133:jcs245233. [PMID: 32694165 DOI: 10.1242/jcs.245233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
The radial spoke is a key element in a transducer apparatus controlling the motility of eukaryotic cilia. The transduction biomechanics is a long-standing question in cilia biology. The radial spoke has three regions - a spoke head, a bifurcated neck and a stalk. Although the neck and the stalk are asymmetric, twofold symmetry of the head has remained controversial. In this work we used single particle cryo-electron microscopy (cryo-EM) analysis to generate a 3D structure of the whole radial spoke at unprecedented resolution. We show the head region at 15 Å (1.5 nm) resolution and confirm twofold symmetry. Using distance constraints generated by cross-linking mass spectrometry, we locate two components, RSP2 and RSP4, at the head and neck regions. Our biophysical analysis of isolated RSP4, RSP9, and RSP10 affirmed their oligomeric state. Our results enable us to redefine the boundaries of the regions and propose a model of organization of the radial spoke component proteins.
Collapse
Affiliation(s)
- Emiliya Poghosyan
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- ETH Zurich, Department of Biology, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| | - Ioan Iacovache
- University of Bern, Institute of Anatomy, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Lenka Faltova
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Leitner
- ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Dennis R Diener
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Ruedi Aebersold
- ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- University of Zurich, Faculty of Science, Rämistrasse 71, 8006 Zürich, Switzerland
| | - Benoit Zuber
- University of Bern, Institute of Anatomy, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Takashi Ishikawa
- Paul Scherrer Institute, Department of Biology and Chemistry, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- ETH Zurich, Department of Biology, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Beckers A, Adis C, Schuster-Gossler K, Tveriakhina L, Ott T, Fuhl F, Hegermann J, Boldt K, Serth K, Rachev E, Alten L, Kremmer E, Ueffing M, Blum M, Gossler A. The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development. Development 2020; 147:dev.188052. [PMID: 32376681 DOI: 10.1242/dev.188052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Cilia are complex cellular protrusions consisting of hundreds of proteins. Defects in ciliary structure and function, many of which have not been characterised molecularly, cause ciliopathies: a heterogeneous group of human syndromes. Here, we report on the FOXJ1 target gene Cfap206, orthologues of which so far have only been studied in Chlamydomonas and Tetrahymena In mouse and Xenopus, Cfap206 was co-expressed with and dependent on Foxj1 CFAP206 protein localised to the basal body and to the axoneme of motile cilia. In Xenopus crispant larvae, the ciliary beat frequency of skin multiciliated cells was enhanced and bead transport across the epidermal mucociliary epithelium was reduced. Likewise, Cfap206 knockout mice revealed ciliary phenotypes. Electron tomography of immotile knockout mouse sperm flagella indicated a role in radial spoke formation reminiscent of FAP206 function in Tetrahymena Male infertility, hydrocephalus and impaired mucociliary clearance of the airways in the absence of laterality defects in Cfap206 mutant mice suggests that Cfap206 may represent a candidate for the subgroup of human primary ciliary dyskinesias caused by radial spoke defects.
Collapse
Affiliation(s)
- Anja Beckers
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christian Adis
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Karin Schuster-Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Lena Tveriakhina
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tim Ott
- Institute of Zoology, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Franziska Fuhl
- Institute of Zoology, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, OE8840, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Karsten Boldt
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Katrin Serth
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ev Rachev
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Leonie Alten
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, Core Facility Monoclonal Antibodies, Marchioninistr. 25, 81377 München, Germany
| | - Marius Ueffing
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Cho EH, Huh HJ, Jeong I, Lee NY, Koh WJ, Park HC, Ki CS. A nonsense variant in NME5 causes human primary ciliary dyskinesia with radial spoke defects. Clin Genet 2020; 98:64-68. [PMID: 32185794 DOI: 10.1111/cge.13742] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/15/2020] [Accepted: 03/14/2020] [Indexed: 01/07/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by defects in the function or structure of motitle cilia. In most cases, causative variants result in axonemal dynein arm anomalies, however, PCD due to radial spoke (RS) and central pair (CP) of microtubules has been rarely reported. To identify the molecular basis of PCD characterized by RS/CP defects, we performed whole exome sequencing in PCD patients with RS/CP defects. We identified a homozygous nonsense variant (c.572G>A; p.Trp191*) in NME5, which encodes a protein component of the RS neck, in one PCD patient with situs solitus. Morpholino knockdown of nme5 in zebrafish embryos resulted in motile cilia defects with phenotypes compatible with ciliopathy. This is the first study to show NME5 as a PCD-causative gene in humans. Our findings indicate that NME5 screening should be considered for PCD patients with RS/CP defects.
Collapse
Affiliation(s)
- Eun Hye Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Inyoung Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, South Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, South Korea
| | | |
Collapse
|
8
|
Yoke H, Ueno H, Narita A, Sakai T, Horiuchi K, Shingyoji C, Hamada H, Shinohara K. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. PLoS Genet 2020; 16:e1008664. [PMID: 32203505 PMCID: PMC7147805 DOI: 10.1371/journal.pgen.1008664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/10/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Motile cilia/flagella are essential for swimming and generating extracellular fluid flow in eukaryotes. Motile cilia harbor a 9+2 arrangement consisting of nine doublet microtubules with dynein arms at the periphery and a pair of singlet microtubules at the center (central pair). In the central system, the radial spoke has a T-shaped architecture and regulates the motility and motion pattern of cilia. Recent cryoelectron tomography data reveal three types of radial spokes (RS1, RS2, and RS3) in the 96 nm axoneme repeat unit; however, the molecular composition of the third radial spoke, RS3 is unknown. In human pathology, it is well known mutation of the radial spoke head-related genes causes primary ciliary dyskinesia (PCD) including respiratory defect and infertility. Here, we describe the role of the primary ciliary dyskinesia protein Rsph4a in the mouse motile cilia. Cryoelectron tomography reveals that the mouse trachea cilia harbor three types of radial spoke as with the other vertebrates and that all triplet spoke heads are lacking in the trachea cilia of Rsph4a-deficient mice. Furthermore, observation of ciliary movement and immunofluorescence analysis indicates that Rsph4a contributes to the generation of the planar beating of motile cilia by building the distal architecture of radial spokes in the trachea, the ependymal tissues, and the oviduct. Although detailed mechanism of RSs assembly remains unknown, our results suggest Rsph4a is a generic component of radial spoke heads, and could explain the severe phenotype of human PCD patients with RSPH4A mutation.
Collapse
Affiliation(s)
- Hiroshi Yoke
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hironori Ueno
- Molecular Function & Life Sciences, Aichi University of Education, Kariya, Aichi, Japan
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Sakai
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Kahoru Horiuchi
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Chikako Shingyoji
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hiroshi Hamada
- Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Kyosuke Shinohara
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Wu H, Wang J, Cheng H, Gao Y, Liu W, Zhang Z, Jiang H, Li W, Zhu F, Lv M, Liu C, Tan Q, Zhang X, Wang C, Ni X, Chen Y, Song B, Zhou P, Wei Z, Zhang F, He X, Cao Y. Patients with severe asthenoteratospermia carrying SPAG6 or RSPH3 mutations have a positive pregnancy outcome following intracytoplasmic sperm injection. J Assist Reprod Genet 2020; 37:829-840. [PMID: 32124190 DOI: 10.1007/s10815-020-01721-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To investigate the relation between mutations in ciliopathy-related SPAG6 and RSPH3 and male infertility with severe asthenoteratospermia characterized by multiple flagellar malformations and reveal the intracytoplasmic sperm injection (ICSI) outcomes of those primary ciliary dyskinesia (PCD) patients. METHODS Whole-exome sequencing was applied to identify the pathogenic genes for the five PCD patients. The ICSI outcomes of those patients were compared with eight DNAH1-mutated patients and 215 oligo-asthenospermia (OAT) patients. RESULTS We identified, for the first time, the compound heterozygous SPAG6 mutations (c.143_145del: p.48_49del, c.585delA: p.Lys196Serfs*6) in a sporadic PCD patient. Further, a novel homozygous nonsynonymous RSPH3 mutation (c.C799T: p.Arg267Cys) was identified in another PCD patient with consanguineous parents. The pathogenicity of these mutations in the assembly of sperm flagella was confirmed by flagellar ultrastructure analysis, immunofluorescence, and quantitative real-time PCR. All five patients underwent six ICSI cycles. The fertilization rate, blastocyst development rate, and clinical pregnancy rate were 69.3%, 50.0%, and 66.7%, respectively. Four of the five couples, including the subjects carrying mutations in SPAG6 or RSPH3, got healthy children born after ICSI. Additionally, the ICSI outcomes of the five PCD couples were statistically comparable with those of the eight DNAH1-mutated couples and the 215 OAT couples. CONCLUSIONS Mutations in ciliopathy-related SPAG6 and RSPH3 cause severe asthenoteratospermia characterized by multiple flagellar malformations, resulting in sterility. ICSI is an optimal management with a positive pregnancy outcome.
Collapse
Affiliation(s)
- Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiajia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huiru Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Wangjie Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211116, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weiyu Li
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211116, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunyu Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211116, China
| | - Qing Tan
- Anhui Provincial Human Sperm Bank, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaofeng Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqing Ni
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yujie Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feng Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211116, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Beets I, Zhang G, Fenk LA, Chen C, Nelson GM, Félix MA, de Bono M. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron 2019; 105:106-121.e10. [PMID: 31757604 PMCID: PMC6953435 DOI: 10.1016/j.neuron.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/18/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022]
Abstract
The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change. Behavioral flexibility varies across Caenorhabditis and C. elegans wild isolates A natural polymorphism in ARCP-1 underpins inter-individual variation in plasticity ARCP-1 is a dendritic scaffold protein localizing cGMP signaling machinery to cilia Disrupting ARCP-1 alters behavioral plasticity by changing neuropeptide expression
Collapse
Affiliation(s)
- Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gaotian Zhang
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France
| | - Lorenz A Fenk
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Changchun Chen
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France.
| | - Mario de Bono
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
11
|
NME5 frameshift variant in Alaskan Malamutes with primary ciliary dyskinesia. PLoS Genet 2019; 15:e1008378. [PMID: 31479451 PMCID: PMC6743793 DOI: 10.1371/journal.pgen.1008378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia in humans and several domestic animal species. Typical clinical findings are chronic recurrent infections of the respiratory tract and fertility problems. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by PCD. The parents were unaffected suggesting autosomal recessive inheritance. Linkage and homozygosity mapping defined critical intervals comprising ~118 Mb. Whole genome sequencing of one case and comparison to 601 control genomes identified a disease associated frameshift variant, c.43delA, in the NME5 gene encoding a sparsely characterized protein associated with ciliary function. Nme5-/- knockout mice exhibit doming of the skull, hydrocephalus and sperm flagellar defects. The genotypes at NME5:c.43delA showed the expected co-segregation with the phenotype in the Alaskan Malamute family. An additional unrelated Alaskan Malamute with PCD and hydrocephalus that became available later in the study was also homozygous mutant at the NME5:c.43delA variant. The mutant allele was not present in more than 1000 control dogs from different breeds. Immunohistochemistry demonstrated absence of the NME5 protein from nasal epithelia of an affected dog. We therefore propose NME5:c.43delA as the most likely candidate causative variant for PCD in Alaskan Malamutes. These findings enable genetic testing to avoid the unintentional breeding of affected dogs in the future. Furthermore, the results of this study identify NME5 as a novel candidate gene for unsolved human PCD and/or hydrocephalus cases. Motile cilia are required for clearing mucous, infectious agents and inhaled dust from the airways. Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia. Clinical findings may include recurrent airway infections, fertility problems, and sometimes hydrocephalus. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by an autosomal recessive form of PCD. Whole genome sequencing of an affected dog identified a one base pair deletion in the NME5 gene, c.43delA, leading to an early frame-shift and premature stop codon. Later in the study, we became aware of a previously published Alaskan Malamute with PCD involving respiratory infections and hydrocephalus. We observed perfect concordance of the NME5 genotypes with the PCD phenotype in all three affected Alaskan Malamutes and more than 1000 controls. The fact that the third case, which had no documented close relationship to the initial two cases, was homozygous for the same rare mutant NME5 allele, strongly supports our hypothesis that NME5:c.43delA causes the PCD phenotype. We confirmed absence of NME5 protein expression in nasal epithelium of an affected dog. Our results enable genetic testing in dogs and identify NME5 as novel candidate gene for unsolved human PCD cases.
Collapse
|
12
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
13
|
Lorès P, Coutton C, El Khouri E, Stouvenel L, Givelet M, Thomas L, Rode B, Schmitt A, Louis B, Sakheli Z, Chaudhry M, Fernandez-Gonzales A, Mitsialis A, Dacheux D, Wolf JP, Papon JF, Gacon G, Escudier E, Arnoult C, Bonhivers M, Savinov SN, Amselem S, Ray PF, Dulioust E, Touré A. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet 2019; 27:1196-1211. [PMID: 29365104 DOI: 10.1093/hmg/ddy034] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 02/03/2023] Open
Abstract
Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.
Collapse
Affiliation(s)
- Patrick Lorès
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Charles Coutton
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Elma El Khouri
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Laurence Stouvenel
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Maëlle Givelet
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Lucie Thomas
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France
| | - Baptiste Rode
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Alain Schmitt
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Bruno Louis
- Equipe 13, INSERM UMR S955, Faculté de Médecine, Université Paris Est, CNRS ERL7240, Créteil 94000, France
| | - Zeinab Sakheli
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marhaba Chaudhry
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | | | - Alex Mitsialis
- Division of Newborn Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Denis Dacheux
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France.,Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR-CNRS 5234, F-33000 Bordeaux, France
| | - Jean-Philippe Wolf
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Jean-François Papon
- Equipe 13, INSERM UMR S955, Faculté de Médecine, Université Paris Est, CNRS ERL7240, Créteil 94000, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre 94275, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre F-94275, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Estelle Escudier
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France.,Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Christophe Arnoult
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR-CNRS 5234, F-33000 Bordeaux, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Sergey N Savinov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Serge Amselem
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Paris 75012, France.,Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Pierre F Ray
- Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.,CHU de Grenoble, UM GI-DPI, Grenoble F-38000, France
| | - Emmanuel Dulioust
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.,Laboratoire d'Histologie Embryologie-Biologie de la Reproduction, GH Cochin Broca Hôtel Dieu, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France.,Centre National de la Recherche Scientifique UMR8104, Paris 75014, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
14
|
Zhu X, Poghosyan E, Rezabkova L, Mehall B, Sakakibara H, Hirono M, Kamiya R, Ishikawa T, Yang P. The roles of a flagellar HSP40 ensuring rhythmic beating. Mol Biol Cell 2018; 30:228-241. [PMID: 30427757 PMCID: PMC6589562 DOI: 10.1091/mbc.e18-01-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HSP40s are regarded as cochaperones, perpetually shuttling client polypeptides to HSP70s for refolding. However, many HSP40s that are central for disparate processes diverge from this paradigm. To elucidate the noncanonical mechanisms, we investigated HSP40 in the radial spoke (RS) complex in flagella. Disruption of the gene by the MRC1 transposon in Chlamydomonas resulted in jerky flagella. Traditional electron microscopy, cryo-electron tomography, and sub-tomogram analysis revealed RSs of various altered morphologies that, unexpectedly, differed between the two RS species. This indicates that HSP40 locks the RS into a functionally rigid conformation, facilitating its interactions with the adjacent central pair apparatus for transducing locally varied mechanical feedback, which permits rhythmic beating. Missing HSP40, like missing RSs, could be restored in a tip-to-base direction when HSP40 mutants fused with a HSP40 donor cell. However, without concomitant de novo RS assembly, the repair was exceedingly slow, suggesting HSP40/RS-coupled intraflagellar trafficking and assembly. Biochemical analysis and modeling uncovered spoke HSP40’s cochaperone traits. On the basis of our data, we propose that HSP40 accompanies its client RS precursor when traveling to the flagellar tip. Upon arrival, both refold in concert to assemble into the mature configuration. HSP40’s roles in chaperoning and structural maintenance shed new light on its versatility and flagellar biology.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bridget Mehall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Hitoshi Sakakibara
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo 651-2492, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Ritsu Kamiya
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
15
|
Zhang Y, Huang Y, Srivathsan A, Lim TK, Lin Q, He CY. The unusual flagellar-targeting mechanism and functions of the trypanosome ortholog of the ciliary GTPase Arl13b. J Cell Sci 2018; 131:jcs.219071. [PMID: 30097558 PMCID: PMC6140319 DOI: 10.1242/jcs.219071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
The small GTPase Arl13b is one of the most conserved and ancient ciliary proteins. In human and animals, Arl13b is primarily associated with the ciliary membrane, where it acts as a guanine-nucleotide-exchange factor (GEF) for Arl3 and is implicated in a variety of ciliary and cellular functions. We have identified and characterized Trypanosoma brucei (Tb)Arl13, the sole Arl13b homolog in this evolutionarily divergent, protozoan parasite. TbArl13 has conserved flagellar functions and exhibits catalytic activity towards two different TbArl3 homologs. However, TbArl13 is distinctly associated with the axoneme through a dimerization/docking (D/D) domain. Replacing the D/D domain with a sequence encoding a flagellar membrane protein created a viable alternative to the wild-type TbArl13 in our RNA interference (RNAi)-based rescue assay. Therefore, flagellar enrichment is crucial for TbArl13, but mechanisms to achieve this could be flexible. Our findings thus extend the understanding of the roles of Arl13b and Arl13b–Arl3 pathway in a divergent flagellate of medical importance. This article has an associated First Person interview with the first author of the paper. Highlighted Article: All roads lead to cilia – how the essential flagellar enrichment of Arl13 is achieved in trypanosome cells using a fundamentally different strategy compared with that of animal cells.
Collapse
Affiliation(s)
- Yiliu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yameng Huang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Amrita Srivathsan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cynthia Y He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
16
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
17
|
Liu Y, Visetsouk M, Mynlieff M, Qin H, Lechtreck KF, Yang P. H +- and Na +- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga Chlamydomonas. eLife 2017; 6:26002. [PMID: 28875932 PMCID: PMC5779235 DOI: 10.7554/elife.26002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/05/2017] [Indexed: 12/27/2022] Open
Abstract
Although microtubules are known for dynamic instability, the dynamicity is considered to be tightly controlled to support a variety of cellular processes. Yet diverse evidence suggests that this is not applicable to Chlamydomonas, a biflagellate fresh water green alga, but intense autofluorescence from photosynthesis pigments has hindered the investigation. By expressing a bright fluorescent reporter protein at the endogenous level, we demonstrate in real time discreet sweeping changes in algal microtubules elicited by rises of intracellular H+ and Na+. These results from this model organism with characteristics of animal and plant cells provide novel explanations regarding how pH may drive cellular processes; how plants may respond to, and perhaps sense stresses; and how organisms with a similar sensitive cytoskeleton may be susceptible to environmental changes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Mike Visetsouk
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Michelle Mynlieff
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, United States
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athen, United States
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| |
Collapse
|
18
|
Oda T. Three-dimensional structural labeling microscopy of cilia and flagella. Microscopy (Oxf) 2017; 66:234-244. [PMID: 28541401 DOI: 10.1093/jmicro/dfx018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023] Open
Abstract
Locating a molecule within a cell using protein-tagging and immunofluorescence is a fundamental technique in cell biology, whereas in three-dimensional electron microscopy, locating a subunit within a macromolecular complex remains challenging. Recently, we developed a new structural labeling method for cryo-electron tomography by taking advantage of the biotin-streptavidin system, and have intensively used this method to locate a number of proteins and protein domains in cilia and flagella. In this review, we summarize our findings on the three-dimensional architecture of the axoneme, especially the importance of coiled-coil proteins. In addition, we provide an overview of the technical aspects of our structural labeling method.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
19
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
20
|
Zhu X, Liu Y, Yang P. Radial Spokes-A Snapshot of the Motility Regulation, Assembly, and Evolution of Cilia and Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028126. [PMID: 27940518 DOI: 10.1101/cshperspect.a028126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Propulsive forces generated by cilia and flagella are used in events that are critical for the thriving of diverse eukaryotic organisms in their environments. Despite distinctive strokes and regulations, the majority of them adopt the 9+2 axoneme that is believed to exist in the last eukaryotic common ancestor. Only a few outliers have opted for a simpler format that forsakes the signature radial spokes and the central pair apparatus, although both are unnecessary for force generation or rhythmicity. Extensive evidence has shown that they operate as an integral system for motility control. Recent studies have made remarkable progress on the radial spoke. This review will trace how the new structural, compositional, and evolutional insights pose significant implications on flagella biology and, conversely, ciliopathy.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Yi Liu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Pinfen Yang
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
21
|
Rao VG, Sarafdar RB, Chowdhury TS, Sivadas P, Yang P, Dongre PM, D'Souza JS. Myc-binding protein orthologue interacts with AKAP240 in the central pair apparatus of the Chlamydomonas flagella. BMC Cell Biol 2016; 17:24. [PMID: 27287193 PMCID: PMC4901443 DOI: 10.1186/s12860-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Flagella and cilia are fine thread-like organelles protruding from cells that harbour them. The typical ‘9 + 2’ cilia confer motility on these cells. Although the mechanistic details of motility remain elusive, the dynein-driven motility is regulated by various kinases and phosphatases. A-kinase anchoring proteins (AKAPs) are scaffolds that bind to a variety of such proteins. Usually, they are known to possess a dedicated domain that in vitro interacts with the regulatory subunits (RI and RII) present in the cAMP-dependent protein kinase (PKA) holoenzyme. These subunits conventionally harbour contiguous stretches of a.a. residues that reveal the presence of the Dimerization Docking (D/D) domain, Catalytic interface domain and cAMP-Binding domain. The Chlamydomonas reinhardtii flagella harbour two AKAPs; viz., the radial spoke AKAP97 or RSP3 and the central pair AKAP240. Both these were identified on the basis of their RII-binding property. Interestingly, AKAP97 binds in vivo to two RII-like proteins (RSP7 and RSP11) that contain only the D/D domain. Results We found a Chlamydomonas Flagellar Associated Protein (FAP174) orthologous to MYCBP-1, a protein that binds to organellar AKAPs and Myc onco-protein. An in silico analysis shows that the N-terminus of FAP174 is similar to those RII domain-containing proteins that have binding affinities to AKAPs. Binding of FAP174 was tested with the AKAP97/RSP3 using in vitro pull down assays; however, this binding was rather poor with AKAP97/RSP3. Antibodies were generated against FAP174 and the cellular localization was studied using Western blotting and immunoflourescence in wild type and various flagella mutants. We show that FAP174 localises to the central pair of the axoneme. Using overlay assays we show that FAP174 binds AKAP240 previously identified in the C2 portion of the central pair apparatus. Conclusion It appears that the flagella of Chlamydomonas reinhardtii contain proteins that bind to AKAPs and except for the D/D domain, lack the conventional a.a. stretches of PKA regulatory subunits (RSP7 and RSP11). We add FAP174 to this growing list. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0103-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Ruhi B Sarafdar
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Twinkle S Chowdhury
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Priyanka Sivadas
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Pinfen Yang
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Jacinta S D'Souza
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
22
|
Jeanson L, Copin B, Papon JF, Dastot-Le Moal F, Duquesnoy P, Montantin G, Cadranel J, Corvol H, Coste A, Désir J, Souayah A, Kott E, Collot N, Tissier S, Louis B, Tamalet A, de Blic J, Clement A, Escudier E, Amselem S, Legendre M. RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. Am J Hum Genet 2015; 97:153-62. [PMID: 26073779 PMCID: PMC4571005 DOI: 10.1016/j.ajhg.2015.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/05/2015] [Indexed: 01/16/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive condition resulting from structural and/or functional defects of the axoneme in motile cilia and sperm flagella. The great majority of mutations identified so far involve genes whose defects result in dynein-arm anomalies. By contrast, PCD due to CC/RS defects (those in the central complex [CC] and radial spokes [RSs]), which might be difficult to diagnose, remains mostly unexplained. We identified non-ambiguous RSPH3 mutations in 5 of 48 independent families affected by CC/RS defects. RSPH3, whose ortholog in the flagellated alga Chlamydomonas reinhardtii encodes a RS-stalk protein, is mainly expressed in respiratory and testicular cells. Its protein product, which localizes within the cilia of respiratory epithelial cells, was undetectable in airway cells from an individual with RSPH3 mutations and in whom RSPH23 (a RS-neck protein) and RSPH1 and RSPH4A (RS-head proteins) were found to be still present within cilia. In the case of RSPH3 mutations, high-speed-videomicroscopy analyses revealed the coexistence of immotile cilia and motile cilia with movements of reduced amplitude. A striking feature of the ultrastructural phenotype associated with RSPH3 mutations is the near absence of detectable RSs in all cilia in combination with a variable proportion of cilia with CC defects. Overall, this study shows that RSPH3 mutations contribute to disease in more than 10% of PCD-affected individuals with CC/RS defects, thereby allowing an accurate diagnosis to be made in such cases. It also unveils the key role of RSPH3 in the proper building of RSs and the CC in humans.
Collapse
Affiliation(s)
- Ludovic Jeanson
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - Bruno Copin
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Jean-François Papon
- INSERM UMR S955, Equipe 13, Université Paris-Est Créteil, Créteil 94000, France; Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre 94275, France
| | - Florence Dastot-Le Moal
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Philippe Duquesnoy
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - Guy Montantin
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Jacques Cadranel
- Service de Pneumologie-Centre Expert Maladies Pulmonaires Rares, Hôpital Tenon, Assistance Publique - Hôpitaux de Paris, Paris 75020, France; Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75020, France
| | - Harriet Corvol
- Service de Pneumologie Pédiatrique, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris and Centre National de Référence des Maladies Respiratoires Rares, Paris 75012, France; INSERM UMR S938, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - André Coste
- INSERM UMR S955, Equipe 13, Université Paris-Est Créteil, Créteil 94000, France; Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Hôpital Intercommunal et Groupe Hospitalier Henri Mondor-Albert Chenevier, Assistance Publique - Hôpitaux de Paris, Créteil 94000, France
| | - Julie Désir
- Département de Génétique Médicale, Université Libre de Bruxelles and Hôpital Erasme, Brussels 1020, Belgium
| | - Anissa Souayah
- Service d'Oto-Rhino-Laryngologie, Hôpital Universitaire des Enfants Reine Fabiola, Brussels 1020, Belgium
| | - Esther Kott
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France
| | - Nathalie Collot
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Sylvie Tissier
- Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Bruno Louis
- INSERM UMR S955, Equipe 13, Université Paris-Est Créteil, Créteil 94000, France
| | - Aline Tamalet
- Service de Pneumologie Pédiatrique, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris and Centre National de Référence des Maladies Respiratoires Rares, Paris 75012, France
| | - Jacques de Blic
- Service de Pneumologie et Allergologie Pédiatriques, Groupe Hospitalier Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris and Université Paris Descartes, Paris 75015, France
| | - Annick Clement
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Pneumologie Pédiatrique, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris and Centre National de Référence des Maladies Respiratoires Rares, Paris 75012, France
| | - Estelle Escudier
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| | - Serge Amselem
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France.
| | - Marie Legendre
- INSERM UMR S933, Université Pierre et Marie Curie (Paris 6), Sorbonne Universités, Paris 75012, France; Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris 75012, France
| |
Collapse
|
23
|
Peng M, Aye TT, Snel B, van Breukelen B, Scholten A, Heck AJR. Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution. J Proteome Res 2015; 14:2976-87. [DOI: 10.1021/acs.jproteome.5b00370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mao Peng
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Department
of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Thin Thin Aye
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
24
|
Yan R, Hu X, Zhang W, Song L, Wang J, Yin Y, Chen S, Zhao S. The mouse radial spoke protein 3 is a nucleocytoplasmic shuttling protein that promotes neurogenesis. Histochem Cell Biol 2015; 144:309-19. [PMID: 26082196 DOI: 10.1007/s00418-015-1338-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/27/2022]
Abstract
Radial spoke protein 3 (RSP3) was first identified in Chlamydomonas as a component of radial spoke, which is important for flagellar motility. The mammalian homolog of the Chlamydomonas RSP3 protein is found to be a mammalian protein kinase A-anchoring protein that binds ERK1/2. Here we show that mouse RSP3 is a nucleocytoplasmic shuttling protein. The full-length RSP3-EGFP fusion protein is mainly located in the cytoplasm of Chinese hamster ovary cells. However, by using deletion mutants of RSP3, we identified two nuclear localization signals and a nuclear export signal in RSP3. Moreover, using in utero electroporation, we found that overexpression of RSP3 in the developing cerebral cortex promotes neurogenesis. The layer II/III of the neocortex was much thicker in the RSP3-transfected region than that of the untransfected region in the neocortex. We also show that RSP3 is specifically located in the primary cilia of the radial glial cells, where it acts as a signaling mediator that regulates neurogenesis. Thus, our results suggest that RSP3 is a nucleocytoplasmic shuttling protein and plays an essential role in neurogenesis.
Collapse
Affiliation(s)
- Runchuan Yan
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lingzhen Song
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiutao Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
25
|
Hu X, Yan R, Song L, Lu X, Chen S, Zhao S. Subcellular localization and function of mouse radial spoke protein 3 in mammalian cells and central nervous system. J Mol Histol 2014; 45:723-32. [PMID: 25079589 DOI: 10.1007/s10735-014-9590-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
Abstract
Radial spoke protein 3 (RSP3) was first identified in Chlamydomonas as a component of the radial spoke. The mammalian homologue of the Chlamydomonas RSP3 gene is mainly expressed in testis and developing central nervous system (CNS). However, the subcellular localization and function of mammalian RSP3 in the developing brain and mammalian cells remain poorly understood. Here we show that the mouse RSP3 accumulates at the perinuclear region of Chinese hamster ovary (CHO) and 293T cells. Detailed analysis shows that the mouse RSP3 is not co-localized with the endoplasmic reticulum or Golgi apparatus markers in CHO cells. Using in utero electroporation, we found that over-expression of mammalian RSP3 increases the percentage of neurons reaching the upper cortical plate. In vivo analysis shows that the mouse RSP3 mainly accumulates in the proximal cytoplasmic dilation of the leading process of the migrating cortical neurons. Furthermore, we find that the mammalian RSP3 concentrates in the ependymal cilia as a component of the cilia. Thus, our data provide the first evidence for the subcellular localization and function of mammalian RSP3 in mammalian cells and developing CNS.
Collapse
Affiliation(s)
- Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
26
|
Oda T, Yanagisawa H, Yagi T, Kikkawa M. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. ACTA ACUST UNITED AC 2014; 204:807-19. [PMID: 24590175 PMCID: PMC3941055 DOI: 10.1083/jcb.201312014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonspecific intermolecular collision between the central pair apparatus and radial spokes underlies a mechanosensing mechanism that regulates dynein activity in Chlamydomonas flagella. Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonasreinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
27
|
Sivadas P, Dienes JM, St. Maurice M, Meek WD, Yang P. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex. J Gen Physiol 2012. [DOI: 10.1085/jgp1406oia10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|