1
|
Long Z, Ge C, Zhao Y, Liu Y, Zeng Q, Tang Q, Dong Z, He G. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo. Neural Regen Res 2025; 20:2633-2644. [PMID: 38993141 PMCID: PMC11801289 DOI: 10.4103/nrr.nrr-d-23-01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00025/figure1/v/2024-11-05T132919Z/r/image-tiff Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-β in neurons, which is a key step in senile plaque formation. Therefore, restoring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease. Microtubule acetylation/deacetylation plays a central role in lysosomal acidification. Here, we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease. Furthermore, we found that treatment with valproic acid markedly enhanced autophagy, promoted clearance of amyloid-β aggregates, and ameliorated cognitive deficits in a mouse model of Alzheimer's disease. Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease, in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
Collapse
Affiliation(s)
- Zhimin Long
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Chuanhua Ge
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qinghua Zeng
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qing Tang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Xiao WW, Chen S, Liu MX, Yu YL. Fluorescent probes for lysosomes, mitochondria, and lipid droplets: precision design, dynamic microenvironment monitoring, and heterogeneity exploration. Chem Commun (Camb) 2025; 61:7929-7944. [PMID: 40356377 DOI: 10.1039/d5cc01767j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Organelles are essential for regulating cellular physiological processes and maintaining homeostasis. Disruption of their functions can lead to cellular dysfunction and contribute to various diseases. Advances in fluorescent materials and imaging technologies have significantly enhanced the development of probes for detecting organelle-specific parameters and studying their heterogeneity. This review summarizes the design strategies, response mechanisms, and applications of fluorescent probes targeting three key organelles - lysosomes, mitochondria, and lipid droplets - in microenvironmental sensing and heterogeneity analysis, as developed by our group and others. In addition, the challenges faced by organelle imaging and the outlook for future development are also discussed, aiming to inspire further innovation in the design and application of organelle-specific fluorescent probes.
Collapse
Affiliation(s)
- Wen-Wen Xiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan City, Guangdong 528311, China
| | - Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
3
|
Marques ARA, Ferreira IS, Ribeiro Q, Ferraz MJ, Lopes E, Pinto D, Hall M, Ramalho J, Artola M, Almeida MS, Rodrigues G, Gonçalves PA, Ferreira J, Borbinha C, Marto JP, Viana-Baptista M, Gouveia E Melo R, Pedro LM, Soares MIL, Vaz WLC, Vieira OV, Aerts JMFG. Glucosylated cholesterol accumulates in atherosclerotic lesions and impacts macrophage immune response. J Lipid Res 2025:100825. [PMID: 40381699 DOI: 10.1016/j.jlr.2025.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
Atherosclerosis can be described as a local acquired lysosomal storage disorder (LSD), resulting from the build-up of undegraded material in lysosomes. Atherosclerotic foam cells accumulate cholesterol (Chol) and glycosphingolipids (GSLs) within lysosomes. This constitutes the ideal milieu for the formation of a side product of lysosomal storage: glucosylated cholesterol (GlcChol), previously found in several LSDs. Using LC-MS/MS, we demonstrated that GlcChol is abundant in atherosclerotic lesions. Patients suffering from cardiovascular diseases presented unaltered plasma GlcChol levels but slightly elevated GlcChol/Chol ratios. Furthermore, we mimicked GlcChol formation in vitro by exposing macrophages (Mφ) to a pro-atherogenic oxidized cholesteryl ester, an atherosclerosis foam cell model. Additionally, Mφ exposed to GlcChol exhibited an enlarged and multinucleated phenotype. These Mφ present signs of decreased proliferation and reduced pro-inflammatory capacity. Mechanistically the process seems to be associated with the activation of the AMPK signalling pathway and the cyclin-dependent kinase inhibitor 1 (CDKN1A/p21), in response to DNA damage inflicted by reactive oxygen species (ROS). At the organelle level, exposure to GlcChol impacted the lysosomal compartment, resulting in the activation of the mTOR signalling pathway and lysosomal biogenesis mediated by the transcription factor EB (TFEB). This suggests that high concentrations of GlcChol impact cellular homeostasis. In contrast, under this threshold GlcChol formation most likely represents a relatively innocuous compensatory mechanism to cope with Chol and GSL build-up within lesions. Our findings demonstrate that glycosidase-mediated lipid modifications may play a role in the aetiology of genetic and acquired LSDs, warranting further investigation.
Collapse
Affiliation(s)
- André R A Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Inês S Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Quélia Ribeiro
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria J Ferraz
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizeth Lopes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Daniela Pinto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Michael Hall
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Manuel S Almeida
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Pedro Araújo Gonçalves
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Cláudia Borbinha
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - João Pedro Marto
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Miguel Viana-Baptista
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Ryan Gouveia E Melo
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Luís Mendes Pedro
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Maria I L Soares
- University of Coimbra, Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Winchil L C Vaz
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
4
|
Jiang M, Bianchi F, van den Bogaart G. Protonophore activity of short-chain fatty acids induces their intracellular accumulation and acidification. FEBS Lett 2025. [PMID: 40325954 DOI: 10.1002/1873-3468.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 05/07/2025]
Abstract
Short-chain fatty acids (SCFAs), produced by dietary fiber fermentation in the colon, play essential roles in cellular metabolism, with butyrate notably modulating immune responses and epigenetic regulation. Their production contributes to an acidic colonic environment where protonated SCFAs permeate membranes, leading to intracellular acidification and SCFA accumulation. Using our method to measure intracellular pH, we investigated how extracellular pH influences butyrate-induced acidification and immunomodulatory effects in human macrophages. Our data show that butyrate accumulates and acidifies cells at acidic extracellular pH due to the permeability of its protonated form. While inflammatory cytokine production was mildly influenced by extracellular pH, butyrate-induced histone acetylation exhibited a pH dependence, underscoring the importance of considering extracellular pH when assessing the SCFA's functions.
Collapse
Affiliation(s)
- Muwei Jiang
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Qiao Q, Yin W, Wu X, Wu S, Ruan Y, Xu N, Li J, Wu ZS, Liu X, Xu Z. Two-Color Single-Molecule Blinking Ratiometricity: A Functional Super-Resolution Imaging Approach for Resolving Lysosomal pH and Dynamics. Angew Chem Int Ed Engl 2025; 64:e202503916. [PMID: 40055999 DOI: 10.1002/anie.202503916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Fluorescence super-resolution microscopy has enabled nanoscale imaging of intracellular structures, but it remains challenging to simultaneously achieve structural imaging and quantitative functional characterization, such as pH measurement, within the same region. Here, we introduce two-color single-molecule blinking ratiometricity (2C-SMBR), a novel method that integrates structural and functional imaging with single-molecule precision. By loading lysosomes with two pH-dependent spontaneously blinking fluorophores of distinct colors, 2C-SMBR leverages single-molecule localization of either fluorophore to achieve nanoscale structural imaging of lysosomes, whereas the ratiometric analysis of blinking dynamics between the two fluorophores provides quantitative pH measurement at the single-lysosome level. This dual-color ratiometric approach at the single-molecule level enables precise quantification of lysosomal pH with exceptional spatiotemporal resolution. Using 2C-SMBR, we reveal that lysosomal pH is highly heterogeneous at the single-lysosome level, with distinct subpopulations exhibiting diverse pH values. Our measurements show a pH range of 4.0-6.0 within lysosomes, with perinuclear lysosomes averaging a pH of approximately 4.88, whereas peripheral lysosomes average around 5.64. Crucially, 2C-SMBR enables real-time correlation between lysosomal dynamics and pH changes, overcoming a key limitation of super-resolution imaging. This approach not only advances nanoscale organelle characterization but also provides mechanistic insights into lysosomal physiology and function.
Collapse
Affiliation(s)
- Qinglong Qiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenting Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xia Wu
- Fluorescence Research Group, Singapore University of Technology and Design, Somapah Road, Singapore, 487372, Singapore
| | - Shaowei Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyan Ruan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jin Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhong-Shuai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, Somapah Road, Singapore, 487372, Singapore
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Yin X, Zhuang X, Luo W, Liao M, Huang L, Liu Y, Wang W. Penaeus vannamei SQSTM1/p62 is a necessary condition for autophagosome-lysosome fusion after infection by Vibrio alginolyticus. Int J Biol Macromol 2025; 309:142741. [PMID: 40180075 DOI: 10.1016/j.ijbiomac.2025.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
As an autophagy receptor, SQSTM1/p62 facilitates the degradation of various cytoplasmic components, including proteins, organelles, and pathogens, by mediating interactions between polyubiquitination cargo and autophagosomes. Our study observed an increase in the expression level of SQSTM1/p62 during autophagy induced by Vibrio alginolyticus (V. alginolyticus) in Penaeus vannamei (P. vannamei), contrary to expectations, which promoted an investigation into the role of SQSTM1/p62 in infectious diseases of aquatic animals. Using silencing techniques, we examined the function and regulatory mechanism of SQSTM1/p62 during V. alginolyticus infection. Silencing the Pvp62 gene in P. vannamei and infecting them with V. alginolyticus led to a significant decrease in the survival rate of P. vannamei, indicating its importance in the infection process. Furthermore, Pvp62 silencing was found to affect the lysosome function of P. vannamei. Immunofluorescence analysis showed that silences of Pvp62 inhibited co-localization of LC3 and lamp1 after infection, while overexpression of Pvp62 promoted this process, suggesting that Pvp62 was a necessary condition for autophagosome-lysosome fusion after infection by V. alginolyticus. Importantly, the overexpression of Pvp62 counteracted the inhibitory effect of the autophagy inhibitor chloroquine on autophagosome-lysosome fusion in primary hemocytes of shrimp after infection, underscoring the protective role of Pvp62-mediated autophagosome-lysosome fusion pathway during V. alginolyticus infection.
Collapse
Affiliation(s)
- Xiaoli Yin
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China; School of Life Sciences, Guangzhou University, Guangzhou 511400, PR China.
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Weitao Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
7
|
Rezagholizadeh N, Datta G, Hasler WA, Nguon EC, Smokey EV, Chen X. TLR7 Mediates HIV-1 Tat-Induced Cellular Senescence in Human Astrocytes. Aging Cell 2025:e70086. [PMID: 40304459 DOI: 10.1111/acel.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Cellular senescence contributes to accelerated aging, neuroinflammation, and the development of HIV-associated neurocognitive disorders (HAND) in the era of combined antiretroviral therapy (cART). One HIV viral factor that could lead to cellular senescence is the persistence of HIV-1 Tat in the brain. As a secreted viral protein, Tat is known to enter endolysosomes of cells through receptor-mediated endocytosis, and we have shown that Tat induces endolysosome damage and dysfunction. Significantly, endolysosome dysfunction has been strongly linked to cellular senescence. However, it is not known whether endolysosome dysfunction represents a driver or consequence of cellular senescence. Because Tat-induced endolysosome damage represents an early step in exogenous Tat-induced cellular senescence, we tested the hypothesis that Tat induces cellular senescence via an endolysosome-dependent mechanism in human astrocytes. We demonstrated that Tat interacts with an endolysosome-resident Toll-like receptor 7 (TLR7) via its arginine-rich basic domain, and such an interaction results in endolysosome damage and the development of a senescence-like phenotype including cell cycle arrest, enhanced SA-β-gal activity, and increased release of senescence-associated secretory phenotype (SASP) factors (IL-6, IL-8, and CCL2). Thus, our finding provided mechanistic insights whereby Tat induces endolysosome damage and cellular senescence in human astrocytes. We provide compelling evidence that endolysosome damage drives the development of cellular senescence. Our findings also highlight the novel role of TLR7 in the development of cellular senescence and suggest that TLR7 represents a novel therapeutic target against senescence and the development of HAND.
Collapse
Affiliation(s)
- Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Erica C Nguon
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Elise V Smokey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
8
|
Zhou N, Chen J, Hu M, Wen N, Cai W, Li P, Zhao L, Meng Y, Zhao D, Yang X, Liu S, Huang F, Zhao C, Feng X, Jiang Z, Xie E, Pan H, Cen Z, Chen X, Luo W, Tang B, Min J, Wang F, Yang J, Xu H. SLC7A11 is an unconventional H + transporter in lysosomes. Cell 2025:S0092-8674(25)00406-4. [PMID: 40280132 DOI: 10.1016/j.cell.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Lysosomes maintain an acidic pH of 4.5-5.0, optimal for macromolecular degradation. Whereas proton influx is produced by a V-type H+ ATPase, proton efflux is mediated by a fast H+ leak through TMEM175 channels, as well as an unidentified slow pathway. A candidate screen on an orphan lysosome membrane protein (OLMP) library enabled us to discover that SLC7A11, the protein target of the ferroptosis-inducing compound erastin, mediates a slow lysosomal H+ leak through downward flux of cystine and glutamate, two H+ equivalents with uniquely large but opposite concentration gradients across lysosomal membranes. SLC7A11 deficiency or inhibition caused lysosomal over-acidification, reduced degradation, accumulation of storage materials, and ferroptosis, as well as facilitated α-synuclein aggregation in neurons. Correction of abnormal lysosomal acidity restored lysosome homeostasis and prevented ferroptosis. These studies have revealed an unconventional H+ transport conduit that is integral to lysosomal flux of protonatable metabolites to regulate lysosome function, ferroptosis, and Parkinson's disease (PD) pathology.
Collapse
Affiliation(s)
- Nan Zhou
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jingzhi Chen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China.
| | - Na Wen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Liding Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Dongdong Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaotong Yang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Fangqian Huang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zikai Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Enjun Xie
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxu Pan
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhidong Cen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beisha Tang
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junxia Min
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Institute of Fundamental and Transdisciplinary Research and The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Jerabkova-Roda K, Peralta M, Huang KJ, Mousson A, Bourgeat Maudru C, Bochler L, Busnelli I, Karali R, Justiniano H, Lisii LM, Carl P, Mittelheisser V, Asokan N, Larnicol A, Lefebvre O, Lachuer H, Pichot A, Stemmelen T, Molitor A, Scheid L, Frenger Q, Gros F, Hirschler A, Delalande F, Sick E, Carapito R, Carapito C, Lipsker D, Schauer K, Rondé P, Hyenne V, Goetz JG. Peripheral positioning of lysosomes supports melanoma aggressiveness. Nat Commun 2025; 16:3375. [PMID: 40204688 PMCID: PMC11982396 DOI: 10.1038/s41467-025-58528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Emerging evidence suggests that the function and position of organelles are pivotal for tumor cell dissemination. Among them, lysosomes stand out as they integrate metabolic sensing with gene regulation and secretion of proteases. Yet, how their function is linked to their position and how this controls metastasis remains elusive. Here, we analyze lysosome subcellular distribution in patient-derived melanoma cells and patient biopsies and show that lysosome spreading scales with melanoma aggressiveness. Peripheral lysosomes promote matrix degradation and cell invasion which is directly linked to the lysosomal and cell transcriptional programs. Using chemo-genetical control of lysosome positioning, we demonstrate that perinuclear clustering impairs lysosome secretion, matrix degradation and invasion. Impairing lysosome spreading significantly reduces invasive outgrowth in two in vivo models, mouse and zebrafish. Our study provides a direct demonstration that lysosome positioning controls cell invasion, illustrating the importance of organelle adaptation in carcinogenesis and suggesting its potential utility for diagnosis of metastatic melanoma.
Collapse
Affiliation(s)
- Katerina Jerabkova-Roda
- Tumor Biomechanics, Strasbourg, France.
- INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
- Institut Curie, PSL, CNRS, UMR144, Paris, France.
| | - Marina Peralta
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, 00015, Rome, Italy
| | - Kuang-Jing Huang
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Antoine Mousson
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Clara Bourgeat Maudru
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Louis Bochler
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Ignacio Busnelli
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Rabia Karali
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Hélène Justiniano
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Lucian-Mihai Lisii
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Philippe Carl
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Vincent Mittelheisser
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Nandini Asokan
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Annabel Larnicol
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Hugo Lachuer
- Institut Curie, PSL, CNRS, UMR144, Paris, France
- Institut Gustave Roussy, INSERM UMR1279, Université Paris-Saclay, Villejuif, France
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Angélique Pichot
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Tristan Stemmelen
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Anne Molitor
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | - Léa Scheid
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Quentin Frenger
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Frédéric Gros
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - Emilie Sick
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Raphaël Carapito
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - Dan Lipsker
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Kristine Schauer
- Institut Curie, PSL, CNRS, UMR144, Paris, France.
- Institut Gustave Roussy, INSERM UMR1279, Université Paris-Saclay, Villejuif, France.
| | - Philippe Rondé
- Université de Strasbourg, Strasbourg, France.
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France.
| | - Vincent Hyenne
- Tumor Biomechanics, Strasbourg, France.
- INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
- CNRS, SNC5055, Strasbourg, France.
| | - Jacky G Goetz
- Tumor Biomechanics, Strasbourg, France.
- INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
| |
Collapse
|
10
|
Kakanj P, Bonse M, Kshirsagar A, Gökmen A, Gaedke F, Sen A, Mollá B, Vogelsang E, Schauss A, Wodarz A, Pla-Martín D. Retromer promotes the lysosomal turnover of mtDNA. SCIENCE ADVANCES 2025; 11:eadr6415. [PMID: 40184468 PMCID: PMC11970507 DOI: 10.1126/sciadv.adr6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Mitochondrial DNA (mtDNA) is exposed to multiple insults produced by normal cellular function. Upon mtDNA replication stress, the mitochondrial genome transfers to endosomes for degradation. Using proximity biotinylation, we found that mtDNA stress leads to the rewiring of the mitochondrial proximity proteome, increasing mitochondria's association with lysosomal and vesicle-related proteins. Among these, the retromer complex, particularly VPS35, plays a pivotal role by extracting mitochondrial components. The retromer promotes the formation of mitochondrial-derived vesicles shuttled to lysosomes. The mtDNA, however, directly shuttles to a recycling organelle in a BAX-dependent manner. Moreover, using a Drosophila model carrying a long deletion on the mtDNA (ΔmtDNA), we found that ΔmtDNA activates a specific transcriptome profile to counteract mitochondrial damage. Here, Vps35 expression restores mtDNA homoplasmy and alleviates associated defects. Hence, we demonstrate the existence of a previously unknown quality control mechanism for the mitochondrial matrix and the essential role of lysosomes in mtDNA turnover to relieve mtDNA damage.
Collapse
Affiliation(s)
- Parisa Kakanj
- Institute of Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mari Bonse
- Institute of Physiology, University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Arya Kshirsagar
- Institute of Biochemistry and Molecular Biology, University Clinics and Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Aylin Gökmen
- Institute of Physiology, University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ayesha Sen
- Institute of Biochemistry and Molecular Biology, University Clinics and Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Elisabeth Vogelsang
- Department of Molecular Cell Biology, Institute I for Anatomy. University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Andreas Wodarz
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Molecular Cell Biology, Institute I for Anatomy. University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Institute of Physiology, University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Biochemistry and Molecular Biology, University Clinics and Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Chen YY, Liu CX, Liu HX, Wen SY. The Emerging Roles of Vacuolar-Type ATPase-Dependent Lysosomal Acidification in Cardiovascular Disease. Biomolecules 2025; 15:525. [PMID: 40305271 PMCID: PMC12024769 DOI: 10.3390/biom15040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The vacuolar-type ATPase (V-ATPase) is a multi-subunit enzyme complex that maintains lysosomal acidification, a critical process for cellular homeostasis. By controlling the pH within lysosomes, V-ATPase contributes to overall cellular homeostasis, helping to maintain a balance between the degradation and synthesis of cellular components. Dysfunction of V-ATPase impairs lysosomal acidification, leading to the accumulation of undigested materials and contributing to various diseases, including cardiovascular diseases (CVDs) like atherosclerosis and myocardial disease. Furthermore, V-ATPase's role in lysosomal function suggests potential therapeutic strategies targeting this enzyme complex to mitigate cardiovascular disease progression. Understanding the mechanisms by which V-ATPase influences cardiovascular pathology is essential for developing novel treatments aimed at improving outcomes in patients with heart and vascular diseases.
Collapse
Affiliation(s)
- Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Cai-Xia Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030024, China; (C.-X.L.); (H.-X.L.)
| | - Hai-Xin Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030024, China; (C.-X.L.); (H.-X.L.)
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
12
|
Xu G, Zhang Q, Cheng R, Qu J, Li W. Survival strategies of cancer cells: the role of macropinocytosis in nutrient acquisition, metabolic reprogramming, and therapeutic targeting. Autophagy 2025; 21:693-718. [PMID: 39817564 PMCID: PMC11925119 DOI: 10.1080/15548627.2025.2452149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it. We then focus on the central role of the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) in regulating macropinocytosis, highlighting its significance as a key signaling hub where various pathways converge to control nutrient uptake and metabolic processes. The article covers a comprehensive analysis of the literature on the molecular mechanisms governing macropinocytosis, including the initiation, maturation, and recycling of macropinosomes, with an emphasis on how these processes are hijacked by cancer cells to sustain their growth. Key discussions include the potential therapeutic strategies targeting macropinocytosis, such as enhancing drug delivery via this pathway, inhibiting macropinocytosis to starve cancer cells, blocking the degradation and recycling of macropinosomes, and inducing methuosis - a form of cell death triggered by excessive macropinocytosis. Targeting macropinocytosis represents a novel and innovative approach that could significantly advance the treatment of cancers that rely on this pathway for survival. Through continuous research and innovation, we look forward to developing more effective and safer anti-cancer therapies that will bring new hope to patients.Abbreviation: AMPK: AMP-activated protein kinase; ASOs: antisense oligonucleotides; CAD: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; DC: dendritic cell; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: erb-b2 receptor tyrosine kinase 2; ESCRT: endosomal sorting complex required for transport; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; GRB2: growth factor receptor bound protein 2; LPP: lipopolyplex; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; NSCLC: non-small cell lung cancer; PADC: pancreatic ductal adenocarcinoma; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate; PtdIns(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; PTT: photothermal therapies; RAC1: Rac family small GTPase 1; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RTKs: receptor tyrosine kinases; SREBF: sterol regulatory element binding transcription factor; TFEB: transcription factor EB; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Qinghong Zhang
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renjia Cheng
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People’s Liberation Army of China, Shenyang, Liaoning, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
13
|
Lopez A, Siddiqi FH, Villeneuve J, Ureshino RP, Jeon HY, Koulousakis P, Keeling S, McEwan WA, Fleming A, Rubinsztein DC. Carbonic anhydrase inhibition ameliorates tau toxicity via enhanced tau secretion. Nat Chem Biol 2025; 21:577-587. [PMID: 39482469 PMCID: PMC11949835 DOI: 10.1038/s41589-024-01762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Tauopathies are neurodegenerative diseases that manifest with intracellular accumulation and aggregation of tau protein. These include Pick's disease, progressive supranuclear palsy, corticobasal degeneration and argyrophilic grain disease, where tau is believed to be the primary disease driver, as well as secondary tauopathies, such as Alzheimer's disease. There is a need to develop effective pharmacological therapies. Here we tested >1,400 clinically approved compounds using transgenic zebrafish tauopathy models. This revealed that carbonic anhydrase (CA) inhibitors protected against tau toxicity. CRISPR experiments confirmed that CA depletion mimicked the effects of these drugs. CA inhibition promoted faster clearance of human tau by promoting lysosomal exocytosis. Importantly, methazolamide, a CA inhibitor used in the clinic, also reduced total and phosphorylated tau levels, increased neuronal survival and ameliorated neurodegeneration in mouse tauopathy models at concentrations similar to those seen in people. These data underscore the feasibility of in vivo drug screens using zebrafish models and suggest serious consideration of CA inhibitors for treating tauopathies.
Collapse
Affiliation(s)
- Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Farah H Siddiqi
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Julien Villeneuve
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Rodrigo Portes Ureshino
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hee-Yeon Jeon
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Philippos Koulousakis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| |
Collapse
|
14
|
Lizardo LP, Elisa RB, Tania XR, Ulises TF, Brandon LQ, Regina MQ, Carlos CJ, Montserrat ZO, Francisco AH. Oxidative Stress, Lysosomal Permeability, and Mitochondrial-Derived Vesicles Induced in NL-20 Human Bronchial Cells Exposed to Benzo[ghi]Perylene. Toxicol In Vitro 2025; 104:105999. [PMID: 39701484 DOI: 10.1016/j.tiv.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/01/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Benzo[ghi] perylene (b[ghi]p) is classified as non-carcinogenic to humans, and there are currently no occupational exposure models available to identify its effects. The aim of this work was to evaluate the effect of b[ghi]p on the lysosomes of NL-20 cells (a human bronchial cell line) exposed to 4.5 μM for 3 h. The effect was evaluated through an ultrastructural evaluation, morphological changes, and acridine orange staining of lysosomes. Superoxide was quantified; and SOD1, cathepsin B, LAMP1, galectin-3 and LC3α/β, and Rab7 expression was evaluated by immunocytochemistry. The expression of genes related to oxidative stress responses (NRF2, NQO1, HMOX1 and PRDX1) and genes related to autophagy (ULK1, ATG9, BCN1, VMP1, TMEM41B and p62) were quantified by RT-qPCR. The ultrastructural evaluation revealed an increase in autophagic vesicles and phagophores in cells exposed to b[ghi]p, as well as vesicles derived from mitochondria. Based on morphology, there were vesicles in the cytoplasm. B[ghi]p significantly decreased the number of lysosomes (p < 0.05), and NAC reverse this effect (p < 0.05). Superoxide production was observed from 30 min to 3 h (p < 0.05). Immunocytochemistry revealed increased galectin-3 and LC3α/β. All oxidative stress-related genes showed high expression (p < 0.05), and the expression of ATG9 gene was decreased (p < 0.05). These results demonstrate that b[ghi]p induces oxidative stress, responsible for producing the toxic effects in the lysosomes of NL-20 cells.
Collapse
Affiliation(s)
- López-Pérez Lizardo
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico.
| | - Roldán-Barreto Elisa
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P, 04510 CDMX, Mexico.
| | - Xochiteotzin-Reyes Tania
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Torres-Flores Ulises
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Licea-Quintero Brandon
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico.
| | - Monroy-Quintana Regina
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico.
| | - Corona Juan Carlos
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Zaragoza-Ojeda Montserrat
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Arenas-Huertero Francisco
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico.
| |
Collapse
|
15
|
Winkley SR, Kane PM. The ROGDI protein mutated in Kohlschutter-Tonz syndrome is a novel subunit of the Rabconnectin-3 complex implicated in V-ATPase assembly. J Biol Chem 2025; 301:108381. [PMID: 40049412 PMCID: PMC11997317 DOI: 10.1016/j.jbc.2025.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025] Open
Abstract
V-ATPases are highly conserved ATP-driven rotary proton pumps found widely among eukaryotes that are composed of two subcomplexes: V1 and V0. V-ATPase activity is regulated in part through reversible disassembly, during which V1 physically separates from V0 and both subcomplexes become inactive. Reassociation of V1 to V0 reactivates the complex for ATP-driven proton pumping and organelle acidification. V-ATPase reassembly in Saccharomyces cerevisiae requires the RAVE complex (Rav1, Rav2, and Skp1), and higher eukaryotes, including humans, utilize the Rabconnectin-3 complex. Mammalian Rabconnectin-3 has two subunits: Rabconnectin-3α and Rabconnectin-3β. Rabconnectin-3α isoforms are homologous to Rav1, but there is no known Rav2 homolog, and the molecular basis of the interaction between the Rabconnectin-3α and β subunits is unknown. We identified ROGDI as a Rav2 homolog and novel Rabconnectin-3 subunit. ROGDI mutations cause Kohlschutter-Tonz syndrome, an epileptic encephalopathy with amelogenesis imperfecta that has parallels to V-ATPase-related disease. ROGDI shares extensive structural homology with yeast Rav2 and can functionally replace Rav2 in yeast. ROGDI binds to the N-terminal domains of both Rabconnectin-3 α and β, similar to Rav2 binding to Rav1. Molecular modeling suggests that ROGDI may bridge the two Rabconnectin-3 subunits. ROGDI coimmunoprecipitates with Rabconnectin-3 subunits from detergent-solubilized lysates and is present with them in immunopurified lysosomes of mammalian cells. In immunofluorescence microscopy, ROGDI partially localizes with Rabconnectin-3α in acidic perinuclear lysosomes. The discovery of ROGDI as a novel Rabconnectin-3 interactor sheds new light on both Kohlschutter-Tonz syndrome and the mechanisms behind mammalian V-ATPase regulation.
Collapse
Affiliation(s)
- Samuel R Winkley
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
16
|
Paumier JM, Zewe J, Panja C, Pergande MR, Venkatesan M, Israeli E, Prasad S, Snider N, Savas JN, Opal P. Neurofilament accumulation disrupts autophagy in giant axonal neuropathy. JCI Insight 2025; 10:e177999. [PMID: 40059823 PMCID: PMC11949051 DOI: 10.1172/jci.insight.177999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Neurofilament accumulation is associated with many neurodegenerative diseases, but it is the primary pathology in giant axonal neuropathy (GAN). This childhood-onset autosomal recessive disease is caused by loss-of-function mutations in gigaxonin, the E3 adaptor protein that enables neurofilament degradation. Using a combination of genetic and RNA interference approaches, we found that dorsal root ganglia from mice lacking gigaxonin have impaired autophagy and lysosomal degradation through 2 mechanisms. First, neurofilament accumulations interfere with the distribution of autophagic organelles, impairing their maturation and fusion with lysosomes. Second, the accumulations attract the chaperone 14-3-3, which is responsible for the proper localization of the key autophagy regulator transcription factor EB (TFEB). We propose that this dual disruption of autophagy contributes to the pathogenesis of other neurodegenerative diseases involving neurofilament accumulations.
Collapse
Affiliation(s)
- Jean-Michel Paumier
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James Zewe
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chiranjit Panja
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Melissa R. Pergande
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meghana Venkatesan
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eitan Israeli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shikha Prasad
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natasha Snider
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Jeffrey N. Savas
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
17
|
París Ogáyar M, Ayed Z, Josserand V, Henry M, Artiga Á, Didonè L, Granado M, Serrano A, Espinosa A, Le Guével X, Jaque D. Luminescence Fingerprint of Intracellular NIR-II Gold Nanocluster Transformation: Implications for Sensing and Imaging. ACS NANO 2025; 19:7821-7834. [PMID: 39989214 DOI: 10.1021/acsnano.4c13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gold nanoclusters emitting in the second biological window (NIR-II-AuNCs) have gained significant interest for their potential in deep-tissue bioimaging and biosensing applications due to the partial transparency and reduced autofluorescence of tissues in this spectral range. However, the limited understanding of how the biological environment affects their luminescent properties might hinder their use in bioimaging and biosensing. In this study, we investigated the emission properties of NIR-II-AuNCs when interacting and internalizing into live cells including macrophages, fibroblasts, and cancer cell lines, revealing substantial alterations in their luminescence. A systematic comparison between control and in vitro experiments concluded that the disruption of surface ligands is the main factor responsible for these alterations. NIR-II-AuNCs within cellular environments may also be influenced by other interactions, including aggregation or complexation with proteins. Furthermore, we also corroborated these spectroscopic modifications at the in vivo level, providing additional evidence of the environmental sensitivity of NIR-II-AuNCs. The results obtained in this study contribute to a deeper understanding of the luminescence mechanisms of NIR-II-AuNCs in biological environments in cells and in living tissues and are crucial for their optimization as reliable tools in biological environment for in vitro and in vivo imaging and diagnostics.
Collapse
Affiliation(s)
- Marina París Ogáyar
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Zeineb Ayed
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Veronique Josserand
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Maxime Henry
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Álvaro Artiga
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Livia Didonè
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Miriam Granado
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Aida Serrano
- Instituto de Cerámica y Vidrio | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Xavier Le Guével
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Daniel Jaque
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28034 Madrid, Spain
| |
Collapse
|
18
|
Solé-Domènech S, Kumar Singh P, Warren JD, Maxfield FR. Real-Time Ratiometric pH Imaging of Macrophage Lysosomes Using the Novel pH-sensitive Probe ApHID. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.20.576118. [PMID: 39974909 PMCID: PMC11838183 DOI: 10.1101/2024.01.20.576118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Lysosomes actively regulate their lumenal pH, which is necessary for optimal enzymatic activity. Endocytic processes are involved in many diseases, including Alzheimer's disease, in which sub-optimal lysosomal function has been reported. To measure acidification, pH-sensitive probes can be delivered to endosomes and lysosomes using labeled dextran polymers or proteins. However, many commercially available probes have limited sensitivity in the acidic range of lysosomes, and their fluorescence is subject to enzymatic degradation and photobleaching. Herein, we describe the preparation, characterization, and use of a novel pH-sensitive probe, ApHID, a green-emitting fluorescent dye with optimal dynamic range within the acidity of endosomes and lysosomes. ApHID has a pKa near 5, increasing brightness with acidity, and it is robustly resistant to oxidation and photobleaching. We used ApHID ratiometric imaging to measure lysosomal pH in macrophages, yielding virtually identical results when compared with fluorescein and Oregon Green. Overall, ApHID circumvents limitations presented by most commercially available pH-sensitive probes and can be useful in demanding imaging applications such as intravital imaging of tissues.
Collapse
|
19
|
Ren WW, Kawahara R, Suzuki KG, Dipta P, Yang G, Thaysen-Andersen M, Fujita M. MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation. J Cell Biol 2025; 224:e202407068. [PMID: 39751400 PMCID: PMC11697975 DOI: 10.1083/jcb.202407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis. Interestingly, lysosomal exocytosis preferentially occurred in the vicinity of focal adhesions, protein complexes connecting the actin cytoskeleton to the extracellular matrix. Through genome-wide knockout screening, we identified that MYO18B, an actin crosslinker, is required for focal adhesion maturation, facilitating lysosomal exocytosis and the release of paucimannosidic lysosomal proteins to the extracellular milieu. Moreover, a mechanosensitive cation channel PIEZO1 locally activated at focal adhesions imports Ca2+ necessary for lysosome-plasma membrane fusion. Collectively, our study unveiled an intimate relationship between lysosomal exocytosis and focal adhesion, shedding light on the unexpected interplay between lysosomal activities and cellular mechanosensing.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Kenichi G.N. Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute, Tokyo, Japan
| | - Priya Dipta
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Morten Thaysen-Andersen
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| |
Collapse
|
20
|
Deng D, Guan Y, Mutlu AS, Wang B, Gao SM, Zheng H, Wang MC. Quantitative profiling pH heterogeneity of acidic endolysosomal compartments using fluorescence lifetime imaging microscopy. Mol Biol Cell 2025; 36:br8. [PMID: 39878653 PMCID: PMC11974955 DOI: 10.1091/mbc.e23-06-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
The endolysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism Caenorhabditis elegans. This FLIM-based method exhibits high sensitivity in resolving subtle pH differences, thereby revealing heterogeneity within a cell and across cell types. This method enables rapid measurement of pH changes in the acidic endolysosomal system in response to various environmental stimuli. Furthermore, the fast FLIM measurement of pH-sensitive dyes circumvents the need for transgenic reporters and mitigates potential confounding factors associated with varying dye concentrations or excitation light intensity. This FLIM approach offers absolute pH quantification and highlights the significance of pH heterogeneity and dynamics, offering a valuable tool for investigating lysosomal functions and their regulation in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Dinghuan Deng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Youchen Guan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Shihong Max Gao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Meng C. Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
21
|
Barthelson K, Protzman RA, Snel MF, Hemsley K, Lardelli M. Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167651. [PMID: 39798820 DOI: 10.1016/j.bbadis.2024.167651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases. However, a direct molecular-level comparison of these diseases has never been performed. Here, we exploited the power of zebrafish reproduction (large families of siblings from single mating events raised together in consistent environments) to conduct sensitive, internally controlled, comparative transcriptome and proteome analyses of zebrafish models of early-onset familial Alzheimer's disease (EOfAD, psen1Q96_K97del/+) and MPSIIIB (nagluA603fs/A603fs) within single families. We examined larval zebrafish (7 days post fertilisation), representing early disease stages. We also examined the brains of 6-month-old zebrafish, which are approximately equivalent to young adults in humans. We identified substantially more differentially expressed genes and pathways in MPS III zebrafish than in EOfAD-like zebrafish. This is consistent with MPS III being a rapidly progressing and earlier onset form of dementia. Similar changes in expression were detected between the two disease models in gene sets representing extracellular matrix receptor interactions in larvae, and the ribosome and lysosome pathways in 6-month-old adult brains. Cell type-specific changes were detected in MPSIIIB brains at 6 months of age, likely reflecting significant disturbances of oligodendrocyte, neural stem cell, and inflammatory cell functions and/or numbers. Our 'omics analyses have illuminated similar disease pathways between EOfAD and MPS III indicating where efforts to find mutually effective therapeutic strategies can be targeted.
Collapse
Affiliation(s)
- Karissa Barthelson
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
| | - Rachael A Protzman
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Physics, Chemistry and Earth Science, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Kim Hemsley
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
He C, He P, Ou Y, Tang X, Wei H, Xu Y, Bai S, Guo Z, Hu R, Xiong K, Du G, Sun X. Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules. ACS NANO 2025; 19:5549-5567. [PMID: 39879106 DOI: 10.1021/acsnano.4c14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites. This strategy integrates the antiresorptive drug alendronate with siSema4D, efficiently inhibiting osteoclast (OC) differentiation and bone resorption, while promoting osteogenesis to restore the balance between osteoblasts (OBs) and OCs. Moreover, encapsulating siSema4D within the nanocapsules helps to mitigate immunological cascades, thereby reversing the inflammatory microenvironment and restoring immune homeostasis and providing insights into the immunomodulatory effects of Sema4D in osteoporosis therapy. In both ovariectomized and senile osteoporotic mouse models, local intramuscular administration of core-shell nanocapsules effectively rectified the imbalance between the skeletal and immune systems, significantly enhancing the overall efficacy of osteoporosis treatment. Our findings underscore the therapeutic promise of addressing the multifaceted osteoporotic microenvironment through targeted interventions.
Collapse
Affiliation(s)
- Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongjiao Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Lakkaraju A, Boya P, Csete M, Ferrington DA, Hurley JB, Sadun AA, Shang P, Sharma R, Sinha D, Ueffing M, Brockerhoff SE. How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration. Exp Eye Res 2025; 251:110219. [PMID: 39716681 DOI: 10.1016/j.exer.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024]
Abstract
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Patricia Boya
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | | | - Deborah A Ferrington
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Harvey LD, Alotaibi M, Tai YY, Tang Y, Kim HJJ, Kelly NJ, Sun W, Woodcock CSC, Arshad S, Culley MK, El Khoury W, Xie R, Al Aaraj Y, Zhao J, Hafeez N, Rao RJ, Jiang S, Negi V, Kirillova A, Perk D, Watson AM, St. Croix CM, Stolz DB, Lee JY, Cheng MH, Zhang M, Detmer S, Guzman E, Manan RS, Saggar R, Haley KJ, Waxman AB, Okawa S, Schwantes-An TH, Pauciulo MW, Wang B, Webb A, Chauvet C, Anderson DG, Nichols WC, Desai AA, Lafyatis R, Nouraie SM, Wu H, McDonald JG, Cheng S, Bahar I, Bertero T, Benza RL, Jain M, Chan SY. Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension. Science 2025; 387:eadn7277. [PMID: 39847635 PMCID: PMC12087357 DOI: 10.1126/science.adn7277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 (NCOA7) deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes. This oxysterol signature overlapped with a plasma metabolite signature associated with human PAH mortality. Mice deficient for endothelial Ncoa7 or exposed to an inflammatory bile acid developed worsened PAH. Genetic predisposition to NCOA7 deficiency was driven by single-nucleotide polymorphism rs11154337, which alters endothelial immunoactivation and is associated with human PAH mortality. An NCOA7-activating agent reversed endothelial immunoactivation and rodent PAH. Thus, we established a genetic and metabolic paradigm that links lysosomal biology and oxysterol processes to endothelial inflammation and PAH.
Collapse
Affiliation(s)
- Lloyd D. Harvey
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mona Alotaibi
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hee-Jung J. Kim
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chen-Shan C. Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miranda K. Culley
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rong Xie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashmi J. Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Perk
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Annie M. Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Manling Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Samuel Detmer
- Department of Chemistry, Massachusetts Institute of Technology, Boston, MA, USA
| | - Edward Guzman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rajith S. Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Rajan Saggar
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kathleen J. Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B. Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bing Wang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Webb
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Caroline Chauvet
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Daniel G. Anderson
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ankit A. Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S. Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas Bertero
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Raymond L. Benza
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Patat J, Schauer K, Lachuer H. Trafficking in cancer: from gene deregulation to altered organelles and emerging biophysical properties. Front Cell Dev Biol 2025; 12:1491304. [PMID: 39902278 PMCID: PMC11788300 DOI: 10.3389/fcell.2024.1491304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/10/2024] [Indexed: 02/05/2025] Open
Abstract
Intracellular trafficking supports all cell functions maintaining the exchange of material between membrane-bound organelles and the plasma membrane during endocytosis, cargo sorting, and exocytosis/secretion. Several proteins of the intracellular trafficking machinery are deregulated in diseases, particularly cancer. This complex and deadly disease stays a heavy burden for society, despite years of intense research activity. Here, we give an overview about trafficking proteins and highlight that in addition to their molecular functions, they contribute to the emergence of intracellular organelle landscapes. We review recent evidence of organelle landscape alterations in cancer. We argue that focusing on organelles, which represent the higher-order, cumulative behavior of trafficking regulators, could help to better understand, describe and fight cancer. In particular, we propose adopting a physical framework to describe the organelle landscape, with the goal of identifying the key parameters that are crucial for a stable and non-random organelle organization characteristic of healthy cells. By understanding these parameters, we may gain insights into the mechanisms that lead to a pathological organelle spatial organization, which could help explain the plasticity of cancer cells.
Collapse
Affiliation(s)
- Julie Patat
- Cell Biology of Organelle Networks Team, Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Kristine Schauer
- Cell Biology of Organelle Networks Team, Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
- Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Hugo Lachuer
- Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
26
|
Chen D, Gutierrez MG. Painting lysosomes to study organelle heterogeneity. J Cell Biol 2025; 224:e202412011. [PMID: 39680115 DOI: 10.1083/jcb.202412011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Like other organelles, the heterogeneity of lysosomes within a single cell has been challenging to capture and study in detail. In this issue, Chen and Gutierrez discuss new work that tackles this question using DNA-PAINT imaging, from Lakadamyali and colleagues (https://doi.org/10.1083/jcb.202403116).
Collapse
Affiliation(s)
- Di Chen
- Host Pathogen Interactions in Tuberculosis laboratory, The Francis Crick Institute, London, UK
| | - Maximiliano G Gutierrez
- Host Pathogen Interactions in Tuberculosis laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
27
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2025; 35:46-58. [PMID: 38866684 PMCID: PMC11632148 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
28
|
Baumer Y, Singh K, Saurabh A, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Joshi S, Andrews MR, Aquino Peterson EM, Bleck CK, Mendelsohn LG, Mitchell VM, Collins BS, Redekar NR, Kuhn SA, Combs CA, Pirooznia M, Dagur PK, Allan DS, Schwartz DM, Childs RW, Powell-Wiley TM. Obesity modulates NK cell activity via LDL and DUSP1 signaling for populations with adverse social determinants. JCI Insight 2024; 10:e180606. [PMID: 39718832 PMCID: PMC11790026 DOI: 10.1172/jci.insight.180606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
African American (AA) women are disproportionately affected by obesity and hyperlipidemia, particularly in the setting of adverse social determinants of health (aSDoH) that contribute to health disparities. Obesity, hyperlipidemia, and aSDoH appear to impair NK cells. As potential common underlying mechanisms are largely unknown, we sought to investigate common signaling pathways involved in NK cell dysfunction related to obesity and hyperlipidemia in AA women from underresourced neighborhoods. We determined in freshly isolated NK cells that obesity and measures of aSDoH were associated with a shift in NK cell subsets away from CD56dim/CD16+ cytotoxic NK cells. Using ex vivo data, we identified LDL as a marker related to NK cell function in an AA population from underresourced neighborhoods. Additionally, NK cells from AA women with obesity and LDL-treated NK cells displayed a loss in NK cell function. Comparative unbiased RNA-sequencing analysis revealed DUSP1 as a common factor. Subsequently, chemical inhibition of Dusp1 and Dusp1 overexpression in NK cells highlighted its significance in NK cell function and lysosome biogenesis in a mTOR/TFEB-related fashion. Our data demonstrate a pathway by which obesity and hyperlipidemia in the setting of aSDoH may relate to NK cell dysfunction, making DUSP1 an important target for further investigation of health disparities.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Abhinav Saurabh
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | | | - Sahil Joshi
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | | | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | - Neelam R. Redekar
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Skyler A. Kuhn
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Daniella M. Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
- Intramural Research Program, National Institute on Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Ayyadurai P, Ragavendran C. Nano-bio-encapsulation of phyto-vaccines: a breakthrough in targeted cancer immunotherapy. Mol Biol Rep 2024; 52:58. [PMID: 39692899 DOI: 10.1007/s11033-024-10164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Nano bio-encapsulation of phyto-vaccines for cancer has marked a cutting-edge strategy that brings together nanotechnology with plant-derived vaccines to enhance cancer therapy. Phyto-vaccines, isolated from bioactive compounds found in plants called protein bodies, have been shown to potentially stimulate the immune system to recognise and destroy cancer cells. However, challenges such as poor stability, rapid degradation, and limited bioavailability in the body have hindered their clinical application. Nano bio-encapsulation offers a solution by packaging these phyto-vaccines into nanoscale carriers such as lectins have provided ways to overcome these limitations. They protect the protein bodies from degradation by proteolytic enzymes, enhance targeted delivery to cancer cells, and enable controlled release. This approach not only improves the bio-distribution and potency of the vaccines but also minimizes side effects, making it a highly promising, sustainable, and efficient method for cancer immunotherapy. As research progresses, this technology has the potential to revolutionize cancer treatment by providing safer and more precise therapeutic options. This review focuses on the concept of nano bio-encapsulation of phyto-vaccines for cancer treatment. It explores how nanotechnology can enhance the stability, bioavailability, and targeted delivery of plant-derived vaccines, addressing the limitations of traditional vaccines. The review delves into the potential of this innovative strategy to advance cancer immunotherapy, providing a comprehensive overview of current research and future directions.
Collapse
Affiliation(s)
- Pavithra Ayyadurai
- Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
30
|
Saffi GT, To L, Kleine N, Melo CM, Chen K, Genc G, Lee KD, Chow JTS, Jang GH, Gallinger S, Botelho RJ, Salmena L. INPP4B promotes PDAC aggressiveness via PIKfyve and TRPML-1-mediated lysosomal exocytosis. J Cell Biol 2024; 223:e202401012. [PMID: 39120584 PMCID: PMC11317760 DOI: 10.1083/jcb.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.
Collapse
Affiliation(s)
- Golam T. Saffi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Lydia To
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Nicholas Kleine
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ché M.P. Melo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Gizem Genc
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - K.C. Daniel Lee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | | | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
| | - Roberto J. Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
31
|
Bagri KM, Pereira MG, Leichtweis KS, Abreu JG, Costa ML, Mermelstein C. Lysosomes accumulate at the perinuclear region of muscle cells during chick myogenesis. Cell Biol Int 2024; 48:1625-1636. [PMID: 39252384 DOI: 10.1002/cbin.12238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 09/11/2024]
Abstract
Lysosomes are involved in a myriad of cellular functions, such as degradation of macromolecules, endocytosis and exocytosis, modulation of several signaling pathways, and regulation of cell metabolism. To fulfill these diverse functions, lysosomes can undergo several dynamic changes in their content, size, pH, and location within cells. Here, we studied some of these parameters during embryonic chick skeletal muscle cells. We used an anti-lysosome-associated membrane protein 2 (LAMP2) antibody to specifically determine the intracellular localization of lysosomes in these cells. Our data shows that lysosomes are highly enriched in the perinuclear region of chick embryonic muscle cells. We also showed that the wingless signaling pathway (Wnt)/β-catenin signaling pathway can modulate the location of LAMP2 in chick myogenic cells. Our results highlight the role of lysosomes during muscle differentiation and particularly the presence of a subcellular population of lysosomes that are concentrated in the perinuclear region of muscle cells.
Collapse
Affiliation(s)
- Kayo Moreira Bagri
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miria Gomes Pereira
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Kamila Souto Leichtweis
- Laboratório de Embriologia de Vertebrados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Jose G Abreu
- Laboratório de Embriologia de Vertebrados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Zou GY, Bi F, Yu YL, Liu MX, Chen S. Tetrahedral DNA-Based Ternary Recognition Ratiometric Fluorescent Probes for Real-Time In Situ Resolving Lysosome Subpopulations in Living Cells via Cl -, Ca 2+, and pH. Anal Chem 2024; 96:16639-16648. [PMID: 39382097 DOI: 10.1021/acs.analchem.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lysosomes are multifunctional organelles vital for cellular homeostasis with distinct subpopulations characterized by varying levels of Cl-, Ca2+, and H+. In situ visualization of these parameters is crucial for lysosomal research, yet developing probes that can simultaneously detect multiple ions remains challenging. Herein, we developed a lysosome-targeting ternary recognition ratiometric fluorescent probe based on tetrahedral DNA nanostructures (TDNs) to analyze lysosome subpopulations by Cl-, Ca2+, and pH. The TDN probe is assembled from four single-stranded DNAs, each end-modified with responsive fluorophores (Pr-Cl for Cl-, Pr-Ca for Ca2+, and Pr-pH for pH) or a reference fluorophore (Cy5). The fluorophores are integrated at the vertices of the rigid TDN to minimize mutual interference, and their fixed stoichiometry establishes a robust ternary recognition ratiometric fluorescence sensor for in situ resolution of lysosome subpopulations in living cells. Accordingly, a rise in lysosome subpopulations 2/6 characterized by low [Cl-], medium/high [Ca2+], and high pH was observed in the Niemann-Pick disease model cells but seldom observed in the control group. Conversely, there was a marked decline in the fraction of subpopulations 1/4/5 characterized by high [Cl-], medium to low [Ca2+], and pH. These changes were substantially reversed upon treatment. The probe holds great promise for studying lysosome subpopulations and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Fan Bi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan City, Guangdong 528311, China
| |
Collapse
|
33
|
Hao M, Sebag SC, Qian Q, Yang L. Lysosomal physiology and pancreatic lysosomal stress in diabetes mellitus. EGASTROENTEROLOGY 2024; 2:e100096. [PMID: 39512752 PMCID: PMC11542681 DOI: 10.1136/egastro-2024-100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Endocrine and exocrine functions of the pancreas control nutritional absorption, utilisation and systemic metabolic homeostasis. Under basal conditions, the lysosome is pivotal in regulating intracellular organelles and metabolite turnover. In response to acute or chronic stress, the lysosome senses metabolic flux and inflammatory challenges, thereby initiating the adaptive programme to re-establish cellular homeostasis. A growing body of evidence has demonstrated the pathophysiological relevance of the lysosomal stress response in metabolic diseases in diverse sets of tissues/organs, such as the liver and the heart. In this review, we discuss the pathological relevance of pancreatic lysosome stress in diabetes mellitus. We begin by summarising lysosomal biology, followed by exploring the immune and metabolic functions of lysosomes and finally discussing the interplay between lysosomal stress and the pathogenesis of pancreatic diseases. Ultimately, our review aims to enhance our understanding of lysosomal stress in disease pathogenesis, which could potentially lead to the discovery of innovative treatment methods for these conditions.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sara C Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Salam A, Kaushik K, Mukherjee B, Anjum F, Sapkal GT, Sharma S, Garg R, Nandi CK. A zinc metal complex as an NIR emissive probe for real-time dynamics and in vivo embryogenic evolution of lysosomes using super-resolution microscopy. Chem Sci 2024:d4sc04638b. [PMID: 39246364 PMCID: PMC11376271 DOI: 10.1039/d4sc04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Zinc (Zn) based fluorescent metal complexes have gained increasing attention due to their non-toxicity and high brightness with marked fluorescence quantum yield (QY). However, they have rarely been employed in super-resolution microscopy (SRM) to study live cells and in vivo dynamics of lysosomes. Here, we present an NIR emissive highly photostable Zn-complex as a multifaceted fluorescent probe for the long-term dynamical distribution of lysosomes in various cancerous and non-cancerous cells in live condition and in vivo embryogenic evolution in Caenorhabditis elegans (C. elegans). Apart from the normal fission, fusion, and kiss & run, the motility and the exact location of lysosomes at each point were mapped precisely. A notable difference in the lysosomal motility in the peripheral region between cancerous and non-cancerous cells was distinctly observed. This is attributed to the difference in viscosity of the cytoplasmic environment. On the other hand, along with the super-resolved structure of the smallest size lysosome (∼77 nm) in live C. elegans, the complete in vivo embryogenic evolution of lysosomes and lysosome-related organelles (LROs) was captured. We were able to capture the images of lysosomes and LROs at different stages of C. elegans, starting from a single cell and extending to a fully matured adult animal.
Collapse
Affiliation(s)
- Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Bodhidipra Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Goraksha T Sapkal
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Richa Garg
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| |
Collapse
|
35
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
36
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
37
|
Güleç Taşkıran AE, Hüsnügil HH, Soltani ZE, Oral G, Menemenli NS, Hampel C, Huebner K, Erlenbach-Wuensch K, Sheraj I, Schneider-Stock R, Akyol A, Liv N, Banerjee S. Post-Transcriptional Regulation of Rab7a in Lysosomal Positioning and Drug Resistance in Nutrient-Limited Cancer Cells. Traffic 2024; 25:e12956. [PMID: 39313937 DOI: 10.1111/tra.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Limited nutrient availability in the tumor microenvironment can cause the rewiring of signaling and metabolic networks to confer cancer cells with survival advantages. We show here that the limitation of glucose, glutamine and serum from the culture medium resulted in the survival of a population of cancer cells with high viability and capacity to form tumors in vivo. These cells also displayed a remarkable increase in the abundance and size of lysosomes. Moreover, lysosomes were located mainly in the perinuclear region in nutrient-limited cells; this translocation was mediated by a rapid post-transcriptional increase in the key endolysosomal trafficking protein Rab7a. The acidic lysosomes in nutrient-limited cells could trap weakly basic drugs such as doxorubicin, mediating resistance of the cells to the drug, which could be partially reversed with the lysosomal inhibitor bafilomycin A1. An in vivo chorioallantoic membrane (CAM) assay indicated a remarkable decrease in microtumor volume when nutrient-limited cells were treated with 5-Fluorouracil (5-FU) and bafilomycin A1 compared to cells treated with either agent alone. Overall, our data indicate the activation of complementary pathways with nutrient limitation that can enable cancer cells to survive, proliferate and acquire drug resistance.
Collapse
Affiliation(s)
- Aliye Ezgi Güleç Taşkıran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Department of Molecular Biology and Genetics, Başkent University, Ankara, Turkiye
| | - Hepşen H Hüsnügil
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Zahra E Soltani
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Göksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Nazlı S Menemenli
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Chuanpit Hampel
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Huebner
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Erlenbach-Wuensch
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Aytekin Akyol
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Cancer Systems Biology Laboratory (CanSyL), Orta Dogu Teknik Universitesi, Ankara, Turkiye
| |
Collapse
|
38
|
Robinson BP, Bass NR, Bhakt P, Spiliotis ET. Septin-coated microtubules promote maturation of multivesicular bodies by inhibiting their motility. J Cell Biol 2024; 223:e202308049. [PMID: 38668767 PMCID: PMC11046855 DOI: 10.1083/jcb.202308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Collapse
Affiliation(s)
| | - Naomi R. Bass
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
39
|
Cai R, Scott O, Ye G, Le T, Saran E, Kwon W, Inpanathan S, Sayed BA, Botelho RJ, Saric A, Uderhardt S, Freeman SA. Pressure sensing of lysosomes enables control of TFEB responses in macrophages. Nat Cell Biol 2024; 26:1247-1260. [PMID: 38997458 DOI: 10.1038/s41556-024-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Polymers are endocytosed and hydrolysed by lysosomal enzymes to generate transportable solutes. While the transport of diverse organic solutes across the plasma membrane is well studied, their necessary ongoing efflux from the endocytic fluid into the cytosol is poorly appreciated by comparison. Myeloid cells that employ specialized types of endocytosis, that is, phagocytosis and macropinocytosis, are highly dependent on such transport pathways to prevent the build-up of hydrostatic pressure that otherwise offsets lysosomal dynamics including vesiculation, tubulation and fission. Without undergoing rupture, we found that lysosomes incurring this pressure owing to defects in solute efflux, are unable to retain luminal Na+, which collapses its gradient with the cytosol. This cation 'leak' is mediated by pressure-sensitive channels resident to lysosomes and leads to the inhibition of mTORC1, which is normally activated by Na+-coupled amino acid transporters driven by the Na+ gradient. As a consequence, the transcription factors TFEB/TFE3 are made active in macrophages with distended lysosomes. In addition to their role in lysosomal biogenesis, TFEB/TFE3 activation causes the release of MCP-1/CCL2. In catabolically stressed tissues, defects in efflux of solutes from the endocytic pathway leads to increased monocyte recruitment. Here we propose that macrophages respond to a pressure-sensing pathway on lysosomes to orchestrate lysosomal biogenesis as well as myeloid cell recruitment.
Collapse
Affiliation(s)
- Ruiqi Cai
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ori Scott
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gang Ye
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trieu Le
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ekambir Saran
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Whijin Kwon
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Blayne A Sayed
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefan Uderhardt
- Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Centre Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Spencer A Freeman
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Lu CY, Wu JZ, Yao HHY, Liu RJY, Li L, Pluthero FG, Freeman SA, Kahr WHA. Acidification of α-granules in megakaryocytes by vacuolar-type adenosine triphosphatase is essential for organelle biogenesis. J Thromb Haemost 2024; 22:2294-2305. [PMID: 38718926 DOI: 10.1016/j.jtha.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jing Ze Wu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Calvo B, Torres-Vidal P, Delrio-Lorenzo A, Rodriguez C, Aulestia FJ, Rojo-Ruiz J, McVeigh BM, Moiseenkova-Bell V, Yule DI, Garcia-Sancho J, Patel S, Alonso MT. Direct measurements of luminal Ca 2+ with endo-lysosomal GFP-aequorin reveal functional IP 3 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.547422. [PMID: 39211134 PMCID: PMC11360962 DOI: 10.1101/2023.07.11.547422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Endo-lysosomes are considered acidic Ca 2+ stores but direct measurements of luminal Ca 2+ within them are limited. Here we report that the Ca 2+ -sensitive luminescent protein aequorin does not reconstitute with its cofactor at highly acidic pH but that a significant fraction of the probe is functional within a mildly acidic compartment when targeted to the endo-lysosomal system. We leveraged this probe (ELGA) to report Ca 2+ dynamics in this compartment. We show that Ca 2+ uptake is ATP-dependent and sensitive to blockers of endoplasmic reticulum Ca 2+ pumps. We find that the Ca 2+ mobilizing messenger IP 3 which typically targets the endoplasmic reticulum evokes robust luminal responses in wild type cells, but not in IP 3 receptor knock-out cells. Responses were comparable to those evoked by activation of the endo-lysosomal ion channel TRPML1. Stimulation with IP 3 -forming agonists also mobilized the store in intact cells. Super-resolution microscopy analysis confirmed the presence of IP 3 receptors within the endo-lysosomal system, both in live and fixed cells. Our data reveal a physiologically-relevant, IP 3 -sensitive store of Ca 2+ within the endo-lysosomal system.
Collapse
|
42
|
Mahanty S, Bergam P, Belapurkar V, Eluvathingal L, Gupta N, Goud B, Nair D, Raposo G, Setty SRG. Biogenesis of specialized lysosomes in differentiated keratinocytes relies on close apposition with the Golgi apparatus. Cell Death Dis 2024; 15:496. [PMID: 38992005 PMCID: PMC11239851 DOI: 10.1038/s41419-024-06710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 07/13/2024]
Abstract
Intracellular organelles support cellular physiology in diverse conditions. In the skin, epidermal keratinocytes undergo differentiation with gradual changes in cellular physiology, accompanying remodeling of lysosomes and the Golgi apparatus. However, it was not known whether changes in Golgi and lysosome morphology and their redistribution were linked. Here, we show that disassembled Golgi is distributed in close physical apposition to lysosomes in differentiated keratinocytes. This atypical localization requires the Golgi tethering protein GRASP65, which is associated with both the Golgi and lysosome membranes. Depletion of GRASP65 results in the loss of Golgi-lysosome apposition and the malformation of lysosomes, defined by their aberrant morphology, size, and function. Surprisingly, a trans-Golgi enzyme and secretory Golgi cargoes are extensively localized to the lysosome lumen and secreted to the cell surface, contributing to total protein secretion of differentiated keratinocytes but not in proliferative precursors, indicating that lysosomes acquire specialization during differentiation. We further demonstrate that the secretory function of the Golgi apparatus is critical to maintain keratinocyte lysosomes. Our study uncovers a novel form of Golgi-lysosome cross-talk and its role in maintaining specialized secretory lysosomes in differentiated keratinocytes.
Collapse
Affiliation(s)
- Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| | - Ptissam Bergam
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Vivek Belapurkar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | | | - Nikita Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
43
|
Goff PS, Patel S, Carter T, Marks MS, Sviderskaya EV. Enhanced MC1R-signalling and pH modulation facilitate melanogenesis within late endosomes of BLOC-1-deficient melanocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602505. [PMID: 39026869 PMCID: PMC11257453 DOI: 10.1101/2024.07.08.602505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoprotective melanins in the skin are synthesised by epidermal melanocytes within specialised lysosome-related organelles called melanosomes. Melanosomes coexist with lysosomes; thus, melanocytes employ specific trafficking machineries to ensure correct cargo delivery to either the endolysosomal system or maturing melanosomes. Mutations in some of the protein complexes required for melanogenic cargo delivery, such as biogenesis of lysosome-related organelles complex 1 (BLOC-1), result in hypopigmentation due to mistrafficking of cargo to endolysosomes. We show that hypopigmented BLOC-1-deficient melanocytes retain melanogenic capacity that can be enhanced by treatment with cAMP elevating agents despite the mislocalisation of melanogenic proteins. The melanin formed in BLOC-1-deficient melanocytes is not generated in melanosomes but rather within late endosomes/lysosomes to which some cargoes mislocalise. Although these organelles generally are acidic, a cohort of late endosomes/lysosomes have a sufficiently neutral pH to facilitate melanogenesis, perhaps due to mislocalised melanosomal transporters and melanogenic enzymes. Modulation of the pH of late endosomes/lysosomes by genetic manipulation or via treatment with lysosomotropic agents significantly enhances the melanin content of BLOC-1-deficient melanocytes. Our data suggest that upregulation of mistargeted cargoes can facilitate reprogramming of a subset of endolysosomes to generate some functions of lysosome-related organelles.
Collapse
|
44
|
Durán M, Ariceta G, Semidey ME, Castells-Esteve C, Casal-Pardo A, Lu B, Meseguer A, Cantero-Recasens G. Renal antiporter ClC-5 regulates collagen I/IV through the β-catenin pathway and lysosomal degradation. Life Sci Alliance 2024; 7:e202302444. [PMID: 38670633 PMCID: PMC11053357 DOI: 10.26508/lsa.202302444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Mutations in Cl-/H+ antiporter ClC-5 cause Dent's disease type 1 (DD1), a rare tubulopathy that progresses to renal fibrosis and kidney failure. Here, we have used DD1 human cellular models and renal tissue from DD1 mice to unravel the role of ClC-5 in renal fibrosis. Our results in cell systems have shown that ClC-5 deletion causes an increase in collagen I (Col I) and IV (Col IV) intracellular levels by promoting their transcription through the β-catenin pathway and impairing their lysosomal-mediated degradation. Increased production of Col I/IV in ClC-5-depleted cells ends up in higher release to the extracellular medium, which may lead to renal fibrosis. Furthermore, our data have revealed that 3-mo-old mice lacking ClC-5 (Clcn5 +/- and Clcn5 -/- ) present higher renal collagen deposition and fibrosis than WT mice. Altogether, we describe a new regulatory mechanism for collagens' production and release by ClC-5, which is altered in DD1 and provides a better understanding of disease progression to renal fibrosis.
Collapse
Affiliation(s)
- Mònica Durán
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Gema Ariceta
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Nephrology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Pediatrics Department, School of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
| | - Maria E Semidey
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Carla Castells-Esteve
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Andrea Casal-Pardo
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Biochemistry and Molecular Biology Department, School of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
| | | |
Collapse
|
45
|
Goldman C, Kareva T, Sarrafha L, Schuldt BR, Sahasrabudhe A, Ahfeldt T, Blanchard JW. Genetically Encoded and Modular SubCellular Organelle Probes (GEM-SCOPe) reveal lysosomal and mitochondrial dysfunction driven by PRKN knockout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594886. [PMID: 38979135 PMCID: PMC11230217 DOI: 10.1101/2024.05.21.594886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cellular processes including lysosomal and mitochondrial dysfunction are implicated in the development of many diseases. Quantitative visualization of mitochondria and lysosoesl is crucial to understand how these organelles are dysregulated during disease. To address a gap in live-imaging tools, we developed GEM-SCOPe (Genetically Encoded and Modular SubCellular Organelle Probes), a modular toolbox of fluorescent markers designed to inform on localization, distribution, turnover, and oxidative stress of specific organelles. We expressed GEM-SCOPe in differentiated astrocytes and neurons from a human pluripotent stem cell PRKN-knockout model of Parkinson's disease and identified disease-associated changes in proliferation, lysosomal distribution, mitochondrial transport and turnover, and reactive oxygen species. We demonstrate GEM-SCOPe is a powerful panel that provide critical insight into the subcellular mechanisms underlying Parkinson's disease in human cells. GEM-SCOPe can be expanded upon and applied to a diversity of cellular models to glean an understanding of the mechanisms that promote disease onset and progression.
Collapse
Affiliation(s)
- Camille Goldman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Braxton R. Schuldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Abhishek Sahasrabudhe
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Joel W. Blanchard
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Lead Contact
| |
Collapse
|
46
|
Cen J, Hu N, Shen J, Gao Y, Lu H. Pathological Functions of Lysosomal Ion Channels in the Central Nervous System. Int J Mol Sci 2024; 25:6565. [PMID: 38928271 PMCID: PMC11203704 DOI: 10.3390/ijms25126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.
Collapse
Affiliation(s)
| | | | | | - Yongjing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| | - Huanjun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| |
Collapse
|
47
|
Miki K, Yagi M, Kang D, Kunisaki Y, Yoshimoto K, Uchiumi T. Glucose starvation causes ferroptosis-mediated lysosomal dysfunction. iScience 2024; 27:109735. [PMID: 38706843 PMCID: PMC11067335 DOI: 10.1016/j.isci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka 813-0002, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka 815-8510, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
48
|
Li ZL, Han GM, Wang K, Lyu JA, Li ZW, Zhu BC, Zhu LN, Kong DM. Multiparameter Assessment of Foam Cell Formation Progression Using a Dual-Color Switchable Fluorescence Probe. Anal Chem 2024; 96:6968-6977. [PMID: 38662948 DOI: 10.1021/acs.analchem.3c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.
Collapse
Affiliation(s)
- Zi-Lu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Jia-Ao Lyu
- Admiral Farragut Academy Tianjin, Yantai Road, Heping District, Tianjin 300042, P. R. China
| | - Zi-Wen Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bao-Cun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Li-Na Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
49
|
Mulligan RJ, Magaj MM, Digilio L, Redemann S, Yap CC, Winckler B. Collapse of late endosomal pH elicits a rapid Rab7 response via the V-ATPase and RILP. J Cell Sci 2024; 137:jcs261765. [PMID: 38578235 PMCID: PMC11166203 DOI: 10.1242/jcs.261765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.
Collapse
Affiliation(s)
- Ryan J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Magdalena M. Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
50
|
Criddle DN, Tepikin AV. Neighbourhood Watch: Two-pore-2 channels talking to IP3 receptors. Cell Calcium 2024; 119:102868. [PMID: 38457907 DOI: 10.1016/j.ceca.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
The recent elegant study by Y. Yuan and colleagues examined functional relationships between the lysosomal two-pore channels 2 (TPC2) and IP3 receptors (IP3Rs) located in the endoplasmic reticulum [1]. The findings of this study suggest functional coupling of these channels and receptors. The study also describes interesting novel phenomena, which may indicate an additional coupling mechanism.
Collapse
Affiliation(s)
- David N Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, Crown Street, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| | - Alexei V Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, Crown Street, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| |
Collapse
|