1
|
Ho CT, Evans EB, Lukasik K, O'Shaughnessy EC, Shah A, Hsu CH, Temple B, Bear JE, Gupton SL. Coro1A and TRIM67 collaborate in netrin-dependent neuronal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644333. [PMID: 40166342 PMCID: PMC11957122 DOI: 10.1101/2025.03.20.644333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal morphogenesis depends on extracellular guidance cues accurately instructing intracellular cytoskeletal remodeling. Here, we describe a novel role for the actin binding protein Coronin 1A (Coro1A) in neuronal morphogenesis, where it mediates responses to the axon guidance cue netrin-1. We found that Coro1A localizes to growth cones and filopodial structures and is required for netrindependent axon turning, branching, and corpus callosum development. We previously discovered that Coro1A interacts with TRIM67, a brain enriched E3 ubiquitin ligase that interacts with a netrin receptor and is also required for netrin-mediated neuronal morphogenesis. Loss of Coro1A and loss of TRIM67 shared similar phenotypes, suggesting that they may function together in the same netrin pathway. A Coro1A mutant deficient in binding TRIM67 was not able to rescue loss of Coro1A phenotypes, indicating that the interaction between Coro1A and TRIM67 is required for netrin responses. Together, our findings reveal that Coro1A is required for proper neuronal morphogenesis, where it collaborates with TRIM67 downstream of netrin.
Collapse
|
2
|
Nichols EL, Lee J, Shen K. UNC-6/Netrin promotes both adhesion and directed growth within a single axon. eLife 2025; 13:RP100424. [PMID: 40052533 PMCID: PMC11888602 DOI: 10.7554/elife.100424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
During development axons undergo long-distance migrations as instructed by guidance molecules and their receptors, such as UNC-6/Netrin and UNC-40/DCC. Guidance cues act through long-range diffusive gradients (chemotaxis) or local adhesion (haptotaxis). However, how these discrete modes of action guide axons in vivo is poorly understood. Using time-lapse imaging of axon guidance in C. elegans, we demonstrate that UNC-6 and UNC-40 are required for local adhesion to an intermediate target and subsequent directional growth. Exogenous membrane-tethered UNC-6 is sufficient to mediate adhesion but not directional growth, demonstrating the separability of haptotaxis and chemotaxis. This conclusion is further supported by the endogenous UNC-6 distribution along the axon's route. The intermediate and final targets are enriched in UNC-6 and separated by a ventrodorsal UNC-6 gradient. Continuous growth through the gradient requires UNC-40, which recruits UNC-6 to the growth cone tip. Overall, these data suggest that UNC-6 stimulates stepwise haptotaxis and chemotaxis in vivo.
Collapse
Affiliation(s)
- Ev L Nichols
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Joo Lee
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Kang Shen
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
3
|
Kang SU, Park J, Ha S, Kim D, Pletnikova O, Redding-Ochoa J, Troncoso JC, Peng Q, Van Emburgh BO, Trivedi J, Brahmachari S, Nezami B, Dawson VL, Dawson TM. Dissecting the molecular landscape of Parkinson's disease and Parkinson's disease dementia using highly efficient snRNA-seq (HIF-snRNA-seq). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640894. [PMID: 40093124 PMCID: PMC11908213 DOI: 10.1101/2025.03.01.640894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This study presents a transcriptomic analysis of the cingulate cortex (CING) in Parkinson's disease (PD) and Parkinson's disease dementia (PDD) using a High-efficiency single-nucleus RNA sequencing (HiF-snRNA-seq) protocol optimized for post-mortem brain samples. RNA quality prediction, poly-A tailing, and dCas9-targeted depletion enabled analysis of 77 high-quality samples from 240 cases, yielding over 2 million nuclei classified into seven major cell types. Disease conditions revealed altered astrocyte and microglia proportions, implicating their roles in neuroinflammation. Differential expression analysis identified unique and shared genes across PD and PDD, linked to synaptic remodeling, stress responses, and inflammation. Stage-specific analysis uncovered tau-dependent early-stage genes and inflammation-associated late-stage genes. This study highlights the CING's central role in PD and PDD pathophysiology, offering insights into disease mechanisms and identifying candidate genes and pathways for therapeutic and biomarker development.
Collapse
Affiliation(s)
- Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Jinhee Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Present Address: Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, USA
| | - Javier Redding-Ochoa
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Quan Peng
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Beth O Van Emburgh
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Jaldhir Trivedi
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Saurav Brahmachari
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Bardia Nezami
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Present Address: Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, USA
| |
Collapse
|
4
|
Mutalik SP, Ho CT, O’Shaughnessy EC, Frasineanu AG, Shah AB, Gupton SL. TRIM9 Controls Growth Cone Responses to Netrin Through DCC and UNC5C. J Neurochem 2025; 169:e70002. [PMID: 39871643 PMCID: PMC11834693 DOI: 10.1111/jnc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. We find that repulsive turning in a netrin gradient is blocked by knockdown of UNC5C, whereas attractive turning is impaired by knockdown of DCC. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C. We find that deletion of murine Trim9 alters both attractive and repulsive axon turning and changes in growth cones size in response to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in the surface levels of DCC and UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates the growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of both repulsive and attractive concentrations of netrin-1. Together, our work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
Affiliation(s)
- Sampada P. Mutalik
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ellen C. O’Shaughnessy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anca G. Frasineanu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Aneri B. Shah
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Correspondence to: Stephanie L. Gupton ()
| |
Collapse
|
5
|
O'Shaughnessy EC, Lam M, Ryken SE, Wiesner T, Lukasik K, Zuchero JB, Leterrier C, Adalsteinsson D, Gupton SL. pHusion - a robust and versatile toolset for automated detection and analysis of exocytosis. J Cell Sci 2024; 137:jcs261828. [PMID: 38690758 PMCID: PMC11190432 DOI: 10.1242/jcs.261828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Exocytosis is a fundamental process used by eukaryotes to regulate the composition of the plasma membrane and facilitate cell-cell communication. To investigate exocytosis in neuronal morphogenesis, previously we developed computational tools with a graphical user interface to enable the automatic detection and analysis of exocytic events from fluorescence timelapse images. Although these tools were useful, we found the code was brittle and not easily adapted to different experimental conditions. Here, we developed and validated a robust and versatile toolkit, named pHusion, for the analysis of exocytosis, written in ImageTank, a graphical programming language that combines image visualization and numerical methods. We tested pHusion using a variety of imaging modalities and pH-sensitive fluorophores, diverse cell types and various exocytic markers, to generate a flexible and intuitive package. Using this system, we show that VAMP3-mediated exocytosis occurs 30-times more frequently in melanoma cells compared with primary oligodendrocytes, that VAMP2-mediated fusion events in mature rat hippocampal neurons are longer lasting than those in immature murine cortical neurons, and that exocytic events are clustered in space yet random in time in developing cortical neurons.
Collapse
Affiliation(s)
- Ellen C. O'Shaughnessy
- University of North Carolina at Chapel Hill, Department of Cell Biology and Physiology, Chapel Hill, NC 27599, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samantha E. Ryken
- University of North Carolina at Chapel Hill, Department of Cell Biology and Physiology, Chapel Hill, NC 27599, USA
| | - Theresa Wiesner
- NeuroCyto, Aix Marseille Université, CNRS, INP UMR7051, Marseille 13385, France
| | - Kimberly Lukasik
- University of North Carolina at Chapel Hill, Department of Cell Biology and Physiology, Chapel Hill, NC 27599, USA
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - David Adalsteinsson
- University of North Carolina at Chapel Hill, Department of Mathematics, Chapel Hill, NC 27599, USA
| | - Stephanie L. Gupton
- University of North Carolina at Chapel Hill, Department of Cell Biology and Physiology, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Vadon C, Magiera MM, Cimarelli A. TRIM Proteins and Antiviral Microtubule Reorganization: A Novel Component in Innate Immune Responses? Viruses 2024; 16:1328. [PMID: 39205302 DOI: 10.3390/v16081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
TRIM proteins are a family of innate immune factors that play diverse roles in innate immunity and protect the cell against viral and bacterial aggression. As part of this special issue on TRIM proteins, we will take advantage of our findings on TRIM69, which acts by reorganizing the microtubules (MTs) in a manner that is fundamentally antiviral, to more generally discuss how host-pathogen interactions that take place for the control of the MT network represent a crucial facet of the struggle that opposes viruses to their cell environment. In this context, we will present several other TRIM proteins that are known to interact with microtubules in situations other than viral infection, and we will discuss evidence that may suggest a possible contribution to viral control. Overall, the present review will highlight the importance that the control of the microtubule network bears in host-pathogen interactions.
Collapse
Affiliation(s)
- Charlotte Vadon
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| | - Maria Magda Magiera
- Institut Curie, CNRS, UMR3348, Centre Universitaire, Bat 110, F-91405 Orsay, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| |
Collapse
|
7
|
Guan F, Gao S, Sheng H, Ma Y, Chen W, Qi X, Zhang X, Gao X, Pang S, Zhang L, Zhang L. Trim46 knockout impaired neuronal architecture and caused hypoactive behavior in rats. Dev Dyn 2024; 253:659-676. [PMID: 38193537 DOI: 10.1002/dvdy.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Tripartite motif (TRIM46) is a relatively novel protein that belongs to tripartite motif family. TRIM46 organizes parallel microtubule arrays on the axons, which are important for neuronal polarity and axonal function. TRIM46 is highly expressed in the brain, but its biological function in adults has not yet been determined. RESULTS Trim46 knockout (KO) rat line was established using CRISPR/cas9. Trim46 KO rats had smaller hippocampus sizes, fewer neuronal dendritic arbors and dendritic spines, and shorter and more distant axon initial segment. Furthermore, the protein interaction between endogenous TRIM46 and FK506 binding protein 5 (FKBP5) in brain tissues was determined; Trim46 KO increased hippocampal FKBP5 protein levels and decreased hippocampal protein kinase B (Akt) phosphorylation, gamma-aminobutyric acid type A receptor subunit alpha1 (GABRA1) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1) protein levels. Trim46 KO rats exhibited hypoactive behavioral changes such as reduced spontaneous activity, social interaction, sucrose preference, impaired prepulse inhibition (PPI), and short-term reference memory. CONCLUSIONS These results demonstrate the significant impact of Trim46 KO on brain structure and behavioral function. This study revealed a novel potential association of TRIM46 with dendritic development and neuropsychiatric behavior, providing new insights into the role of TRIM46 in the brain.
Collapse
Affiliation(s)
- Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Mutalik SP, O'Shaughnessy EC, Ho CT, Gupton SL. TRIM9 controls growth cone responses to netrin through DCC and UNC5C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593135. [PMID: 38765979 PMCID: PMC11100671 DOI: 10.1101/2024.05.08.593135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits these diverse axonal responses, beyond engaging the attractive receptor DCC and repulsive receptors of the UNC5 family, remains elusive. Here we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C, and that deletion of murine Trim9 alters both attractive and repulsive responses to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in surface levels of DCC and total levels of UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of netrin-1. We investigate membrane dynamics of the UNC5C receptor using pH-mScarlet fused to the extracellular domain of UNC5C. Minutes after netrin addition, levels of UNC5C at the plasma membrane drop in a TRIM9-independent fashion, however TRIM9 regulated the mobility of UNC5C in the plasma membrane in the absence of netrin-1. Together this work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
|
9
|
McCormick LE, Evans EB, Barker NK, Herring LE, Diering GH, Gupton SL. The E3 ubiquitin ligase TRIM9 regulates synaptic function and actin dynamics in response to netrin-1. Mol Biol Cell 2024; 35:ar67. [PMID: 38507236 PMCID: PMC11151106 DOI: 10.1091/mbc.e23-12-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.
Collapse
Affiliation(s)
- Laura E. McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elliot B. Evans
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie K. Barker
- Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Laura E. Herring
- Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Graham H. Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
10
|
McCormick LE, Evans EB, Barker NK, Herring LE, Diering GH, Gupton SL. The E3 ubiquitin ligase TRIM9 regulates synaptic function and actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573790. [PMID: 38260647 PMCID: PMC10802335 DOI: 10.1101/2023.12.31.573790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1 dependent axon guidance and branching. Here we demonstrate TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the post-synaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.
Collapse
Affiliation(s)
- Laura E McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elliot B Evans
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie K Barker
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Laura E Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Graham H Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Kersten N, Farías GG. A voyage from the ER: spatiotemporal insights into polarized protein secretion in neurons. Front Cell Dev Biol 2023; 11:1333738. [PMID: 38188013 PMCID: PMC10766823 DOI: 10.3389/fcell.2023.1333738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
To function properly, neurons must maintain a proteome that differs in their somatodendritic and axonal domain. This requires the polarized sorting of newly synthesized secretory and transmembrane proteins into different vesicle populations as they traverse the secretory pathway. Although the trans-Golgi-network is generally considered to be the main sorting hub, this sorting process may already begin at the ER and continue through the Golgi cisternae. At each step in the sorting process, specificity is conferred by adaptors, GTPases, tethers, and SNAREs. Besides this, local synthesis and unconventional protein secretion may contribute to the polarized proteome to enable rapid responses to stimuli. For some transmembrane proteins, some of the steps in the sorting process are well-studied. These will be highlighted here. The universal rules that govern polarized protein sorting remain unresolved, therefore we emphasize the need to approach this problem in an unbiased, top-down manner. Unraveling these rules will contribute to our understanding of neuronal development and function in health and disease.
Collapse
Affiliation(s)
- Noortje Kersten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Wang W, Gao W, Gong P, Song W, Bu X, Hou J, Zhang L, Zhao B. Neuronal-specific TNFAIP1 ablation attenuates postoperative cognitive dysfunction via targeting SNAP25 for K48-linked ubiquitination. Cell Commun Signal 2023; 21:356. [PMID: 38102610 PMCID: PMC10722859 DOI: 10.1186/s12964-023-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Synaptosomal-associated protein 25 (SNAP25) exerts protective effects against postoperative cognitive dysfunction (POCD) by promoting PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy and repressing caspase-3/gasdermin E (GSDME)-mediated pyroptosis. However, the regulatory mechanisms of SNAP25 protein remain unclear. METHODS We employed recombinant adeno-associated virus 9 (AAV9)-hSyn to knockdown tumor necrosis factor α-induced protein 1 (TNFAIP1) or SNAP25 and investigate the role of TNFAIP1 in POCD. Cognitive performance, hippocampal injury, mitophagy, and pyroptosis were assessed. Co-immunoprecipitation (co-IP) and ubiquitination assays were conducted to elucidate the mechanisms by which TNFAIP1 stabilizes SNAP25. RESULTS Our results demonstrated that the ubiquitin ligase TNFAIP1 was upregulated in the hippocampus of mice following isoflurane (Iso) anesthesia and laparotomy. The N-terminal region (residues 1-96) of TNFAIP1 formed a conjugate with SNAP25, leading to lysine (K) 48-linked polyubiquitination of SNAP25 at K69. Silencing TNFAIP1 enhanced SH-SY5Y cell viability and conferred antioxidant, pro-mitophagy, and anti-pyroptosis properties in response to Iso and lipopolysaccharide (LPS) challenges. Conversely, TNFAIP1 overexpression reduced HT22 cell viability, increased reactive oxygen species (ROS) accumulation, impaired PINK1/Parkin-dependent mitophagy, and induced caspase-3/GSDME-dependent pyroptosis by suppressing SNAP25 expression. Neuron-specific knockdown of TNFAIP1 ameliorated POCD, restored mitophagy, and reduced pyroptosis, which was reversed by SNAP25 depletion. CONCLUSIONS In summary, our findings demonstrated that inhibiting TNFAIP1-mediated degradation of SNAP25 might be a promising therapeutic approach for mitigating postoperative cognitive decline. Video Abstract.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ping Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
13
|
Bartley CM, Ngo TT, Duy Do L, Zekeridou A, Dandekar R, Muñiz-Castrillo S, Alvarenga BD, Zorn KC, Tubati A, Pinto AL, Browne WD, Hullett PW, Terrelonge M, Schubert RD, Piquet AL, Yang B, Montalvo Perero MJ, Kung AF, Mann SA, Shah MP, Geschwind MD, Gelfand JM, DeRisi JL, Pittock SJ, Honnorat J, Pleasure SJ, Wilson MR. Detection of High-Risk Paraneoplastic Antibodies against TRIM9 and TRIM67 Proteins. Ann Neurol 2023; 94:1086-1101. [PMID: 37632288 PMCID: PMC10842626 DOI: 10.1002/ana.26776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVE Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.
Collapse
Affiliation(s)
- Christopher M. Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, California
| | - Thomas T. Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Le Duy Do
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anastasia Zekeridou
- Department of Neurology, Center MS and Autoimmune Neurology, Mayo Clinic
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bonny D. Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Kelsey C. Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Asritha Tubati
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Weston D. Browne
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Patrick W. Hullett
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Mark Terrelonge
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Ryan D. Schubert
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Amanda L. Piquet
- Department of Neurology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado
| | - Binxia Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | | | - Andrew F. Kung
- University of California San Francisco, School of Medicine, San Francisco, California
| | - Sabrina A. Mann
- Chan Zuckerberg Biohub, San Francisco, California
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Maulik P. Shah
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Michael D. Geschwind
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Jeffrey M. Gelfand
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Joseph L. DeRisi
- Chan Zuckerberg Biohub, San Francisco, California
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Sean J. Pittock
- Department of Neurology, Center MS and Autoimmune Neurology, Mayo Clinic
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon and SynatAc Team, Institut MELiS, INSERM U1314/CNRS UMR 5284, Universités de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Samuel J. Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
| |
Collapse
|
14
|
O'Shaughnessy EC, Lam M, Ryken SE, Wiesner T, Lukasik K, Zuchero BJ, Leterrier C, Adalsteinsson D, Gupton SL. pHusion: A robust and versatile toolset for automated detection and analysis of exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550499. [PMID: 37546865 PMCID: PMC10402102 DOI: 10.1101/2023.07.25.550499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Exocytosis is a fundamental process used by eukaryotic cells to regulate the composition of the plasma membrane and facilitate cell-cell communication. To investigate the role exocytosis plays in neuronal morphogenesis, previously we developed computational tools with a graphical user interface (GUI) to enable the automatic detection and analysis of exocytic events (ADAE GUI) from fluorescence timelapse images. Though these tools have proven useful, we found that the code was brittle and not easily adapted to different experimental conditions. Here, we have developed and validated a robust and versatile toolkit, named pHusion, for the analysis of exocytosis written in ImageTank, a graphical programming language that combines image visualization and numerical methods. We tested this method using a variety of imaging modalities and pH-sensitive fluorophores, diverse cell types, and various exocytic markers to generate a flexible and intuitive package. Using pHusion, we show that VAMP3-mediated exocytosis occurs 30-times more frequently in melanoma cells compared with primary oligodendrocytes, that VAMP2-mediated fusion events in mature rat hippocampal neurons are longer lasting than those in immature murine cortical neurons, and that exocytic events are clustered in space yet random in time in developing cortical neurons. Summary Statement Exocytosis is an essential process by which cells change shape, alter membrane composition, and communicate with other cells. Though all eukaryotic cells carry out exocytosis, the regulation of vesicle fusion, the cargo of vesicles, and the role exocytosis plays in cell fate differ greatly across cell types. Here, we developed a flexible and robust set of tools to enable automatic identification and analysis of exocytic events across a wide range of cell types, vesicle types, and imaging conditions.
Collapse
|
15
|
Li J, Zeng Q. Trim9 regulates the directional differentiation of retinal Müller cells to retinal ganglion cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1561-1571. [PMID: 38432885 PMCID: PMC10929896 DOI: 10.11817/j.issn.1672-7347.2023.230108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Glaucoma is a leading cause of irreversible blindness, and effective therapies to reverse the visual system damage caused by glaucoma are still lacking. Recently, the stem cell therapy enable the repair and regeneration of the damaged retinal neurons, but challenges regarding the source of stem cells remain. This study aims to investigate a protocol that allows the dedifferentiation of Müller cells into retinal stem cells, following by directed differentiation into retinal ganglion cells with high efficiency, and to provide a new method of cellular acquisition for retinal stem cells. METHODS Epidermal cell growth factor and fibroblast growth factor 2 were used to induce the dedifferentiation of rat retinal Müller cells into retinal neural stem cells. Retinal stem cells derived from Müller cells were infected with a Trim9 overexpression lentiviral vector (PGC-FU-Trim9-GFP), and the efficiency of viral infection was assessed by fluorescence microscopy and flow cytometry. Retinoic acid and brain-derived neurotrophic factor treatments were used to induce the differentiation of the retinal stem cells into neurons and glial cells with or without the overexpression of Trim9. The expressions of each cellular marker (GLAST, GS, rhodopsin, PKC, HPC-1, Calbindin, Thy1.1, Brn-3b, Nestin, Pax6) were detected by immunofluorescence, PCR/real-time RT-PCR or Western blotting. RESULTS Rat retinal Müller cells expressed neural stem cells markers (Nestin and Pax6) with the treatment of epidermal cell growth factor and fibroblast growth factor 2. The Thy1.1 positive cell rate of retinal stem cells overexpressing Trim9 was significantly increased, indicating their directional differentiation into retinal ganglion cells after treatment with retinoic acid and brain-derived neurotrophic factor. CONCLUSIONS In this study, rat retinal Müller cells are dedifferentiated into retinal stem cells successfully, and Trim9 promotes the directional differentiation from retinal stem cells to retinal ganglion cells effectively.
Collapse
Affiliation(s)
- Jinxiang Li
- Department of Ophthalmology, First Hospital Affiliated with Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, China.
| | - Qi Zeng
- Department of Ophthalmology, First Hospital Affiliated with Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, China.
| |
Collapse
|
16
|
Smith CS, Álvarez Z, Qiu R, Sasselli IR, Clemons T, Ortega JA, Vilela-Picos M, Wellman H, Kiskinis E, Stupp SI. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS NANO 2023; 17:19887-19902. [PMID: 37793046 DOI: 10.1021/acsnano.3c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
Collapse
Affiliation(s)
- Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Neural Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Tristan Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Alberto Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Marcos Vilela-Picos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Haley Wellman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Herron RS, Kunisky AK, Madden JR, Anyaeche VI, Maung MZ, Hwang HW. A twin UGUA motif directs the balance between gene isoforms through CFIm and the mTORC1 signaling pathway. eLife 2023; 12:e85036. [PMID: 37665675 PMCID: PMC10476966 DOI: 10.7554/elife.85036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Alternative polyadenylation (APA) generates mRNA isoforms and diversifies gene expression. Here we report the discovery that the mTORC1 signaling pathway balances the expression of two Trim9/TRIM9 isoforms through APA regulation in human and mouse. We showed that CFIm components, CPSF6 and NUDT21, promote the short Trim9/TRIM9 isoform (Trim9-S/TRIM9-S) expression. In addition, we identified an evolutionarily conserved twin UGUA motif, UGUAYUGUA, in TRIM9-S polyadenylation site (PAS) that is critical for its regulation by CPSF6. We found additional CPSF6-regulated PASs with similar twin UGUA motifs in human and experimentally validated the twin UGUA motif functionality in BMPR1B, MOB4, and BRD4-L. Importantly, we showed that inserting a twin UGUA motif into a heterologous PAS was sufficient to confer regulation by CPSF6 and mTORC1. Our study reveals an evolutionarily conserved mechanism to regulate gene isoform expression by mTORC1 and implicates possible gene isoform imbalance in cancer and neurological disorders with mTORC1 pathway dysregulation.
Collapse
Affiliation(s)
- R Samuel Herron
- Department of Pathology, University of PittsburghPittsburghUnited States
| | | | - Jessica R Madden
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Vivian I Anyaeche
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - May Z Maung
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Hun-Way Hwang
- Department of Pathology, University of PittsburghPittsburghUnited States
| |
Collapse
|
18
|
Zeng Q, Zhou J, Hua X. TRIM9 promotes Müller cell-derived retinal stem cells to differentiate into retinal ganglion cells by regulating Atoh7. In Vitro Cell Dev Biol Anim 2023; 59:586-595. [PMID: 37792226 DOI: 10.1007/s11626-023-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023]
Abstract
Glaucoma is a multifactorial, irreversible blinding eye disease characterized by a large number of retinal ganglion cell (RGC) deaths. Müller cell-derived retinal stem cells (RSCs) can be induced to differentiate into RGCs under certain conditions. This study aimed to explore the regulatory effect and mechanism of TRIM9 on the differentiation of Müller cell-derived stem cells into RGCs. First, episcleral vein cauterization was used to induce high intraocular pressure (IOP) rat model. Next, Müller cells were isolated from rat retina, identified and induced to dedifferentiate into RSCs. Finally, RSCs were intervened with lentivirus PGC-FU-TRIM9-GFP transfection or siRNA Atoh7 and induced to redifferentiate into RGCs. In vivo, TRIM9 was highly expressed and Müller cells proliferated abnormally in the high IOP rat model. In vitro, S-100, GFAP, vimentin, and GS were positively expressed in Müller cells isolated from rat retina, and the purity of cells was 97.17%. Under the stimulation of cytokines, the proliferative capacity of the cells and the expression of Nestin and Ki67 gradually increased with the prolongation of culture time. Furthermore, RSCs transfected with the lentiviral vector PGC-FU-TRIM9-GFP displayed a striking morphological feature of long neurites. Additionally, there was a remarkable increase in the fluorescence intensity of Brn-3b and Thy1.1, accompanied by elevated mRNA and protein expression levels of Brn-3b, Thy1.1, and Atoh7. After knocking down Atoh7, the effect of TRIM9 on the above indicators was reversed. TRIM9 might promote the differentiation of Müller cells into RGCs by regulating the expression of Atoh7.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China.
| | - Jinglin Zhou
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China
| | - Xingyu Hua
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China
| |
Collapse
|
19
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
20
|
Fuchs J, Eickholt BJ. Precursor types predict the stability of neuronal branches. J Cell Sci 2021; 134:273430. [PMID: 34766183 PMCID: PMC8714070 DOI: 10.1242/jcs.258983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Branches are critical for neuron function, generating the morphological complexity required for functional networks. They emerge from different, well-described, cytoskeletal precursor structures that elongate to branches. While branches are thought to be maintained by shared cytoskeletal regulators, our data from mouse hippocampal neurons indicate that the precursor structures trigger alternative branch maintenance mechanisms with differing stabilities. Whereas branches originating from lamellipodia or growth cone splitting events collapse soon after formation, branches emerging from filopodia persist. Furthermore, compared to other developing neurites, axons stabilise all branches and preferentially initiate branches from filopodia. These differences explain the altered stability of branches we observe in neurons lacking the plasma membrane protein phospholipid phosphatase-related protein 3 (PLPPR3, also known as PRG2) and in neurons treated with netrin-1. Rather than altering branch stability directly, PLPPR3 and netrin-1 boost a 'filopodia branch programme' on axons, thereby indirectly initiating more long-lived branches. In summary, we propose that studies on branching should distinguish overall stabilising effects from effects on precursor types, ideally using multifactorial statistical models, as exemplified in this study.
Collapse
Affiliation(s)
- Joachim Fuchs
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Molecular Biology and Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Britta J Eickholt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Molecular Biology and Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
21
|
Bodakuntla S, Nedozralova H, Basnet N, Mizuno N. Cytoskeleton and Membrane Organization at Axon Branches. Front Cell Dev Biol 2021; 9:707486. [PMID: 34540830 PMCID: PMC8440873 DOI: 10.3389/fcell.2021.707486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Axon branching is a critical process ensuring a high degree of interconnectivity for neural network formation. As branching occurs at sites distant from the soma, it is necessary that axons have a local system to dynamically control and regulate axonal growth. This machinery depends on the orchestration of cellular functions such as cytoskeleton, subcellular transport, energy production, protein- and membrane synthesis that are adapted for branch formation. Compared to the axon shaft, branching sites show a distinct and dynamic arrangement of cytoskeleton components, endoplasmic reticulum and mitochondria. This review discusses the regulation of axon branching in the context of cytoskeleton and membrane remodeling.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hana Nedozralova
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nirakar Basnet
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
23
|
FEZ1 Forms Complexes with CRMP1 and DCC to Regulate Axon and Dendrite Development. eNeuro 2021; 8:ENEURO.0193-20.2021. [PMID: 33771901 PMCID: PMC8174033 DOI: 10.1523/eneuro.0193-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Elaboration of neuronal processes is an early step in neuronal development. Guidance cues must work closely with intracellular trafficking pathways to direct expanding axons and dendrites to their target neurons during the formation of neuronal networks. However, how such coordination is achieved remains incompletely understood. Here, we characterize an interaction between fasciculation and elongation protein zeta 1 (FEZ1), an adapter involved in synaptic protein transport, and collapsin response mediator protein (CRMP)1, a protein that functions in growth cone guidance, at neuronal growth cones. We show that similar to CRMP1 loss-of-function mutants, FEZ1 deficiency in rat hippocampal neurons causes growth cone collapse and impairs axonal development. Strikingly, FEZ1-deficient neurons also exhibited a reduction in dendritic complexity stronger than that observed in CRMP1-deficient neurons, suggesting that the former could partake in additional developmental signaling pathways. Supporting this, FEZ1 colocalizes with VAMP2 in developing hippocampal neurons and forms a separate complex with deleted in colorectal cancer (DCC) and Syntaxin-1 (Stx1), components of the Netrin-1 signaling pathway that are also involved in regulating axon and dendrite development. Significantly, developing axons and dendrites of FEZ1-deficient neurons fail to respond to Netrin-1 or Netrin-1 and Sema3A treatment, respectively. Taken together, these findings highlight the importance of FEZ1 as a common effector to integrate guidance signaling pathways with intracellular trafficking to mediate axo-dendrite development during neuronal network formation.
Collapse
|
24
|
Menon S, Goldfarb D, Ho CT, Cloer EW, Boyer NP, Hardie C, Bock AJ, Johnson EC, Anil J, Major MB, Gupton SL. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis. Mol Biol Cell 2021; 32:314-330. [PMID: 33378226 PMCID: PMC8098814 DOI: 10.1091/mbc.e20-10-0622] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
TRIM9 and TRIM67 are neuronally enriched E3 ubiquitin ligases essential for appropriate morphogenesis of cortical and hippocampal neurons and fidelitous responses to the axon guidance cue netrin-1. Deletion of murine Trim9 or Trim67 results in neuroanatomical defects and striking behavioral deficits, particularly in spatial learning and memory. TRIM9 and TRIM67 interact with cytoskeletal and exocytic proteins, but the full interactome is not known. Here we performed the unbiased proximity-dependent biotin identification (BioID) approach to define TRIM9 and TRIM67 protein-protein proximity network in developing cortical neurons and identified putative neuronal TRIM interaction partners. Candidates included cytoskeletal regulators, cytosolic protein transporters, exocytosis and endocytosis regulators, and proteins necessary for synaptic regulation. A subset of high-priority candidates was validated, including Myo16, Coro1A, MAP1B, ExoC1, GRIP1, PRG-1, and KIF1A. For a subset of validated candidates, we utilized total internal reflection fluorescence microscopy to demonstrate dynamic colocalization with TRIM proteins at the axonal periphery, including at the tips of filopodia. Further analysis demonstrated that the RNA interference-based knockdown of the unconventional myosin Myo16 in cortical neurons altered growth cone filopodia density and axonal branching patterns in a TRIM9- and netrin-1-dependent manner. Future analysis of other validated candidates will likely identify novel proteins and mechanisms by which TRIM9 and TRIM67 regulate neuronal form and function. [Media: see text].
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Erica W. Cloer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicholas P. Boyer
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher Hardie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew J. Bock
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emma C. Johnson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Joel Anil
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M. Ben Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
25
|
Dangoumau A, Marouillat S, Coelho R, Wurmser F, Brulard C, Haouari S, Laumonnier F, Corcia P, Andres CR, Blasco H, Vourc’h P. Dysregulations of Expression of Genes of the Ubiquitin/SUMO Pathways in an In Vitro Model of Amyotrophic Lateral Sclerosis Combining Oxidative Stress and SOD1 Gene Mutation. Int J Mol Sci 2021; 22:ijms22041796. [PMID: 33670299 PMCID: PMC7918082 DOI: 10.3390/ijms22041796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Protein aggregates in affected motor neurons are a hallmark of amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to their formation remain incompletely understood. Oxidative stress associated with age, the major risk factor in ALS, contributes to this neurodegeneration in ALS. We show that several genes coding for enzymes of the ubiquitin and small ubiquitin-related modifier (SUMO) pathways exhibit altered expression in motor neuronal cells exposed to oxidative stress, such as the CCNF gene mutated in ALS patients. Eleven of these genes were further studied in conditions combining oxidative stress and the expression of an ALS related mutant of the superoxide dismutase 1 (SOD1) gene. We observed a combined effect of these two environmental and genetic factors on the expression of genes, such as Uhrf2, Rbx1, Kdm2b, Ube2d2, Xaf1, and Senp1. Overall, we identified dysregulations in the expression of enzymes of the ubiquitin and SUMO pathways that may be of interest to better understand the pathophysiology of ALS and to protect motor neurons from oxidative stress and genetic alterations.
Collapse
Affiliation(s)
- Audrey Dangoumau
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Sylviane Marouillat
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Roxane Coelho
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - François Wurmser
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | | | - Shanez Haouari
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Frédéric Laumonnier
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Philippe Corcia
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Neurologie, Centre de Référence sur la SLA, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- UTTIL, CHRU de Tours, 37000 Tours, France;
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)-234-378-910
| |
Collapse
|
26
|
Urbina FL, Menon S, Goldfarb D, Edwards R, Ben Major M, Brennwald P, Gupton SL. TRIM67 regulates exocytic mode and neuronal morphogenesis via SNAP47. Cell Rep 2021; 34:108743. [PMID: 33567284 PMCID: PMC7941186 DOI: 10.1016/j.celrep.2021.108743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Neuronal morphogenesis involves dramatic plasma membrane expansion, fueled by soluble N-ethylmaleimide-sensitive factor attachment protein eceptors (SNARE)-mediated exocytosis. Distinct fusion modes described at synapses include full-vesicle fusion (FVF) and kiss-and-run fusion (KNR). During FVF, lumenal cargo is secreted and vesicle membrane incorporates into the plasma membrane. During KNR, a transient fusion pore secretes cargo but closes without membrane addition. In contrast, fusion modes are not described in developing neurons. Here, we resolve individual exocytic events in developing murine cortical neurons and use classification tools to identify four distinguishable fusion modes: two FVF-like modes that insert membrane material and two KNR-like modes that do not. Discrete fluorescence profiles suggest distinct behavior of the fusion pore. Simulations and experiments agree that FVF-like exocytosis provides sufficient membrane material for morphogenesis. We find the E3 ubiquitin ligase TRIM67 promotes FVF-like exocytosis in part by limiting incorporation of the Qb/Qc SNARE SNAP47 into SNARE complexes and, thus, SNAP47 involvement in exocytosis. Urbina et al. identify four exocytic modes in developing neurons: KNRd, KNRi, FVFd, FVFi. Simulations and experiments suggest that FVFi and FVFd provide material for plasma membrane expansion. Deletion of Trim67 decreases FVFi and FVFd while reducing surface area. SNAP47 incorporation into SNARE complexes alters fusion pore behavior, increasing KNRd.
Collapse
Affiliation(s)
- Fabio L Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Reginald Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Ben Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 2021; 142:147-196. [PMID: 33706917 DOI: 10.1016/bs.ctdb.2020.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the nervous system develops, newly differentiated neurons need to extend their axons toward their synaptic targets to form functional neural circuits. During this highly dynamic process of axon pathfinding, guidance receptors expressed at the tips of motile axons interact with soluble guidance cues or membrane tethered molecules present in the environment to be either attracted toward or repelled away from the source of these cues. As competing cues are often present at the same location and during the same developmental period, guidance receptors need to be both spatially and temporally regulated in order for the navigating axons to make appropriate guidance decisions. This regulation is exerted by a diverse array of molecular mechanisms that have come into focus over the past several decades and these mechanisms ensure that the correct complement of surface receptors is present on the growth cone, a fan-shaped expansion at the tip of the axon. This dynamic, highly motile structure is defined by a lamellipodial network lining the periphery of the growth cone interspersed with finger-like filopodial projections that serve to explore the surrounding environment. Once axon guidance receptors are deployed at the right place and time at the growth cone surface, they respond to their respective ligands by initiating a complex set of signaling events that serve to rearrange the growth cone membrane and the actin and microtubule cytoskeleton to affect axon growth and guidance. In this review, we highlight recent advances that shed light on the rich complexity of mechanisms that regulate axon guidance receptor distribution, activation and downstream signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Wojnacki J, Nola S, Bun P, Cholley B, Filippini F, Pressé MT, Lipecka J, Man Lam S, N’guyen J, Simon A, Ouslimani A, Shui G, Fader CM, Colombo MI, Guerrera IC, Galli T. Role of VAMP7-Dependent Secretion of Reticulon 3 in Neurite Growth. Cell Rep 2020; 33:108536. [DOI: 10.1016/j.celrep.2020.108536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
|
29
|
Menon S, Goldfarb D, Cousins EM, Major MB, Gupton SL. The ubiquitylome of developing cortical neurons. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000333. [PMID: 33274322 PMCID: PMC7704252 DOI: 10.17912/micropub.biology.000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022]
|
30
|
Netrin-1 protects the SH-SY5Y cells against amyloid beta neurotoxicity through NF-κB/Nrf2 dependent mechanism. Mol Biol Rep 2020; 47:9271-9277. [PMID: 33206363 DOI: 10.1007/s11033-020-05996-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022]
Abstract
Many evidence confirms that amyloid beta 1-42 fragment (Aβ1-42) causes neuroinflammation, oxidative stress, and cell death, which are related to progressive memory loss, cognitive impairments and mental disorders that will lead to Alzheimer's disease (AD) progression. Netrin-1, as a member of the laminins, has been proved to inhibit apoptosis and inflammation outside of nervous system, in addition to having a vital role in morphogenesis and neurogenesis of neural system. This study was designed to assess the protective effects of netrin-1 in SH-SY5Y human neuroblastoma cell line exposed to Aβ1-42 and to explore some mechanisms that underlie netrin-1 effects. Cultured SH-SY5Y neuroblast-like cells were treated with netrin-1 prior to Aβ1-42 exposure and the effects were assessed by MTT and ELISA assay kits. Netrin- 1 pretreatment of Aβ1-42-exposed SH-SY5Y human neuroblastoma cells attenuated Aβ1-42 induced toxic effects, increased cell viability and partially restored levels of 3 inflammatory and oxidative stress biomarkers including: nuclear factor erythroid 2-like 2 (Nrf2), tumor necrosis factor alpha (TNFα) and nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB). Based on the findings of this study, netrin-1 represents a promising therapeutic bio agent to abrogate cellular inflammation and reactive oxygen species (ROS) activation induced by Aβ1-42 in the SH-SY5Y cell model of AD.
Collapse
|
31
|
Myosin X Interaction with KIF13B, a Crucial Pathway for Netrin-1-Induced Axonal Development. J Neurosci 2020; 40:9169-9185. [PMID: 33097641 PMCID: PMC7687062 DOI: 10.1523/jneurosci.0929-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Myosin X (Myo X) transports cargos to the tips of filopodia for cell adhesion, migration, and neuronal axon guidance. Deleted in Colorectal Cancer (DCC) is one of the Myo X cargos that is essential for Netrin-1-regulated axon pathfinding. The function of Myo X in axon development in vivo and the underlying mechanisms remain elusive. Here, we provide evidence for the role of Myo X in Netrin-1-DCC-regulated axon development in developing mouse neocortex. The knockout (KO) or knockdown (KD) of Myo X in cortical neurons of embryonic mouse brain impairs axon initiation and contralateral branching/targeting. Similar axon deficits are detected in Netrin-1-KO or DCC-KD cortical neurons. Further proteomic analysis of Myo X binding proteins identifies KIF13B (a kinesin family motor protein). The Myo X interaction with KIF13B is induced by Netrin-1. Netrin-1 promotes anterograde transportation of Myo X into axons in a KIF13B-dependent manner. KIF13B-KD cortical neurons exhibit similar axon deficits. Together, these results reveal Myo X-KIF13B as a critical pathway for Netrin-1-promoted axon initiation and branching/targeting. SIGNIFICANCE STATEMENT Netrin-1 increases Myosin X (Myo X) interaction with KIF13B, and thus promotes axonal delivery of Myo X and axon initiation and contralateral branching in developing cerebral neurons, revealing unrecognized functions and mechanisms underlying Netrin-1 regulation of axon development.
Collapse
|
32
|
Stephens DC, Powell TW, Taraska JW, Harris DA. Imaging the rapid yet transient accumulation of regulatory lipids, lipid kinases, and protein kinases during membrane fusion, at sites of exocytosis of MMP-9 in MCF-7 cells. Lipids Health Dis 2020; 19:195. [PMID: 32829709 PMCID: PMC7444259 DOI: 10.1186/s12944-020-01374-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background The regulation of exocytosis is physiologically vital in cells and requires a variety of distinct proteins and lipids that facilitate efficient, fast, and timely release of secretory vesicle cargo. Growing evidence suggests that regulatory lipids act as important lipid signals and regulate various biological processes including exocytosis. Though functional roles of many of these regulatory lipids has been linked to exocytosis, the dynamic behavior of these lipids during membrane fusion at sites of exocytosis in cell culture remains unknown. Methods Total internal reflection fluorescence microscopy (TIRF) was used to observe the spatial organization and temporal dynamics (i.e. spatial positioning and timing patterns) of several lipids, and accessory proteins, like lipid kinases and protein kinases, in the form of protein kinase C (PRKC) associated with sites of exocytosis of matrix metalloproteinase-9 (MMP-9) in living MCF-7 cancer cells. Results Following stimulation with phorbol myristate acetate (PMA) to promote exocytosis, a transient accumulation of several distinct regulatory lipids, lipid kinases, and protein kinases at exocytic sites was observed. This transient accumulation centered at the time of membrane fusion is followed by a rapid diffusion away from the fusion sites. Additionally, the synthesis of these regulatory lipids, degradation of these lipids, and the downstream effectors activated by these lipids, are also achieved by the recruitment and accumulation of key enzymes at exocytic sites (during the moment of cargo release). This includes key enzymes like lipid kinases, protein kinases, and phospholipases that facilitate membrane fusion and exocytosis of MMP-9. Conclusions This work suggests that these regulatory lipids and associated effector proteins are locally synthesized and/or recruited to sites of exocytosis, during membrane fusion and cargo release. More importantly, their enrichment at fusion sites serves as an important spatial and temporal organizing “element” defining individual exocytic sites.
Collapse
Affiliation(s)
- Dominique C Stephens
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Tyrel W Powell
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dinari A Harris
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA.
| |
Collapse
|
33
|
Urbina FL, Gupton SL. SNARE-Mediated Exocytosis in Neuronal Development. Front Mol Neurosci 2020; 13:133. [PMID: 32848598 PMCID: PMC7427632 DOI: 10.3389/fnmol.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners. This developmental undertaking requires the rapid expansion of the plasma membrane surface area as neurons grow and polarize, extending axons through the extracellular environment. Critical to the expansion of the plasma membrane and addition of plasma membrane material is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Since their discovery, SNAREs have been implicated in several critical neuronal functions involving exocytic fusion in addition to synaptic transmission, including neurite initiation and outgrowth, axon specification, axon extension, and synaptogenesis. Decades of research have uncovered a rich variety of SNARE expression and function. The basis of SNARE-mediated fusion, the opening of a fusion pore, remains an enigmatic event, despite an incredible amount of research, as fusion is not only heterogeneous but also spatially small and temporally fast. Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FFV) and kiss-and-run (KNR) being the best described. Whereas most in vitro work has reconstituted fusion using VAMP-2, SNAP-25, and syntaxin-1; there is much to learn regarding the behaviors of distinct SNARE complexes. In the past few years, robust heterogeneity in the kinetics and fate of the fusion pore that varies by cell type have been uncovered, suggesting a paradigm shift in how the modes of exocytosis are viewed is warranted. Here, we explore both classic and recent work uncovering the variety of SNAREs and their importance in the development of neurons, as well as historical and newly proposed modes of exocytosis, their regulation, and proteins involved in the regulation of fusion kinetics.
Collapse
Affiliation(s)
- Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
34
|
Yang F, Liu H, Yu Y, Xu L. TRIM9 overexpression promotes uterine leiomyoma cell proliferation and inhibits cell apoptosis via NF-κB signaling pathway. Life Sci 2020; 257:118101. [PMID: 32679146 DOI: 10.1016/j.lfs.2020.118101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
AIMS Uterine leiomyoma (UM) is the most common benign gynecological tumor and the leading indication for hysterectomy. Our study explored the roles of TRIM9 in leiomyoma formation and investigated the underlying molecular mechanisms. MATERIAL AND METHODS The relationship between TRIM9 expression and fibroids formation was deciphered from the GEO database after bioinformatics analysis and identified by qPCR in human leiomyoma tissues. Both TRIM9 mRNA and protein expression were further detected in primary cultured uterine leiomyoma cells (UMC). The tumorigenesis potentials of TRIM9 in cell proliferation, cell cycle, cell apoptosis; cyclin D1, survivin and cleaved-caspase 3 protein expressions in primary UMC with TRIM9 overexpression (UMC-oeTRIM9); and uterine smooth muscle cells (SMC) with TRIM9 knockdown (SMC-siTRIM9) were evaluated in vitro. NF-κB p65 and its phosphorylation were further examined by western blotting, and rescue experiments on cell proliferation, cell cycle and cell apoptosis were conducted. KEY FINDINGS TRIM9 showed higher expression in UM tissue and UMC compared with normal myometrium. The overexpression of TRIM9 in UMC notably promoted UM growth via enhancement of cell proliferation, reduction of cell apoptosis, and regulation of cyclin D1, survivin, cleaved-caspase 3, and nuclear NF-κB expression, which were reversed in SMC-siTRIM9 and PDTC (an NF-κB inhibitor) intervention in UMC-oeTRIM9. SIGNIFICANCE To our knowledge, this was the first study demonstrating the roles of TRIM9 in cell growth progression of UM development. TRIM9 may be a potential therapeutic target for UM, by promoting leiomyoma cell proliferation and reducing cell apoptosis via activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Fang Yang
- Department of Gynecology of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hong Liu
- Department of Gynecology of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yonghui Yu
- Department of Gynecology of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lin Xu
- Department of Gynecology of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
35
|
Kiyoshi C, Tedeschi A. Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Dev Neurobiol 2020; 80:277-301. [PMID: 32902152 PMCID: PMC7754183 DOI: 10.1002/dneu.22780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Axons in the adult mammalian central nervous system (CNS) fail to regenerate inside out due to intrinsic and extrinsic neuronal determinants. During CNS development, axon growth, synapse formation, and function are tightly regulated processes allowing immature neurons to effectively grow an axon, navigate toward target areas, form synaptic contacts and become part of information processing networks that control behavior in adulthood. Not only immature neurons are able to precisely control the expression of a plethora of genes necessary for axon extension and pathfinding, synapse formation and function, but also non-neuronal cells such as astrocytes and microglia actively participate in sculpting the nervous system through refinement, consolidation, and elimination of synaptic contacts. Recent evidence indicates that a balancing act between axon regeneration and synaptic function may be crucial for rebuilding functional neuronal circuits after CNS trauma and disease in adulthood. Here, we review the role of classical and new intrinsic and extrinsic neuronal determinants in the context of CNS development, injury, and disease. Moreover, we discuss strategies targeting neuronal and non-neuronal cell behaviors, either alone or in combination, to promote axon regeneration and neuronal circuit formation in adulthood.
Collapse
Affiliation(s)
- Conrad Kiyoshi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Glasgow SD, Wong EW, Thompson-Steckel G, Marcal N, Séguéla P, Ruthazer ES, Kennedy TE. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol Brain 2020; 13:56. [PMID: 32264905 PMCID: PMC7137442 DOI: 10.1186/s13041-020-00597-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
The receptor deleted in colorectal cancer (DCC) and its ligand netrin-1 are essential for axon guidance during development and are expressed by neurons in the mature brain. Netrin-1 recruits GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and is critical for long-term potentiation (LTP) at CA3-CA1 hippocampal Schaffer collateral synapses, while conditional DCC deletion from glutamatergic neurons impairs hippocampal-dependent spatial memory and severely disrupts LTP induction. DCC co-fractionates with the detergent-resistant component of postsynaptic density, yet is enriched in axonal growth cones that differentiate into presynaptic terminals during development. Specific presynaptic and postsynaptic contributions of DCC to the function of mature neural circuits have yet to be identified. Employing hippocampal subregion-specific conditional deletion of DCC, we show that DCC loss from CA1 hippocampal pyramidal neurons resulted in deficits in spatial memory, increased resting membrane potential, abnormal dendritic spine morphology, weaker spontaneous excitatory postsynaptic activity, and reduced levels of postsynaptic adaptor and signaling proteins; however, the capacity to induce LTP remained intact. In contrast, deletion of DCC from CA3 neurons did not induce detectable changes in the intrinsic electrophysiological properties of CA1 pyramidal neurons, but impaired performance on the novel object place recognition task as well as compromised excitatory synaptic transmission and LTP at Schaffer collateral synapses. Together, these findings reveal specific pre- and post-synaptic contributions of DCC to hippocampal synaptic plasticity underlying spatial memory.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada.,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada
| | - Edwin W Wong
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Greta Thompson-Steckel
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Nathalie Marcal
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Philippe Séguéla
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Edward S Ruthazer
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Timothy E Kennedy
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada. .,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada. .,Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
37
|
Glasgow SD, Ruthazer ES, Kennedy TE. Guiding synaptic plasticity: Novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. J Physiol 2020; 599:493-505. [PMID: 32017127 DOI: 10.1113/jp278704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Adult neural plasticity engages mechanisms that change synapse structure and function, yet many of the underlying events bear a striking similarity to processes that occur during the initial establishment of neural circuits during development. It is a long-standing hypothesis that the molecular mechanisms critical for neural development may also regulate synaptic plasticity related to learning and memory in adults. Netrins were initially described as chemoattractant guidance cues that direct cell and axon migration during embryonic development, yet they continue to be expressed by neurons in the adult brain. Recent findings have identified roles for netrin-1 in synaptogenesis during postnatal maturation, and in synaptic plasticity in the adult mammalian brain, regulating AMPA glutamate receptor trafficking at excitatory synapses. These findings provide an example of a conserved developmental guidance cue that is expressed by neurons in the adult brain and functions as a key regulator of activity-dependent synaptic plasticity. Notably, in humans, genetic polymorphisms in netrin-1 and its receptors have been linked to neurodevelopmental and neurodegenerative disorders. The molecular mechanisms associated with the synaptic function of netrin-1 therefore present new therapeutic targets for neuropathologies associated with memory dysfunction. Here, we summarize recent findings that link netrin-1 signalling to synaptic plasticity, and discuss the implications of these discoveries for the neurobiological basis of memory consolidation.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
| |
Collapse
|
38
|
Boyer NP, McCormick LE, Menon S, Urbina FL, Gupton SL. A pair of E3 ubiquitin ligases compete to regulate filopodial dynamics and axon guidance. J Biophys Biochem Cytol 2019; 219:132731. [PMID: 31820781 PMCID: PMC7039193 DOI: 10.1083/jcb.201902088] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/25/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Appropriate axon guidance is necessary to form accurate neuronal connections. Axon guidance cues that stimulate cytoskeletal reorganization within the growth cone direct axon navigation. Filopodia at the growth cone periphery have long been considered sensors for axon guidance cues, yet how they respond to extracellular cues remains ill defined. Our previous work found that the filopodial actin polymerase VASP and consequently filopodial stability are negatively regulated via nondegradative TRIM9-dependent ubiquitination. Appropriate VASP ubiquitination and deubiquitination are required for axon turning in response to the guidance cue netrin-1. Here we show that the TRIM9-related protein TRIM67 outcompetes TRIM9 for interacting with VASP and antagonizes TRIM9-dependent VASP ubiquitination. The surprising antagonistic roles of two closely related E3 ubiquitin ligases are required for netrin-1-dependent filopodial responses, axon turning and branching, and fiber tract formation. We suggest a novel model in which coordinated regulation of VASP ubiquitination by a pair of interfering ligases is a critical element of VASP dynamics, filopodial stability, and axon guidance.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Laura E. McCormick
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, NC,Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC,Correspondence to Stephanie L. Gupton:
| |
Collapse
|
39
|
Nenasheva VV, Tarantul VZ. Many Faces of TRIM Proteins on the Road from Pluripotency to Neurogenesis. Stem Cells Dev 2019; 29:1-14. [PMID: 31686585 DOI: 10.1089/scd.2019.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins participate in numerous biological processes. They are the key players in immune system and are involved in the oncogenesis. Moreover, TRIMs are the highly conserved regulators of developmental pathways in both vertebrates and invertebrates. In particular, numerous data point to the participation of TRIMs in the determination of stem cell fate, as well as in the neurogenesis. TRIMs apply various mechanisms to perform their functions. Their common feature is the ability to ubiquitinate proteins mediated by the Really Interesting New Gene (RING) domain. Different C-terminal domains of TRIMs are involved in DNA and RNA binding, protein/protein interactions, and chromatin-mediated transcriptional regulation. Mutations and alterations of TRIM expression cause significant disturbances in the stem cells' self-renewal and neurogenesis, which result in the various pathologies of the nervous system (neurodegeneration, neuroinflammation, and malignant transformation). This review discusses the diverse molecular mechanisms of participation of TRIMs in stem cell maintenance and self-renewal as well as in neural differentiation processes and neuropathology.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Do LD, Gupton SL, Tanji K, Bastien J, Brugière S, Couté Y, Quadrio I, Rogemond V, Fabien N, Desestret V, Honnorat J. TRIM9 and TRIM67 Are New Targets in Paraneoplastic Cerebellar Degeneration. THE CEREBELLUM 2019; 18:245-254. [PMID: 30350014 DOI: 10.1007/s12311-018-0987-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To describe autoantibodies (Abs) against tripartite motif-containing (TRIM) protein 9 and 67 in two patients with paraneoplastic cerebellar degeneration (PCD) associated with lung adenocarcinoma. Abs were characterized using immunohistochemistry, Western blotting, cultures of murine cortical, and hippocampal neurons, immunoprecipitation, mass spectrometry, knockout mice for Trim9 and 67, and cell-based assay. Control samples included sera from 63 patients with small cell lung cancer without any paraneoplastic neurological syndrome, 36 patients with lung adenocarcinoma and PNS, CSF from 100 patients with autoimmune encephalitis, and CSF from 165 patients with neurodegenerative diseases. We found Abs targeting TRIM9 and TRIM67 at high concentration in the serum and the cerebrospinal fluid (CSF) of a 78-year-old woman and a 65-year-old man. Both developed subacute severe cerebellar ataxia. Brain magnetic resonance imaging found no abnormality and no cerebellar atrophy. Both had CSF inflammation with mild pleiocytosis and a few oligoclonal bands. We identified a pulmonary adenocarcinoma, confirming the paraneoplastic neurological syndrome in both patients. They received immunomodulatory and cancer treatments without improvement of cerebellar ataxia, even though both were in remission of their cancer (for more than 10 years in one patient). Anti-TRIM9 and anti-TRIM67 Abs were specific to these two patients. All control serum and CSF samples tested were negative for anti-TRIM9 and 67. Anti-TRIM9 and anti-TRIM67 Abs appeared to be specific biomarkers of PCD and should be added to the panel of antigens tested when this is suspected.
Collapse
Affiliation(s)
- Le Duy Do
- French Reference Center for Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, F-69677, Bron, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon - Université Claude Bernard Lyon 1, F-69372, Lyon, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, F-69372, Lyon, France
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Joubert Bastien
- French Reference Center for Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, F-69677, Bron, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon - Université Claude Bernard Lyon 1, F-69372, Lyon, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, F-69372, Lyon, France
| | - Sabine Brugière
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000, Grenoble, France
| | - Isabelle Quadrio
- Neurochemistry Unit, Biochemistry Department, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Veronique Rogemond
- French Reference Center for Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, F-69677, Bron, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon - Université Claude Bernard Lyon 1, F-69372, Lyon, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, F-69372, Lyon, France
| | - Nicole Fabien
- Immunology department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Virginie Desestret
- French Reference Center for Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, F-69677, Bron, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon - Université Claude Bernard Lyon 1, F-69372, Lyon, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, F-69372, Lyon, France
| | - Jerome Honnorat
- French Reference Center for Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, F-69677, Bron, France. .,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon - Université Claude Bernard Lyon 1, F-69372, Lyon, France. .,University of Lyon, Université Claude Bernard Lyon 1, Lyon, F-69372, Lyon, France. .,Neuro-Oncologie, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France.
| |
Collapse
|
41
|
Zeng J, Wang Y, Luo Z, Chang LC, Yoo JS, Yan H, Choi Y, Xie X, Deverman BE, Gradinaru V, Gupton SL, Zlokovic BV, Zhao Z, Jung JU. TRIM9-Mediated Resolution of Neuroinflammation Confers Neuroprotection upon Ischemic Stroke in Mice. Cell Rep 2019; 27:549-560.e6. [PMID: 30970257 PMCID: PMC6485958 DOI: 10.1016/j.celrep.2018.12.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/26/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022] Open
Abstract
Excessive and unresolved neuroinflammation is a key component of the pathological cascade in brain injuries such as ischemic stroke. Here, we report that TRIM9, a brain-specific tripartite motif (TRIM) protein, was highly expressed in the peri-infarct areas shortly after ischemic insults in mice, but expression was decreased in aged mice, which are known to have increased neuroinflammation after stroke. Mechanistically, TRIM9 sequestered β-transducin repeat-containing protein (β-TrCP) from the Skp-Cullin-F-box ubiquitin ligase complex, blocking IκBα degradation and thereby dampening nuclear factor κB (NF-κB)-dependent proinflammatory mediator production and immune cell infiltration to limit neuroinflammation. Consequently, Trim9-deficient mice were highly vulnerable to ischemia, manifesting uncontrolled neuroinflammation and exacerbated neuropathological outcomes. Systemic administration of a recombinant TRIM9 adeno-associated virus that drove brain-wide TRIM9 expression effectively resolved neuroinflammation and alleviated neuronal death, especially in aged mice. These findings reveal that TRIM9 is essential for resolving NF-κB-dependent neuroinflammation to promote recovery and repair after brain injury and may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Jianxiong Zeng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhifei Luo
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lin-Chun Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ji Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huan Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiaochun Xie
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephanie L Gupton
- Neuroscience Center and Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
42
|
Abstract
Proper neuronal wiring is central to all bodily functions, sensory perception, cognition, memory, and learning. Establishment of a functional neuronal circuit is a highly regulated and dynamic process involving axonal and dendritic branching and navigation toward appropriate targets and connection partners. This intricate circuitry includes axo-dendritic synapse formation, synaptic connections formed with effector cells, and extensive dendritic arborization that function to receive and transmit mechanical and chemical sensory inputs. Such complexity is primarily achieved by extensive axonal and dendritic branch formation and pruning. Fundamental to neuronal branching are cytoskeletal dynamics and plasma membrane expansion, both of which are regulated via numerous extracellular and intracellular signaling mechanisms and molecules. This review focuses on recent advances in understanding the biology of neuronal branching.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
43
|
Chowdhury R, Laboissonniere LA, Wester AK, Muller M, Trimarchi JM. The Trim family of genes and the retina: Expression and functional characterization. PLoS One 2018; 13:e0202867. [PMID: 30208054 PMCID: PMC6135365 DOI: 10.1371/journal.pone.0202867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022] Open
Abstract
To better understand the mechanisms that govern the development of retinal neurons, it is critical to gain additional insight into the specific intrinsic factors that control cell fate decisions and neuronal maturation. In the developing mouse retina, Atoh7, a highly conserved transcription factor, is essential for retinal ganglion cell development. Moreover, Atoh7 expression in the developing retina occurs during a critical time period when progenitor cells are in the process of making cell fate decisions. We performed transcriptome profiling of Atoh7+ individual cells isolated from mouse retina. One of the genes that we found significantly correlated with Atoh7 in our transcriptomic data was the E3 ubiquitin ligase, Trim9. The correlation between Trim9 and Atoh7 coupled with the expression of Trim9 in the early mouse retina led us to hypothesize that this gene may play a role in the process of cell fate determination. To address the role of Trim9 in retinal development, we performed a functional analysis of Trim9 in the mouse and did not detect any morphological changes in the retina in the absence of Trim9. Thus, Trim9 alone does not appear to be involved in cell fate determination or early ganglion cell development in the mouse retina. We further hypothesize that the reason for this lack of phenotype may be compensation by one of the many additional TRIM family members we find expressed in the developing retina.
Collapse
Affiliation(s)
- Rebecca Chowdhury
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Lauren A. Laboissonniere
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Andrea K. Wester
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Madison Muller
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jeffrey M. Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
44
|
Boyer NP, Gupton SL. Revisiting Netrin-1: One Who Guides (Axons). Front Cell Neurosci 2018; 12:221. [PMID: 30108487 PMCID: PMC6080411 DOI: 10.3389/fncel.2018.00221] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
Proper patterning of the nervous system requires that developing axons find appropriate postsynaptic partners; this entails microns to meters of extension through an extracellular milieu exhibiting a wide range of mechanical and chemical properties. Thus, the elaborate networks of fiber tracts and non-fasciculated axons evident in mature organisms are formed via complex pathfinding. The macroscopic structures of axon projections are highly stereotyped across members of the same species, indicating precise mechanisms guide their formation. The developing axon exhibits directionally biased growth toward or away from external guidance cues. One of the most studied guidance cues is netrin-1, however, its presentation in vivo remains debated. Guidance cues can be secreted to form soluble or chemotactic gradients or presented bound to cells or the extracellular matrix to form haptotactic gradients. The growth cone, a highly specialized dynamic structure at the end of the extending axon, detects these guidance cues via transmembrane receptors, such as the netrin-1 receptors deleted in colorectal cancer (DCC) and UNC5. These receptors orchestrate remodeling of the cytoskeleton and cell membrane through both chemical and mechanotransductive pathways, which result in traction forces generated by the cytoskeleton against the extracellular environment and translocation of the growth cone. Through intracellular signaling responses, netrin-1 can trigger either attraction or repulsion of the axon. Here we review the mechanisms by which the classical guidance cue netrin-1 regulates intracellular effectors to respond to the extracellular environment in the context of axon guidance during development of the central nervous system and discuss recent findings that demonstrate the critical importance of mechanical forces in this process.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
45
|
Mammalian TRIM67 Functions in Brain Development and Behavior. eNeuro 2018; 5:eN-NWR-0186-18. [PMID: 29911180 PMCID: PMC6002264 DOI: 10.1523/eneuro.0186-18.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Class I members of the tripartite motif (TRIM) family of E3 ubiquitin ligases evolutionarily appeared just prior to the advent of neuronal like cells and have been implicated in neuronal development from invertebrates to mammals. The single Class I TRIM in Drosophila melanogaster and Caenorhabditis elegans and the mammalian Class I TRIM9 regulate axon branching and guidance in response to the guidance cue netrin, whereas mammalian TRIM46 establishes the axon initial segment. In humans, mutations in TRIM1 and TRIM18 are implicated in Opitz Syndrome, characterized by midline defects and often intellectual disability. We find that although TRIM67 is the least studied vertebrate Class I TRIM, it is the most evolutionarily conserved. Here we show that mammalian TRIM67 interacts with both its closest paralog TRIM9 and the netrin receptor DCC and is differentially enriched in specific brain regions during development and adulthood. We describe the anatomical and behavioral consequences of deletion of murine Trim67. While viable, mice lacking Trim67 exhibit abnormal anatomy of specific brain regions, including hypotrophy of the hippocampus, striatum, amygdala, and thalamus, and thinning of forebrain commissures. Additionally, Trim67-/- mice display impairments in spatial memory, cognitive flexibility, social novelty preference, muscle function, and sensorimotor gating, whereas several other behaviors remain intact. This study demonstrates the necessity for TRIM67 in appropriate brain development and behavior.
Collapse
|
46
|
Faw TD, Lerch JK, Thaxton TT, Deibert RJ, Fisher LC, Basso DM. Unique Sensory and Motor Behavior in Thy1-GFP-M Mice before and after Spinal Cord Injury. J Neurotrauma 2018; 35:2167-2182. [PMID: 29385890 DOI: 10.1089/neu.2017.5395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sensorimotor recovery after spinal cord injury (SCI) is of utmost importance to injured individuals and will rely on improved understanding of SCI pathology and recovery. Novel transgenic mouse lines facilitate discovery, but must be understood to be effective. The purpose of this study was to characterize the sensory and motor behavior of a common transgenic mouse line (Thy1-GFP-M) before and after SCI. Thy1-GFP-M positive (TG+) mice and their transgene negative littermates (TG-) were acquired from two sources (in-house colony, n = 32, Jackson Laboratories, n = 4). C57BL/6J wild-type (WT) mice (Jackson Laboratories, n = 10) were strain controls. Moderate-severe T9 contusion (SCI) or transection (TX) occurred in TG+ (SCI, n = 25, TX, n = 5), TG- (SCI, n = 5), and WT (SCI, n = 10) mice. To determine responsiveness to rehabilitation, a cohort of TG+ mice with SCI (n = 4) had flat treadmill (TM) training 42-49 days post-injury (dpi). To characterize recovery, we performed Basso Mouse Scale, Grid Walk, von Frey Hair, and Plantar Heat Testing before and out to day 42 post-SCI. Open field locomotion was significantly better in the Thy1 SCI groups (TG+ and TG-) compared with WT by 7 dpi (p < 0.01) and was maintained through 42 dpi (p < 0.01). These unexpected locomotor gains were not apparent during grid walking, indicating severe impairment of precise motor control. Thy1 derived mice were hypersensitive to mechanical stimuli at baseline (p < 0.05). After SCI, mechanical hyposensitivity emerged in Thy1 derived groups (p < 0.001), while thermal hyperalgesia occurred in all groups (p < 0.001). Importantly, consistent findings across TG+ and TG- groups suggest that the effects are mediated by the genetic background rather than transgene manipulation itself. Surprisingly, TM training restored mechanical and thermal sensation to baseline levels in TG+ mice with SCI. This behavioral profile and responsiveness to chronic training will be important to consider when choosing models to study the mechanisms underlying sensorimotor recovery after SCI.
Collapse
Affiliation(s)
- Timothy D Faw
- 1 Neuroscience Graduate Program, The Ohio State University , Columbus, Ohio.,2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Jessica K Lerch
- 3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University , Columbus, Ohio
| | - Tyler T Thaxton
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Rochelle J Deibert
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Lesley C Fisher
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - D Michele Basso
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| |
Collapse
|
47
|
TRIM9 Mediates Netrin-1-Induced Neuronal Morphogenesis in the Developing and Adult Hippocampus. J Neurosci 2018; 36:9513-5. [PMID: 27629703 DOI: 10.1523/jneurosci.1917-16.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022] Open
|
48
|
Urbina FL, Gomez SM, Gupton SL. Spatiotemporal organization of exocytosis emerges during neuronal shape change. J Cell Biol 2018; 217:1113-1128. [PMID: 29351997 PMCID: PMC5839795 DOI: 10.1083/jcb.201709064] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Urbina et al. use a new computer-vision image analysis tool and extended clustering statistics to demonstrate that the spatiotemporal distribution of constitutive VAMP2-mediated exocytosis is dynamic in developing neurons. The exocytosis pattern is modified by both developmental time and the guidance cue netrin-1, regulated differentially in the soma and neurites, and distinct from exocytosis in nonneuronal cells. Neurite elongation and branching in developing neurons requires plasmalemma expansion, hypothesized to occur primarily via exocytosis. We posited that exocytosis in developing neurons and nonneuronal cells would exhibit distinct spatiotemporal organization. We exploited total internal reflection fluorescence microscopy to image vesicle-associated membrane protein (VAMP)–pHluorin—mediated exocytosis in mouse embryonic cortical neurons and interphase melanoma cells, and developed computer-vision software and statistical tools to uncover spatiotemporal aspects of exocytosis. Vesicle fusion behavior differed between vesicle types, cell types, developmental stages, and extracellular environments. Experiment-based mathematical calculations indicated that VAMP2-mediated vesicle fusion supplied excess material for the plasma membrane expansion that occurred early in neuronal morphogenesis, which was balanced by clathrin-mediated endocytosis. Spatial statistics uncovered distinct spatiotemporal regulation of exocytosis in the soma and neurites of developing neurons that was modulated by developmental stage, exposure to the guidance cue netrin-1, and the brain-enriched ubiquitin ligase tripartite motif 9. In melanoma cells, exocytosis occurred less frequently, with distinct spatial clustering patterns.
Collapse
Affiliation(s)
- Fabio L Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shawn M Gomez
- University of North Carolina at Chapel Hill/North Carolina State University Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
49
|
Mu Y, Yan X, Li D, Zhao D, Wang L, Wang X, Gao D, Yang J, Zhang H, Li Y, Sun Y, Wei Y, Zhang Z, Chang X, Yao Z, Tian S, Zhang K, Terada LS, Ma Z, Liu Z. NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. Autophagy 2017; 14:654-670. [PMID: 29130426 DOI: 10.1080/15548627.2017.1338556] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the advanced stages of cancer, autophagy is thought to promote tumor progression through its ability to mitigate various cellular stresses. However, the details of how autophagy is homeostatically regulated in such tumors are unknown. Here, we report that NUPR1 (nuclear protein 1, transcriptional regulator), a transcriptional coregulator, is aberrantly expressed in a subset of cancer cells and predicts low overall survival rates for lung cancer patients. NUPR1 regulates the late stages of autolysosome processing through the induction of the SNARE protein SNAP25, which forms a complex with the lysosomal SNARE-associated protein VAMP8. NUPR1 depletion deregulates autophagic flux and impairs autolysosomal clearance, inducing massive cytoplasmic vacuolization and premature senescence in vitro and tumor suppression in vivo. Collectively, our data show that NUPR1 is a potent regulator of autolysosomal dynamics and is required for the progression of some epithelial cancers.
Collapse
Affiliation(s)
- Yanchao Mu
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Xiaojie Yan
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Ding Li
- c Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences , Tianjin Medical University , Tianjin , 22 Qixiangtai Road, Heping District, Tianjin , China.,d Present address: Department of Clinical Laboratory , Tianjin Medical University Cancer Institute and Hospital , National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy , Tianjin , China
| | - Dan Zhao
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Lingling Wang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Xiaoyang Wang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,e Present address: Department of Internal Medicine , The Fifth Hospital of Shijiazhuang , Shijiazhuang , Hebei , China
| | - Dan Gao
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Jie Yang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Hua Zhang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Yanzhe Li
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Yanan Sun
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Yiliang Wei
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Zhenfa Zhang
- f Department of Lung Cancer , Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Xinzhong Chang
- g Department of Breast Cancer , Breast Cancer Center, Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Zhi Yao
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education , Tianjin Medical University , Tianjin , China
| | - Shanshan Tian
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Kai Zhang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Lance S Terada
- h Department of Internal Medicine, Division of Pulmonary and Critical Care , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Zhenyi Ma
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,i Key Laboratory of Hormones and Development (Ministry of Health) , Metabolic Diseases Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University , Tianjin , China
| | - Zhe Liu
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education , Tianjin Medical University , Tianjin , China.,c Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences , Tianjin Medical University , Tianjin , 22 Qixiangtai Road, Heping District, Tianjin , China.,i Key Laboratory of Hormones and Development (Ministry of Health) , Metabolic Diseases Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University , Tianjin , China
| |
Collapse
|
50
|
Naegeli KM, Hastie E, Garde A, Wang Z, Keeley DP, Gordon KL, Pani AM, Kelley LC, Morrissey MA, Chi Q, Goldstein B, Sherwood DR. Cell Invasion In Vivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain. Dev Cell 2017; 43:403-417.e10. [PMID: 29161591 DOI: 10.1016/j.devcel.2017.10.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 11/27/2022]
Abstract
Invasive cells use small invadopodia to breach basement membrane (BM), a dense matrix that encases tissues. Following the breach, a large protrusion forms to clear a path for tissue entry by poorly understood mechanisms. Using RNAi screening for defects in Caenorhabditis elegans anchor cell (AC) invasion, we found that UNC-6(netrin)/UNC-40(DCC) signaling at the BM breach site directs exocytosis of lysosomes using the exocyst and SNARE SNAP-29 to form a large protrusion that invades vulval tissue. Live-cell imaging revealed that the protrusion is enriched in the matrix metalloprotease ZMP-1 and transiently expands AC volume by more than 20%, displacing surrounding BM and vulval epithelium. Photobleaching and genetic perturbations showed that the BM receptor dystroglycan forms a membrane diffusion barrier at the neck of the protrusion, which enables protrusion growth. Together these studies define a netrin-dependent pathway that builds an invasive protrusion, an isolated lysosome-derived membrane structure specialized to breach tissue barriers.
Collapse
Affiliation(s)
- Kaleb M Naegeli
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Aastha Garde
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Kacy L Gordon
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Ariel M Pani
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Meghan A Morrissey
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Bob Goldstein
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|