1
|
Khan MAI, Chirasani VR, Sarker M, McCormick L, Campbell SL. Molecular basis for differential PIP2-mediated association between Vinculin and its splice isoform Metavinculin. J Biol Chem 2025:110232. [PMID: 40378952 DOI: 10.1016/j.jbc.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/28/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025] Open
Abstract
Vinculin (Vcn) and its splice variant metavinculin (MVcn) are cell adhesion proteins that regulate cell morphology, adhesion and motility. They function as scaffold proteins that anchor membrane receptors to filamentous actin (F-actin) at focal adhesions (FA) and cell-cell junctions. MVcn bears an extra 68 amino acid insert in the tail domain and is selectively expressed in cardiac and smooth muscle cells at sub-stoichiometric levels relative to Vcn. Mutations in the MVcn tail domain (MVt) promote cardiomyopathy, yet how these mutations alter ligand interactions to promote defects in force transduction and reduced blood flow is unclear. One difference between Vcn and MVcn lies in the ability to reorganize F-actin, with MVcn negatively regulating Vcn-mediated F-actin bundling. Vcn associates with phosphatidylinositol 4,5-bisphosphate (PIP2) through its tail domain (Vt) to drive recruitment, activation and FA turnover. However, it remains unclear whether MVcn specifically associates with PIP2-containing membranes and how such interactions might influence its functional interplay with Vcn in tissues where both isoforms coexist. To evaluate the interaction of MVt and MVt cardiomyopathy mutants with PIP2-membranes in comparison with Vt, we conducted mutagenesis, phospholipid-association assays and computational modeling. We found that MVt shows reduced association for PIP2-containing liposomes relative to Vt due to sequence differences within the insert region. Moreover, mutations in MVt that promote cardiomyopathies do not affect PIP2-dependent lipid association. These findings suggest that MVcn differs from Vcn in driving PIP2-mediated membrane association and sheds light on the coordinate role of Vcn and MVcn in membrane association as well as MVcn cardiomyopathy defects.
Collapse
Affiliation(s)
- Mohammad Ashhar I Khan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; R. L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muzaddid Sarker
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura McCormick
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Iu E, Bogatch A, Deng W, Humphries JD, Yang C, Valencia FR, Li C, McCulloch CA, Tanentzapf G, Svitkina TM, Humphries MJ, Plotnikov SV. A TRPV4-dependent calcium signaling axis governs lamellipodial actin architecture to promote cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646012. [PMID: 40196692 PMCID: PMC11974816 DOI: 10.1101/2025.03.28.646012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cell migration is crucial for development and tissue homeostasis, while its dysregulation leads to severe pathologies. Cell migration is driven by the extension of actin-based lamellipodia protrusions, powered by actin polymerization, which is tightly regulated by signaling pathways, including Rho GTPases and Ca2+ signaling. While the importance of Ca2+ signaling in lamellipodia protrusions has been established, the molecular mechanisms linking Ca2+ to lamellipodia assembly are unknown. Here, we identify a novel Ca2+ signaling axis involving the mechano-gated channel TRPV4, which regulates lamellipodia protrusions in various cell types. Using Ca2+ and FRET imaging, we demonstrate that TRPV4-mediated Ca2+ influx upregulates RhoA activity within lamellipodia, which then facilitates formin-mediated actin assembly. Mechanistically, we identify CaMKII and TEM4 as key mediators relaying the TRPV4-mediated Ca2+ signal to RhoA. These data define a molecular pathway by which Ca2+ influx regulates small GTPase activity within a specific cellular domain - lamellipodia - and demonstrate the critical role in organizing the actin machinery and promoting cell migration in diverse biological contexts.
Collapse
Affiliation(s)
- Ernest Iu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Bogatch
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wenjun Deng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan D. Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fernando R. Valencia
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Sergey V. Plotnikov
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
4
|
James J, Fokin AI, Guschin DY, Wang H, Polesskaya A, Rubtsova SN, Clainche CL, Silberzan P, Gautreau AM, Romero S. Vinculin-Arp2/3 interaction inhibits branched actin assembly to control migration and proliferation. Life Sci Alliance 2025; 8:e202402583. [PMID: 39547716 PMCID: PMC11568829 DOI: 10.26508/lsa.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Vinculin is a mechanotransducer that reinforces links between cell adhesions and linear arrays of actin filaments upon myosin-mediated contractility. Both adhesions to the substratum and neighboring cells, however, are initiated within membrane protrusions that originate from Arp2/3-nucleated branched actin networks. Vinculin has been reported to interact with the Arp2/3 complex, but the role of this interaction remains poorly understood. Here, we compared the phenotypes of vinculin knock-out (KO) cells with those of knock-in (KI-P878A) cells, where the point mutation P878A that impairs the Arp2/3 interaction is introduced in the two vinculin alleles of MCF10A mammary epithelial cells. The interaction of vinculin with Arp2/3 inhibits actin polymerization at membrane protrusions and decreases migration persistence of single cells. In cell monolayers, vinculin recruits Arp2/3 and the vinculin-Arp2/3 interaction participates in cell-cell junction plasticity. Through this interaction, vinculin controls the decision to enter a new cell cycle as a function of cell density.
Collapse
Affiliation(s)
- John James
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Artem I Fokin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Dmitry Y Guschin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hong Wang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Polesskaya
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Svetlana N Rubtsova
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascal Silberzan
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphane Romero
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
5
|
Zihni C. Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics. Bioessays 2025; 47:e2300197. [PMID: 39663766 DOI: 10.1002/bies.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a "nibbling" action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an "integrin adhesome-like" network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.
Collapse
Affiliation(s)
- Ceniz Zihni
- Faculty of Health & Life Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Li P, Zhao G, Tang T, He F, Liu X, Li N, Peng Y. Avian Pasteurella multocida induces chicken macrophage apoptosis by inhibiting the Zyxin-FAK-AKT-FoxO1/NF-κB axis. Poult Sci 2024; 103:104504. [PMID: 39510005 PMCID: PMC11577211 DOI: 10.1016/j.psj.2024.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Pasteurella multocida (P. multocida) can cause infection in various animals, especially livestock and poultry, which can lead to substantial losses to the breeding industry. However, the pathogenesis of avian P. multocida remains largely unknown. In this study, the mechanisms of avian P. multocida pathogenesis were explored. Chicken macrophage HD11 cells were infected with the avian strain PmQ and the bovine strain PmCQ2. PmQ induced higher cytotoxicity and apoptosis and exerted a stronger anti-phagocytotic effect on HD11 cells than PmCQ2. RNA sequencing analysis revealed that focal adhesion (FA)-related genes were significantly downregulated in PmQ-infected HD11 cells compared with that of PmCQ2. Subsequently, phalloidin staining of the F-actin assembly revealed that PmQ more significantly inhibited the formation of FAs in HD11 than PmCQ2. Western blot analysis revealed that the levels of Zyxin and phosphorylated focal adhesion kinase (FAK) were significantly decreased in PmQ-infected cells, confirming that PmQ inhibited FAs. Consequently, PmQ inhibited the FA downstream factor Akt, which decreased NF-κB and FoxO1 phosphorylation, as evidenced by the decreased expression of downstream anti-apoptotic genes (GADD45B, BCL2L1, BCL2A1, and BIRC2) and increased expression of downstream pro-apoptotic genes (BCL6, PKL2, PKL3, and KLF2). Conversely, pharmaceutically inhibiting FA formation using latrunculin A better enhanced PmCQ2-induced than PmQ-induced apoptosis in HD11 cells. Similarly, the knockdown of Zyxin or FoxO1 by siRNA both boosted the PmCQ2-induced apoptosis rates equal to those of PmQ. These results demonstrated that PmQ inhibited Zyxin-dependent FA formation and disrupted the FAK-AKT-FoxO1/NF-κB pathway to induce apoptosis in chicken macrophages. This study thus offers insights into the pathogenesis of avian P. multocida, which could facilitate the development of new strategies against P. multocida infection.
Collapse
Affiliation(s)
- Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Guangfu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Tao Tang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Fang He
- College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Xiongli Liu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Chen T, Fernández-Espartero CH, Illand A, Tsai CT, Yang Y, Klapholz B, Jouchet P, Fabre M, Rossier O, Cui B, Lévêque-Fort S, Brown NH, Giannone G. Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue. Nat Commun 2024; 15:8691. [PMID: 39375335 PMCID: PMC11458790 DOI: 10.1038/s41467-024-52899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| | - Cecilia H Fernández-Espartero
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Sevilla, Spain
| | - Abigail Illand
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Ching-Ting Tsai
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Yang Yang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pierre Jouchet
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Mélanie Fabre
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Bianxiao Cui
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Sandrine Lévêque-Fort
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| |
Collapse
|
8
|
Dutta S, Muraganadan T, Vasudevan M. Evaluation of lamin A/C mechanotransduction under different surface topography in LMNA related muscular dystrophy. Cytoskeleton (Hoboken) 2024. [PMID: 39091017 DOI: 10.1002/cm.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
- Theomics International Private Limited, Bengaluru, India
| | - T Muraganadan
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
9
|
Marvin JC, Liu EJ, Chen HH, Shiovitz DA, Andarawis-Puri N. Proteins Derived From MRL/MpJ Tendon Provisional Extracellular Matrix and Secretome Promote Pro-Regenerative Tenocyte Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602500. [PMID: 39026846 PMCID: PMC11257490 DOI: 10.1101/2024.07.08.602500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tendinopathies are prevalent musculoskeletal conditions that have no effective therapies to attenuate scar formation. In contrast to other adult mammals, the tendons of Murphy Roths Large (MRL/MpJ) mice possess a superior healing capacity following acute and overuse injuries. Here, we hypothesized that the application of biological cues derived from the local MRL/MpJ tendon environment would direct otherwise scar-mediated tenocytes towards a pro-regenerative MRL/MpJ-like phenotype. We identified soluble factors enriched in the secretome of MRL/MpJ tenocytes using bioreactor systems and quantitative proteomics. We then demonstrated that the combined administration of structural and soluble constituents isolated from decellularized MRL/MpJ tendon provisional ECM (dPECM) and the secretome stimulate scar-mediated rodent tenocytes towards enhanced mechanosensitivity, proliferation, intercellular communication, and ECM deposition associated with MRL/MpJ cell behavior. Our findings highlight key biological mechanisms that drive MRL/MpJ tenocyte activity and their interspecies utility to be harnessed for therapeutic strategies that promote pro-regenerative healing outcomes. Teaser Proteins enriched in a super-healer mouse strain elicit interspecies utility in promoting pro-regenerative tenocyte behavior.
Collapse
|
10
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
11
|
Hu Y, Li H, Zhang C, Feng J, Wang W, Chen W, Yu M, Liu X, Zhang X, Liu Z. DNA-based ForceChrono probes for deciphering single-molecule force dynamics in living cells. Cell 2024; 187:3445-3459.e15. [PMID: 38838668 DOI: 10.1016/j.cell.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.
Collapse
Affiliation(s)
- Yuru Hu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Hongyun Li
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Chen Zhang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jingjing Feng
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Wenxu Wang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Miao Yu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xinping Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xinghua Zhang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
12
|
Litschel T, Kelley CF, Cheng X, Babl L, Mizuno N, Case LB, Schwille P. Membrane-induced 2D phase separation of the focal adhesion protein talin. Nat Commun 2024; 15:4986. [PMID: 38862544 PMCID: PMC11166923 DOI: 10.1038/s41467-024-49222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Focal adhesions form liquid-like assemblies around activated integrin receptors at the plasma membrane. How they achieve their flexible properties is not well understood. Here, we use recombinant focal adhesion proteins to reconstitute the core structural machinery in vitro. We observe liquid-liquid phase separation of the core focal adhesion proteins talin and vinculin for a spectrum of conditions and interaction partners. Intriguingly, we show that binding to PI(4,5)P2-containing membranes triggers phase separation of these proteins on the membrane surface, which in turn induces the enrichment of integrin in the clusters. We suggest a mechanism by which 2-dimensional biomolecular condensates assemble on membranes from soluble proteins in the cytoplasm: lipid-binding triggers protein activation and thus, liquid-liquid phase separation of these membrane-bound proteins. This could explain how early focal adhesions maintain a structured and force-resistant organization into the cytoplasm, while still being highly dynamic and able to quickly assemble and disassemble.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Charlotte F Kelley
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Xiaohang Cheng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leon Babl
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Laboratory of Structural Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
13
|
Li M, Xing X, Yuan J, Zeng Z. Research progress on the regulatory role of cell membrane surface tension in cell behavior. Heliyon 2024; 10:e29923. [PMID: 38720730 PMCID: PMC11076917 DOI: 10.1016/j.heliyon.2024.e29923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cell membrane surface tension has emerged as a pivotal biophysical factor governing cell behavior and fate. This review systematically delineates recent advances in techniques for cell membrane surface tension quantification, mechanosensing mechanisms, and regulatory roles of cell membrane surface tension in modulating major cellular processes. Micropipette aspiration, tether pulling, and newly developed fluorescent probes enable the measurement of cell membrane surface tension with spatiotemporal precision. Cells perceive cell membrane surface tension via conduits including mechanosensitive ion channels, curvature-sensing proteins (e.g. BAR domain proteins), and cortex-membrane attachment proteins (e.g. ERM proteins). Through membrane receptors like integrins, cells convert mechanical cues into biochemical signals. This conversion triggers cytoskeletal remodeling and extracellular matrix interactions in response to environmental changes. Elevated cell membrane surface tension suppresses cell spreading, migration, and endocytosis while facilitating exocytosis. Moreover, reduced cell membrane surface tension promotes embryonic stem cell differentiation and cancer cell invasion, underscoring cell membrane surface tension as a regulator of cell plasticity. Outstanding questions remain regarding cell membrane surface tension regulatory mechanisms and roles in tissue development/disease in vivo. Emerging tools to manipulate cell membrane surface tension with high spatiotemporal control in combination with omics approaches will facilitate the elucidation of cell membrane surface tension-mediated effects on signaling networks across various cell types/states. This will accelerate the development of cell membrane surface tension-based biomarkers and therapeutics for regenerative medicine and cancer. Overall, this review provides critical insights into cell membrane surface tension as a potent orchestrator of cell function, with broader impacts across mechanobiology.
Collapse
Affiliation(s)
- Manqing Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Zhuoying Zeng
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, 518035, China
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
14
|
Yousafzai MS, Amiri S, Sun ZG, Pahlavan AA, Murrell M. Confinement induces internal flows in adherent cell aggregates. J R Soc Interface 2024; 21:20240105. [PMID: 38774959 PMCID: PMC11285874 DOI: 10.1098/rsif.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 07/31/2024] Open
Abstract
During mesenchymal migration, F-actin protrusion at the leading edge and actomyosin contraction determine the retrograde flow of F-actin within the lamella. The coupling of this flow to integrin-based adhesions determines the force transmitted to the extracellular matrix and the net motion of the cell. In tissues, motion may also arise from convection, driven by gradients in tissue-scale surface tensions and pressures. However, how migration coordinates with convection to determine the net motion of cellular ensembles is unclear. To explore this, we study the spreading of cell aggregates on adhesive micropatterns on compliant substrates. During spreading, a cell monolayer expands from the aggregate towards the adhesive boundary. However, cells are unable to stabilize the protrusion beyond the adhesive boundary, resulting in retraction of the protrusion and detachment of cells from the matrix. Subsequently, the cells move upwards and rearwards, yielding a bulk convective flow towards the centre of the aggregate. The process is cyclic, yielding a steady-state balance between outward (protrusive) migration along the surface, and 'retrograde' (contractile) flows above the surface. Modelling the cell aggregates as confined active droplets, we demonstrate that the interplay between surface tension-driven flows within the aggregate, radially outward monolayer flow and conservation of mass leads to an internal circulation.
Collapse
Affiliation(s)
- M. S. Yousafzai
- Department of Biomedical Engineering, Yale University, , CT06511, USA
- Systems Biology Institute, Yale University, CT06516, USA
| | - S. Amiri
- Systems Biology Institute, Yale University, CT06516, USA
- Department of Mechanical Engineering and Materials Science, Yale University, , CT06511, USA
| | - Z. G. Sun
- Systems Biology Institute, Yale University, CT06516, USA
- Department of Physics, Yale University, , CT06511, USA
| | - A. A. Pahlavan
- Department of Mechanical Engineering and Materials Science, Yale University, , CT06511, USA
| | - M. Murrell
- Department of Biomedical Engineering, Yale University, , CT06511, USA
- Systems Biology Institute, Yale University, CT06516, USA
- Department of Physics, Yale University, , CT06511, USA
| |
Collapse
|
15
|
Schmitt MS, Colen J, Sala S, Devany J, Seetharaman S, Caillier A, Gardel ML, Oakes PW, Vitelli V. Machine learning interpretable models of cell mechanics from protein images. Cell 2024; 187:481-494.e24. [PMID: 38194965 PMCID: PMC11225795 DOI: 10.1016/j.cell.2023.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/20/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.
Collapse
Affiliation(s)
- Matthew S Schmitt
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA; Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan Colen
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA; Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637, USA
| | - Stefano Sala
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - John Devany
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Shailaja Seetharaman
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Alexia Caillier
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Margaret L Gardel
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA.
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| | - Vincenzo Vitelli
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA; Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Yamashiro S, Rutkowski DM, Lynch KA, Liu Y, Vavylonis D, Watanabe N. Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin. Nat Commun 2023; 14:8468. [PMID: 38123541 PMCID: PMC10733299 DOI: 10.1038/s41467-023-44018-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Force transmission at integrin-based adhesions is important for cell migration and mechanosensing. Talin is an essential focal adhesion (FA) protein that links F-actin to integrins. F-actin constantly moves on FAs, yet how Talin simultaneously maintains the connection to F-actin and transmits forces to integrins remains unclear. Here we show a critical role of dynamic Talin unfolding in force transmission. Using single-molecule speckle microscopy, we found that the majority of Talin are bound only to either F-actin or the substrate, whereas 4.1% of Talin is linked to both structures via elastic transient clutch. By reconstituting Talin knockdown cells with Talin chimeric mutants, in which the Talin rod subdomains are replaced with the stretchable β-spectrin repeats, we show that the stretchable property is critical for force transmission. Simulations suggest that unfolding of the Talin rod subdomains increases in the linkage duration and work at FAs. This study elucidates a force transmission mechanism, in which stochastic molecular stretching bridges two cellular structures moving at different speeds.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | - Kelli Ann Lynch
- Department of Physics, Lehigh University, Bethlehem, PA, USA
- University of South Florida, Tampa, FL, USA
| | - Ying Liu
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Chirasani VR, Khan MAI, Malavade JN, Dokholyan NV, Hoffman BD, Campbell SL. Molecular basis and cellular functions of vinculin-actin directional catch bonding. Nat Commun 2023; 14:8300. [PMID: 38097542 PMCID: PMC10721916 DOI: 10.1038/s41467-023-43779-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
The ability of cells and tissues to respond differentially to mechanical forces applied in distinct directions is mediated by the ability of load-bearing proteins to preferentially maintain physical linkages in certain directions. However, the molecular basis and biological consequences of directional force-sensitive binding remain unclear. Vinculin (Vcn) is a load-bearing linker protein that exhibits directional catch bonding due to interactions between the Vcn tail domain (Vt) and filamentous (F)-actin. We developed a computational approach to predict Vcn residues involved in directional catch bonding and produced a set of associated Vcn variants with unaltered Vt structure, actin binding, or phospholipid interactions. Incorporation of the variants did not affect Vcn activation but reduced Vcn loading and altered exchange dynamics, consistent with the loss of directional catch bonding. Expression of Vcn variants perturbed the coordination of subcellular structures and cell migration, establishing key cellular functions for Vcn directional catch bonding.
Collapse
Affiliation(s)
- Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohammad Ashhar I Khan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juilee N Malavade
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Chemistry, Penn State College of Medicine, Hershey, PA, USA.
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University, Durham, NC, USA.
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Mezher M, Dumbali S, Fenn I, Lamb C, Miller C, Sharmin S, Cabe JI, Bejar-Padilla V, Conway D, Maruthamuthu V. Vinculin is essential for sustaining normal levels of endogenous forces at cell-cell contacts. Biophys J 2023; 122:4518-4527. [PMID: 38350000 PMCID: PMC10719050 DOI: 10.1016/j.bpj.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 02/15/2024] Open
Abstract
Transmission of cell-generated (i.e., endogenous) tension at cell-cell contacts is crucial for tissue shape changes during morphogenesis and adult tissue repair in tissues such as epithelia. E-cadherin-based adhesions at cell-cell contacts are the primary means by which endogenous tension is transmitted between cells. The E-cadherin-β-catenin-α-catenin complex mechanically couples to the actin cytoskeleton (and thereby the cell's contractile machinery) both directly and indirectly. However, the key adhesion constituents required for substantial endogenous force transmission at these adhesions in cell-cell contacts are unclear. Due to the role of α-catenin as a mechanotransducer that recruits vinculin at cell-cell contacts, we expected α-catenin to be essential for sustaining normal levels of force transmission. Instead, using the traction force imbalance method to determine the inter-cellular force at a single cell-cell contact between cell pairs, we found that it is vinculin that is essential for sustaining normal levels of endogenous force transmission, with absence of vinculin decreasing the inter-cellular tension by over 50%. Our results constrain the potential mechanical pathways of force transmission at cell-cell contacts and suggest that vinculin can transmit forces at E-cadherin adhesions independent of α-catenin, possibly through β-catenin. Furthermore, we tested the ability of lateral cell-cell contacts to withstand external stretch and found that both vinculin and α-catenin are essential to maintain cell-cell contact stability under external forces.
Collapse
Affiliation(s)
- Mazen Mezher
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Sandeep Dumbali
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Ian Fenn
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Carter Lamb
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Conrad Miller
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Saika Sharmin
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Vidal Bejar-Padilla
- Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia.
| |
Collapse
|
19
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Honasoge KS, Karagöz Z, Goult BT, Wolfenson H, LaPointe VLS, Carlier A. Force-dependent focal adhesion assembly and disassembly: A computational study. PLoS Comput Biol 2023; 19:e1011500. [PMID: 37801464 PMCID: PMC10584152 DOI: 10.1371/journal.pcbi.1011500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various "what if?" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.
Collapse
Affiliation(s)
- Kailas Shankar Honasoge
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Zeynep Karagöz
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Vanessa L. S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Aurélie Carlier
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
21
|
Brondolin M, Herzog D, Sultan S, Warburton F, Vigilante A, Knight RD. Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration. Open Biol 2023; 13:230037. [PMID: 37726092 PMCID: PMC10508982 DOI: 10.1098/rsob.230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is highly regenerative and is mediated by a population of migratory adult muscle stem cells (muSCs). Effective muscle regeneration requires a spatio-temporally regulated response of the muSC population to generate sufficient muscle progenitor cells that then differentiate at the appropriate time. The relationship between muSC migration and cell fate is poorly understood and it is not clear how forces experienced by migrating cells affect cell behaviour. We have used zebrafish to understand the relationship between muSC cell adhesion, behaviour and fate in vivo. Imaging of pax7-expressing muSCs as they respond to focal injuries in trunk muscle reveals that they migrate by protrusive-based means. By carefully characterizing their behaviour in response to injury we find that they employ an adhesion-dependent mode of migration that is regulated by the RhoA kinase ROCK. Impaired ROCK activity results in reduced expression of cell cycle genes and increased differentiation in regenerating muscle. This correlates with changes to focal adhesion dynamics and migration, revealing that ROCK inhibition alters the interaction of muSCs to their local environment. We propose that muSC migration and differentiation are coupled processes that respond to changes in force from the environment mediated by RhoA signalling.
Collapse
Affiliation(s)
- Mirco Brondolin
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Dylan Herzog
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Sami Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Fiona Warburton
- Oral Clinical Research Unit, King's College London, London, London SE1 9RT, UK
| | | | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| |
Collapse
|
22
|
Yamashiro S, Rutkowski DM, Ann Lynch K, Liu Y, Vavylonis D, Watanabe N. Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin. RESEARCH SQUARE 2023:rs.3.rs-3254213. [PMID: 37674715 PMCID: PMC10479399 DOI: 10.21203/rs.3.rs-3254213/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Force transmission at integrin-based adhesions is important for cell migration and mechanosensing. Talin is an essential focal adhesion (FA) protein that links F-actin to integrins. F-actin constantly moves on FAs, yet how Talin simultaneously maintains the connection to F-actin and transmits forces to integrins remains unclear. Here we show a critical role of dynamic Talin unfolding in force transmission. Using single-molecule speckle microscopy, we found that the majority of Talin are bound only to either F-actin or the substrate, whereas 4.1% of Talin is linked to both structures via elastic transient clutch. By reconstituting Talin knockdown cells with Talin chimeric mutants, in which the Talin rod subdomains are replaced with the stretchable β-spectrin repeats, we show that the stretchable property is critical for force transmission. Simulations suggest that unfolding of the Talin rod subdomains increases in the linkage duration and work at FAs. This study reveals a new mode of force transmission, in which stochastic molecular stretching bridges two cellular structures moving at different speeds.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | | | - Kelli Ann Lynch
- Department of Physics, Lehigh University, Bethlehem, PA, USA
- University of South Florida, Tampa, FL, USA
| | - Ying Liu
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| |
Collapse
|
23
|
Kim SY, Bae HJ, Lee HH, Lee JH, Kim YJ, Choi YS, Lee JH, Shin SY. The Effects of Thermocycling on the Physical Properties and Biocompatibilities of Various CAD/CAM Restorative Materials. Pharmaceutics 2023; 15:2122. [PMID: 37631336 PMCID: PMC10459511 DOI: 10.3390/pharmaceutics15082122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this study is to evaluate the changes in physical properties and biocompatibilities caused by thermocycling of CAD/CAM restorative materials (lithium disilicate, zirconia reinforced lithium silicate, polymer-infiltrated ceramic network, resin nanoceramic, highly translucent zirconia). A total of 225 specimens were prepared (12.0 × 10.0 × 1.5 mm) and divided into three groups subjected to water storage at 37 °C for 24 h (control group), 10,000 cycles in distilled water at 5-55 °C (first aged group), and 22,000 cycles in distilled water at 5-55 °C (second aged group) [(n= 15, each]). The nanoindentation hardness and Young's modulus (nanoindenter), surface roughness (atomic force microscopy (AFM)), surface texture (scanning electron microscopy (FE-SEM)), elemental concentration (energy dispersive spectroscopy (EDS)) and contact angle were evaluated. The morphology, proliferation and adhesion of cultured human gingival fibroblasts (HGFs) were analyzed. The data were analyzed using one-way ANOVA and Tukey's test (p < 0.05). The results showed that the nanoindentation hardness and Young's modulus were decreased after thermocycling aging. Cell viability and proliferation of the material decreased with aging except for the highly translucent zirconia. Zirconia-reinforced lithium silicate exhibited significantly lower cell viability compared to other materials. The surface roughnesses of all groups increased with aging. Cell viability and Cell adhesion were influenced by various factors, including the surface chemical composition, hydrophilicity, surface roughness, and topography.
Collapse
Affiliation(s)
- Se-Young Kim
- Department of Prosthodontics, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (S.-Y.K.); (J.-H.L.)
| | - Han-Jin Bae
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-J.B.); (H.-H.L.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-J.B.); (H.-H.L.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea;
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jong-Hyuk Lee
- Department of Prosthodontics, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (S.-Y.K.); (J.-H.L.)
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea;
| | - Yu-Sung Choi
- Department of Prosthodontics, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (S.-Y.K.); (J.-H.L.)
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-J.B.); (H.-H.L.)
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea;
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Soo-Yeon Shin
- Department of Prosthodontics, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (S.-Y.K.); (J.-H.L.)
| |
Collapse
|
24
|
Brito C, Pereira JM, Mesquita FS, Cabanes D, Sousa S. Src-Dependent NM2A Tyrosine Phosphorylation Regulates Actomyosin Remodeling. Cells 2023; 12:1871. [PMID: 37508535 PMCID: PMC10377941 DOI: 10.3390/cells12141871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Non-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that, along with actin, assembles into actomyosin filaments inside cells. NM2A is fundamental for cell adhesion and motility, playing important functions in different stages of development and during the progression of viral and bacterial infections. Phosphorylation events regulate the activity and the cellular localization of NM2A. We previously identified the tyrosine phosphorylation of residue 158 (pTyr158) in the motor domain of the NM2A heavy chain. This phosphorylation can be promoted by Listeria monocytogenes infection of epithelial cells and is dependent on Src kinase; however, its molecular role is unknown. Here, we show that the status of pTyr158 defines cytoskeletal organization, affects the assembly/disassembly of focal adhesions, and interferes with cell migration. Cells overexpressing a non-phosphorylatable NM2A variant or expressing reduced levels of Src kinase display increased stress fibers and larger focal adhesions, suggesting an altered contraction status consistent with the increased NM2A activity that we also observed. We propose NM2A pTyr158 as a novel layer of regulation of actomyosin cytoskeleton organization.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Joana M Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Francisco S Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| |
Collapse
|
25
|
Campbell S, Mendoza MC, Rammohan A, McKenzie ME, Bidone TC. Computational model of integrin adhesion elongation under an actin fiber. PLoS Comput Biol 2023; 19:e1011237. [PMID: 37410718 PMCID: PMC10325090 DOI: 10.1371/journal.pcbi.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Cells create physical connections with the extracellular environment through adhesions. Nascent adhesions form at the leading edge of migrating cells and either undergo cycles of disassembly and reassembly, or elongate and stabilize at the end of actin fibers. How adhesions assemble has been addressed in several studies, but the exact role of actin fibers in the elongation and stabilization of nascent adhesions remains largely elusive. To address this question, here we extended our computational model of adhesion assembly by incorporating an actin fiber that locally promotes integrin activation. The model revealed that an actin fiber promotes adhesion stabilization and elongation. Actomyosin contractility from the fiber also promotes adhesion stabilization and elongation, by strengthening integrin-ligand interactions, but only up to a force threshold. Above this force threshold, most integrin-ligand bonds fail, and the adhesion disassembles. In the absence of contraction, actin fibers still support adhesions stabilization. Collectively, our results provide a picture in which myosin activity is dispensable for adhesion stabilization and elongation under an actin fiber, offering a framework for interpreting several previous experimental observations.
Collapse
Affiliation(s)
- Samuel Campbell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Michelle C. Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Aravind Rammohan
- Corning Life Sciences, Tewksburry, Massachusetts, United States of America
| | - Matthew E. McKenzie
- Corning Research and Development Corporation, Corning, New York, United States of America
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
26
|
Huang M, Lu L, Lin C, Zheng Y, Pan X, Wang S, Chen S, Zhang Y, Liu C, Ge G, Zeng YA, Chen J. LRP12 is an endogenous transmembrane inactivator of α4 integrins. Cell Rep 2023; 42:112667. [PMID: 37330909 DOI: 10.1016/j.celrep.2023.112667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Dynamic regulation of integrin activation and inactivation is critical for precisely controlled cell adhesion and migration in physiological and pathological processes. The molecular basis for integrin activation has been intensively studied; however, the understanding of integrin inactivation is still limited. Here, we identify LRP12 as an endogenous transmembrane inhibitor for α4 integrin activation. The LRP12 cytoplasmic domain directly binds to the integrin α4 cytoplasmic tail and inhibits talin binding to the β subunit, thus keeping integrin inactive. In migrating cells, LRP12-α4 interaction induces nascent adhesion (NA) turnover at the leading-edge protrusion. Knockdown of LRP12 leads to increased NAs and enhanced cell migration. Consistently, LRP12-deficient T cells show an enhanced homing capability in mice and lead to aggravated chronic colitis in a T cell-transfer colitis model. Altogether, LRP12 is a transmembrane inactivator for integrins that inhibits α4 integrin activation and controls cell migration by maintaining balanced NA dynamics.
Collapse
Affiliation(s)
- MengWen Huang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - ChangDong Lin
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - XingChao Pan
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ShiHui Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ShiYang Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - YouHua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - ChunYe Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
27
|
Huber M, Casares-Arias J, Fässler R, Müller DJ, Strohmeyer N. In mitosis integrins reduce adhesion to extracellular matrix and strengthen adhesion to adjacent cells. Nat Commun 2023; 14:2143. [PMID: 37059721 PMCID: PMC10104879 DOI: 10.1038/s41467-023-37760-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
To enter mitosis, most adherent animal cells reduce adhesion, which is followed by cell rounding. How mitotic cells regulate adhesion to neighboring cells and extracellular matrix (ECM) proteins is poorly understood. Here we report that, similar to interphase, mitotic cells can employ integrins to initiate adhesion to the ECM in a kindlin- and talin-dependent manner. However, unlike interphase cells, we find that mitotic cells cannot engage newly bound integrins to actomyosin via talin or vinculin to reinforce adhesion. We show that the missing actin connection of newly bound integrins leads to transient ECM-binding and prevents cell spreading during mitosis. Furthermore, β1 integrins strengthen the adhesion of mitotic cells to adjacent cells, which is supported by vinculin, kindlin, and talin1. We conclude that this dual role of integrins in mitosis weakens the cell-ECM adhesion and strengthens the cell-cell adhesion to prevent delamination of the rounding and dividing cell.
Collapse
Affiliation(s)
- Maximilian Huber
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Javier Casares-Arias
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
28
|
Liu H, Hu X, Lian Z, Luo Z, Lv A, Tan J. Focal adhesion signaling pathway involved in skin immune response of tongue sole Cynoglossus semilaevis to Vibrio vulnificus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108651. [PMID: 36863497 DOI: 10.1016/j.fsi.2023.108651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Focal adhesion (FA) plays a key role in cell adhesion, migration and antibacterial immune, but it remained unclear in fish. In this study, half-smooth tongue sole Cynoglossus semilaevis were infected with Vibrio vulnificus, and then immune-related protein in the skin, especially for FA signaling pathway were screened and identified by iTRAQ analysis. Results showed that the differentially expressed proteins (DEPs) in skin immune response (eg., ITGA6, FN, COCH, AMBP, COL6A1, COL6A3, COL6A6, LAMB1, LAMC1, FLMNA) were firstly found in FA signaling pathway. Furthermore, the validation analysis of FA-related genes were basically consistent with the iTRAQ data at 36 hpi (r = 0.678, p < 0.01), and their spatio-temporal expressions were confirmed by qPCR analysis. The molecular characterization of vinculin of C. semilaevis was described. This study will provide a new perspective for understanding the molecular mechanism of FA signaling pathway in the skin immune response in marine fish.
Collapse
Affiliation(s)
- Houfu Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhengyi Lian
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhang Luo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jing Tan
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
29
|
Tao A, LaCroix AS, Shoyer TC, Venkatraman V, Xu KL, Feiger B, Hoffman BD. Identifying constitutive and context-specific molecular-tension-sensitive protein recruitment within focal adhesions. Dev Cell 2023; 58:522-534.e7. [PMID: 36924770 PMCID: PMC10080727 DOI: 10.1016/j.devcel.2023.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Mechanosensitive processes often rely on adhesion structures to strengthen, or mature, in response to applied loads. However, a limited understanding of how the molecular tensions that are experienced by a particular protein affect the recruitment of other proteins represents a major obstacle in the way of deciphering molecular mechanisms that underlie mechanosensitive processes. Here, we describe an imaging-based technique, termed fluorescence-tension co-localization (FTC), for studying molecular-tension-sensitive protein recruitment inside cells. Guided by discrete time Markov chain simulations of protein recruitment, we integrate immunofluorescence labeling, molecular tension sensors, and machine learning to determine the sensitivity, specificity, and context dependence of molecular-tension-sensitive protein recruitment. The application of FTC to the mechanical linker protein vinculin in mouse embryonic fibroblasts reveals constitutive and context-specific molecular-tension-sensitive protein recruitment that varies with adhesion maturation. FTC overcomes limitations associated with the alteration of numerous proteins during the manipulation of cell contractility, providing molecularly specific insights into tension-sensitive protein recruitment.
Collapse
Affiliation(s)
- Arnold Tao
- Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Karen L Xu
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Bradley Feiger
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brenton D Hoffman
- Biomedical Engineering, Duke University, Durham, NC, USA; Cell Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Essa A, Essa ES, El-deeb SM, Seleem HEM, Al Sahlawi M, Al-Omair OA, Shehab-Eldeen S. Elevated Serum Vinculin in Patients with HBV/HCV-Associated Liver Cirrhosis and Hepatocellular Carcinoma: A Pilot Study. Biologics 2023; 17:23-32. [PMID: 36969330 PMCID: PMC10035354 DOI: 10.2147/btt.s405500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/04/2023] [Indexed: 03/20/2023]
Abstract
Background The stiffness of the extracellular matrix (ECM) controls many cellular processes, such as migration and differentiation. Cells detect stiffness through adhesion structures termed focal adhesions (FAs). Vinculin, an actin-binding FA protein, plays a pivotal role in FA-mediated mechanotransduction. Aim This study aimed to explore the role of vinculin in the development of HBV/HCV-induced hepatocellular carcinoma (HCC). Methods Vinculin levels in a total number of 100 serum samples from patients with HBV/HCV-induced liver cirrhosis and HCC, as well as healthy controls, were analyzed using an enzyme-linked immunosorbent assay (ELISA). Results In patients with HCC and liver cirrhosis, the serum vinculin levels were significantly greater than in controls (503.8±242.2 and 728.4±1044.8 vs 77.7±36.1 respectively, p<0.001). However, results showed no link between serum vinculin and the clinicopathological features of HCC. Conclusion Patients with HBVor HCV-induced liver cirrhosis and HCC have significantly higher serum levels of vinculin than do controls. This might point to a potential role for vinculin in the development of HCC. More research into how this protein affects the development of HCC at the molecular level could lead to better clinical treatments and the development of new molecular therapies.
Collapse
Affiliation(s)
- Abdallah Essa
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Enas Said Essa
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Sara Mahmoud El-deeb
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | | | - Muthana Al Sahlawi
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Omar Ahmed Al-Omair
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Somaia Shehab-Eldeen
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Correspondence: Somaia Shehab-Eldeen, Tropical Medicine Department, Faculty of Medicine, Menoufia University, Yassen Abd Al Ghafar Street, Shebin Elkom, Menoufia Governorate, 32511, Egypt, Tel +201117251523, Email
| |
Collapse
|
31
|
Liu J, Le S, Yao M, Huang W, Tio Z, Zhou Y, Yan J. Tension Gauge Tethers as Tension Threshold and Duration Sensors. ACS Sens 2023; 8:704-711. [PMID: 36731861 PMCID: PMC9973368 DOI: 10.1021/acssensors.2c02218] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Mechanotransduction, the process by which cells respond to tension transmitted through various supramolecular linkages, is important for understanding cellular behavior. Tension gauge tethers (TGTs), short fragments of double-stranded DNA that irreversibly break under shear-stretch conditions, have been used in live cell experiments to study mechanotransduction. However, our current understanding of TGTs' mechanical responses is limited, which limits the information that can be gleaned from experimental observations. In this study, we quantified the tension-dependent lifetime of TGTs to better understand their mechanical stability under various physiologically relevant stretching conditions. This work has broad applications for using TGTs as tension threshold and duration sensors and also suggests the need to revisit previous interpretations of experimental observations.
Collapse
Affiliation(s)
- Jingzhun Liu
- Mechanobiology
Institute, National University of Singapore, 117411Singapore
| | - Shimin Le
- Department
of Physics, Xiamen University, Xiamen361005, People’s Repbulic of China
| | - Mingxi Yao
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen518055, People’s Repbulic of China
| | - Wenmao Huang
- Department
of Physics, National University of Singapore, 117546Singapore
| | - Zhikai Tio
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585Singapore
| | - Yu Zhou
- Mechanobiology
Institute, National University of Singapore, 117411Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, 117411Singapore
- Department
of Physics, National University of Singapore, 117546Singapore
| |
Collapse
|
32
|
Hou J, McMahon M, Sarkaria JN, Chen CC, Odde DJ. Main Manuscript for Cell migration simulator-based biomarkers for glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529880. [PMID: 36865270 PMCID: PMC9980090 DOI: 10.1101/2023.02.24.529880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Glioblastoma is the most aggressive malignant brain tumor with poor survival due to its invasive nature driven by cell migration, with unclear linkage to transcriptomic information. Here, we applied a physics-based motor-clutch model, a cell migration simulator (CMS), to parameterize the migration of glioblastoma cells and define physical biomarkers on a patient-by-patient basis. We reduced the 11-dimensional parameter space of the CMS into 3D to identify three principal physical parameters that govern cell migration: motor number - describing myosin II activity, clutch number - describing adhesion level, and F-actin polymerization rate. Experimentally, we found that glioblastoma patient-derived (xenograft) (PD(X)) cell lines across mesenchymal (MES), proneural (PN), classical (CL) subtypes and two institutions (N=13 patients) had optimal motility and traction force on stiffnesses around 9.3kPa, with otherwise heterogeneous and uncorrelated motility, traction, and F-actin flow. By contrast, with the CMS parameterization, we found glioblastoma cells consistently had balanced motor/clutch ratios to enable effective migration, and that MES cells had higher actin polymerization rates resulting in higher motility. The CMS also predicted differential sensitivity to cytoskeletal drugs between patients. Finally, we identified 11 genes that correlated with the physical parameters, suggesting that transcriptomic data alone could potentially predict the mechanics and speed of glioblastoma cell migration. Overall, we describe a general physics-based framework for parameterizing individual glioblastoma patients and connecting to clinical transcriptomic data, that can potentially be used to develop patient-specific anti-migratory therapeutic strategies generally.
Collapse
Affiliation(s)
- Jay Hou
- Department of Biomedical Engineering, University of Minnesota – Twin Cities
| | - Mariah McMahon
- Department of Biomedical Engineering, University of Minnesota – Twin Cities
| | | | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota – Twin Cities
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota – Twin Cities
| |
Collapse
|
33
|
Geiger B, Boujemaa-Paterski R, Winograd-Katz SE, Balan Venghateri J, Chung WL, Medalia O. The Actin Network Interfacing Diverse Integrin-Mediated Adhesions. Biomolecules 2023; 13:biom13020294. [PMID: 36830665 PMCID: PMC9953007 DOI: 10.3390/biom13020294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The interface between the cellular actin network and diverse forms of integrin-mediated cell adhesions displays a unique capacity to serve as accurate chemical and mechanical sensors of the cell's microenvironment. Focal adhesion-like structures of diverse cell types, podosomes in osteoclasts, and invadopodia of invading cancer cells display distinct morphologies and apparent functions. Yet, all three share a similar composition and mode of coupling between a protrusive structure (the lamellipodium, the core actin bundle of the podosome, and the invadopodia protrusion, respectively), and a nearby adhesion site. Cytoskeletal or external forces, applied to the adhesion sites, trigger a cascade of unfolding and activation of key adhesome components (e.g., talin, vinculin, integrin), which in turn, trigger the assembly of adhesion sites and generation of adhesion-mediated signals that affect cell behavior and fate. The structural and molecular mechanisms underlying the dynamic crosstalk between the actin cytoskeleton and the adhesome network are discussed.
Collapse
Affiliation(s)
- Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence: (B.G.); (O.M.)
| | - Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sabina E. Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (B.G.); (O.M.)
| |
Collapse
|
34
|
Bachmann M, Kessler J, Burri E, Wehrle-Haller B. New tools to study the interaction between integrins and latent TGFβ1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525682. [PMID: 36747767 PMCID: PMC9901185 DOI: 10.1101/2023.01.26.525682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transforming growth factor beta (TGFβ) 1 regulates cell differentiation and proliferation in different physiological settings, but is also involved in fibrotic progression and protects tumors from the immune system. Integrin αVβ6 has been shown to activate latent TGFβ1 by applying mechanical forces onto the latency-associated peptide (LAP). While the extracellular binding between αVβ6 and LAP1 is well characterized, less is known about the cytoplasmic adaptations that enable αVβ6 to apply such forces. Here, we generated new tools to facilitate the analysis of this interaction. We combined the integrin-binding part of LAP1 with a GFP and the Fc chain of human IgG. This chimeric protein, sLAP1, revealed a mechanical rearrangement of immobilized sLAP1 by αVβ6 integrin. This unique interaction was not observed between sLAP1 and other integrins. We also analyzed αVβ6 integrin binding to LAP2 and LAP3 by creating respective sLAPs. Compared to sLAP1, integrin αVβ6 showed less binding to sLAP3 and no rearrangement. These observations indicate differences in the binding of αVβ6 to LAP1 and LAP3 that have not been appreciated so far. Finally, αVβ6-sLAP1 interaction was maintained even at strongly reduced cellular contractility, highlighting the special mechanical connection between αVβ6 integrin and latent TGFβ1.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Jérémy Kessler
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Elisa Burri
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
35
|
Raza A, Archer SA, Thomas JA, MacNeil S, Haycock JW. Selectively inhibiting malignant melanoma migration and invasion in an engineered skin model using actin-targeting dinuclear Ru II-complexes. RSC Med Chem 2023; 14:65-73. [PMID: 36755639 PMCID: PMC9890726 DOI: 10.1039/d2md00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the poor prognosis of metastatic cancers, there is a clinical need for agents with anti-metastatic activity. Here we report on the anti-metastatic effect of a previously reported Ru(ii) complex [{(phen)2Ru}2(tpphz)]4+, 14+, that has recently been shown to disrupt actin fiber assembly. In this study, we investigated the anti-migratory effect of +14+ and a close structural analogue+, 24+, on two highly invasive, metastatic human melanoma cell lines. Laser scanning confocal imaging was used to investigate the structure of actin filament and adhesion molecule vinculin and results show disassembly of central actin filaments and focal adhesions. The effect of both compounds on actin filaments was also found to be reversible. As these results revealed that the complexes were cytostatic and produced a significant inhibitory effect on the migration of both melanoma cell lines but not human dermal fibroblasts their effect on 3D-spheroids and a tissue-engineered living skin model were also investigated. These experiments demonstrated that the compounds inhibited the growth and invasiveness of the melanoma-based spheroidal tumor model and both complexes were found to penetrate the epidermis of the skin tissue model and inhibit the invasion of melanoma cells. Taken together, the cytostatic and antimigratory effects of the complexes results in an antimetastatic effect that totally prevent invasion of malignant melanoma into skin tissue.
Collapse
Affiliation(s)
- Ahtasham Raza
- Materials Science & Engineering, University of Sheffield Mappin St Sheffield S1 3JD UK
| | - Stuart A. Archer
- Department of Chemistry, University of SheffieldBrook HillSheffieldS3 7HFUK+44 (0)114 222 9325
| | - Jim A. Thomas
- Department of Chemistry, University of SheffieldBrook HillSheffieldS3 7HFUK+44 (0)114 222 9325
| | - Sheila MacNeil
- Materials Science & Engineering, University of Sheffield Mappin St Sheffield S1 3JD UK
| | - John W. Haycock
- Materials Science & Engineering, University of SheffieldMappin StSheffield S1 3JDUK
| |
Collapse
|
36
|
Chirasani VR, Khan MAI, Malavade JN, Dokholyan NV, Hoffman BD, Campbell SL. Elucidation of the Molecular Basis and Cellular Functions of Vinculin-Actin Directional Catch Bonding. RESEARCH SQUARE 2023:rs.3.rs-2334490. [PMID: 36711743 PMCID: PMC9882595 DOI: 10.21203/rs.3.rs-2334490/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ability of cells and tissues to differentially resist or adapt to mechanical forces applied in distinct directions is mediated by the ability of load-bearing proteins to preferentially maintain physical linkages in certain directions. However, the molecular basis and biological consequences of directional force-sensitive binding are unclear. Vinculin (Vcn) is a load-bearing linker protein that exhibits directional catch bonding due to interactions between the Vcn tail domain (Vt) and filamentous (F)-actin. We developed a computational approach to predict Vcn residues involved in directional catch bonding and produced a set of associated Vcn variants with unaltered Vt structure, actin binding, or phospholipid interactions. Incorporation of these variants into Vcn biosensors did not perturb Vcn conformation, but reduced Vcn loading consistent with loss of directional catch bonding. Expression of Vcn variants perturbed the coalignment of FAs and F-actin and directed cell migration, establishing key cellular functions for Vcn directional catch bonding.
Collapse
Affiliation(s)
- Venkat R. Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohammad Ashhar I. Khan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Department of Chemistry, Penn State College of Medicine, Hershey, PA, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Sharon L. Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
A network of mixed actin polarity in the leading edge of spreading cells. Commun Biol 2022; 5:1338. [PMID: 36473943 PMCID: PMC9727120 DOI: 10.1038/s42003-022-04288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Physical interactions of cells with the underlying extracellular matrix (ECM) play key roles in multiple cellular processes. The actin cytoskeleton is a central driver and regulator of cellular dynamics, that produces membrane-protrusions such as lamellipodia and filopodia. Here, we examined actin organization in expanding lamellipodia during early stages of cell spreading. To gain insight into the 3D actin organization, we plated fibroblasts on galectin-8 coated EM grids, an ECM protein presents in disease states. We then combined cryo-electron tomography with advanced image processing tools for reconstructing the structure of F-actin in the lamellipodia. This approach enabled us to resolve the polarity and orientation of filaments, and the structure of the Arp2/3 complexes associated with F-actin branches. We show that F-actin in lamellipodial protrusions forms a dense network with three distinct sub-domains. One consists primarily of radial filaments, with their barbed ends pointing towards the membrane, the other is enriched with parallel filaments that run between the radial fibers, in addition to an intermediate sub-domain. Surprisingly, a minor, yet significant (~10%) population of actin filaments, are oriented with their barbed-ends towards the cell center. Our results provide structural insights into F-actin assembly and dynamic reorganization in the leading edge of spreading cells.
Collapse
|
38
|
Wang J, Hu H, Wang J, Qiu H, Gao Y, Xu Y, Liu Z, Tang Y, Song L, Ramshaw J, Lin H, Zhang X. Characterization of recombinant humanized collagen type III and its influence on cell behavior and phenotype. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractCollagen made a tremendous impact in the field of regenerative medicine as a bioactive material. For decades, collagen has been used not only as a scaffolding material but also as an active component in regulating cells' biological behavior and phenotype. However, animal-derived collagen as a major source suffered from problems of immunogenicity, risk of viral infection, and the unclear relationship between bioactive sequence and function. Recombinant humanized collagen (rhCol) provided alternatives for regenerative medicine with more controllable risks. However, the characterization of rhCol and the interaction between rhCol and cells still need further investigation, including cell behavior and phenotype. The current study preliminarily demonstrated that recombinant humanized collagen type III (rhCol III) conformed to the theoretical amino acid sequence and had an advanced structure resembling bovine collagen. Furthermore, rhCol III could facilitate basal biological behaviors of human skin fibroblasts, such as adhesion, proliferation and migration. rhCol III was beneficial for some extracellular matrix-expressing cell phenotypes. The study would shed light on the mechanism research of rhCol and cell interactions and further understanding of effectiveness in tissue regeneration.
Graphical abstract
Collapse
|
39
|
Zihni C, Georgiadis A, Ramsden CM, Sanchez-Heras E, Haas AJ, Nommiste B, Semenyuk O, Bainbridge JWB, Coffey PJ, Smith AJ, Ali RR, Balda MS, Matter K. Spatiotemporal control of actomyosin contractility by MRCKβ signaling drives phagocytosis. J Biophys Biochem Cytol 2022; 221:213476. [PMID: 36121394 PMCID: PMC9485704 DOI: 10.1083/jcb.202012042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKβ/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKβ/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKβ is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKβ signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKβ is also required for efficient particle translocation from the cortex into the cell body in Fc receptor–mediated phagocytosis. Thus, conserved MRCKβ signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.
Collapse
Affiliation(s)
- Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anastasios Georgiadis
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK
| | - Conor M Ramsden
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Alexis J Haas
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Britta Nommiste
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Olha Semenyuk
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK
| | - James W B Bainbridge
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK.,National Institute for Health and Care Research Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
| | - Peter J Coffey
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alexander J Smith
- Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, London, UK.,Gene and Cell Therapy Group, UCL Institute of Ophthalmology, University College London, London, UK.,National Institute for Health and Care Research Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
40
|
Torres-Gomez A, Fiyouzi T, Guerra-Espinosa C, Cardeñes B, Clares I, Toribio V, Reche PA, Cabañas C, Lafuente EM. Expression of the phagocytic receptors αMβ2 and αXβ2 is controlled by RIAM, VASP and Vinculin in neutrophil-differentiated HL-60 cells. Front Immunol 2022; 13:951280. [PMID: 36238292 PMCID: PMC9552961 DOI: 10.3389/fimmu.2022.951280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Activation of the integrin phagocytic receptors CR3 (αMβ2, CD11b/CD18) and CR4 (αXβ2, CD11c/CD18) requires Rap1 activation and RIAM function. RIAM controls integrin activation by recruiting Talin to β2 subunits, enabling the Talin-Vinculin interaction, which in term bridges integrins to the actin-cytoskeleton. RIAM also recruits VASP to phagocytic cups and facilitates VASP phosphorylation and function promoting particle internalization. Using a CRISPR-Cas9 knockout approach, we have analyzed the requirement for RIAM, VASP and Vinculin expression in neutrophilic-HL-60 cells. All knockout cells displayed abolished phagocytosis that was accompanied by a significant and specific reduction in ITGAM (αM), ITGAX (αX) and ITGB2 (β2) mRNA, as revealed by RT-qPCR. RIAM, VASP and Vinculin KOs presented reduced cellular F-actin content that correlated with αM expression, as treatment with the actin filament polymerizing and stabilizing drug jasplakinolide, partially restored αM expression. In general, the expression of αX was less responsive to jasplakinolide treatment than αM, indicating that regulatory mechanisms independent of F-actin content may be involved. The Serum Response Factor (SRF) was investigated as the potential transcription factor controlling αMβ2 expression, since its coactivator MRTF-A requires actin polymerization to induce transcription. Immunofluorescent MRTF-A localization in parental cells was primarily nuclear, while in knockouts it exhibited a diffuse cytoplasmic pattern. Localization of FHL-2 (SRF corepressor) was mainly sub-membranous in parental HL-60 cells, but in knockouts the localization was disperse in the cytoplasm and the nucleus, suggesting RIAM, VASP and Vinculin are required to maintain FHL-2 close to cytoplasmic membranes, reducing its nuclear localization and inhibiting its corepressor activity. Finally, reexpression of VASP in the VASP knockout resulted in a complete reversion of the phenotype, as knock-ins restored αM expression. Taken together, our results suggest that RIAM, VASP and Vinculin, are necessary for the correct expression of αMβ2 and αXβ2 during neutrophilic differentiation in the human promyelocytic HL-60 cell line, and strongly point to an involvement of these proteins in the acquisition of a phagocytic phenotype.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| | - Tara Fiyouzi
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Claudia Guerra-Espinosa
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Cardeñes
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Irene Clares
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Víctor Toribio
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pedro A. Reche
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Esther M. Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| |
Collapse
|
41
|
Hoffman LM, Jensen CC, Beckerle MC. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Mol Biol Cell 2022; 33:ar100. [PMID: 35767320 DOI: 10.1091/mbc.e22-02-0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small heat shock protein HspB1, also known as Hsp25/27, is a ubiquitously expressed molecular chaperone that responds to mechanical cues. Uniaxial cyclic stretch activates the p38 mitogen-activated protein kinase (MAPK) signaling cascade and increases the phosphorylation of HspB1. Similar to the mechanosensitive cytoskeletal regulator zyxin, phospho-HspB1 is recruited to features of the stretch-stimulated actin cytoskeleton. To evaluate the role of HspB1 and its phosphoregulation in modulating cell function, we utilized CRISPR/Cas9-edited HspB1-null cells and determined they were altered in behaviors such as actin cytoskeletal remodeling, cell spreading, and cell motility. In our model system, expression of WT HspB1, but not nonphosphorylatable HspB1, rescued certain characteristics of the HspB1-null cells including the enhanced cell motility of HspB1-null cells and the deficient actin reinforcement of stretch-stimulated HspB1-null cells. The recruitment of HspB1 to high-tension structures in geometrically constrained cells, such as actin comet tails emanating from focal adhesions, also required a phosphorylatable HspB1. We show that mechanical signals activate posttranslational regulation of the molecular chaperone, HspB1, and are required for normal cell behaviors including actin cytoskeletal remodeling, cell spreading, and cell migration.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
42
|
Peris-Celda M, Carrión-Navarro J, Palacín-Aliana I, Sánchez-Gómez P, Acín RP, Garcia-Romero N, Ayuso-Sacido A. Suppressor of fused associates with dissemination patterns in patients with glioma. Front Oncol 2022; 12:923681. [PMID: 36091108 PMCID: PMC9450955 DOI: 10.3389/fonc.2022.923681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common brain tumors, which present poor prognosis, due, in part, to tumor cell migration and infiltration into distant brain areas. However, the underlying mechanisms causing such effects are unknown. Hedgehog (HH)–Gli axis is one of the signaling pathways involved, with a high number of molecular mediators. In this study, we investigated the association between HH-Gli intermediates and clinical parameters. We found that high levels of SuFu are associated with high dissemination patterns in patients with glioma. Therefore, we analyzed SuFu expression data in three glioma cohorts of surgical samples (N =1,759) and modified its expression in Glioblastoma Cancer Stem Cells (GB CSC) in vitro models. Our data reveal that SuFu overexpression increases cancer stemness properties together with a migratory phenotype. This work identifies SuFu as a new molecular player in glioma cell migration and a promising target to develop blocking agents to decrease GB dissemination.
Collapse
Affiliation(s)
- María Peris-Celda
- Department of Neurosurgery, Mayo Clinic, Rochester, NY, United States
| | | | - Irina Palacín-Aliana
- Atrys Health, Barcelona, Spain
- Fundación de Investigación HM-Hospitales, Madrid, Spain
- Faculty of Science, Universidad de Alcalá, Madrid, Spain
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Instituto de Salud Carlos III-Unidad Funcional de Investigación de Enfermedades crónicas (UFIEC), Madrid, Spain
| | - Ricardo Prat Acín
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain
| | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
43
|
Focal Adhesion Protein Vinculin Is Required for Proper Meiotic Progression during Mouse Spermatogenesis. Cells 2022; 11:cells11132013. [PMID: 35805097 PMCID: PMC9265697 DOI: 10.3390/cells11132013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The focal adhesion protein Vinculin (VCL) is ascribed to various cytoplasmic functions; however, its nuclear role has so far been ambiguous. We observed that VCL localizes to the nuclei of mouse primary spermatocytes undergoing first meiotic division. Specifically, VCL localizes along the meiosis-specific structure synaptonemal complex (SC) during prophase I and the centromeric regions, where it remains until metaphase I. To study the role of VCL in meiotic division, we prepared a conditional knock-out mouse (VCLcKO). We found that the VCLcKO male mice were semi-fertile, with a decreased number of offspring compared to wild-type animals. This study of events in late prophase I indicated premature splitting of homologous chromosomes, accompanied by an untimely loss of SCP1. This caused erroneous kinetochore formation, followed by failure of the meiotic spindle assembly and metaphase I arrest. To assess the mechanism of VCL involvement in meiosis, we searched for its possible interacting partners. A mass spectrometry approach identified several putative interactors which belong to the ubiquitin–proteasome pathway (UPS). The depletion of VLC leads to the dysregulation of a key subunit of the proteasome complex in the meiotic nuclei and an altered nuclear SUMOylation level. Taken together, we show for the first time the presence of VCL in the nucleus of spermatocytes and its involvement in proper meiotic progress. It also suggests the direction for future studies regarding the role of VCL in spermatogenesis through regulation of UPS.
Collapse
|
44
|
Dede Eren A, Lucassen AWA, Tuvshindorj U, Truckenmüller R, Giselbrecht S, Eren ED, Tas MO, Sudarsanam P, de Boer J. Cells Dynamically Adapt to Surface Geometry by Remodeling Their Focal Adhesions and Actin Cytoskeleton. Front Cell Dev Biol 2022; 10:863721. [PMID: 35721512 PMCID: PMC9203963 DOI: 10.3389/fcell.2022.863721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023] Open
Abstract
Cells probe their environment and adapt their shape accordingly via the organization of focal adhesions and the actin cytoskeleton. In an earlier publication, we described the relationship between cell shape and physiology, for example, shape-induced differentiation, metabolism, and proliferation in mesenchymal stem cells and tenocytes. In this study, we investigated how these cells organize their adhesive machinery over time when exposed to microfabricated surfaces of different topographies and adhesive island geometries. We further examined the reciprocal interaction between stress fiber and focal adhesion formation by pharmacological perturbations. Our results confirm the current literature that spatial organization of adhesive sites determines the ability to form focal adhesions and stress fibers. Therefore, cells on roughened surfaces have smaller focal adhesion and fewer stress fibers. Our results further highlight the importance of integrin-mediated adhesion in the adaptive properties of cells and provide clear links to the development of bioactive materials.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Amy W. A. Lucassen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Urandelger Tuvshindorj
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - E. Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mehmet Orhan Tas
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Phanikrishna Sudarsanam
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: Jan de Boer,
| |
Collapse
|
45
|
Bürgers R, Schubert A, Müller J, Krohn S, Rödiger M, Leha A, Wassmann T. Cytotoxicity of 3D‐printed, milled, and conventional oral splint resins to L929 cells and human gingival fibroblasts. Clin Exp Dent Res 2022; 8:650-657. [PMID: 35570327 PMCID: PMC9209804 DOI: 10.1002/cre2.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Evidence on the biocompatibility of three‐dimensional (3D)‐printed and milled resins for oral splints is limited. This in vitro study assessed the influence of the manufacturing method on the cytotoxicity of oral splint resins on L929 cells and human gingival fibroblasts (GF1). Materials and Methods Standardized specimens of four 3D‐printed, two‐milled, one‐thermoformed, and one‐pressed splint resin were incubated with L929 and GF1 cells for 24 h. Immunofluorescence and WST‐8 assay were performed to evaluate cytotoxic effects. One‐way analysis of variance and Tukey's multiple comparison test were applied with the variables “splint resin” and “manufacturing method” (p < .05). Results Immunofluorescence showed attachment of L929 and GF1 cells to the splint resins. Irrespective of the manufacturing method, the WST‐8 assay revealed significant differences between splint resins for the viability of L929 and GF1 cells. L929 cells generally showed lower viability rates than GF1 cells. The evaluation of cell viability by the manufacturing method showed no significant differences between 3D printing, milling, and conventional methods. Conclusions The cytotoxic effects of 3D‐printed, milled, and conventional oral splint resins were similar, indicating minor influence of the manufacturing method on biocompatibility. Cytotoxicity of the resins was below a critical threshold in GF1 cells. The chemical composition might be more crucial than the manufacturing method for the biocompatibility of splint resins.
Collapse
Affiliation(s)
- Ralf Bürgers
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Andrea Schubert
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Jonas Müller
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Sebastian Krohn
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Matthias Rödiger
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Andreas Leha
- Department of Medical StatisticsUniversity Medical Center GöttingenGöttingenGermany
| | - Torsten Wassmann
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
46
|
Generic self-stabilization mechanism for biomolecular adhesions under load. Nat Commun 2022; 13:2197. [PMID: 35459276 PMCID: PMC9033785 DOI: 10.1038/s41467-022-29823-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/20/2022] [Indexed: 11/09/2022] Open
Abstract
Mechanical loading generally weakens adhesive structures and eventually leads to their rupture. However, biological systems can adapt to loads by strengthening adhesions, which is essential for maintaining the integrity of tissue and whole organisms. Inspired by cellular focal adhesions, we suggest here a generic, molecular mechanism that allows adhesion systems to harness applied loads for self-stabilization through adhesion growth. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which, for thermodynamic reasons, leads to association of further molecules with the cluster. Self-stabilization robustly increases adhesion lifetimes in broad parameter ranges. Unlike for catch-bonds, bond rupture rates can increase monotonically with force. The self-stabilization principle can be realized in many ways in complex adhesion-state networks; we show how it naturally occurs in cellular adhesions involving the adaptor proteins talin and vinculin. Cellular adhesions have the remarkable property that they adapt their stability to the applied mechanical load. Here, authors describe a generic physical mechanism that explains self-stabilization of idealized adhesion systems under shear.
Collapse
|
47
|
Li L, Sun W, Yu J, Lei W, Zeng H, Shi B. Effects of titanium dioxide microparticles and nanoparticles on cytoskeletal organization, cell adhesion, migration, and proliferation in human gingival fibroblasts in the presence of lipopolysaccharide. J Periodontal Res 2022; 57:644-659. [PMID: 35438207 DOI: 10.1111/jre.12993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Titanium wear particles may participate in the etiology of peri-implantitis. However, the influence of titanium wear particles on biological behavior of human gingival fibroblasts (HGFs) in the presence of LPS is still not clear. The present study demonstrated the effects of titanium dioxide micro- and nanoparticles (TiO2 MPs and NPs) on HGF cell viability, cytoskeletal organization, adhesion, migration, and proliferation in vitro, and LPS was used to mimic the in vivo condition. METHODS Primary HGFs were treated with TiO2 MPs (primary particle size <5 μm, 0.1 mg/ml) and NPs (primary particle size <100 nm, 0.1 mg/ml) with or without 1 μg/ml LPS. The effects of TiO2 MPs and NPs on HGFs cell viability was measured by CCK-8 assay. The proliferation of HGF was detected by Ki67 nuclear staining. The confocal laser scanning microscope (CLSM) was used to detect the internalization of TiO2 MPs and NPs in HGFs as well as the arrangement of F-actin, vinculin, and vimentin organization. Wound healing assay and transwell assay were performed to measure the migration of HGFs induced by TiO2 MPs and NPs. Cell adhesion was measured using fibronectin-coated plates. The relative mRNA and protein expression of adhesion relative protein such as focal adhesion kinase (FAK), fibronectin (FN), and type I collagen (COL1) were measured using quantitative RT-PCR and western blot analysis. One-way analysis of variance (ANOVA) and Student's t-test were used to analyze the statistical significance, and p < .05 was considered statistically significant. RESULTS TiO2 NPs significantly inhibited HGF cell viability, proliferation, and migration compared with TiO2 MPs group and control group. Compared with control group (2.64 ± 0.09), the mean absorbance of the cells in 1 mg/ml TiO2 MPs group and 0.25 mg/ml TiO2 NPs group were significantly decreased to 1.93 ± 0.33 (p < .05) and 2.22 ± 0.18 (p < .01), respectively. The cytoskeleton disruption was found in TiO2 NPs group. The mRNA and protein expression were significantly downregulated by TiO2 NPs. Furthermore, both TiO2 NPs and MPs induced more adverse effects on HGFs in the presence of LPS. CONCLUSION Our results indicate that TiO2 NPs but not TiO2 MPs significantly disrupt the cytoskeletal organization and inhibited cell adhesion, migration, and proliferation of HGFs. However, in the presence of LPS, TiO2 MPs, and TiO2 NPs enhance these negative effects in HGFs. Titanium wear particles are probably involved in the initiation and progression of peri-implant diseases.
Collapse
Affiliation(s)
- Lei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenlong Lei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Ripamonti M, Wehrle-Haller B, de Curtis I. Paxillin: A Hub for Mechano-Transduction from the β3 Integrin-Talin-Kindlin Axis. Front Cell Dev Biol 2022; 10:852016. [PMID: 35450290 PMCID: PMC9016114 DOI: 10.3389/fcell.2022.852016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
Focal adhesions are specialized integrin-dependent adhesion complexes, which ensure cell anchoring to the extracellular matrix. Focal adhesions also function as mechano-signaling platforms by perceiving and integrating diverse physical and (bio)chemical cues of their microenvironment, and by transducing them into intracellular signaling for the control of cell behavior. The fundamental biological mechanism of creating intracellular signaling in response to changes in tensional forces appears to be tightly linked to paxillin recruitment and binding to focal adhesions. Interestingly, the tension-dependent nature of the paxillin binding to adhesions, combined with its scaffolding function, suggests a major role of this protein in integrating multiple signals from the microenvironment, and accordingly activating diverse molecular responses. This minireview offers an overview of the molecular bases of the mechano-sensitivity and mechano-signaling capacity of core focal adhesion proteins, and highlights the role of paxillin as a key component of the mechano-transducing machinery based on the interaction of cells to substrates activating the β3 integrin-talin1-kindlin.
Collapse
Affiliation(s)
- Marta Ripamonti
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Ivan de Curtis
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
- *Correspondence: Ivan de Curtis,
| |
Collapse
|
49
|
Yao L, Brice R, Shippy T. A Protein Composite Neural Scaffold Modulates Astrocyte Migration and Transcriptome Profile. Macromol Biosci 2022; 22:e2100406. [PMID: 35014754 PMCID: PMC9012687 DOI: 10.1002/mabi.202100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/23/2021] [Indexed: 11/09/2022]
Abstract
Bioscaffold implantation is a promising approach to facilitate the repair and regeneration of wounded neural tissue after injury to the spinal cord or peripheral nerves. However, such bioscaffold grafts currently result in only limited functional recovery. The generation of a neural scaffold using a combination of collagen and glutenin is reported. The conduit material and mechanical properties, as well as its effect on astrocyte behavior is tested. After neural injuries, astrocytes move into the lesion and participate in the process of remodeling the micro-architecture of the wounded neural tissue. In this study, human astrocytes grown on glutenin-collagen scaffolds show higher motility and a lower proliferation rate compared with those grown on collagen scaffolds. RNA sequencing reveals that astrocytes grown on the two types of scaffolds show differentially expressed genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as actin cytoskeleton and focal adhesion that regulate astrocyte migration on scaffolds. The gene expression of aggrecan and versican, chondroitin sulfate proteoglycans that inhibit axonal growth, is down-regulated in astrocytes grown on glutenin-collagen scaffolds. These outcomes indicate that the implantation of glutenin-collagen scaffolds may promote astrocyte function in the neural regeneration process by enhanced cell migration and reduced glial scar formation.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Teresa Shippy
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
50
|
Bachmann M, Skripka A, Weißenbruch K, Wehrle-Haller B, Bastmeyer M. Phosphorylated paxillin and phosphorylated FAK constitute subregions within focal adhesions. J Cell Sci 2022; 135:275040. [PMID: 35343568 DOI: 10.1242/jcs.258764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated adhesions are convergence points of multiple signaling pathways. Their inner structure and their diverse functions can be studied with super-resolution microscopy. Here, we examined the spatial organization within focal adhesion by analyzing several adhesion proteins with structured illumination microscopy (SIM). We found that phosphorylated paxillin (pPax) and phosphorylated focal adhesion kinase (pFAK) form spot-like, spatially defined clusters within adhesions in several cell lines and confirmed these findings with additional super-resolution techniques. These clusters showed a more regular separation from each other compared to more randomly distributed labels of general FAK or paxillin. Mutational analysis indicated that the active (open) FAK conformation is a prerequisite for the pattern formation of pFAK. Live-cell super-resolution imaging revealed that organization in clusters is preserved over time for FAK constructs; however, distance between clusters is dynamic for FAK, while paxillin is more stable. Combined, these data introduce spatial clusters of pPax and pFAK as substructures in adhesions and highlight the relevance of paxillin-FAK binding for establishing a regular substructure in focal adhesions.
Collapse
Affiliation(s)
- Michael Bachmann
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Artiom Skripka
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Bernhard Wehrle-Haller
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|