1
|
Tsemperouli M, Cheppali SK, Rivera-Molina F, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. Biophys J 2024:S0006-3495(24)04104-3. [PMID: 39719826 DOI: 10.1016/j.bpj.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense-core vesicles (DCVs) and synaptic vesicles to the plasma membrane and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Félix Rivera-Molina
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Tsemperouli M, Cheppali SK, Molina FR, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612660. [PMID: 39314345 PMCID: PMC11419119 DOI: 10.1101/2024.09.12.612660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense core vesicles (DCV) and synaptic vesicles (SV) to the plasma membrane (PM) and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Felix Rivera Molina
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
- Wu Tsai Institute, Yale University
| |
Collapse
|
3
|
Reichlmeir M, Canet-Pons J, Koepf G, Nurieva W, Duecker RP, Doering C, Abell K, Key J, Stokes MP, Zielen S, Schubert R, Ivics Z, Auburger G. In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA. Cells 2023; 12:2399. [PMID: 37830614 PMCID: PMC10572167 DOI: 10.3390/cells12192399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2, many non-coding RNAs, ataxia genes Itpr1, Grid2, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., Oprm1. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Júlia Canet-Pons
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Wasifa Nurieva
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Ruth Pia Duecker
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Claudia Doering
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Stefan Zielen
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Ralf Schubert
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| |
Collapse
|
4
|
Hummer BH, Carter T, Sellers BL, Triplett JD, Asensio CS. Identification of the functional domain of the dense core vesicle biogenesis factor HID-1. PLoS One 2023; 18:e0291977. [PMID: 37751424 PMCID: PMC10522040 DOI: 10.1371/journal.pone.0291977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, can rescue the neuroendocrine secretion and sorting defects observed in HID-1 KO cells. Finally, we report that a point mutation within that domain, identified in patients with endocrine and neurological deficits, leads to loss of function.
Collapse
Affiliation(s)
- Blake H. Hummer
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Theodore Carter
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Breanna L. Sellers
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Jenna D. Triplett
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Cedric S. Asensio
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| |
Collapse
|
5
|
Stamateris RE, Landa-Galvan HV, Sharma RB, Darko C, Redmond D, Rane SG, Alonso LC. Noncanonical CDK4 signaling rescues diabetes in a mouse model by promoting β cell differentiation. J Clin Invest 2023; 133:e166490. [PMID: 37712417 PMCID: PMC10503800 DOI: 10.1172/jci166490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Expanding β cell mass is a critical goal in the fight against diabetes. CDK4, an extensively characterized cell cycle activator, is required to establish and maintain β cell number. β cell failure in the IRS2-deletion mouse type 2 diabetes model is, in part, due to loss of CDK4 regulator cyclin D2. We set out to determine whether replacement of endogenous CDK4 with the inhibitor-resistant mutant CDK4-R24C rescued the loss of β cell mass in IRS2-deficient mice. Surprisingly, not only β cell mass but also β cell dedifferentiation was effectively rescued, despite no improvement in whole body insulin sensitivity. Ex vivo studies in primary islet cells revealed a mechanism in which CDK4 intervened downstream in the insulin signaling pathway to prevent FOXO1-mediated transcriptional repression of critical β cell transcription factor Pdx1. FOXO1 inhibition was not related to E2F1 activity, to FOXO1 phosphorylation, or even to FOXO1 subcellular localization, but rather was related to deacetylation and reduced FOXO1 abundance. Taken together, these results demonstrate a differentiation-promoting activity of the classical cell cycle activator CDK4 and support the concept that β cell mass can be expanded without compromising function.
Collapse
Affiliation(s)
- Rachel E. Stamateris
- MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Huguet V. Landa-Galvan
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Rohit B. Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Christine Darko
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - David Redmond
- Hartman Institute for Therapeutic Regenerative Medicine, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sushil G. Rane
- Integrative Cellular Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institute for Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Laura C. Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| |
Collapse
|
6
|
Arabiotorre A, Formanowicz M, Bankaitis VA, Grabon A. Phosphatidylinositol-4-phosphate signaling regulates dense granule biogenesis and exocytosis in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523261. [PMID: 36712082 PMCID: PMC9882004 DOI: 10.1101/2023.01.09.523261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphoinositide metabolism defines the foundation of a major signaling pathway that is conserved throughout the eukaryotic kingdom. The 4-OH phosphorylated phosphoinositides such as phosphatidylinositol-4-phosphate (PtdIns4P) and phosphatidylinositol-4,5-bisphosphate are particularly important molecules as these execute intrinsically essential activities required for the viability of all eukaryotic cells studied thus far. Using intracellular tachyzoites of the apicomplexan parasite Toxoplasma gondii as model for assessing primordial roles for PtdIns4P signaling, we demonstrate the presence of PtdIns4P pools in Golgi/trans-Golgi (TGN) system and in post-TGN compartments of the parasite. Moreover, we show that deficits in PtdIns4P signaling result in structural perturbation of compartments that house dense granule cargo with accompanying deficits in dense granule exocytosis. Taken together, the data report a direct role for PtdIns4P in dense granule biogenesis and exocytosis. The data further indicate that the biogenic pathway for secretion-competent dense granule formation in T. gondii is more complex than simple budding of fully matured dense granules from the TGN.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| | - Megan Formanowicz
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Vytas A. Bankaitis
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128
| | - Aby Grabon
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| |
Collapse
|
7
|
Akram M, Handelsman DJ, Qayyum M, Kennerson M, Rauf S, Ahmed S, Ishtiaq O, Ismail M, Mansoor Q, Naseem AA, Rizvi SSR. Genetic analysis of failed male puberty using whole exome sequencing. J Pediatr Endocrinol Metab 2022; 35:1410-1421. [PMID: 36103668 DOI: 10.1515/jpem-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Although at least 598 genes are involved in the development of the hypothalamo-pituitary-testicular (HPT) axis, mutations in only 75 genes have so far been shown to cause delayed puberty. METHODS Six male patients with failed puberty, manifested as absence of pubertal changes by 18 years of age, underwent whole exome sequencing of genomic DNA with subsequent bioinformatics analysis and confirmation of selected variants by Sanger sequencing. Genes having plausibly pathogenic non-synonymous variants were characterized as group A (previously reported to cause delayed puberty), group B (expressed in the HPT-axis but no mutations therein were reported to cause delayed puberty) or group C (not reported previously to be connected with HPT-axis). RESULTS We identified variants in genes involved in GnRH neuron differentiation (2 in group A, 1 in group C), GnRH neuron migration (2 each in groups A and C), development of GnRH neural connections with supra-hypothalamic and hypothalamic neurons (2 each in groups A and C), neuron homeostasis (1 in group C), molecules regulating GnRH neuron activity (2 each in groups B and C), receptors/proteins expressed on GnRH neurons (1 in group B), signaling molecules (3 in group C), GnRH synthesis (1 in group B), gonadotropins production and release (1 each in groups A, B, and C) and action of the steroid hormone (1 in group A). CONCLUSIONS Non-synonymous variants were identified in 16 genes of the HPT-axis, which comprised 4 in group A that contains genes previously reported to cause delayed puberty, 4 in group B that are expressed along HPT-axis but no mutations therein were reported previously to cause delayed puberty and 8 in group C that contains novel candidate genes, suggesting wider genetic causes of failed male puberty.
Collapse
Affiliation(s)
- Maleeha Akram
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - David J Handelsman
- The ANZAC Research Institute (ARI), University of Sydney, Concord, NSW, Australia
| | - Mazhar Qayyum
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Marina Kennerson
- The ANZAC Research Institute (ARI), University of Sydney, Concord, NSW, Australia
| | - Sania Rauf
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.,Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt, Pakistan
| | - Shahid Ahmed
- Department of Endocrinology, Military Hospital, Rawalpindi, Pakistan
| | - Osama Ishtiaq
- The Endocrinology and Diabetes Department, Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Afzaal Ahmed Naseem
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Higgs MJ, Hill MJ, John RM, Isles AR. Systematic investigation of imprinted gene expression and enrichment in the mouse brain explored at single-cell resolution. BMC Genomics 2022; 23:754. [PMID: 36384442 PMCID: PMC9670596 DOI: 10.1186/s12864-022-08986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although a number of imprinted genes are known to be highly expressed in the brain, and in certain brain regions in particular, whether they are truly over-represented in the brain has never been formally tested. Using thirteen single-cell RNA sequencing datasets we systematically investigated imprinted gene over-representation at the organ, brain region, and cell-specific levels. RESULTS We established that imprinted genes are indeed over-represented in the adult brain, and in neurons particularly compared to other brain cell-types. We then examined brain-wide datasets to test enrichment within distinct brain regions and neuron subpopulations and demonstrated over-representation of imprinted genes in the hypothalamus, ventral midbrain, pons and medulla. Finally, using datasets focusing on these regions of enrichment, we identified hypothalamic neuroendocrine populations and the monoaminergic hindbrain neurons as specific hotspots of imprinted gene expression. CONCLUSIONS These analyses provide the first robust assessment of the neural systems on which imprinted genes converge. Moreover, the unbiased approach, with each analysis informed by the findings of the previous level, permits highly informed inferences about the functions on which imprinted gene expression converges. Our findings indicate the neuronal regulation of motivated behaviours such as feeding and sleep, alongside the regulation of pituitary function, as functional hotspots for imprinting. This adds statistical rigour to prior assumptions and provides testable predictions for novel neural and behavioural phenotypes associated with specific genes and imprinted gene networks. In turn, this work sheds further light on the potential evolutionary drivers of genomic imprinting in the brain.
Collapse
Affiliation(s)
- M J Higgs
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - M J Hill
- School of Medicine, UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - R M John
- School of Biosciences, Cardiff University, Cardiff, UK
| | - A R Isles
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Shiu FH, Wong JC, Yamamoto T, Lala T, Purcell RH, Owino S, Zhu D, Van Meir EG, Hall RA, Escayg A. Mice lacking full length Adgrb1 (Bai1) exhibit social deficits, increased seizure susceptibility, and altered brain development. Exp Neurol 2022; 351:113994. [PMID: 35114205 PMCID: PMC9817291 DOI: 10.1016/j.expneurol.2022.113994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
The adhesion G protein-coupled receptor BAI1/ADGRB1 plays an important role in suppressing angiogenesis, mediating phagocytosis, and acting as a brain tumor suppressor. BAI1 is also a critical regulator of dendritic spine and excitatory synapse development and interacts with several autism-relevant proteins. However, little is known about the relationship between altered BAI1 function and clinically relevant phenotypes. Therefore, we studied the effect of reduced expression of full length Bai1 on behavior, seizure susceptibility, and brain morphology in Adgrb1 mutant mice. We compared homozygous (Adgrb1-/-), heterozygous (Adgrb1+/-), and wild-type (WT) littermates using a battery of tests to assess social behavior, anxiety, repetitive behavior, locomotor function, and seizure susceptibility. We found that Adgrb1-/- mice showed significant social behavior deficits and increased vulnerability to seizures. Adgrb1-/- mice also showed delayed growth and reduced brain weight. Furthermore, reduced neuron density and increased apoptosis during brain development were observed in the hippocampus of Adgrb1-/- mice, while levels of astrogliosis and microgliosis were comparable to WT littermates. These results show that reduced levels of full length Bai1 is associated with a broader range of clinically relevant phenotypes than previously reported.
Collapse
Affiliation(s)
- Fu Hung Shiu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Jennifer C Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Takahiro Yamamoto
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Trisha Lala
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan H Purcell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon Owino
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dan Zhu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Erwin G Van Meir
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Curtis D. Weighted burden analysis in 200,000 exome-sequenced subjects characterises rare variant effects on BMI. Int J Obes (Lond) 2022; 46:782-792. [PMID: 35067685 DOI: 10.1038/s41366-021-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION A number of genes have been identified in which rare variants can cause obesity. Here we analyse a sample of exome sequenced subjects from UK Biobank using BMI as a phenotype with the aims of identifying genes in which rare, functional variants influence BMI and characterising the effects of different categories of variant. METHODS There were 199,807 exome sequenced subjects for whom BMI was recorded. Weighted burden analysis of rare, functional variants was carried out, incorporating population principal components and sex as covariates. For selected genes, additional analyses were carried out to clarify the contribution of different categories of variant. Statistical significance was summarised as the signed log 10 of the p value (SLP), given a positive sign if the weighted burden score was positively correlated with BMI. RESULTS Two genes were exome-wide significant, MC4R (SLP = 15.79) and PCSK1 (SLP = 6.61). In MC4R, disruptive variants were associated with an increase in BMI of 2.72 units and probably damaging nonsynonymous variants with an increase of 2.02 units. In PCSK1, disruptive variants were associated with a BMI increase of 2.29 and protein-altering variants with an increase of 0.34. Results for other genes were not formally significant after correction for multiple testing, although SIRT1, ZBED6 and NPC2 were noted to be of potential interest. CONCLUSION Because the UK Biobank consists of a self-selected sample of relatively healthy volunteers, the effect sizes noted may be underestimates. The results demonstrate the effects of very rare variants on BMI and suggest that other genes and variants will be definitively implicated when the sequence data for additional subjects becomes available.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, UCL, Darwin Building, Gower Street, London, WC1E 6BT, UK.
- Centre for Psychiatry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
11
|
Global Identification and Characterization of C2 Domain-Containing Proteins Associated with Abiotic Stress Response in Rice (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23042221. [PMID: 35216337 PMCID: PMC8875736 DOI: 10.3390/ijms23042221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
C2 domain-containing proteins (C2DPs) have been identified in different genomes that contain single or multiple C2 domains in their C- or N-terminal. It possesses higher functional activity in the transmembrane regions. The identification of C2 domains were reported in a previous study, such as multiple C2 domains and transmembrane-region proteins (MCTPs) and N-terminal-TM-C2 domain proteins (NTMC2s) of rice, Arabidopsis thaliana, and cotton, whereas the C2DP gene family in rice has not been comprehensively studied, and the role of the C2DP gene in rice in response to abiotic stress is not yet fully understood. In this study, we identified 82 C2DPs in the rice genome and divided them into seven groups through phylogenetic analysis. The synteny analysis revealed that duplication events were either exhibited within the genome of rice or between the genomes of rice and other species. Through the analysis of cis-acting elements in promoters, expression profiles, and qRT-PCR results, the functions of OsC2DPs were found to be widely distributed in diverse tissues and were extensively involved in phytohormones-related and abiotic stresses response in rice. The prediction of the microRNA (miRNA) targets of OsC2DPs revealed the possibility of regulation by consistent miRNAs. Notably, OsC2DP50/51/52 as a co-tandem duplication exhibited similar expression variations and involved the coincident miRNA-regulation pathway. Moreover, the results of the genotypic variation and haplotype analysis revealed that OsC2DP17, OsC2DP29, and OsC2DP49 were associated with cold stress responses. These findings provided comprehensive insights for characterizations of OsC2DPs in rice as well as for their roles for abiotic stress.
Collapse
|
12
|
Shah T, Dunning JL, Contet C. At the heart of the interoception network: Influence of the parasubthalamic nucleus on autonomic functions and motivated behaviors. Neuropharmacology 2022; 204:108906. [PMID: 34856204 PMCID: PMC8688299 DOI: 10.1016/j.neuropharm.2021.108906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
The parasubthalamic nucleus (PSTN), a small nucleus located on the lateral edge of the posterior hypothalamus, has emerged in recent years as a highly interconnected node within the network of brain regions sensing and regulating autonomic function and homeostatic needs. Furthermore, the strong integration of the PSTN with extended amygdala circuits makes it ideally positioned to serve as an interface between interoception and emotions. While PSTN neurons are mostly glutamatergic, some of them also express neuropeptides that have been associated with stress-related affective and motivational dysfunction, including substance P, corticotropin-releasing factor, and pituitary adenylate-cyclase activating polypeptide. PSTN neurons respond to food ingestion and anorectic signals, as well as to arousing and distressing stimuli. Functional manipulation of defined pathways demonstrated that the PSTN serves as a central hub in multiple physiologically relevant networks and is notably implicated in appetite suppression, conditioned taste aversion, place avoidance, impulsive action, and fear-induced thermoregulation. We also discuss the putative role of the PSTN in interoceptive dysfunction and negative urgency. This review aims to synthesize the burgeoning preclinical literature dedicated to the PSTN and to stimulate interest in further investigating its influence on physiology and behavior.
Collapse
Affiliation(s)
- Tanvi Shah
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
13
|
Baiap3 regulates depressive behaviors in mice via attenuating dense core vesicle trafficking in subsets of prefrontal cortex neurons. Neurobiol Stress 2022; 16:100423. [PMID: 35028340 PMCID: PMC8715124 DOI: 10.1016/j.ynstr.2021.100423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are effective first line therapies for treating depression, but are plagued by undesirable side effects and are not effective in all patients. Because SSRIs effectively deplete the neuronal releasable serotonin (5-HT) pool, gaining a deeper understanding of intracellular mechanisms regulating 5-HT pools can help us understand the shortcomings of SSRIs and develop more effective therapies. In this study, we found that BAIAP3 (brain-specific angiogenesis inhibitor 1-associated protein 3) is significantly downregulated in two mouse models of depression (the IR- and CUMS-induced depressive mouse models). In BAIAP3 downregulated models (in vitro and in vivo), we discovered that trafficking of dense core vesicle (DCV), organelles that store, transport and release cargo via exocytosis, was reduced. Accordingly, 5-HT exocytosis and levels in the synapse were lowered, causing defective post-synaptic neurotransmission. In a screen of natural products, we identified eucalyptol, the active components of Eucalyptus, as uniquely capable of increasing neuronal Baiap3 expression and elevate synaptic 5-HT levels. Moreover, eucalyptol treatment relieved depressive behavioral symptoms and restored serotonin levels in mice. Mechanistically, eucalyptol restores Baiap3 expression by reducing inhibitory microRNAs (miR-329, miR-362). These findings illuminate how Baiap3 depletion propagates neurotransmission dysfunction and point to eucalyptol as a novel agent for restoring serotonin exocytosis, suggesting potential for developing eucalyptol as a therapy for treating depression.
Collapse
|
14
|
Wang B, Wang Y, Sun X, Deng G, Huang W, Wu X, Gu Y, Tian Z, Fan Z, Xu Q, Chen H, Sun Y. CXCR6 is required for antitumor efficacy of intratumoral CD8 + T cell. J Immunother Cancer 2021; 9:jitc-2021-003100. [PMID: 34462326 PMCID: PMC8407215 DOI: 10.1136/jitc-2021-003100] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Increasing infiltration of CD8+ T cells within tumor tissue predicts a better prognosis and is essential for response to checkpoint blocking therapy. Furthermore, current clinical protocols use unfractioned T cell populations as the starting point for transduction of chimeric antigen receptors (CARs)-modified T cells, but the optimal T cell subtype of CAR-modified T cells remains unclear. Thus, accurately identifying a group of cytotoxic T lymphocytes with high antitumor efficacy is imperative. Inspired by the theory of yin and yang, we explored a subset of CD8+ T cell in cancer with the same phenotypic characteristics as highly activated inflammatory T cells in autoimmune diseases. METHODS Combination of single-cell RNA sequencing, general transcriptome sequencing data and multiparametric cytometric techniques allowed us to map CXCR6 expression on specific cell type and tissue. We applied Cxcr6-/- mice, immune checkpoint therapies and bone marrow chimeras to identify the function of CXCR6+CD8+ T cells. Transgenic Cxcr6-/- OT-I mice were employed to explore the functional role of CXCR6 in antigen-specific antitumor response. RESULTS We identified that CXCR6 was exclusively expressed on intratumoral CD8+ T cell. CXCR6+CD8+ T cells were more immunocompetent, and chimeras with specific deficiency on CD8+ T cells showed weaker antitumor activity. In addition, Cxcr6-/- mice could not respond to anti-PD-1 treatment effectively. High tumor expression of CXCR6 was not mainly caused by ligand-receptor chemotaxis of CXCL16/CXCR6 but induced by tumor tissue self. Induced CXCR6+CD8+ T cells possessed tumor antigen specificity and could enhance the effect of anti-PD-1 blockade to retard tumor progression. CONCLUSIONS This study may contribute to the rational design of combined immunotherapy. Alternatively, CXCR6 may be used as a biomarker for effective CD8+ T cell state before adoptive cell therapy, providing a basis for tumor immunotherapy.
Collapse
Affiliation(s)
- Binglin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yi Wang
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaofan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanghong Gu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Zhigang Tian
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhimin Fan
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
15
|
Pearson GL, Gingerich MA, Walker EM, Biden TJ, Soleimanpour SA. A Selective Look at Autophagy in Pancreatic β-Cells. Diabetes 2021; 70:1229-1241. [PMID: 34016598 PMCID: PMC8275885 DOI: 10.2337/dbi20-0014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Insulin-producing pancreatic β-cells are central to glucose homeostasis, and their failure is a principal driver of diabetes development. To preserve optimal health β-cells must withstand both intrinsic and extrinsic stressors, ranging from inflammation to increased peripheral insulin demand, in addition to maintaining insulin biosynthesis and secretory machinery. Autophagy is increasingly being appreciated as a critical β-cell quality control system vital for glycemic control. Here we focus on the underappreciated, yet crucial, roles for selective and organelle-specific forms of autophagy as mediators of β-cell health. We examine the unique molecular players underlying each distinct form of autophagy in β-cells, including selective autophagy of mitochondria, insulin granules, lipid, intracellular amyloid aggregates, endoplasmic reticulum, and peroxisomes. We also describe how defects in selective autophagy pathways contribute to the development of diabetes. As all forms of autophagy are not the same, a refined view of β-cell selective autophagy may inform new approaches to defend against the various insults leading to β-cell failure in diabetes.
Collapse
Affiliation(s)
- Gemma L Pearson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Emily M Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Scott A Soleimanpour
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Veterans Affairs Ann Arbor Health Care System, Ann Arbor, MI
| |
Collapse
|
16
|
A unique C2 domain at the C terminus of Munc13 promotes synaptic vesicle priming. Proc Natl Acad Sci U S A 2021; 118:2016276118. [PMID: 33836576 DOI: 10.1073/pnas.2016276118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurotransmitter release during synaptic transmission comprises a tightly orchestrated sequence of molecular events, and Munc13-1 is a cornerstone of the fusion machinery. A forward genetic screen for defects in neurotransmitter release in Caenorhabditis elegans identified a mutation in the Munc13-1 ortholog UNC-13 that eliminated its unique and deeply conserved C-terminal module (referred to as HC2M) containing a Ca2+-insensitive C2 domain flanked by membrane-binding helices. The HC2M module could be functionally replaced in vivo by protein domains that localize to synaptic vesicles but not to the plasma membrane. HC2M is broadly conserved in other Unc13 family members and is required for efficient synaptic vesicle priming. We propose that the HC2M domain evolved as a vesicle/endosome adaptor and acquired synaptic vesicle specificity in the Unc13ABC protein family.
Collapse
|
17
|
Monteiro LP, Silva Júnior NR, Vital CE, Barros RA, Barros E, Auad AM, Pereira JF, Ramos HJDO, Oliveira MGDA. Protein and phytohormone profiles of Mahanarva spectabilis salivary glands infesting different forages. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21773. [PMID: 33576520 DOI: 10.1002/arch.21773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/16/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Given the importance of pastures for feeding cattle, the study of factors that affect their productivity is essential to get plant material of higher nutritional quality. Thus, the study of insect-plant interaction is important for the development of control strategies. Pasture spittlebugs affect forage grasses causing severe damage. We tested hormone and protein profiles differentially expressed in the salivary glands of Mahanarva spectabilis when fed with different pasture genotypes. The LC/MS approaches combined with bioinformatics tools were used to identify the mains biological processes in the salivary glands. The grouping revealed a greater number of proteins involved in biological processes of metabolic synthesis, biotic/abiotic stress, and ion transport across the membrane. The proteomic profiles were altered when insects were fed with different grasses. We also detected phytohormones in the salivary glands involved in the modulation of defense responses in host plants. These results allowed the analysis of important biological processes such as cell homeostasis, stress proteins, nucleic acid metabolism, regulation of muscle contraction, and transport and export of biomolecules. This represents an important advance in the understanding of the plant-pest interaction and can contribute to the choice of target elicitors, which allow effective strategies in the control of pasture spittlebugs.
Collapse
Affiliation(s)
- Luana P Monteiro
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT - IPP, Viçosa, Minas Gerais, Brazil
| | - Neilier R Silva Júnior
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT - IPP, Viçosa, Minas Gerais, Brazil
| | - Camilo E Vital
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT - IPP, Viçosa, Minas Gerais, Brazil
| | - Rafael A Barros
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT - IPP, Viçosa, Minas Gerais, Brazil
| | - Edvaldo Barros
- Nucleus of Analysis of Biomolecules - NuBioMol, UFV, Viçosa, Minas Gerais, Brazil
| | - Alexander M Auad
- Entomology Laboratory, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, Brazil
| | - Jorge F Pereira
- Entomology Laboratory, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, Brazil
| | - Humberto J de O Ramos
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT - IPP, Viçosa, Minas Gerais, Brazil
| | - Maria G de A Oliveira
- Department of Biochemistry and Molecular Biology, UFV, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT - IPP, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
18
|
Walker DM, Zhou X, Cunningham AM, Lipschultz AP, Ramakrishnan A, Cates HM, Bagot RC, Shen L, Zhang B, Nestler EJ. Sex-Specific Transcriptional Changes in Response to Adolescent Social Stress in the Brain's Reward Circuitry. Biol Psychiatry 2021; 91:118-128. [PMID: 33892914 PMCID: PMC8382786 DOI: 10.1016/j.biopsych.2021.02.964] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Sex differences in addiction have been described in humans and animal models. A key factor that influences addiction in both males and females is adolescent experience. Adolescence is associated with higher vulnerability to substance use disorders, and male rodents subjected to adolescent social isolation (SI) stress form stronger preferences for drugs of abuse in adulthood. However, little is known about how females respond to SI, and few studies have investigated the transcriptional changes induced by SI in the brain's reward circuitry. METHODS We tested the hypothesis that SI alters the transcriptome in a persistent and sex-specific manner in prefrontal cortex, nucleus accumbens, and ventral tegmental area. Mice were isolated or group housed from postnatal day P22 to P42, then group housed until ∼P90. Transcriptome-wide changes were investigated by RNA sequencing after acute or chronic cocaine or saline administration. RESULTS We found that SI disrupts sex-specific transcriptional responses to cocaine and reduces sex differences in gene expression across all three brain regions. Furthermore, SI induces gene expression profiles in males that more closely resemble group-housed females, suggesting that SI "feminizes" the male transcriptome. Coexpression analysis reveals that such disruption of sex differences in gene expression alters sex-specific gene networks and identifies potential sex-specific key drivers of these transcriptional changes. CONCLUSIONS Together, these data show that SI has region-specific effects on sex-specific transcriptional responses to cocaine and provide a better understanding of reward-associated transcription that differs in males and females.
Collapse
Affiliation(s)
- Deena M. Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029,Persons to whom all correspondence should be addressed and lead contacts: Eric J. Nestler, M.D., Ph.D. () and Deena M. Walker ()
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Ashley M. Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Andrew P. Lipschultz
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Hannah M. Cates
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Rosemary C. Bagot
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029,Persons to whom all correspondence should be addressed and lead contacts: Eric J. Nestler, M.D., Ph.D. () and Deena M. Walker ()
| |
Collapse
|
19
|
Huang WQ, Lin Q, Chen S, Sun L, Chen Q, Yi K, Li Z, Ma Q, Tzeng CM. Integrated analysis of microRNA and mRNA expression profiling identifies BAIAP3 as a novel target of dysregulated hsa-miR-1972 in age-related white matter lesions. Aging (Albany NY) 2021; 13:4674-4695. [PMID: 33561007 PMCID: PMC7906144 DOI: 10.18632/aging.202562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
White matter lesions known as leukoaraiosis (LA) are cerebral white matter hyperintensities observed in elderly individuals. Currently, no reliable molecular biomarkers are available for monitoring their progression over time. To identify biomarkers for the onset and progression of LA, we analyzed whole blood-based, microRNA expression profiles of leukoaraiosis, validated those exhibiting significant microRNA changes in clinical subjects by means of quantitative real-time polymerase chain reactions and determined the function of miRNA in cell lines by means of microRNA mimic transfection assays. A total of seven microRNAs were found to be significantly down-regulated in leukoaraiosis. Among the microRNAs, hsa-miR-1972 was downregulated during the early onset phase of leukoaraiosis, as confirmed in independent patients, and it was found to target leukoaraiosis-dependent BAIAP3, decreasing its expression in 293T cell lines. Functional enrichment analysis revealed that significantly dysregulated miRNAs-mRNAs changes associated with the onset of leukoaraiosis were involved in neurogenesis, neuronal development, and differentiation. Taken together, the study identified a set of candidate microRNA biomarkers that may usefully monitor the onset and progression of leukoaraiosis. Given the enrichment of leukoaraiosis-associated microRNAs and mRNAs in neuron part and membrane system, BAIAP3 could potentially represent a novel target of hsa-miR-1972 in leukoaraiosis through which microRNAs are involved in the pathogenesis of white matter lesions.
Collapse
Affiliation(s)
- Wen-Qing Huang
- Shanghai Institute of Precision Medicine (SHIPM), Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China.,The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Key Laboratory of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Chen Zhi-nan Academician Workstation, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shanxi, China
| | - Lixiang Sun
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qingjie Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kehui Yi
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Department of Neurology, Zhongshan Xiamen Hospital, Fudan University, Xiamen, Fujian, China
| | - Zhi Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China.,The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Burns CH, Yau B, Rodriguez A, Triplett J, Maslar D, An YS, van der Welle REN, Kossina RG, Fisher MR, Strout GW, Bayguinov PO, Veenendaal T, Chitayat D, Fitzpatrick JAJ, Klumperman J, Kebede MA, Asensio CS. Pancreatic β-Cell-Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes 2021; 70:436-448. [PMID: 33168621 PMCID: PMC7881869 DOI: 10.2337/db20-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic β-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in β-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.
Collapse
Affiliation(s)
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Jenna Triplett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO
| | - You Sun An
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Reini E N van der Welle
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ross G Kossina
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Gregory W Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Tineke Veenendaal
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
- Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
21
|
Wang K, Tian S, Galindo-González J, Dávalos LM, Zhang Y, Zhao H. Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats. Mol Ecol 2020; 29:4366-4381. [PMID: 32633855 DOI: 10.1111/mec.15542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here, we used genomewide analyses of molecular evolution to examine two lineages of bats that, from an insectivorous ancestor, have both independently evolved obligate frugivory: the Old World family Pteropodidae and the neotropical subfamily Stenodermatinae. New genome assemblies from two neotropical fruit bats (Artibeus jamaicensis and Sturnira hondurensis) provide a framework for comparisons with Old World fruit bats. Comparative genomics of 10 bat species encompassing dietary diversity across the phylogeny revealed convergent molecular signatures of frugivory in both multigene family evolution and single-copy genes. Evidence for convergent molecular adaptations associated with frugivorous diets includes the composition of three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes and convergent amino acid substitutions in several metabolic genes. By identifying suites of adaptations associated with the convergent evolution of frugivory, our analyses both reveal the extent of molecular mechanisms under selection in dietary shifts and will facilitate future studies of molecular ecology in mammals.
Collapse
Affiliation(s)
- Kai Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Novogene Bioinformatics Institute, Beijing, China
| | - Jorge Galindo-González
- Biotechnology and Applied Ecology Institute (INBIOTECA), Universidad Veracruzana, Xalapa,Veracruz, Mexico
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Center for Inter-Disciplinary Environmental Research, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yuzhi Zhang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,College of Science, Tibet University, Lhasa, China
| |
Collapse
|
22
|
Ho AMC, Cabello-Arreola A, Markota M, Heppelmann CJ, Charlesworth MC, Ozerdem A, Mahajan G, Rajkowska G, Stockmeier CA, Frye MA, Choi DS, Veldic M. Label-free proteomics differences in the dorsolateral prefrontal cortex between bipolar disorder patients with and without psychosis. J Affect Disord 2020; 270:165-173. [PMID: 32339108 PMCID: PMC7234814 DOI: 10.1016/j.jad.2020.03.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/01/2020] [Accepted: 03/28/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Psychosis is common in bipolar disorder (BD) and is related to more severe cognitive impairments. Since the molecular mechanism of BD psychosis is elusive, we conducted this study to explore the proteomic differences associated with BD psychosis in the dorsolateral prefrontal cortex (DLPFC; BA9). METHODS Postmortem DLPFC gray matter tissues from five pairs of age-matched male BD subjects with and without psychosis history were used. Tissue proteomes were identified and quantified by label-free liquid chromatography tandem mass spectrometry and then compared between groups. Statistical significance was set at q < 0.40 and Log2 fold change (Log2FC) ≥ |1|. Protein groups with differential expression between groups at p < 0.05 were subjected to pathway analysis. RESULTS Eleven protein groups differed significantly between groups, including the reduction of tenascin C (q = 0.005, Log2FC = -1.78), the elevations of synaptoporin (q = 0.235, Log2FC = 1.17) and brain-specific angiogenesis inhibitor 1-associated protein 3 (q = 0.241, Log2FC = 2.10) in BD with psychosis. The between-group differences of these proteins were confirmed by Western blots. The top enriched pathways (p < 0.05 with ≥ 3 hits) were the outgrowth of neurons, neuronal cell proliferation, growth of neurites, and outgrowth of neurites, which were all predicted to be upregulated in BD with psychosis. LIMITATIONS Small sample size and uncertain relationships of the observed proteomic differences with illness stage and acute psychosis. CONCLUSIONS These results suggested BD with psychosis history may be associated with abnormalities in neurodevelopment, neuroplasticity, neurotransmission, and neuromodulation in the DLPFC.
Collapse
Affiliation(s)
- Ada M.-C. Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Matej Markota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Aysegul Ozerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Gouri Mahajan
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A. Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Maes T, Mascaró C, Rotllant D, Lufino MMP, Estiarte A, Guibourt N, Cavalcanti F, Griñan-Ferré C, Pallàs M, Nadal R, Armario A, Ferrer I, Ortega A, Valls N, Fyfe M, Martinell M, Castro Palomino JC, Buesa Arjol C. Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. PLoS One 2020; 15:e0233468. [PMID: 32469975 PMCID: PMC7259601 DOI: 10.1371/journal.pone.0233468] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription disequilibria are characteristic of many neurodegenerative diseases. The activity-evoked transcription of immediate early genes (IEGs), important for neuronal plasticity, memory and behavior, is altered in CNS diseases and governed by epigenetic modulation. KDM1A, a histone 3 lysine 4 demethylase that forms part of transcription regulation complexes, has been implicated in the control of IEG transcription. Here we report the development of vafidemstat (ORY-2001), a brain penetrant inhibitor of KDM1A and MAOB. ORY-2001 efficiently inhibits brain KDM1A at doses suitable for long term treatment, and corrects memory deficit as assessed in the novel object recognition testing in the Senescence Accelerated Mouse Prone 8 (SAMP8) model for accelerated aging and Alzheimer's disease. Comparison with a selective KDM1A or MAOB inhibitor reveals that KDM1A inhibition is key for efficacy. ORY-2001 further corrects behavior alterations including aggression and social interaction deficits in SAMP8 mice and social avoidance in the rat rearing isolation model. ORY-2001 increases the responsiveness of IEGs, induces genes required for cognitive function and reduces a neuroinflammatory signature in SAMP8 mice. Multiple genes modulated by ORY-2001 are differentially expressed in Late Onset Alzheimer's Disease. Most strikingly, the amplifier of inflammation S100A9 is highly expressed in LOAD and in the hippocampus of SAMP8 mice, and down-regulated by ORY-2001. ORY-2001 is currently in multiple Phase IIa studies.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | | | | | | | | | | | | | - Christian Griñan-Ferré
- Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patologica, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | | | - Nuria Valls
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | - Matthew Fyfe
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | | | | | | |
Collapse
|
24
|
Hummer BH, Maslar D, Soltero-Gutierrez M, de Leeuw NF, Asensio CS. Differential sorting behavior for soluble and transmembrane cargoes at the trans-Golgi network in endocrine cells. Mol Biol Cell 2019; 31:157-166. [PMID: 31825717 PMCID: PMC7001476 DOI: 10.1091/mbc.e19-10-0561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulated secretion of neuropeptides and peptide hormones by secretory granules (SGs) is central to physiology. Formation of SGs occurs at the trans-Golgi network (TGN) where their soluble cargo aggregates to form a dense core, but the mechanisms controlling the sorting of regulated secretory cargoes (soluble and transmembrane) away from constitutively secreted proteins remain unclear. Optimizing the use of the retention using selective hooks method in (neuro-)endocrine cells, we now quantify TGN budding kinetics of constitutive and regulated secretory cargoes. We further show that, by monitoring two cargoes simultaneously, it becomes possible to visualize sorting to the constitutive and regulated secretory pathways in real time. Further analysis of the localization of SG cargoes immediately after budding from the TGN revealed that, surprisingly, the bulk of two studied transmembrane SG cargoes (phogrin and VMAT2) does not sort directly onto SGs during budding, but rather exit the TGN into nonregulated vesicles to get incorporated to SGs at a later step. This differential behavior of soluble and transmembrane cargoes suggests a more complex model of SG biogenesis than anticipated.
Collapse
Affiliation(s)
| | | | | | - Noah F de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO 80210
| | | |
Collapse
|
25
|
Jiao H, Liu Q, Zhang H, Qi K, Liu Z, Wang P, Wu J, Zhang S. PbrPCCP1 mediates the PbrTTS1 signaling to control pollen tube growth in pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110244. [PMID: 31623778 DOI: 10.1016/j.plantsci.2019.110244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
In plants, genes containing the C2 domain have been identified and play a crucial role in many key physiological processes. One hundred and sixty-six genes containing a C2 domain were identified in pear and 38 genes contained multiple C2 domains. Whole genome duplication and tandem duplication events were the major forces driving the C2 superfamily expansion, and C2 superfamily members have evolved under negative selection. There were 104 C2 genes expressed during pollen tube growth. Here, we identified Pbr028378.1 containing the C2 domain from pear and named it PbrPCCP1. PbrPCCP1 was localized in the plasma membrane and mainly expressed in pollen. PbrPCCP1 interacted with PbrTTS1, which contained a Cys-rich C-terminal domain, and promoted pollen tube growth. The Pollen ole e I domain of PbrTTS1 was responsible for its interaction. Additionally, pollen tube growth was inhibited and the promoting effect of PbrTTS1 was attenuated when PbrPCCP1 expression level was knocked-down by antisense oligonucleotides. The qRT-PCR results indicated that PbrPCCP1 and PbrTTS1 expression levels were consistently present in the style after pollination, and their expression levels were up-regulated within 24 h. This implied that they could co-regulate pollen tube growth when the pollen tube grew in the pistil.
Collapse
Affiliation(s)
- HuiJun Jiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qian Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hao Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhe Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - JuYou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China.
| | - ShaoLing Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
26
|
Luong P, Li Q, Chen PF, Wrighton PJ, Chang D, Dwyer S, Bayer MT, Snapper SB, Hansen SH, Thiagarajah JR, Goessling W, Lencer WI. A quantitative single-cell assay for retrograde membrane traffic enables rapid detection of defects in cellular organization. Mol Biol Cell 2019; 31:511-519. [PMID: 31774722 PMCID: PMC7202069 DOI: 10.1091/mbc.e19-07-0375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrograde membrane trafficking from plasma membrane to Golgi and endoplasmic reticulum typifies one of the key sorting steps emerging from the early endosome that affects cell surface and intracellular protein dynamics underlying cell function. While some cell surface proteins and lipids are known to sort retrograde, there are few effective methods to quantitatively measure the extent or kinetics of these events. Here we took advantage of the well-known retrograde trafficking of cholera toxin and newly defined split fluorescent protein technology to develop a quantitative, sensitive, and effectively real-time single-cell flow cytometry assay for retrograde membrane transport. The approach can be applied in high throughput to elucidate the underlying biology of membrane traffic and how endosomes adapt to the physiologic needs of different cell types and cell states.
Collapse
Affiliation(s)
- Phi Luong
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Qian Li
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200000, China
| | - Pin-Fang Chen
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Denis Chang
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Sean Dwyer
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Marie-Theres Bayer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Scott B Snapper
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Steen H Hansen
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Jay R Thiagarajah
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Wolfram Goessling
- Harvard Stem Cell Institute, Cambridge, MA 02138.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Wayne I Lencer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
27
|
Topalidou I, Cattin-Ortolá J, Hummer B, Asensio CS, Ailion M. EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Mol Biol Cell 2019; 31:59-79. [PMID: 31721635 PMCID: PMC6938272 DOI: 10.1091/mbc.e18-07-0469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dense-core vesicles (DCVs) are secretory vesicles found in neurons and endocrine cells. DCVs package and release cargoes including neuropeptides, biogenic amines, and peptide hormones. We recently identified the endosome-associated recycling protein (EARP) complex and the EARP-interacting-protein EIPR-1 as proteins important for controlling levels of DCV cargoes in Caenorhabditis elegans neurons. Here we determine the role of mammalian EIPR1 in insulinoma cells. We find that in Eipr1 KO cells, there is reduced insulin secretion, and mature DCV cargoes such as insulin and carboxypeptidase E (CPE) accumulate near the trans-Golgi network and are not retained in mature DCVs in the cell periphery. In addition, we find that EIPR1 is required for the stability of the EARP complex subunits and for the localization of EARP and its association with membranes, but EIPR1 does not affect localization or function of the related Golgi-associated retrograde protein (GARP) complex. EARP is localized to two distinct compartments related to its function: an endosomal compartment and a DCV biogenesis-related compartment. We propose that EIPR1 functions with EARP to control both endocytic recycling and DCV maturation.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Blake Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
28
|
Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 2019; 22:1696-1708. [PMID: 31551601 DOI: 10.1038/s41593-019-0491-3] [Citation(s) in RCA: 435] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
Collapse
|
29
|
Breaking Bad and Breaking Good: β-Cell Autophagy Pathways in Diabetes. J Mol Biol 2019; 432:1494-1513. [PMID: 31381897 DOI: 10.1016/j.jmb.2019.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
For many decades the lysosome has been recognized as the terminal center of cellular waste disposal. Products of lysosomal degradation are either recycled in biosynthetic pathways or are further metabolized to produce energy. As such the lysosome was attributed a rather passive role in cellular metabolism merely transforming bulk material into small metabolites. More recently, however, the emerging evidence has brought the lysosome to the center of nutrient sensing as the organelle that harbors a complex signaling machinery which dynamically and actively regulates cell metabolism. The pancreatic β cell is unique in as much as nutrient sensing is directly coupled to insulin secretion. Importantly, defects in insulin secretion constitute a hallmark in the progression of patients from a state of impaired glucose tolerance to full blown type 2 diabetes (T2D). However, mechanisms linking nutrient-dependent lysosomal function to insulin secretion and more generally to β cell health have evolved only very recently. This review discusses emerging concepts in macroautophagy and macroautophagy-independent processes of cargo delivery to lysosomes as well as nutrient-dependent lysosomal signaling specifically in the context of β cell function in health and disease. Such mechanisms may provide a novel source of therapeutic targets to be exploited in the context of β cell failure in diabetes in the near future.
Collapse
|
30
|
Qiu C, Han HH, Sun J, Zhang HT, Wei W, Cui SH, Chen X, Wang JC, Zhang Q. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes. Nat Commun 2019; 10:2702. [PMID: 31221991 PMCID: PMC6586638 DOI: 10.1038/s41467-019-10562-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Most cationic vectors are difficult to avoid the fate of small interfering RNA (siRNA) degradation following the endosome-lysosome pathway during siRNA transfection. In this study, the endoplasmic reticulum (ER) membrane isolated from cancer cells was used to fabricate an integrative hybrid nanoplexes (EhCv/siRNA NPs) for improving siRNA transfection. Compared to the undecorated Cv/siEGFR NPs, the ER membrane-decorated EhCv/siRNA NPs exhibits a significantly higher gene silencing effect of siRNA in vitro and a better antitumor activity in nude mice bearing MCF-7 human breast tumor in vivo. Further mechanistic studies demonstrate that functional proteins on the ER membrane plays important roles on improving cellular uptake and altering intracellular trafficking pathway of siRNA. It is worth to believe that the ER membrane decoration on nanoplexes can effectively transport siRNA through the endosome-Golgi-ER pathway to evade lysosomal degradation and enhance the silencing effects of siRNA.
Collapse
Affiliation(s)
- Chong Qiu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hu-Hu Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jing Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hai-Tao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, 410013, Changsha, China
| | - Wei Wei
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Shi-He Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Xin Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| |
Collapse
|
31
|
Crummy E, Mani M, Thellman JC, Martin TFJ. The priming factor CAPS1 regulates dense-core vesicle acidification by interacting with rabconnectin3β/WDR7 in neuroendocrine cells. J Biol Chem 2019; 294:9402-9415. [PMID: 31004036 PMCID: PMC6579465 DOI: 10.1074/jbc.ra119.007504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Vacuolar-type H+-ATPases (V-ATPases) contribute to pH regulation and play key roles in secretory and endocytic pathways. Dense-core vesicles (DCVs) in neuroendocrine cells are maintained at an acidic pH, which is part of the electrochemical driving force for neurotransmitter loading and is required for hormonal propeptide processing. Genetic loss of CAPS1 (aka calcium-dependent activator protein for secretion, CADPS), a vesicle-bound priming factor required for DCV exocytosis, dissipates the pH gradient across DCV membranes and reduces neurotransmitter loading. However, the basis for CAPS1 binding to DCVs and for its regulation of vesicle pH has not been determined. Here, MS analysis of CAPS1 immunoprecipitates from brain membrane fractions revealed that CAPS1 associates with a rabconnectin3 (Rbcn3) complex comprising Dmx-like 2 (DMXL2) and WD repeat domain 7 (WDR7) proteins. Using immunofluorescence microscopy, we found that Rbcn3α/DMXL2 and Rbcn3β/WDR7 colocalize with CAPS1 on DCVs in human neuroendocrine (BON) cells. The shRNA-mediated knockdown of Rbcn3β/WDR7 redistributed CAPS1 from DCVs to the cytosol, indicating that Rbcn3β/WDR7 is essential for optimal DCV localization of CAPS1. Moreover, cell-free experiments revealed direct binding of CAPS1 to Rbcn3β/WDR7, and cell assays indicated that Rbcn3β/WDR7 recruits soluble CAPS1 to membranes. As anticipated by the reported association of Rbcn3 with V-ATPase, we found that knocking down CAPS1, Rbcn3α, or Rbcn3β in neuroendocrine cells impaired rates of DCV reacidification. These findings reveal a basis for CAPS1 binding to DCVs and for CAPS1 regulation of V-ATPase activity via Rbcn3β/WDR7 interactions.
Collapse
Affiliation(s)
- Ellen Crummy
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Muralidharan Mani
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - John C Thellman
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Thomas F J Martin
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
32
|
Unc13: a multifunctional synaptic marvel. Curr Opin Neurobiol 2019; 57:17-25. [PMID: 30690332 DOI: 10.1016/j.conb.2018.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Nervous systems are built on synaptic connections, and our understanding of these complex compartments has deepened over the past quarter century as the diverse fields of genetics, molecular biology, physiology, and biochemistry each made significant in-roads into synaptic function. On the presynaptic side, an evolutionarily conserved core fusion apparatus constructed from a handful of proteins has emerged, with Unc13 serving as a hub that coordinates nearly every aspect of synaptic transmission. This review briefly highlights recent studies on diverse aspects of Unc13 function including roles in SNARE assembly and quality control, release site building, calcium channel proximity, and short-term synaptic plasticity.
Collapse
|
33
|
Ashikov A, Abu Bakar N, Wen XY, Niemeijer M, Rodrigues Pinto Osorio G, Brand-Arzamendi K, Hasadsri L, Hansikova H, Raymond K, Vicogne D, Ondruskova N, Simon MEH, Pfundt R, Timal S, Beumers R, Biot C, Smeets R, Kersten M, Huijben K, Linders PTA, van den Bogaart G, van Hijum SAFT, Rodenburg R, van den Heuvel LP, van Spronsen F, Honzik T, Foulquier F, van Scherpenzeel M, Lefeber DJ, Mirjam W, Han B, Helen M, Helen M, Peter VH, Jiddeke VDK, Diego M, Lars M, Katja BH, Jozef H, Majid A, Kevin C, Johann TWN. Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum Mol Genet 2018; 27:3029-3045. [DOI: 10.1093/hmg/ddy213] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nurulamin Abu Bakar
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine, Physiology & Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
| | - Marco Niemeijer
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Glentino Rodrigues Pinto Osorio
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine, Physiology & Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
| | - Linda Hasadsri
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kimiyo Raymond
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dorothée Vicogne
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, FRABIO, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Nina Ondruskova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sharita Timal
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Roel Beumers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christophe Biot
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, FRABIO, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Roel Smeets
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marjan Kersten
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karin Huijben
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- NIZO, 6710 BA Ede, The Netherlands
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Francjan van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Francois Foulquier
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, FRABIO, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Monique van Scherpenzeel
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wamelink Mirjam
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Brunner Han
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mundy Helen
- Centre for Inherited Metabolic Disease, Evelina Children's Hospital, Guys and St Thomas NHS Foundation Trust, London SE1 7EH, UK
| | - Michelakakis Helen
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - van Hasselt Peter
- Department of Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - van de Kamp Jiddeke
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Martinelli Diego
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Morkrid Lars
- Department of Medical Biochemistry, Oslo University Hospital, and Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Alfadhel Majid
- King Abdullah International Medical Research Centre, King Saud bin Abdul Aziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdul Aziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Carpenter Kevin
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Disciplines of Genetic Medicine & Child and Adolescent Health, The University of Sydney, NSW 2145, Australia
| | | | | | | |
Collapse
|
34
|
Hussain SS, Harris MT, Kreutzberger AJB, Inouye CM, Doyle CA, Castle AM, Arvan P, Castle JD. Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Mol Biol Cell 2018. [PMID: 29540530 PMCID: PMC5935073 DOI: 10.1091/mbc.e17-08-0519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In pancreatic β-cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol’s role in supporting granule membrane formation and function is poorly understood. ATP binding cassette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi interference–induced depletion in cultured pancreatic β-cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP), appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal endoplasmic reticulum defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging, and export levels through the actions of OSBP and ABCs G1 and A1.
Collapse
Affiliation(s)
- Syed Saad Hussain
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Megan T Harris
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Candice M Inouye
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Catherine A Doyle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Anna M Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - J David Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
35
|
Zhang XA, Martin TF. High Throughput NPY-Venus and Serotonin Secretion Assays for Regulated Exocytosis in Neuroendocrine Cells. Bio Protoc 2018; 8:e2680. [PMID: 29552592 PMCID: PMC5856254 DOI: 10.21769/bioprotoc.2680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 11/02/2022] Open
Abstract
Here we describe two assays to measure dense core vesicle (DCV) exocytosis-mediated cargo secretion in neuroendocrine cells. To conduct siRNA screens for novel genes in regulated DCV exocytosis, we developed a plate reader-based secretion assay using DCV cargo, NPY-Venus, and an orthogonal 3H-serotonin secretion assay. The NPY-Venus secretion assay was successfully used for a high throughput siRNA screen, and the serotonin secretion assay was used to validate hits identified from the screen (Sorensen, 2017; Zhang et al., 2017).
Collapse
Affiliation(s)
- Xingmin Aaron Zhang
- Program in Cellular and Molecular Biology, University of Wisconsin Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas F.J. Martin
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
36
|
Abstract
The functions of four of the five proteins in the mammalian uncoordinated-13 (Munc13) family have been identified as priming factors in SNARE-dependent exocytosis. In this issue, Zhang et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201702099) show that the fifth member, BAIAP3 (brain-specific angiogenesis inhibitor I-associated protein 3), acts in retrograde trafficking by returning secretory vesicle material to the trans-Golgi network. In its absence, secretory vesicle formation is impaired, leading to accumulation of immature vesicles, or lysosomal vesicle degradation.
Collapse
Affiliation(s)
- Jakob B Sørensen
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|