1
|
Kühne M, Zepernick AL, Qualmann B, Kessels MM, Izadi-Seitz M. JMY powers dendritogenesis and is regulated by CaM revealing a general, critical principle in neuromorphogenesis. Commun Biol 2025; 8:784. [PMID: 40404909 PMCID: PMC12098658 DOI: 10.1038/s42003-025-08208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Local calcium signals and formation of actin filaments help to steer and power neuronal morphology development and plasticity. Yet, responsible actin nucleators and their linkage to calcium transients largely remained elusive. Here, we identify the WH2 domain-based actin nucleator JMY as target of the calcium sensor calmodulin, reveal that JMY is critical for dendritic arbor formation and unravel that JMY's molecular mechanisms employed in dendritic arborization are depended on Arp2/3 complex interaction, Arp2/3 complex activity and functionality of JMY's WH2 domains, i.e. on JMY's abilities to promote actin filament formation. We furthermore demonstrate that Ca2+/calmodulin association regulates the G-actin loading of JMY's first WH2 domain. Consistently, JMY's functions in neuromorphogenesis rely on proper Ca2+/calmodulin signaling and on the first WH2 domain. These findings establish Ca2+/calmodulin signaling as an important, more widely used, but multifaceted mechanism of tight control of actin nucleators powering dendritic branch formation-a key aspect in neuronal network development in the brain.
Collapse
Affiliation(s)
- Maja Kühne
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Anna-Lena Zepernick
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| | - Michael Manfred Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| | - Maryam Izadi-Seitz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
2
|
Kondo N, Mimori-Kiyosue Y, Tokuhiro K, Pezzotti G, Kinashi T. The autophagy component LC3 regulates lymphocyte adhesion via LFA1 transport in response to outside-in signaling. Nat Commun 2025; 16:1343. [PMID: 39905041 PMCID: PMC11794545 DOI: 10.1038/s41467-025-56631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
The leukocyte integrin LFA1 is indispensable for immune responses, orchestrating lymphocyte trafficking and adhesion. While LFA1 activation induces LFA1 clustering at the cell contact surface via outside-in signaling, the regulatory mechanisms remain unclear. Here, we uncovered a previously hidden function of the autophagosome component LC3 beyond its role in autophagy by bridging two seemingly unrelated pathways: LFA1 transport and autophagosome transport. LFA1 clusters co-trafficked with LC3, facilitating LFA1 accumulation at the contact surface. LC3b knockout decreased lymphocyte adhesiveness. LFA1 activation did not induce autophagy, whereas it increased mTOR and AMPK activity. LFA1-dependent AMPK activation enhances LFA1 and LC3 clustering and adhesion. Inhibiting Mst1 kinase-mediated LC3 phosphorylation promoted LC3-mediated LFA1 recruitment to the contact surface through direct interaction with RAPL, uncovering an unprecedented integrin recruitment route. These findings uncover a function of LC3 and expand our understanding of lymphocyte regulation via LFA1.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| | - Yuko Mimori-Kiyosue
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Giuseppe Pezzotti
- Biomedical Engineering Center, Kansai Medical University, Osaka, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| |
Collapse
|
3
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. Mol Biol Cell 2024; 35:ar80. [PMID: 38598293 PMCID: PMC11238085 DOI: 10.1091/mbc.e24-01-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display structural abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M. Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | - Corey J. Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | | | - Kenneth G. Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Center on Aging, UConn Health, Farmington, CT 06030
| |
Collapse
|
4
|
Theodore CJ, Wagner LH, Campellone KG. Autophagosome turnover requires Arp2/3 complex-mediated maintenance of lysosomal integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584718. [PMID: 38559247 PMCID: PMC10980047 DOI: 10.1101/2024.03.12.584718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Autophagy is an intracellular degradation process that maintains homeostasis, responds to stress, and plays key roles in the prevention of aging and disease. Autophagosome biogenesis, vesicle rocketing, and autolysosome tubulation are controlled by multiple actin nucleation factors, but the impact of actin assembly on completion of the autophagic pathway is not well understood. Here we studied autophagosome and lysosome remodeling in fibroblasts harboring an inducible knockout (iKO) of the Arp2/3 complex, an essential actin nucleator. Arp2/3 complex ablation resulted in increased basal levels of autophagy receptors and lipidated membrane proteins from the LC3 and GABARAP families. Under both steady-state and starvation conditions, Arp2/3 iKO cells accumulated abnormally high numbers of autolysosomes, suggesting a defect in autophagic flux. The inability of Arp2/3 complex-deficient cells to complete autolysosome degradation and turnover is explained by the presence of damaged, leaky lysosomes. In cells treated with an acute lysosomal membrane-damaging agent, the Arp2/3-activating protein WHAMM is recruited to lysosomes, where Arp2/3 complex-dependent actin assembly is crucial for restoring intact lysosomal structure. These results establish the Arp2/3 complex as a central player late in the canonical autophagy pathway and reveal a new role for the actin nucleation machinery in maintaining lysosomal integrity.
Collapse
Affiliation(s)
- Corey J. Theodore
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Lianna H. Wagner
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging, UConn Health; University of Connecticut, Storrs CT, USA
| |
Collapse
|
5
|
Dong Y, Quan C. NPFs-mediated actin cytoskeleton: a new viewpoint on autophagy regulation. Cell Commun Signal 2024; 22:111. [PMID: 38347641 PMCID: PMC10860245 DOI: 10.1186/s12964-023-01444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Macroautophagy/autophagy is a lysosome-dependent catabolic process induced by various cellular stress conditions, maintaining the homeostasis of cells, tissues and organs. Autophagy is a series of membrane-related events involving multiple autophagy-related (ATG) proteins. Most studies to date have focused on various signaling pathways affecting ATG proteins to control autophagy. However, mounting evidence reveals that the actin cytoskeleton acts on autophagy-associated membranes to regulate different events of autophagy. The actin cytoskeleton assists in vesicle formation and provides the mechanical forces for cellular activities that involve membrane deformation. Although the interaction between the actin cytoskeleton and membrane makes the role of actin in autophagy recognized, how the actin cytoskeleton is recruited and assembles on membranes during autophagy needs to be detailed. Nucleation-promoting factors (NPFs) activate the Arp2/3 complex to produce actin cytoskeleton. In this review, we summarize the important roles of the actin cytoskeleton in autophagy regulation and focus on the effect of NPFs on actin cytoskeleton assembly during autophagy, providing new insights into the occurrence and regulatory mechanisms of autophagy. Video Abstract.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, ChangchunJilin, 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, ChangchunJilin, 130021, China.
| |
Collapse
|
6
|
Nambiar A, Manjithaya R. Driving autophagy - the role of molecular motors. J Cell Sci 2024; 137:jcs260481. [PMID: 38329417 DOI: 10.1242/jcs.260481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Most of the vesicular transport pathways inside the cell are facilitated by molecular motors that move along cytoskeletal networks. Autophagy is a well-explored catabolic pathway that is initiated by the formation of an isolation membrane known as the phagophore, which expands to form a double-membraned structure that captures its cargo and eventually moves towards the lysosomes for fusion. Molecular motors and cytoskeletal elements have been suggested to participate at different stages of the process as the autophagic vesicles move along cytoskeletal tracks. Dynein and kinesins govern autophagosome trafficking on microtubules through the sequential recruitment of their effector proteins, post-translational modifications and interactions with LC3-interacting regions (LIRs). In contrast, myosins are actin-based motors that participate in various stages of the autophagic flux, as well as in selective autophagy pathways. However, several outstanding questions remain with regard to how the dominance of a particular motor protein over another is controlled, and to the molecular mechanisms that underlie specific disease variants in motor proteins. In this Review, we aim to provide an overview of the role of molecular motors in autophagic flux, as well as highlight their dysregulation in diseases, such as neurodegenerative disorders and pathogenic infections, and ageing.
Collapse
Affiliation(s)
- Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
7
|
Lee SY, Choi SH, Kim Y, Ahn HS, Ko YG, Kim K, Chi SW, Kim H. Migrasomal autophagosomes relieve endoplasmic reticulum stress in glioblastoma cells. BMC Biol 2024; 22:23. [PMID: 38287397 PMCID: PMC10826056 DOI: 10.1186/s12915-024-01829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.
Collapse
Affiliation(s)
- Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576497. [PMID: 38328079 PMCID: PMC10849548 DOI: 10.1101/2024.01.22.576497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | - Corey J Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | | | - Kenneth G Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging; UConn Health, Farmington CT, USA
| |
Collapse
|
9
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
10
|
Höpfler M, Absmeier E, Peak-Chew SY, Vartholomaiou E, Passmore LA, Gasic I, Hegde RS. Mechanism of ribosome-associated mRNA degradation during tubulin autoregulation. Mol Cell 2023; 83:2290-2302.e13. [PMID: 37295431 PMCID: PMC10403363 DOI: 10.1016/j.molcel.2023.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Microtubules play crucial roles in cellular architecture, intracellular transport, and mitosis. The availability of free tubulin subunits affects polymerization dynamics and microtubule function. When cells sense excess free tubulin, they trigger degradation of the encoding mRNAs, which requires recognition of the nascent polypeptide by the tubulin-specific ribosome-binding factor TTC5. How TTC5 initiates the decay of tubulin mRNAs is unknown. Here, our biochemical and structural analysis reveals that TTC5 recruits the poorly studied protein SCAPER to the ribosome. SCAPER, in turn, engages the CCR4-NOT deadenylase complex through its CNOT11 subunit to trigger tubulin mRNA decay. SCAPER mutants that cause intellectual disability and retinitis pigmentosa in humans are impaired in CCR4-NOT recruitment, tubulin mRNA degradation, and microtubule-dependent chromosome segregation. Our findings demonstrate how recognition of a nascent polypeptide on the ribosome is physically linked to mRNA decay factors via a relay of protein-protein interactions, providing a paradigm for specificity in cytoplasmic gene regulation.
Collapse
Affiliation(s)
- Markus Höpfler
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Eva Absmeier
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ivana Gasic
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
11
|
Dong Y, Jin Q, Sun M, Qi D, Qu H, Wang X, Quan C. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. J Exp Clin Cancer Res 2023; 42:68. [PMID: 36935496 PMCID: PMC10026481 DOI: 10.1186/s13046-023-02644-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND As a breast cancer suppressor gene, CLDN6 overexpression was found to inhibit breast cancer metastasis in our previous studies, but the specific mechanism remains unclear. This study aimed to clarify the role and mechanism of CLDN6 in inhibiting breast cancer metastasis. METHODS Western blot, immunofluorescence and transmission electron microscopy were performed to detect autophagy. Wound healing, transwell assays and lung metastasis mouse models were used to examine breast cancer metastasis. Phalloidin staining and immunofluorescent staining were used to observe actin cytoskeleton. mRNA seq, RT-PCR, western blot, chromatin immunoprecipitation, dual luciferase reporter assay, co-immunoprecipitation and immunofluorescence were performed to define the molecular mechanism. The expression levels and clinical implication of CLDN6, WIP and LC3 in breast cancer tissues were evaluated using immunohistochemistry. RESULTS We demonstrated that CLDN6 inhibited breast cancer metastasis through autophagy in vitro and vivo. We unraveled a novel mechanism that CLDN6 regulated autophagy via WIP-dependent actin cytoskeleton assembly. Through its PDZ-binding motif, overexpressed CLDN6 interacted with JNK and upregulated JNK/c-Jun pathway. C-Jun promoted WIP expression at the transcriptional level. Notably, we observed c-Jun transcriptionally upregulated CLDN6 expression, and there was a positive feedback loop between CLDN6 and JNK/c-Jun. Finally, we found that CLDN6, WIP and LC3 expression correlated with each other, and WIP expression was significantly associated with lymph node metastasis of breast cancer patients. CONCLUSIONS The data provide a new insight into the inhibitory effects of CLDN6-mediated autophagy on breast cancer metastasis, and revealed the new mechanism of CLDN6 regulating autophagy through WIP-dependent actin cytoskeleton. Our findings enrich the theoretical basis for CLDN6 as a potential biomarker for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China.
| |
Collapse
|
12
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
13
|
Yang H, Liang Z, Xie J, Wu Q, Qin Y, Zhang S, Tang G. Gelsolin inhibits autophagy by regulating actin depolymerization in pancreatic ductal epithelial cells in acute pancreatitis. Braz J Med Biol Res 2023; 56:e12279. [PMID: 36722658 PMCID: PMC9883008 DOI: 10.1590/1414-431x2023e12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/20/2022] [Indexed: 02/02/2023] Open
Abstract
Gelsolin (GSN) can sever actin filaments associated with autophagy. This study investigated how GSN-regulated actin filaments control autophagy in pancreatic ductal epithelial cells (PDECs) in acute pancreatitis (AP). AP was produced in a rat model and PDECs using caerulein (CAE). Rat pancreatic duct tissue and HPDE6-C7 cells were extracted at 6, 12, 24, and 48 h after CAE treatment. HPDE6-C7 cells in the presence of CAE were treated with cytochalasin B (CB) or silenced for GSN for 24 h. Pancreatic histopathology and serum amylase levels were analyzed. Cellular ultrastructure and autophagy in PDECs were observed by transmission electron microscopy after 24 h of CAE treatment. The expression of GSN and autophagy markers LC3, P62, and LAMP2 was evaluated in PDECs by immunohistochemistry and western blotting. Actin filaments were observed microscopically. Amylase levels were highest at 6 h of AP, and pancreatic tissue damage increased over time. Mitochondrial vacuolization and autophagy were observed in PDECs. CAE increased GSN expression in these cells over time, increased the LC3-II/LC3-I ratio and LAMP2 expression at 24 and 6 h of treatment, respectively, and decreased P62 expression at all time points. CB treatment for 24 h decreased the LC3-II/LC3-I ratio and LAMP2 expression, increased P62 levels, but had no impact on GSN expression in CAE-treated PDECs. CAE induced actin depolymerization, and CB potentiated this effect. GSN silencing increased the LC3-II/LC3-I ratio and LAMP2 expression and reduced actin depolymerization in CAE-treated PDECs. GSN may inhibit autophagosome biogenesis and autophagosome-lysosome fusion by increasing actin depolymerization in PDECs in AP.
Collapse
Affiliation(s)
- Huiying Yang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhihai Liang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinlian Xie
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing Wu
- Department of Gastroenterology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingying Qin
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiyu Zhang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guodu Tang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Chen D, Zhang C, Luo J, Deng H, Yang J, Chen S, Zhang P, Dong L, Chang T, Tang ZH. Activated autophagy of innate immune cells during the early stages of major trauma. Front Immunol 2023; 13:1090358. [PMID: 36713435 PMCID: PMC9879135 DOI: 10.3389/fimmu.2022.1090358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Background Trauma-induced immune dysfunction has been a major barrier to achieving reduced mortality, which is poorly understood. Autophagy is a crucial catabolic mechanism of immune cells during times of stress. Few studies have investigated the immune regulatory effects induced by autophagy after trauma. Here, we use single-cell transcriptomics analysis in a major trauma cohort to demonstrate the dominant role of autophagy in innate immune cells during the early stages of major trauma. Method Single-cell transcriptional profiling of peripheral blood mononuclear cells (PBMCs) was performed, which were sampled from three control participants and five major trauma patients within 6 hours of injury. In detail, after single-cell RNA-sequence data processing, cell type annotation and cluster marker identification were performed. A genetic toolbox with 604 autophagy-related genes was used to monitor the autophagy levels in immune cells. In addition, all transcriptome RNA sequencing data obtained from PBMCs in a cohort of 167 major trauma patients were downloaded from gene expression omnibus (GEO) datasets (GSE36809). Key deregulated biological processes and important autophagic hub genes involved in immune cells were identified by weighted gene co-expression network analysis and gene ontology enrichment analysis. Results A total of 20,445 differentially expressed genes were identified and five co-expression modules were constructed. Enrichment analysis indicated that activated autophagy is the most important biological process during the early stages of major trauma, and JMY (autophagy-related genes) were identified as hub genes. The single-cell transcriptional profiling of PBMCs demonstrated that all components of adaptive immune cells were significantly decreased, whereas components of innate immune cells (monocytes and neutrophils) were significantly increased in major trauma patients compared with control participants. Activated autophagy was detected in monocytes and neutrophils by monitoring the dynamic transcriptional signature of the autophagy-related genetic toolbox. Biological process analysis shows that antigen uptake, processing presentation, and major histocompatibility complex (MHC) class II protein complex assembly pathways were up-regulated in autophagy-positive monocytes, whereas antigen processing and presentation of endogenous antigen and type I interferon signaling pathways were up-regulated in autophagy-positive neutrophils during the early stages of major trauma. Conclusion Our study demonstrated that autophagy is a biological process crucial to the development of immune disorders in the early stages of major trauma. Furthermore, the results of our study generated a comprehensive single-cell immune landscape for major trauma patients, in which we determined that autophagy profoundly affects the main functions of innate immune cells and provides insight into the cellular basis of immune dysregulation after major trauma.
Collapse
|
15
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
16
|
Biomarker Candidates for Alzheimer’s Disease Unraveled through In Silico Differential Gene Expression Analysis. Diagnostics (Basel) 2022; 12:diagnostics12051165. [PMID: 35626321 PMCID: PMC9139748 DOI: 10.3390/diagnostics12051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is neurodegeneration that accounts for 60–70% of dementia cases. Symptoms begin with mild memory difficulties and evolve towards cognitive impairment. The underlying risk factors remain primarily unclear for this heterogeneous disorder. Bioinformatics is a relevant research tool that allows for identifying several pathways related to AD. Open-access databases of RNA microarrays from the peripheral blood and brain of AD patients were analyzed after background correction and data normalization; the Limma package was used for differential expression analysis (DEA) through statistical R programming language. Data were corrected with the Benjamini and Hochberg approach, and genes with p-values equal to or less than 0.05 were considered to be significant. The direction of the change in gene expression was determined by its variation in the log2-fold change between healthy controls and patients. We performed the functional enrichment analysis of GO using goana and topGO-Limma. The functional enrichment analysis of DEGs showed upregulated (UR) pathways: behavior, nervous systems process, postsynapses, enzyme binding; downregulated (DR) were cellular component organization, RNA metabolic process, and signal transduction. Lastly, the intersection of DEGs in the three databases showed eight shared genes between brain and blood, with potential use as AD biomarkers for blood tests.
Collapse
|
17
|
Fung TS, Chakrabarti R, Kollasser J, Rottner K, Stradal TEB, Kage F, Higgs HN. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 2022; 32:1577-1592.e8. [PMID: 35290799 PMCID: PMC9078333 DOI: 10.1016/j.cub.2022.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
18
|
Alhebshi H, Tian K, Patnaik L, Taylor R, Bezecny P, Hall C, Muller PAJ, Safari N, Creamer DPM, Demonacos C, Mutti L, Bittar MN, Krstic-Demonacos M. Evaluation of the Role of p53 Tumour Suppressor Posttranslational Modifications and TTC5 Cofactor in Lung Cancer. Int J Mol Sci 2021; 22:ijms222413198. [PMID: 34947995 PMCID: PMC8707832 DOI: 10.3390/ijms222413198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
Mutations in the p53 tumor suppressor are found in over 50% of cancers. p53 function is controlled through posttranslational modifications and cofactor interactions. In this study, we investigated the posttranslationally modified p53, including p53 acetylated at lysine 382 (K382), p53 phosphorylated at serine 46 (S46), and the p53 cofactor TTC5/STRAP (Tetratricopeptide repeat domain 5/ Stress-responsive activator of p300-TTC5) proteins in lung cancer. Immunohistochemical (IHC) analysis of lung cancer tissues from 250 patients was carried out and the results were correlated with clinicopathological features. Significant associations between total or modified p53 with a higher grade of the tumour and shorter overall survival (OS) probability were detected, suggesting that mutant and/or modified p53 acts as an oncoprotein in these patients. Acetylated at K382 p53 was predominantly nuclear in some samples and cytoplasmic in others. The localization of the K382 acetylated p53 was significantly associated with the gender and grade of the disease. The TTC5 protein levels were significantly associated with the grade, tumor size, and node involvement in a complex manner. SIRT1 expression was evaluated in 50 lung cancer patients and significant positive correlation was found with p53 S46 intensity, whereas negative TTC5 staining was associated with SIRT1 expression. Furthermore, p53 protein levels showed positive association with poor OS, whereas TTC5 protein levels showed positive association with better OS outcome. Overall, our results indicate that an analysis of p53 modified versions together with TTC5 expression, upon testing on a larger sample size of patients, could serve as useful prognostic factors or drug targets for lung cancer treatment.
Collapse
Affiliation(s)
- Hasen Alhebshi
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
| | - Kun Tian
- Institute of Biological Anthropology, School of Basical Medical Science, Jinzhou Medical University, Jinzhou 121001, China;
| | - Lipsita Patnaik
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Rebecca Taylor
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Pavel Bezecny
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Callum Hall
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester SK10 4TG, UK; (C.H.); (P.A.J.M.)
| | - Patricia Anthonia Johanna Muller
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester SK10 4TG, UK; (C.H.); (P.A.J.M.)
| | - Nazila Safari
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
| | - Delta Patricia Menendez Creamer
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
| | - Constantinos Demonacos
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Stopford Building, 3.124 Oxford Road, Manchester M13 9PT, UK;
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Mohamad Nidal Bittar
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool FY3 8NR, UK; (L.P.); (R.T.); (P.B.); (M.N.B.)
| | - Marija Krstic-Demonacos
- School of Science, Engineering and Environment, University of Salford, Cockcroft Building 305, Manchester M5 4WT, UK; (H.A.); (N.S.); (D.P.M.C.)
- Correspondence:
| |
Collapse
|
19
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
20
|
The actin nucleation factors JMY and WHAMM enable a rapid Arp2/3 complex-mediated intrinsic pathway of apoptosis. PLoS Genet 2021; 17:e1009512. [PMID: 33872315 PMCID: PMC8084344 DOI: 10.1371/journal.pgen.1009512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/29/2021] [Accepted: 03/28/2021] [Indexed: 01/02/2023] Open
Abstract
The actin cytoskeleton is a well-known player in most vital cellular processes, but comparably little is understood about how the actin assembly machinery impacts programmed cell death pathways. In the current study, we explored roles for the human Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation factors in DNA damage-induced apoptosis. Inactivation of each WASP-family gene revealed that two of them, JMY and WHAMM, are necessary for rapid apoptotic responses. JMY and WHAMM participate in a p53-dependent cell death pathway by enhancing mitochondrial permeabilization, initiator caspase cleavage, and executioner caspase activation. JMY-mediated apoptosis requires actin nucleation via the Arp2/3 complex, and actin filaments are assembled in cytoplasmic territories containing clusters of cytochrome c and active caspase-3. The loss of JMY additionally results in significant changes in gene expression, including upregulation of the WHAMM-interacting G-protein RhoD. Depletion or deletion of RHOD increases cell death, suggesting that RhoD normally contributes to cell survival. These results give rise to a model in which JMY and WHAMM promote intrinsic cell death responses that can be opposed by RhoD.
Collapse
|
21
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
22
|
Chen SQ, Wang C, Song YQ, Tao S, Yu FY, Lou HY, Hu FQ, Yuan H. Quercetin Covalently Linked Lipid Nanoparticles: Multifaceted Killing Effect on Tumor Cells. ACS OMEGA 2020; 5:30274-30281. [PMID: 33251462 PMCID: PMC7689951 DOI: 10.1021/acsomega.0c04795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The encapsulation of hydrophobic drugs is a problem that many researchers are working on. The goal of this study is to achieve the delivery of hydrophobic drugs by means of prodrugs and nanoformulations for a stronger tumor cell-killing effect and explore related killing mechanisms. Lipophilic quercetin (Qu) was covalently linked to glyceryl caprylate-caprate (Gcc) via disulfide bonds-containing 3,3'-dithiodipropionic acid (DTPA) to synthesize novel lipid Qu-SS-Gcc. Qu-SS-Gcc lipid nanoparticles (Qu-SS-Gcc LNPs) were fabricated using the solvent diffusion technique. The intracellular release of Qu by cleavage of nanocarriers was determined by liquid chromatography and compared with the uptake of free Qu. Detection methods, such as fluorescent quantitation, flow cytometry, and western blot were applied to explore the action mechanism induced by Qu. It was revealed that Qu-SS-Gcc LNPs could be cleaved by the high concentrations of reduction molecules in MCF-7/ADR (human multidrug-resistant breast cancer) cells, followed by the release of Qu. The intracellular Qu content produced by dissociation of Qu-SS-Gcc LNPs was higher than that produced by internalization of free Qu. The resulting release of Qu exerted superior cell-killing effects on MCF-7/ADR cells, such as P-gp inhibition by binding to P-gp binding sites, blocking the cell cycle in the G2 phase, and causing cell apoptosis and autophagy. Moreover, it was revealed autophagy triggered by a low concentration of Qu-SS-Gcc LNPs was beneficial to cell survival, while at a higher concentration, it acted as a cell killer. Qu-SS-Gcc LNPs can realize massive accumulation of Qu in tumor cells and exert a multifaceted killing effect on tumor cells, which is a reference for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Shao-qing Chen
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Cheng Wang
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Yan-qing Song
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shan Tao
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fang-ying Yu
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hai-ya Lou
- Sir
Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun East Road, Hangzhou 310016, China
| | - Fu-qiang Hu
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hong Yuan
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
23
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|
24
|
Grikscheit K, Dolnik O, Takamatsu Y, Pereira AR, Becker S. Ebola Virus Nucleocapsid-Like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells 2020; 9:cells9071728. [PMID: 32707734 PMCID: PMC7407605 DOI: 10.3390/cells9071728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
The intracellular transport of nucleocapsids of the highly pathogenic Marburg, as well as Ebola virus (MARV, EBOV), represents a critical step during the viral life cycle. Intriguingly, a population of these nucleocapsids is distributed over long distances in a directed and polar fashion. Recently, it has been demonstrated that the intracellular transport of filoviral nucleocapsids depends on actin polymerization. While it was shown that EBOV requires Arp2/3-dependent actin dynamics, the details of how the virus exploits host actin signaling during intracellular transport are largely unknown. Here, we apply a minimalistic transfection system to follow the nucleocapsid-like structures (NCLS) in living cells, which can be used to robustly quantify NCLS transport in live cell imaging experiments. Furthermore, in cells co-expressing LifeAct, a marker for actin dynamics, NCLS transport is accompanied by pulsative actin tails appearing on the rear end of NCLS. These actin tails can also be preserved in fixed cells, and can be visualized via high resolution imaging using STORM in transfected, as well as EBOV infected, cells. The application of inhibitory drugs and siRNA depletion against actin regulators indicated that EBOV NCLS utilize the canonical Arp2/3-Wave1-Rac1 pathway for long-distance transport in cells. These findings highlight the relevance of the regulation of actin polymerization during directed EBOV nucleocapsid transport in human cells.
Collapse
Affiliation(s)
- Katharina Grikscheit
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
| | - Yuki Takamatsu
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
25
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
26
|
Rasheed A, Gumus E, Zaki M, Johnson K, Manzoor H, LaForce G, Ross D, McEvoy-Venneri J, Stanley V, Lee S, Virani A, Ben-Omran T, Gleeson JG, Naz S, Schaffer A. Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. J Med Genet 2020; 58:237-246. [PMID: 32439809 DOI: 10.1136/jmedgenet-2020-106849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Intellectual disability syndromes (IDSs) with or without developmental delays affect up to 3% of the world population. We sought to clinically and genetically characterise a novel IDS segregating in five unrelated consanguineous families. METHODS Clinical analyses were performed for eight patients with intellectual disability (ID). Whole-exome sequencing for selected participants followed by Sanger sequencing for all available family members was completed. Identity-by-descent (IBD) mapping was carried out for patients in two Egyptian families harbouring an identical variant. RNA was extracted from blood cells of Turkish participants, followed by cDNA synthesis and real-time PCR for TTC5. RESULTS Phenotype comparisons of patients revealed shared clinical features of moderate-to-severe ID, corpus callosum agenesis, mild ventriculomegaly, simplified gyral pattern, cerebral atrophy, delayed motor and verbal milestones and hypotonia, presenting with an IDS. Four novel homozygous variants in TTC5: c.629A>G;p.(Tyr210Cys), c.692C>T;p.(Ala231Val), c.787C>T;p.(Arg263Ter) and c.1883C>T;p.(Arg395Ter) were identified in the eight patients from participating families. IBD mapping revealed that c.787C>T;p.(Arg263Ter) is a founder variant in Egypt. Missense variants c.629A>G;p.(Tyr210Cys) and c.692C>T;p.(Ala231Val) disrupt highly conserved residues of TTC5 within the fifth and sixth tetratricopeptide repeat motifs which are required for p300 interaction, while the nonsense variants are predicted to decrease TTC5 expression. Functional analysis of variant c.1883C>T;p.(Arg395Ter) showed reduced TTC5 transcript levels in accordance with nonsense-mediated decay. CONCLUSION Combining our clinical and molecular data with a recent case report, we identify the core and variable clinical features associated with TTC5 loss-of-function variants and reveal the requirement for TTC5 in human brain development and health.
Collapse
Affiliation(s)
- Arisha Rasheed
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Evren Gumus
- Medical Genetics, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey.,Medical Genetics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Maha Zaki
- Clinical Genetic Department, National Research Centre, Cairo, Egypt
| | - Katherine Johnson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Humera Manzoor
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Geneva LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Danica Ross
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer McEvoy-Venneri
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Valentina Stanley
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Sangmoon Lee
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Abbir Virani
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics Division, Department of Pediatrics, Weill-Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience and Pediatrics, Howard Hughes Medical Insistute, University of California, San Diego, La Jolla, CA, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Liu Y, Fan J, Yan Y, Dang X, Zhao R, Xu Y, Ding Z. JMY expression by Sertoli cells contributes to mediating spermatogenesis in mice. FEBS J 2020; 287:5478-5497. [PMID: 32279424 DOI: 10.1111/febs.15328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Sertoli cells are crucial for spermatogenesis in the seminiferous epithelium because their actin cytoskeleton supports vesicular transport, cell junction formation, protein anchoring, and spermiation. Here, we show that a junction-mediating and actin-regulatory protein (JMY) affects the blood-tissue barrier (BTB) function through remodeling of the Sertoli cell junctional integrity and it also contributes to controlling endocytic vesicle trafficking. These functions are critical for the maintenance of sperm fertility since loss of Sertoli cell-specific Jmy function induced male subfertility in mice. Specifically, these mice have (a) impaired BTB integrity and spermatid adhesion in the seminiferous tubules; (b) high incidence of sperm structural deformity; and (c) reduced sperm count and poor sperm motility. Moreover, the cytoskeletal integrity was compromised along with endocytic vesicular trafficking. These effects impaired junctional protein recycling and reduced Sertoli cell BTB junctional integrity. In addition, JMY interaction with actin-binding protein candidates α-actinin1 and sorbin and SH3 domain containing protein 2 was related to JMY activity, and in turn, actin cytoskeletal organization. In summary, JMY affects the control of spermatogenesis through the regulation of actin filament organization and endocytic vesicle trafficking in Sertoli cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jiaying Fan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China.,Center for Experimental Medical Science Education, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Yan
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Xuening Dang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Ran Zhao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yimei Xu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
28
|
Kabrawala S, Zimmer MD, Campellone KG. WHIMP links the actin nucleation machinery to Src-family kinase signaling during protrusion and motility. PLoS Genet 2020; 16:e1008694. [PMID: 32196488 PMCID: PMC7112243 DOI: 10.1371/journal.pgen.1008694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 02/22/2020] [Indexed: 12/27/2022] Open
Abstract
Cell motility is governed by cooperation between the Arp2/3 complex and nucleation-promoting factors from the Wiskott-Aldrich Syndrome Protein (WASP) family, which together assemble actin filament networks to drive membrane protrusion. Here we identify WHIMP (WAVE Homology In Membrane Protrusions) as a new member of the WASP family. The Whimp gene is encoded on the X chromosome of a subset of mammals, including mice. Murine WHIMP promotes Arp2/3-dependent actin assembly, but is less potent than other nucleation factors. Nevertheless, WHIMP-mediated Arp2/3 activation enhances both plasma membrane ruffling and wound healing migration, whereas WHIMP depletion impairs protrusion and slows motility. WHIMP expression also increases Src-family kinase activity, and WHIMP-induced ruffles contain the additional nucleation-promoting factors WAVE1, WAVE2, and N-WASP, but not JMY or WASH. Perturbing the function of Src-family kinases, WAVE proteins, or Arp2/3 complex inhibits WHIMP-driven ruffling. These results suggest that WHIMP-associated actin assembly plays a direct role in membrane protrusion, but also results in feedback control of tyrosine kinase signaling to modulate the activation of multiple WASP-family members. The actin cytoskeleton is a collection of protein polymers that assemble and disassemble within cells at specific times and locations. Sophisticated cytoskeletal regulators called nucleation-promoting factors ensure that actin polymerizes when and where it is needed, and many of these factors are members of the Wiskott-Aldrich Syndrome Protein (WASP) family. Several of the 8 known WASP-family proteins function in cell motility, but how the different factors collaborate with one another is not well understood. In this study, we identified WHIMP, a new WASP-family member that is encoded on the X chromosome of a variety of mammals. In mouse cells, WHIMP enhances cell motility by assembling actin filaments that push the plasma membrane forward. Unexpectedly, WHIMP also activates tyrosine kinases, enzymes that stimulate multiple WASP-family members during motility. Our results open new avenues of research into how nucleation factors cooperate during movement and how the molecular activities that underlie motility differ in distinct cell types and organisms.
Collapse
Affiliation(s)
- Shail Kabrawala
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Margaret D. Zimmer
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
29
|
Rohrberg J, Van de Mark D, Amouzgar M, Lee JV, Taileb M, Corella A, Kilinc S, Williams J, Jokisch ML, Camarda R, Balakrishnan S, Shankar R, Zhou A, Chang AN, Chen B, Rugo HS, Dumont S, Goga A. MYC Dysregulates Mitosis, Revealing Cancer Vulnerabilities. Cell Rep 2020; 30:3368-3382.e7. [PMID: 32160543 PMCID: PMC7085414 DOI: 10.1016/j.celrep.2020.02.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/18/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Tumors that overexpress the MYC oncogene are frequently aneuploid, a state associated with highly aggressive cancers and tumor evolution. However, how MYC causes aneuploidy is not well understood. Here, we show that MYC overexpression induces mitotic spindle assembly defects and chromosomal instability (CIN) through effects on microtubule nucleation and organization. Attenuating MYC expression reverses mitotic defects, even in established tumor cell lines, indicating an ongoing role for MYC in CIN. MYC reprograms mitotic gene expression, and we identify TPX2 to be permissive for spindle assembly in MYC-high cells. TPX2 depletion blocks mitotic progression, induces cell death, and prevents tumor growth. Further elevating TPX2 expression reduces mitotic defects in MYC-high cells. MYC and TPX2 expression may be useful biomarkers to stratify patients for anti-mitotic therapies. Our studies implicate MYC as a regulator of mitosis and suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.
Collapse
Affiliation(s)
- Julia Rohrberg
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| | - Daniel Van de Mark
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Meelad Amouzgar
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Joyce V Lee
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Moufida Taileb
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra Corella
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Seda Kilinc
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy Williams
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Marie-Lena Jokisch
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Roman Camarda
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sanjeev Balakrishnan
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Rama Shankar
- Department of Pediatrics and Human Development and Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Alicia Zhou
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bin Chen
- Department of Pediatrics and Human Development and Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Hope S Rugo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Dumont
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Schoentgen F, Jonic S. PEBP1/RKIP behavior: a mirror of actin-membrane organization. Cell Mol Life Sci 2020; 77:859-874. [PMID: 31960115 PMCID: PMC11105014 DOI: 10.1007/s00018-020-03455-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Phosphatidylethanolamine-binding protein 1 (PEBP1), a small 21 kDa protein, is implicated in several key processes of the living cell. The deregulation of PEBP1, especially its downregulation, leads to major diseases such as cancer and Alzheimer's disease. PEBP1 was found to interact with numerous proteins, especially kinases and GTPases, generally inhibiting their activity. To understand the basic functionality of this amazing small protein, we have considered several known processes that it modulates and we have discussed the role of each molecular target in these processes. Here, we propose that cortical actin organization, associated with membrane changes, is involved in the majority of the processes modulated by PEBP1. Furthermore, based on recent data, we summarize some key PEBP1-interacting proteins, and we report their respective functions and focus on their relationships with actin organization. We suggest that, depending on the cell status and environment, PEBP1 is an organizer of the actin-membrane composite material.
Collapse
Affiliation(s)
- Françoise Schoentgen
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005, Paris, France.
| | - Slavica Jonic
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
31
|
Lin Z, Gasic I, Chandrasekaran V, Peters N, Shao S, Mitchison TJ, Hegde RS. TTC5 mediates autoregulation of tubulin via mRNA degradation. Science 2020; 367:100-104. [PMID: 31727855 PMCID: PMC6942541 DOI: 10.1126/science.aaz4352] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Tubulins play crucial roles in cell division, intracellular traffic, and cell shape. Tubulin concentration is autoregulated by feedback control of messenger RNA (mRNA) degradation via an unknown mechanism. We identified tetratricopeptide protein 5 (TTC5) as a tubulin-specific ribosome-associating factor that triggers cotranslational degradation of tubulin mRNAs in response to excess soluble tubulin. Structural analysis revealed that TTC5 binds near the ribosome exit tunnel and engages the amino terminus of nascent tubulins. TTC5 mutants incapable of ribosome or nascent tubulin interaction abolished tubulin autoregulation and showed chromosome segregation defects during mitosis. Our findings show how a subset of mRNAs can be targeted for coordinated degradation by a specificity factor that recognizes the nascent polypeptides they encode.
Collapse
Affiliation(s)
- Zhewang Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ivana Gasic
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Niklas Peters
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sichen Shao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Abstract
Actin polymerization is essential for cells to migrate, as well as for various cell biological processes such as cytokinesis and vesicle traffic. This brief review describes the mechanisms underlying its different roles and recent advances in our understanding. Actin usually requires "nuclei"-preformed actin filaments-to start polymerizing, but, once initiated, polymerization continues constitutively. The field therefore has a strong focus on nucleators, in particular the Arp2/3 complex and formins. These have different functions, are controlled by contrasting mechanisms, and generate alternate geometries of actin networks. The Arp2/3 complex functions only when activated by nucleation-promoting factors such as WASP, Scar/WAVE, WASH, and WHAMM and when binding to a pre-existing filament. Formins can be individually active but are usually autoinhibited. Each is controlled by different mechanisms and is involved in different biological roles. We also describe the processes leading to actin disassembly and their regulation and conclude with four questions whose answers are important for understanding actin dynamics but are currently unanswered.
Collapse
Affiliation(s)
- Simona Buracco
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Sophie Claydon
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Robert Insall
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| |
Collapse
|
33
|
Involvement of Actin in Autophagy and Autophagy-Dependent Multidrug Resistance in Cancer. Cancers (Basel) 2019; 11:cancers11081209. [PMID: 31434275 PMCID: PMC6721626 DOI: 10.3390/cancers11081209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023] Open
Abstract
Currently, autophagy in the context of cancer progression arouses a lot of controversy. It is connected with the possibility of switching the nature of this process from cytotoxic to cytoprotective and vice versa depending on the treatment. At the same time, autophagy of cytoprotective character may be one of the factors determining multidrug resistance, as intensification of the process is observed in patients with poorer prognosis. The exact mechanism of this relationship is not yet fully understood; however, it is suggested that one of the elements of the puzzle may be a cytoskeleton. In the latest literature reports, more and more attention is paid to the involvement of actin in the autophagy. The role of this protein is linked to the formation of autophagosomes, which are necessary element of the process. However, based on the proven effectiveness of manipulation of the actin pool, it seems to be an attractive alternative in breaking autophagy-dependent multidrug resistance in cancer.
Collapse
|
34
|
Mogessie B, Zenner H, Renkawitz J. Meeting report - Cell dynamics: organelle-cytoskeleton interface. J Cell Sci 2019; 132:132/16/jcs236679. [PMID: 31416851 DOI: 10.1242/jcs.236679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A hallmark of eukaryotic cells is the spatial separation of molecular and biochemical processes into membrane-bound organelles, such as mitochondria, endoplasmic reticulum and Golgi. At the 'Cell dynamics: organelle-cytoskeleton interface' meeting held in Lisbon, researchers from around the world discussed their findings of how the cytoskeleton regulates dynamics, interaction, and function of organelles in health and disease. Organised by Edgar Gomes, Heidi McBride, Sharon Tooze and Michael Way, the meeting created an open, stimulating and collaborative environment for scientific exchange and an opportunity to highlight the newest trends in the field.
Collapse
Affiliation(s)
- Binyam Mogessie
- School of Biochemistry, University of Bristol, Bristol, BS1 8TD, UK
| | - Helen Zenner
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Jörg Renkawitz
- Walter Brendel Center of Experimental Medicine, Biomedical Center (BMC), Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| |
Collapse
|
35
|
Gao S, Huang Q, Tang X, Qu X, Yu Y, Zhao Y, Tian L, Wu P, Gong H, Xu Y, Xu J. ZhiShiXiaoPi tang inhibits autophagy induced by corticosterone and functional dyspepsia through blockade of the mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111836. [PMID: 30922853 DOI: 10.1016/j.jep.2019.111836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ZhiShiXiaoPi Tang (ZSXPT) is a Chinese traditional medicine formula that contains 10 Chinese traditional medicine substances. It has been widely used to treat patients with functional dyspepsia (FD). However, the protective effect of ZSXPT and its molecular mechanisms in FD still remain elusive. AIM OF THE STUDY To investigate the protective effect of ZSXPT on autophagy induced by Corticosterone (Cort) in PC12 cells which have typical neuron characteristics and have been widely used as a model system for depression studies and FD rats, and explore its underlying mechanisms. MATERIALS AND METHODS In this study, high-performance liquid chromatography fingerprint analysis was performed to characterize the chemical composition of ZSXPT. Depression-induced autophagy, ROS generation, and changes in mitochondrial membrane potential (MMP) were investigated in Cort-induced PC12 cells and in FD rats to evaluate the protective effects of ZSXPT. RESULTS Our results show that ZSXPT treatment protects neurons against Cort-induced damage and apoptosis by increasing cell viability and reducing the release of lactate dehydrogenase. ZSXPT decreased Cort-induced ROS generation, increased MMP, and accelerated autophagy through the blockade of the mammalian target of rapamycin (mTOR) pathway. Moreover, we observed similar findings when we studied ZSXPT in a rat model of FD. CONCLUSIONS Our in vitro and in vivo results indicate that the neuroprotective effect of ZSXPT against autophagy-induced damage and apoptosis occurs mainly by blocking the mTOR pathway in Cort-induced PC12 cells and in FD rats. Taken together, these data provide reliable experimental evidence and explain the molecular mechanism by which ZSXPT ameliorates FD.
Collapse
Affiliation(s)
- Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, 130000, China
| | - Xiaotong Tang
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Xiaofeng Qu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Yanhui Yu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Yuanhui Zhao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Linlin Tian
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Ping Wu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Haiquan Gong
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China
| | - Yun Xu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China.
| | - Jian Xu
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, 130000, China.
| |
Collapse
|
36
|
Liu X, Klionsky DJ. Regulation of JMY's actin nucleation activity by TTC5/STRAP and LC3 during autophagy. Autophagy 2019; 15:373-374. [PMID: 30593260 DOI: 10.1080/15548627.2018.1564417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Actin plays indispensable roles in autophagosome biogenesis. Branched actin networks assembled within phagophore membranes are required for generating the autophagosome membrane shape and movement. The ARP2/3 complex and its regulators, such as JMY (junction mediating and regulatory protein, p53 cofactor), translocate to phagophore membranes to promote local actin filament formation during autophagy. Hu et al., recently showed that during autophagy LC3 recruits JMY to the phagophore and promotes its actin nucleation activity. They also characterized TTC5/STRAP (tetratricopeptide repeat domain 5) as a negative autophagy regulator via binding to JMY and antagonizing its activation. Moreover, an in vitro reconstitution system was developed to demonstrate that membrane-bound LC3 is sufficient to recruit JMY and stimulate JMY-mediated actin filament assembly.
Collapse
Affiliation(s)
- Xu Liu
- a Life Sciences Institute , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|