1
|
Wang HH, Biunno I, Sun S, Qi L. SEL1L-HRD1-mediated ERAD in mammals. Nat Cell Biol 2025:10.1038/s41556-025-01690-1. [PMID: 40562846 DOI: 10.1038/s41556-025-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/15/2025] [Indexed: 06/28/2025]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a critical quality control mechanism responsible for eliminating misfolded or unassembled proteins. It maintains endoplasmic reticulum homeostasis, ensures a proper folding environment and regulates substrate protein levels. Following its discovery in the late 1980s and early 1990s, research on ERAD in mammals-particularly that mediated by the conserved protein complex comprising suppressor/enhancer of Lin-12-like protein 1-like (SEL1L) and HMG-CoA reductase degradation protein 1 (HRD1)-has advanced substantially over the past decade. SEL1L-HRD1-mediated ERAD is now recognized as a fundamental process in mammals that governs various physiological functions largely in a substrate-specific manner. In humans, mutations in this complex have been causally linked to ERAD-associated neurodevelopmental disorders with onset in infancy (ENDI) and ENDI-agammaglobulinaemia. This Review highlights the SEL1L-HRD1-mediated ERAD pathway, exploring its machinery, molecular mechanism and physiological relevance and potential therapeutic strategies targeting this system.
Collapse
Affiliation(s)
- Huilun Helen Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ida Biunno
- Department of Translational Medicine, University of Pavia, Pavia, Italy
- Integrated Systems Engineering, Brugherio, Italy
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Dong Q, Zhao X, Zhu C, Ruan J, Chen C. N6-Methyladenosine Modification of the Three Components "Writers", "Erasers", and "Readers" in Relation to Osteogenesis. Int J Mol Sci 2025; 26:5620. [PMID: 40565084 PMCID: PMC12193295 DOI: 10.3390/ijms26125620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 06/05/2025] [Accepted: 06/10/2025] [Indexed: 06/28/2025] Open
Abstract
Bone-related diseases significantly diminish human happiness, adversely impacting overall quality of life. Optimizing bone tissue repair remains a prominent focus within the field of bone tissue regenerative medicine. N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications found in eukaryotic mRNA and non-coding RNA. The functions of m6A involve diverse components, including "Writers", "Erasers", and "Readers". Numerous studies have demonstrated that m6A plays a crucial role in the exchange of information and coordination among various cell types, bioactive factors, and the microenvironment, influencing the progression of diverse physiological and pathological processes within the human body. In recent years, many functions and molecular pathways associated with m6A have been identified. This review primarily discusses the relationship between the three components of m6A and osteogenesis, as well as other key genes and pathways involved in this process. Additionally, we provide an in-depth elucidation of the interaction network between m6A modifications, micro-RNAs, and long non-coding RNAs. In the final section, we address the current limitations in m6A and osteogenesis research and explore the prospects for the diagnosis and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi’an 710000, China
| | - Xubin Zhao
- Department of General Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Changze Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi’an 710000, China
| | - Jianping Ruan
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Cheng Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi’an 710000, China
- Department of General Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
3
|
Sedlacek J. Impact of proteostasis workload on sensitivity to proteasome inhibitors in multiple myeloma. Clin Exp Med 2025; 25:176. [PMID: 40418254 DOI: 10.1007/s10238-025-01713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Genomic alterations and enormous monoclonal immunoglobulin production cause multiple myeloma to heavily depend on proteostasis mechanisms, including protein folding and degradation. These findings support the use of proteasome inhibitors for treating multiple myeloma and mantle cell lymphoma. Myeloma treatment has evolved, especially with the availability of new drugs, such as proteasome inhibitors, into therapeutic strategies for both frontline and relapsed/refractory disease settings. However, proteasome inhibitors are generally not effective enough to cure most patients. Natural resistance and eventual acquired resistance led to relapsed/refractory disease and poor prognosis. Advances in the understanding of cellular proteostasis and the development of innovative drugs that also target other proteostasis network components offer opportunities to exploit the intrinsic vulnerability of myeloma cells. This review outlines recent findings on the molecular mechanisms regulating cellular proteostasis pathways, as well as resistance, sensitivity, and escape strategies developed against proteasome inhibitors and provides a rationale and examples for novel combinations of proteasome inhibitors with FDA-approved drugs and investigational drugs targeting the NRF1 (NFE2L1)-mediated proteasome bounce-back response, redox homeostasis, heat shock response, unfolding protein response, autophagy, and VCP/p97 to increase proteotoxic stress, which can improve the efficacy of antimyeloma therapy based on proteasome inhibitors.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic.
| |
Collapse
|
4
|
Molinari M. ER-to-lysosome-associated degradation. Curr Biol 2025; 35:R320-R322. [PMID: 40328214 DOI: 10.1016/j.cub.2025.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Maurizio Molinari introduces ER-to-lysosome-associated degradation - the autophagic and non-autophagic pathways that deliver ERAD-resistant misfolded proteins to the lysosome for degradation to maintain cellular proteostasis.
Collapse
Affiliation(s)
- Maurizio Molinari
- Università della Svizzera italiana, Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Cui T, Ma Q, Zhang F, Chen S, Zhang C, Zhou X, Liu X. The oligosaccharyltransferase subunit PsSTT3A regulates N-glycosylation and is critical for development and virulence of Phytophthora sojae. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1384-1399. [PMID: 40059268 DOI: 10.1007/s11427-024-2807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 05/23/2025]
Abstract
In eukaryotes, N-glycosylation is a complex, multistep process in which the core subunit of oligosaccharyltransferase, Staurosporine and Temperature Sensitive 3A (STT3A), plays a critical role in the catalytic activity of the oligosaccharyltransferase (OST) complex. We found that the PsSTT3A gene plays a critical role in the viability of Phytophthora sojae (P. sojae). Furthermore, full PsSTT3A function was crucial to mycelial growth, sporangium production, zoospore production, and pathogenicity, as determined by gene silencing experiments. PsSTT3A is, itself, a highly N-glycosylated protein with six consensus NXS/T (Asn-X-Ser/Thr) motifs and one novel NS motif. However, the N-glycosylation sites on PsSTT3A that are required to support the development and virulence of P. sojae have been uncertain. Here, we demonstrated that glycosylation of site N593 is essential for normal mycelial growth and virulence in P. sojae. Furthermore, endoplasmic reticulum (ER) homeostasis was disrupted by the mutation of N593. N593A mutations reduced the stability of the elicitin PsSOJ2A, an N-glycoprotein, in gene replacement transformations. Our study reveals the functional significance of N-glycosylation of PsSTT3A in the development and infection cycles of P. sojae, demonstrating that targeting of PsSTT3A may be a promising strategy for developing new mode of action fungicides.
Collapse
Affiliation(s)
- Tongshan Cui
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Quanhe Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shanshan Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xin Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Guo ZH, Qin XY, Guo HF, Zheng C, Zhang ZY, Chen Q, Wang XB, Han CG, Wang Y. The E3 ligase HRD1 enhances plant antiviral immunity by targeting viral movement proteins. Cell Rep 2025; 44:115449. [PMID: 40106437 DOI: 10.1016/j.celrep.2025.115449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
The ubiquitin-26S proteasome system (UPS) is a conserved protein degradation process involved in plant growth and immunity. However, whether some UPS E3 ligases directly target plant viruses in the endoplasmic reticulum (ER) remains less understood. Here, we identify an E3 ubiquitin ligase Hmg-CoA reductase degradation 1 of Nicotiana benthamiana (NbHRD1) interacting with the triple gene block (TGB) movement proteins of beet necrotic yellow vein virus (BNYVV) in the ER. The TGB proteins are ubiquitinated by NbHRD1 and then degraded by the UPS. Consequently, overexpression of NbHRD1a significantly inhibits BNYVV infection, whereas silencing of NbHRD1 promotes BNYVV infection in N. benthamiana. Moreover, NbHRD1a mainly impairs BNYVV cell-to-cell movement, rather than virus replication. Interestingly, NbHRD1 also targets the TGB proteins of potato virus X for ubiquitination and virus inhibition. Collectively, our results demonstrate that NbHRD1 is an important antiviral component targeting plant viruses with TGB movement proteins.
Collapse
Affiliation(s)
- Zhi-Hong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin-Yu Qin
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong-Fang Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chuan Zheng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Yuan Z, Janmey PA, McCulloch CA. Structure and function of vimentin in the generation and secretion of extracellular vimentin in response to inflammation. Cell Commun Signal 2025; 23:187. [PMID: 40251523 PMCID: PMC12007377 DOI: 10.1186/s12964-025-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The canonical functions of vimentin in cell mechanics and migration have been recently expanded by the discovery of new roles for extracellular vimentin (ECV) in immune responses to infection, injury and cancer. In contrast with the predominantly filamentous form of intracellular vimentin, ECV exists largely as soluble oligomers. The release of ECV from intact cells is dependent on mechanisms that regulate the assembly and disassembly of intracellular vimentin, which are influenced by discrete post-translational modifications. In this review we highlight the processes that promote the conversion of intracellular and insoluble vimentin filaments to ECV and secretion mechanisms. Insights into the regulation of ECV release from stromal and immune cells could provide new diagnostic and therapeutic approaches for assessing and controlling inflammatory diseases.
Collapse
Affiliation(s)
- Zhiyao Yuan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Paul A Janmey
- Dept. of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher A McCulloch
- Faculty of Dentistry, University of Toronto, Room 461, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
8
|
Thomas C, Bouezzedine F, Bonnier D, Legagneux V, Théret N. Proteomic analysis of liver fibrosis reveals EFEMP1 as a new modulator of focal adhesion and migration of hepatic stellate cells. FASEB J 2025; 39:e70515. [PMID: 40171970 PMCID: PMC11963227 DOI: 10.1096/fj.202403086rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Liver fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM) leading to liver dysfunction. Proteomic approaches help to decipher ECM alterations during fibrosis progression. Using a decellularization method, we performed a proteomic analysis of 18 fibrotic human liver samples and identified 106 deregulated ECM proteins. Three members of the fibulin protein family (fibulin-2, -3, and -5) expressed by hepatic stellate cells were significantly associated with fibrosis progression. Integrative analyses of protein-protein interaction networks highlighted different functional annotations for these three fibulins. Gene silencing studies showed that unlike fibulin-2 (FBLN2), fibulin-3 (EFEMP1) depletion impaired focal adhesions, FAK phosphorylation, the fibronectin network, and cell migration. These findings are the first to demonstrate the critical involvement of fibulin-3 in the regulation of hepatic stellate cell focal adhesions and migration, emphasizing the intricate link between chronic liver disease progression and remodeling of the microenvironment.
Collapse
Affiliation(s)
- Célia Thomas
- Univ Rennes, INSERM, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR_S 1085RennesFrance
| | - Fidaa Bouezzedine
- Univ Rennes, INSERM, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR_S 1085RennesFrance
| | - Dominique Bonnier
- Univ Rennes, INSERM, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR_S 1085RennesFrance
| | - Vincent Legagneux
- Univ Rennes, INSERM, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR_S 1085RennesFrance
| | - Nathalie Théret
- Univ Rennes, INSERM, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR_S 1085RennesFrance
| |
Collapse
|
9
|
Huang Y, Zhong WQ, Yang XY, Shan JL, Zhou L, Li ZL, Guo YQ, Zhang KM, Du T, Zhang HL, Hu BX, Chen YH, Yang D, Feng GK, Tang J, Zhu XF, Deng R. Targeting site-specific N-glycosylated B7H3 induces potent antitumor immunity. Nat Commun 2025; 16:3546. [PMID: 40229277 PMCID: PMC11997214 DOI: 10.1038/s41467-025-58740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
B7H3, an immune checkpoint molecule, is a highly N-glycosylated membrane protein. However, the key glycosylated asparagine residues that mediate the function of the B7H3 protein are still unclear. Here we identify that N-glycans attached to asparagine residues N91/309 and N104/322 are required for proper B7H3 localization on the cell surface membrane. We demonstrate that mutations in these two pairs of N-glycosylation sites induce ER accumulation of B7H3 by blocking its ER-to-Golgi translocation and subsequently promote its degradation via the endoplasmic reticulum-associated protein degradation pathway. Additional evidence suggests that N-glycosylation at N91/309 and N104/322 of B7H3 is essential for its inhibition of T-cell proliferation and activation. More importantly, a monoclonal antibody, Ab-82, preferentially targeting B7H3 glycosylated at N91/309 and N104/322 is developed, which exhibits the ability to elicit cytotoxic T lymphocyte-mediated antitumor immunity via B7H3 internalization. Together, these findings offer a rationale for targeting glycosylated B7H3 as a potential strategy for immunotherapy.
Collapse
Affiliation(s)
- Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Qing Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Yu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Lu Shan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ling Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi-Qing Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Kai-Ming Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Quemerais C, Jean C, Brunel A, Decaup E, Labrousse G, Audureau H, Raffenne J, Belhabib I, Cros J, Perraud A, Dusetti N, Nicolle R, Mathonnet M, Pyronnet S, Martineau Y, Fanjul M, Bousquet C. Unveiling FKBP7 as an early endoplasmic reticulum sentinel in pancreatic stellate cell activation, collagen remodeling and tumor progression. Cancer Lett 2025; 614:217538. [PMID: 39924075 DOI: 10.1016/j.canlet.2025.217538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), fibroblast activation leads to excessive secretion of extracellular matrix (ECM) and soluble factors that regulate tumor progression, prompting investigation into endoplasmic reticulum (ER)-resident proteins that may support this activation. We identified FKBP7, a peptidyl-prolyl isomerase in the ER, as overexpressed in PDAC stroma compared to cancer cells, and in patients with favorable prognosis. Analysis of single-cell RNA sequencing databases revealed FKBP7 expression in pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs). When analyzed by immunohistochemistry on PDAC patient tissues, FKBP7 emerged as an early activation marker in the preneoplastic stroma, preceding αSMA expression, and responding to FAK- and TGFβ-induced stiffening and pro-fibrotic programs in PSCs. Functional analyses revealed that FKBP7 knockdown in PSCs enhanced contractility, Rho/FAK signaling, and secretion of pro-inflammatory cytokines as well as remodeling of type I collagen, promoting an activated phenotype and accelerating tumor growth in vivo. Conversely, FKBP7 expression supported a tumor-restraining (i.e. encapsulating) ECM characterized by type IV collagen. Mechanistically, FKBP7 interacts with BiP, and blocking this interaction instead leads to increased PSC secretion of type I collagen. Thus, FKBP7 serves as a novel PSC marker and ER regulator in a complex with BiP of the secretion of specific collagen subtypes, highlighting its potential to mediate ECM normalization and constrain PDAC tumorigenesis.
Collapse
Affiliation(s)
- Christophe Quemerais
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Guillaume Labrousse
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Hippolyte Audureau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Raffenne
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Cros
- Department of Pathology, Beaujon-Bichat University Hospital - Paris Diderot University, Clichy, France
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM UMR-1068, CNRS UMR-7258, Marseille, France
| | - Remy Nicolle
- Center of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Marjorie Fanjul
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France.
| |
Collapse
|
11
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the ER and into the Golgi. PLoS Biol 2025; 23:e3003084. [PMID: 40203033 PMCID: PMC12052135 DOI: 10.1371/journal.pbio.3003084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025] Open
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here, we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. In contrast, TMED9-inhibition did not prevent ER-export of wild-type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
Affiliation(s)
- Elsa Ronzier
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Jackson J, Becker T. Unclogging of the TOM complex under import stress. Biol Chem 2025:hsz-2025-0110. [PMID: 40148274 DOI: 10.1515/hsz-2025-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial functions and biogenesis depend on the import of more than 1,000 proteins which are synthesized as precursor proteins on cytosolic ribosomes. Mitochondrial protein translocases sort the precursor proteins into the mitochondrial sub-compartments: outer and inner membrane, the intermembrane space and the matrix. The translocase of the outer mitochondrial membrane (TOM complex) constitutes the major import site for most of these precursor proteins. Defective protein translocases, premature folding of the precursor, or depletion of the membrane potential can cause clogging of the TOM channel by a precursor protein. This clogging impairs further protein import and leads to accumulation of precursor proteins in the cell that perturbates protein homeostasis, leading to proteotoxic stress in the cell. Therefore, unclogging of the translocon is critical for maintaining mitochondrial and cellular function. Ubiquitylation and AAA-ATPases play a central role in the extraction of the precursor proteins to deliver them to the proteasome for degradation. Here we summarize our understanding of the molecular mechanisms that remove such translocation-stalled precursor proteins from the translocation channel to regenerate the TOM complex for protein import.
Collapse
Affiliation(s)
- Joshua Jackson
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| |
Collapse
|
13
|
Srivastava V, Liu Z, Wei W, Zhang Y, Paton JC, Paton AW, Mu T, Zhang B. Cell-Based Small-Molecule Screening Identifying Proteostasis Regulators Enhancing Factor VIII Missense Mutant Secretion. Biomolecules 2025; 15:458. [PMID: 40305178 PMCID: PMC12024529 DOI: 10.3390/biom15040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Missense mutations are the most prevalent alterations in genetic disorders such as hemophilia A (HA), which results from coagulation factor VIII (FVIII) deficiencies. These mutations disrupt protein biosynthesis, folding, secretion, and function. Current treatments for HA are extremely expensive and inconvenient for patients. Small molecule drugs offer a promising alternative or adjunctive strategy due to their lower cost and ease of administration, enhancing accessibility and patient compliance. By screening drug/chemical libraries with cells stably expressing FVIII-Gaussia luciferase fusion proteins, we identified compounds that enhance FVIII secretion and activity. Among these, suberoylanilide hydroxamic acid (SAHA) improved the secretion and activity of wild-type FVIII and common HA-associated missense mutants, especially mild and moderate ones. SAHA increased FVIII interaction with the endoplasmic reticulum chaperone BiP/GRP78 but not with calreticulin. Lowering cellular BiP levels decreased SAHA-induced FVIII secretion and enhancing BiP expression increased FVIII secretion. SAHA also enhanced secretion and BiP interactions with individual domains of FVIII. In vivo, treating mice with SAHA or a BiP activator boosted endogenous FVIII activity. These findings suggest that SAHA serves as a proteostasis regulator, providing a novel therapeutic approach to improve the secretion and functionality of FVIII missense mutants prone to misfolding.
Collapse
Affiliation(s)
- Vishal Srivastava
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - Zhigang Liu
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - Wei Wei
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - Yuan Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; (J.C.P.); (A.W.P.)
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; (J.C.P.); (A.W.P.)
| | - Tingwei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Sánchez N, Valle R, Roncero C. Different Proteostasis Mechanisms Facilitate the Assembly of Individual Components on the Chitin Synthase 3 Complex at the Endoplasmic Reticulum. J Fungi (Basel) 2025; 11:221. [PMID: 40137259 PMCID: PMC11943272 DOI: 10.3390/jof11030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Chitin synthase 3 complex assembly begins at the endoplasmic reticulum where the formation of a Chs3/Chs7 complex facilitates its exit from the ER and its transport along the secretory route. In the present study, our work shows that orphan molecules of Chs7 can exit the ER and are later recycled from the early Golgi by coat protein I (COPI) machinery via the adaptor complex Erv41/Erv46. Moreover, an eventual excess of the protein in the Golgi is recognized by the GGA complex and targeted to the vacuole for degradation through the ESCRT machinery. Non-oligomerizable versions of Chs3 can also exit the ER individually and follow a similar route to that of Chs7. We therefore demonstrate the traffic of unassembled CS3 subunits and describe the cellular mechanisms that guarantee the correct assembly of this protein complex at the ER while providing a default traffic route to the vacuole in case of its failure. This traffic route is shared with canonical ER adaptors, such as Erv29 and Erv14, and other components of protein complexes. The comparative analysis of their traffic allows us to discern a cellular program that combines COPI recycling, proteasomal degradation, and vacuolar disposal for maintaining protein homeostasis at the ER.
Collapse
Affiliation(s)
| | | | - César Roncero
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.S.); (R.V.)
| |
Collapse
|
15
|
Lan J, Zhang R, Xu G, Yan H, Wang J, Shi X, Zhu Y, Xie Z, Jiang S. Role of endoplasmic reticulum stress in cell apoptosis induced by duck hepatitis A virus type 1 infection. Front Immunol 2025; 16:1567540. [PMID: 40145089 PMCID: PMC11936938 DOI: 10.3389/fimmu.2025.1567540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The endoplasmic reticulum (ER), an elaborate cellular organelle that interweaves the cytosol, nucleus, mitochondria and plasma membrane, is essential for cell function and survival. Disruption of ER function can trigger unfolded protein response (UPR), which is activated by ER stress (ERS). In this study, we investigated the role of ERS in cell apoptosis induced by duck hepatitis A virus type 1 (DHAV-1) infection. Our findings revealed that DHAV-1 infection led to the activation of ERS. Specially, the expression of glucose-regulated protein 78 (GRP78) was upregulated, activating two pathways of UPR: the protein kinase R-like ER kinase (PERK) pathway and the inositol-requiring enzyme 1(IRE1) pathway. Consequently, phosphorylation of eukaryotic initiation factor 2 alpha (p-eIF2α) was increased, and transcription factor 4 (ATF4) was up-regulated, resulting in the induction of the apoptotic C/EBP homologous protein (CHOP). DHAV-1-infected cells exhibited various apoptotic phenotypes, including growth arrest, induction of the DNA damage-inducible protein 34 (GADD34), activation of caspase-3, and suppression of antiapoptotic protein B cell lymphoma-2 (Bcl-2). Importantly, inhibition of PERK or protein kinase R (PKR) activity suppressed CHOP activation and DHAV-1 replication, indicating that the PERK/PKR-eIF2α pathway played a crucial role in ERS-induced apoptosis. Collectively, our study provides novel insights into the mechanism of DHAV-1-induced apoptosis and reveals a potential defense mechanism against DHAV-1 replication.
Collapse
Affiliation(s)
- Jingjing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ruihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guige Xu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hui Yan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jingyu Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xingxing Shi
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanli Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhijing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shijin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
16
|
Chen H, Liu R, Luo S, Su J. Advances in Studying the Pathologic Mechanisms and Treatment Strategies of Transthyretin Amyloidosis. J Cardiovasc Pharmacol 2025; 85:186-193. [PMID: 39739411 DOI: 10.1097/fjc.0000000000001663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/30/2024] [Indexed: 01/02/2025]
Abstract
ABSTRACT Transthyretin amyloidosis (ATTR) is characterized by the deposition of unstable transthyretin protein (TTR) in the heart or peripheral nerves. Therapeutic strategies for ATTR include inhibition of the secretion of abnormal TTR by the liver, reducing the concentration of aberrant TTR in the circulation, and eliminating amyloid deposits of TTR in tissues. This article delves into the pathogenesis of TTR secretion from the liver into the bloodstream, its deposition in tissues, and the subsequent development of ATTR. In addition, we delineated the advancements in treatment strategies and discussed future research directions to provide novel insights for the identification of diagnostic and preventive targets.
Collapse
Affiliation(s)
- Hongyin Chen
- Fujian Medical University, Fuzhou, China
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ruonan Liu
- Fujian Medical University, Fuzhou, China
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Siqi Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ; and
- Department of Rehabilitation Medicine, National Regional Medical Center, Bihai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinzi Su
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Bihai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Kinstlinger S, Dvela-Levitt M. Opening New Routes for Kidney Therapy. J Am Soc Nephrol 2025; 36:519-521. [PMID: 40029750 DOI: 10.1681/asn.0000000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Affiliation(s)
- Sara Kinstlinger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
18
|
Gyurkovska V, Alvarado Cartagena YM, Murtazina R, Zhao SF, Ximenez de Olaso C, Segev N. Selective clearance of aberrant membrane proteins by TORC1-mediated micro-ER-phagy. Cell Rep 2025; 44:115282. [PMID: 39946230 PMCID: PMC11999474 DOI: 10.1016/j.celrep.2025.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
Aberrant accumulation and clearance of membrane proteins is associated with disease. Membrane proteins are inserted first to the endoplasmic reticulum (ER). During normal growth, two quality control (QC) processes, ER-associated degradation and macro-ER-phagy, deliver misfolded and excess membrane proteins for degradation in the proteasome and lysosome, respectively. We show that in yeast during normal growth, ER-QC is constitutive, since none of the stress-induced signaling pathways-nutritional, proteotoxic, or heat-are involved. In mutant cells defective in ER-QC, misfolded or excess proteins accumulate and nutritional stress, but not proteotoxic or heat stress, can stimulate their clearance. Early during nutritional stress, clearance occurs in the lysosome through a selective micro-ER-phagy pathway dependent on the ubiquitin ligase Rsp5, its Ssh4 adaptor, and ESCRT. In contrast, only a fraction of normal membrane proteins is degraded much later via macro-autophagy. Because the pathways explored here are conserved, nutritional stress emerges as a possible way for clearing disease-associated membrane proteins.
Collapse
Affiliation(s)
- Valeriya Gyurkovska
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yaneris M Alvarado Cartagena
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rakhilya Murtazina
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah F Zhao
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Candela Ximenez de Olaso
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Mazzolini L, Touriol C. PERK-Olating Through Cancer: A Brew of Cellular Decisions. Biomolecules 2025; 15:248. [PMID: 40001551 PMCID: PMC11852789 DOI: 10.3390/biom15020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced during the unfolded protein response (UPR), which is triggered, in particular, in tumor cells that constitutively experience various intracellular and extracellular stresses that impair protein folding within the ER. PERK activation can lead to both pro-survival and proapoptotic outcomes, depending on the cellular context and the extent of ER stress. It helps the reprogramming of the gene expression in cancer cells, thereby ensuring survival in the face of oncogenic stress, such as replicative stress and DNA damage, and also microenvironmental challenges, including hypoxia, angiogenesis, and metastasis. Consequently, PERK contributes to tumor initiation, transformation, adaptation to the microenvironment, and chemoresistance. However, sustained PERK activation in cells can also impair cell proliferation and promote apoptotic death by various interconnected processes, including mitochondrial dysfunction, translational inhibition, the accumulation of various cellular stresses, and the specific induction of multifunctional proapoptotic factors, such as CHOP. The dual role of PERK in promoting both tumor progression and suppression makes it a complex target for therapeutic interventions. A comprehensive understanding of the intricacies of PERK pathway activation and their impact is essential for the development of effective therapeutic strategies, particularly in diseases like cancer, where the ER stress response is deregulated in most, if not all, of the solid and liquid tumors. This article provides an overview of the knowledge acquired from the study of animal models of cancer and tumor cell lines cultured in vitro on PERK's intracellular functions and their impact on cancer cells and their microenvironment, thus highlighting potential new therapeutic avenues that could target this protein.
Collapse
|
20
|
Wu SA, Li ZJ, Qi L. Endoplasmic reticulum (ER) protein degradation by ER-associated degradation and ER-phagy. Trends Cell Biol 2025:S0962-8924(25)00002-9. [PMID: 39909774 DOI: 10.1016/j.tcb.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Protein misfolding and aggregation in the endoplasmic reticulum (ER) have been causally linked to a variety of human diseases. Two key pathways for eliminating misfolded proteins and aggregates in the ER are ER-associated degradation (ERAD) and ER-phagy, respectively. While both pathways have been well characterized biochemically, our understanding of their physiological relevance and significance remains limited. In recent years, significant advances have been made, including the generation and characterization of various knockout and knockin mouse models, the identification of human disease-associated or -causing variants, and insights into the coordination between ERAD and autophagy in physiological contexts. In this review, we summarize these advancements, highlighting the key roles of a highly conserved suppressor of lin-12-like-hydroxymethyl glutaryl-coenzyme A reductase degradation 1 (SEL1L-HRD1) protein complex of ERAD and ER-phagy in health and disease.
Collapse
Affiliation(s)
- Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA 22903, USA.
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA 22903, USA; Medical Scientist Training Program, University of Virginia, School of Medicine, Charlottesville, VA 22903, USA.
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|
21
|
Song MS, Sim HJ, Eun SH, Jung MK, Hwang SJ, Ham MH, Kwak K, Lee HJ, Kim JY, Jang DG, Chung HC, Shin DH, Kim YJ, Noh SH, Mun JY, Lee JM, Lee MG. Tubular ER structures shaped by ER-phagy receptors engage in stress-induced Golgi bypass. Dev Cell 2025:S1534-5807(25)00031-0. [PMID: 39919755 DOI: 10.1016/j.devcel.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Cellular stresses, particularly endoplasmic reticulum (ER) stress induced by ER-to-Golgi transport blockade, trigger Golgi-independent secretion of cytosolic and transmembrane proteins. However, the molecular mechanisms underlying this unconventional protein secretion (UPS) remain largely elusive. Here, we report that an ER tubulovesicular structure (ER tubular body [ER-TB]), shaped by the tubular ER-phagy receptors ATL3 and RTN3L, plays an important role in stress-induced UPS of transmembrane proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Correlative light-electron microscopy analyses demonstrate the formation of ER-TB under UPS-inducing conditions in HEK293 and HeLa cells. Individual gene knockdowns of ATL3 and RTN3 inhibit ER-TB formation and the UPS of trafficking-deficient ΔF508-CFTR. Combined supplementation of ATL3 and RTN3L induces ER-TB formation and UPS. ATL3 also participates in the SARS-CoV-2-associated convoluted membrane formation and Golgi-independent trafficking of SARS-CoV-2 spike protein. These findings suggest that ER-TB serves a common function in mediating stress-induced UPS, which participates in various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Physiology, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Hun Ju Sim
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung Ho Eun
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Gastroenterology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Min Kyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Su Jin Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Hee Ham
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hea Ji Lee
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong Geon Jang
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Chun Chung
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Hoon Shin
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ye Jin Kim
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Shin Hye Noh
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Min Goo Lee
- Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
22
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the endoplasmic reticulum and into the Golgi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.27.615420. [PMID: 39974996 PMCID: PMC11838446 DOI: 10.1101/2024.09.27.615420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. By contrast, TMED9-inhibition did not prevent ER-export of wild type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
|
23
|
Xu W, Dong L, Dai J, Zhong L, Ouyang X, Li J, Feng G, Wang H, Liu X, Zhou L, Xia Q. The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria. Cell Mol Life Sci 2025; 82:42. [PMID: 39800773 PMCID: PMC11725563 DOI: 10.1007/s00018-024-05556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
Collapse
Affiliation(s)
- Wanting Xu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Dai
- Institute of International Technology and Economy, Development Research Center of the State Council, Beijing, 102208, China
| | - Lu Zhong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Ouyang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiaqian Li
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Gaoqing Feng
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huahua Wang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Liu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liying Zhou
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
24
|
Yassin O, Praveen B, Darawshi O, LaFramboise T, Shmuel M, Pattanayak SP, Law BK, Hatzoglou M, Tirosh B. Opposing regulation of endoplasmic reticulum retention under stress by ERp44 and PDIA6. Biochem J 2024; 481:1921-1935. [PMID: 39621446 DOI: 10.1042/bcj20240444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Conditions of endoplasmic reticulum (ER) stress reduce protein synthesis by provoking translation regulation, governed by the eIF2α kinase PERK. When PERK is inhibited during ER stress, retention of a selective subset of glycoproteins occurs, a phenomenon we termed selective ER retention (sERr). sERr clients are enriched with tyrosine kinase receptors (RTKs), which form large molecular weight disulfide bonded complexes in the ER. The protein disulfide isomerase ERp44 promotes sERr and increases the size of sERr complexes. Here we show that sERr is reversible upon washout. Pulse chase analyses show that upon recovery, only a small fraction of the sERr complexes disintegrates and contributes to the matured proteins, while most are newly synthesized. Sequential inductions of sERr and washouts demonstrate an accelerated recovery that is dependent on the unfolded protein response transducer IRE1. Since IRE1 regulates the expression level PDIA6, we analyzed its contribution to sERr. We found that PDIA6 and ERp44 constitutively interact by disulfides and have opposite effects on resumed recovery of trafficking following removal of sERr conditions. Deletion of ERp44 accelerates, while deletion of PDIA6 slows down recovery with a minimal effect on total protein synthesis. ERp44 is a primary interactor with sERr clients. When missing, PDIA6 partitions more into sERr complexes. Deletion of the tumor suppressor PTEN, which induces RTK signaling, promoted sERr formation kinetics, and accelerated the recovery, suggesting feedback between RTKs signaling and sERr. This study suggests that sERr, should develop physiologically or pathologically, is counteracted by adaptation responses that involve IRE1 and PDIA6.
Collapse
Affiliation(s)
- Olaya Yassin
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bellam Praveen
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Odai Darawshi
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Miriam Shmuel
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shakti P Pattanayak
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, U.S.A
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| |
Collapse
|
25
|
Ninagawa S, Matsuo M, Ying D, Oshita S, Aso S, Matsushita K, Taniguchi M, Fueki A, Yamashiro M, Sugasawa K, Saito S, Imami K, Kizuka Y, Sakuma T, Yamamoto T, Yagi H, Kato K, Mori K. UGGT1-mediated reglucosylation of N-glycan competes with ER-associated degradation of unstable and misfolded glycoproteins. eLife 2024; 12:RP93117. [PMID: 39654396 PMCID: PMC11630818 DOI: 10.7554/elife.93117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Masaki Matsuo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Deng Ying
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Shuichiro Oshita
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Shinya Aso
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kazutoshi Matsushita
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Mai Taniguchi
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Akane Fueki
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Moe Yamashiro
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Graduate School of Science, Kobe UniversityKobeJapan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yasuhiko Kizuka
- Laboratory of Glycobiochemistry, Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
- Institute for Molecular Science (IMS), National Institutes of Natural SciencesOkazakiJapan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
- Institute for Advanced Study, Kyoto UniversityKyotoJapan
| |
Collapse
|
26
|
Chidambaram R, Kumar K, Parashar S, Ramachandran G, Chen S, Ferro-Novick S. PINK1 controls RTN3L-mediated ER autophagy by regulating peripheral tubule junctions. J Cell Biol 2024; 223:e202407193. [PMID: 39556341 PMCID: PMC11575451 DOI: 10.1083/jcb.202407193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 11/19/2024] Open
Abstract
Here, we report that the RTN3L-SEC24C endoplasmic reticulum autophagy (ER-phagy) receptor complex, the CUL3KLHL12 E3 ligase that ubiquitinates RTN3L, and the FIP200 autophagy initiating protein, target mutant proinsulin (Akita) condensates for lysosomal delivery at ER tubule junctions. When delivery was blocked, Akita condensates accumulated in the ER. In exploring the role of tubulation in these events, we unexpectedly found that loss of the Parkinson's disease protein, PINK1, reduced peripheral tubule junctions and blocked ER-phagy. Overexpression of the PINK1 kinase substrate, DRP1, increased junctions, reduced Akita condensate accumulation, and restored lysosomal delivery in PINK1-depleted cells. DRP1 is a dual-functioning protein that promotes ER tubulation and severs mitochondria at ER-mitochondria contact sites. DRP1-dependent ER tubulating activity was sufficient for suppression. Supporting these findings, we observed PINK1 associating with ER tubules. Our findings show that PINK1 shapes the ER to target misfolded proinsulin for RTN3L-SEC24C-mediated macro-ER-phagy at defined ER sites called peripheral junctions. These observations may have important implications for understanding Parkinson's disease.
Collapse
Affiliation(s)
- Ravi Chidambaram
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Kamal Kumar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Smriti Parashar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gowsalya Ramachandran
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Shuliang Chen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Deolal P, Scholz J, Ren K, Bragulat-Teixidor H, Otsuka S. Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle. Nucleus 2024; 15:2299632. [PMID: 38238284 PMCID: PMC10802211 DOI: 10.1080/19491034.2023.2299632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.
Collapse
Affiliation(s)
- Pallavi Deolal
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Scholz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Kaike Ren
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| |
Collapse
|
28
|
Lacoste J, Haghighi M, Haider S, Reno C, Lin ZY, Segal D, Qian WW, Xiong X, Teelucksingh T, Miglietta E, Shafqat-Abbasi H, Ryder PV, Senft R, Cimini BA, Murray RR, Nyirakanani C, Hao T, McClain GG, Roth FP, Calderwood MA, Hill DE, Vidal M, Yi SS, Sahni N, Peng J, Gingras AC, Singh S, Carpenter AE, Taipale M. Pervasive mislocalization of pathogenic coding variants underlying human disorders. Cell 2024; 187:6725-6741.e13. [PMID: 39353438 PMCID: PMC11568917 DOI: 10.1016/j.cell.2024.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease causing. This creates a new bottleneck: determining the functional impact of each variant-typically a painstaking, customized process undertaken one or a few genes and variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,448 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of uncertain significance. Our publicly available resource extends our understanding of coding variation in human diseases.
Collapse
Affiliation(s)
- Jessica Lacoste
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Shahan Haider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chloe Reno
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Dmitri Segal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xueting Xiong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tanisha Teelucksingh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | - Pearl V Ryder
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Rebecca Senft
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Beth A Cimini
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ryan R Murray
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chantal Nyirakanani
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gregory G McClain
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | | | | | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Song Z, Thepsuwan P, Hur WS, Torres M, Wu SA, Wei X, Tushi NJ, Wei J, Ferraresso F, Paton AW, Paton JC, Zheng Z, Zhang K, Fang D, Kastrup CJ, Jaiman S, Flick MJ, Sun S. Regulation of hepatic inclusions and fibrinogen biogenesis by SEL1L-HRD1 ERAD. Nat Commun 2024; 15:9244. [PMID: 39455574 PMCID: PMC11512042 DOI: 10.1038/s41467-024-53639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Impaired secretion of an essential blood coagulation factor fibrinogen leads to hepatic fibrinogen storage disease (HFSD), characterized by the presence of fibrinogen-positive inclusion bodies and hypofibrinogenemia. However, the molecular mechanisms underlying the biogenesis of fibrinogen in the endoplasmic reticulum (ER) remain unexplored. Here we uncover a key role of SEL1L-HRD1 complex of ER-associated degradation (ERAD) in the formation of aberrant inclusion bodies, and the biogenesis of nascent fibrinogen protein complex in hepatocytes. Acute or chronic deficiency of SEL1L-HRD1 ERAD in the hepatocytes leads to the formation of hepatocellular inclusion bodies. Proteomics studies followed by biochemical assays reveal fibrinogen as a major component of the inclusion bodies. Mechanistically, we show that the degradation of misfolded endogenous fibrinogen Aα, Bβ, and γ chains by SEL1L-HRD1 ERAD is indispensable for the formation of a functional fibrinogen complex in the ER. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD indeed degrades and thereby attenuates the pathogenicity of two disease-causing fibrinogen γ mutants. Together, this study demonstrates an essential role of SEL1L-HRD1 ERAD in fibrinogen biogenesis and provides insight into the pathogenesis of protein-misfolding diseases.
Collapse
Affiliation(s)
- Zhenfeng Song
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Woosuk Steve Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nusrat Jahan Tushi
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Francesca Ferraresso
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ze Zheng
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christian J Kastrup
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunil Jaiman
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Matthew James Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
30
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
31
|
Zhao X, Xu C, Ding Y, Yan N. The multifaceted functions of NFE2L1 in metabolism and associated disorders. Life Sci 2024; 352:122906. [PMID: 38992575 DOI: 10.1016/j.lfs.2024.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) is a crucial member of the CNC-bZIP subfamily of transcription factors expressed ubiquitously throughout our body. Recent findings have revealed its association with various metabolic processes, encompassing glucose, lipid, and protein metabolism. In the realm of glucose metabolism, NFE2L1 exerts regulatory control by modulating pancreatic β cells and insulin production. It also influences glucose metabolism in liver and the insulin sensitivity of adipose tissue. Regarding lipid metabolism, NFE2L1 governs this process by influencing the expression of specific adipogenic and lipolysis genes in both liver and adipose tissue. Additionally, NFE2L1 regulates specific lipids, such as cholesterol. These involvements underlie various manifestations of NFE2L1 deficiency such as adipocyte hypertrophy, inflammation, and steatohepatitis. In the realm of protein metabolism, NFE2L1 serves as a major transcription factor regulating the 26S proteasome genes expression, which dysfunction has been related with multiple diseases including neurodegenerative diseases, cancers, autoimmune conditions, etc. In this comprehensive review, we summarize the diverse roles that NFE2L1 plays in glucose, lipid, and protein metabolism, as well as its impact on diseases related to these metabolic processes.
Collapse
Affiliation(s)
- Xuye Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chang Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Nanchang University), Ganzhou, Jiangxi Province 341000, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
32
|
Kumar K, Chidambaram R, Parashar S, Ferro-Novick S. RTN3L and CALCOCO1 function in parallel to maintain proteostasis in the endoplasmic reticulum. Autophagy 2024; 20:2067-2075. [PMID: 38818751 PMCID: PMC11346533 DOI: 10.1080/15548627.2024.2353502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Reticulophagy is mediated by autophagy receptors that function in one of the two domains of the ER, tubules or flat sheets. Three different conserved mammalian receptors mediate autophagy in ER tubules: RTN3L, ATL3 and CALCOCO1. Previous studies have shown that RTN3L maintains proteostasis by targeting mutant aggregation-prone proteins for autophagy at distinct foci in ER tubules that we named ERPHS (ER-reticulophagy sites). The role for ATL3 and CALCOCO1 in proteostasis has not been addressed. Here we analyzed three different misfolded disease-causing RTN3L substrates and show that ATL3 and CALCOCO1 target the same cargoes for autophagy. Colocalization and knock down studies revealed that RTN3L and ATL3 are both required for the formation of RTN3L-containing ERPHS, while CALCOCO1 is not. We propose that RTN3L, ATL3 and CALCOCO1 work in parallel to maintain proteostasis within the ER network by targeting cargoes at different sites in the tubules.Abbreviation ATL3: atlastin GTPase 3; Baf: bafilomycin A1; CALCOCO1: calcium binding and coiled-coil domain 1; Epr1: ER-phagy receptor 1; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERPHS: ER-reticulophagy sites; LAMP1: lysosomal associated membrane protein 1; PGRMC1: progesterone receptor membrane component 1; POMC: proopiomelanocortin; Pro-AVP: pro-arginine vasopressin; RETREG1: reticulophagy regulator 1; reticulophagy: endoplasmic reticulum selective autophagy; RTN3L: reticulon 3 long isoform; VAPA: VAMP associated protein A.
Collapse
Affiliation(s)
- Kamal Kumar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ravi Chidambaram
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Smriti Parashar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Beutgen VM, Shinkevich V, Pörschke J, Meena C, Steitz AM, Pogge von Strandmann E, Graumann J, Gómez-Serrano M. Secretome Analysis Using Affinity Proteomics and Immunoassays: A Focus on Tumor Biology. Mol Cell Proteomics 2024; 23:100830. [PMID: 39147028 PMCID: PMC11417252 DOI: 10.1016/j.mcpro.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The study of the cellular secretome using proteomic techniques continues to capture the attention of the research community across a broad range of topics in biomedical research. Due to their untargeted nature, independence from the model system used, historically superior depth of analysis, as well as comparative affordability, mass spectrometry-based approaches traditionally dominate such analyses. More recently, however, affinity-based proteomic assays have massively gained in analytical depth, which together with their high sensitivity, dynamic range coverage as well as high throughput capabilities render them exquisitely suited to secretome analysis. In this review, we revisit the analytical challenges implied by secretomics and provide an overview of affinity-based proteomic platforms currently available for such analyses, using the study of the tumor secretome as an example for basic and translational research.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany; Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Veronika Shinkevich
- Institute of Pharmacology, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Johanna Pörschke
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Celina Meena
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Anna M Steitz
- Translational Oncology Group, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany; Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany.
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
| |
Collapse
|
34
|
Tung J, Huang L, George G, Harding HP, Ron D, Ordonez A. A genome-wide CRISPR/Cas9 screen identifies calreticulin as a selective repressor of ATF6α. eLife 2024; 13:RP96979. [PMID: 39073063 PMCID: PMC11286266 DOI: 10.7554/elife.96979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.
Collapse
Affiliation(s)
- Joanne Tung
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Lei Huang
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Ginto George
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Heather P Harding
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - David Ron
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Adriana Ordonez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
35
|
Bragulat-Teixidor H, Ishihara K, Szücs GM, Otsuka S. The endoplasmic reticulum connects to the nucleus by constricted junctions that mature after mitosis. EMBO Rep 2024; 25:3137-3159. [PMID: 38877171 PMCID: PMC11239909 DOI: 10.1038/s44319-024-00175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Junctions between the endoplasmic reticulum (ER) and the outer membrane of the nuclear envelope (NE) physically connect both organelles. These ER-NE junctions are essential for supplying the NE with lipids and proteins synthesized in the ER. However, little is known about the structure of these ER-NE junctions. Here, we systematically study the ultrastructure of ER-NE junctions in cryo-fixed mammalian cells staged in anaphase, telophase, and interphase by correlating live cell imaging with three-dimensional electron microscopy. Our results show that ER-NE junctions in interphase cells have a pronounced hourglass shape with a constricted neck of 7-20 nm width. This morphology is significantly distinct from that of junctions within the ER network, and their morphology emerges as early as telophase. The highly constricted ER-NE junctions are seen in several mammalian cell types, but not in budding yeast. We speculate that the unique and highly constricted ER-NE junctions are regulated via novel mechanisms that contribute to ER-to-NE lipid and protein traffic in higher eukaryotes.
Collapse
Affiliation(s)
- Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria.
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.
| | - Keisuke Ishihara
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gréta Martina Szücs
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria.
| |
Collapse
|
36
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
37
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Fasana E, Fregno I, Galli C, Soldà T, Molinari M. ER-to-lysosome-associated degradation acts as failsafe mechanism upon ERAD dysfunction. EMBO Rep 2024; 25:2773-2785. [PMID: 38773321 PMCID: PMC11169228 DOI: 10.1038/s44319-024-00165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
The endoplasmic reticulum (ER) produces proteins destined to organelles of the endocytic and secretory pathways, the plasma membrane, and the extracellular space. While native proteins are transported to their intra- or extracellular site of activity, folding-defective polypeptides are retro-translocated across the ER membrane into the cytoplasm, poly-ubiquitylated and degraded by 26 S proteasomes in a process called ER-associated degradation (ERAD). Large misfolded polypeptides, such as polymers of alpha1 antitrypsin Z (ATZ) or mutant procollagens, fail to be dislocated across the ER membrane and instead enter ER-to-lysosome-associated degradation (ERLAD) pathways. Here, we show that pharmacological or genetic inhibition of ERAD components, such as the α1,2-mannosidase EDEM1 or the OS9 ERAD lectins triggers the delivery of the canonical ERAD clients Null Hong Kong (NHK) and BACE457Δ to degradative endolysosomes under control of the ER-phagy receptor FAM134B and the LC3 lipidation machinery. Our results reveal that ERAD dysfunction is compensated by the activation of FAM134B-driven ERLAD pathways that ensure efficient lysosomal clearance of orphan ERAD clients.
Collapse
Affiliation(s)
- Elisa Fasana
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Carmela Galli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Tatiana Soldà
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
39
|
Hirose M, Nakamachi Y, Muto H, Taira A, Tanaka S, Kuribara T, Totani K. Preparation of natural high-mannose-type oligosaccharides (Glc 1Man 9GlcNAc 2) with the asparagine-glycine-threonine as consensus sequence from chicken egg yolk. Carbohydr Res 2024; 540:109138. [PMID: 38703662 DOI: 10.1016/j.carres.2024.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
High-mannose-type glycan structure of N-glycoproteins plays important roles in the proper folding of proteins in sorting glycoprotein secretion and degradation of misfolded proteins in the endoplasmic reticulum (ER). The Glc1Man9GlcNAc2 (G1M9)-type N-glycan is one of the most important signaling molecules in the ER. However, current chemical synthesis strategies are laborious, warranting more practical approaches for G1M9-glycopeptide development. Wang et al. reported the procedure to give G1M9-Asn-Fmoc through chemical modifications and purifications from 40 chicken eggs, but only 3.3 mg of G1M9-glycopeptide was obtained. Therefore, better methods are needed to obtain more than 10 mg of G1M9-glycopeptide. In this study, we report the preparation of G1M9-glycopeptide (13.2 mg) linking Asn-Gly-Thr triad as consensus sequence from 40 chicken eggs. In this procedure, λ-carrageenan treatment followed by papain treatment was used to separate the Fc region of IgY antibody that harbors high-mannose glycans. Moreover, cotton hydrophilic interaction liquid chromatography was adapted for easy purification. The resulting G1M9-Asn(Fmoc)-Gly-Thr was identified by nuclear magnetic resonance and mass spectroscopy. G1M9-Asn(Fmoc)-Gly, G1M9-Asn(Fmoc), and G1M9-OH were also detected by mass spectroscopy. Here, our developed G1M9-tripeptide might be useful for the elucidation of glycoprotein functions as well as the specific roles of the consensus sequence.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Department of Science and Technology, Seikei University, Tokyo, 180-8633, Japan
| | - Yuto Nakamachi
- Department of Science and Technology, Seikei University, Tokyo, 180-8633, Japan; KH i-Lab, KH Neochem Co., Ltd, Kanagawa, 212-0032, Japan
| | - Hasumi Muto
- Department of Science and Technology, Seikei University, Tokyo, 180-8633, Japan
| | - Akito Taira
- Department of Science and Technology, Seikei University, Tokyo, 180-8633, Japan
| | - Shinji Tanaka
- KH i-Lab, KH Neochem Co., Ltd, Kanagawa, 212-0032, Japan
| | - Taiki Kuribara
- Department of Science and Technology, Seikei University, Tokyo, 180-8633, Japan
| | - Kiichiro Totani
- Department of Science and Technology, Seikei University, Tokyo, 180-8633, Japan.
| |
Collapse
|
40
|
Liu T, Xia S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J 2024; 43:447-463. [PMID: 38622349 DOI: 10.1007/s10930-024-10197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
41
|
Laghmani K. Protein Quality Control of NKCC2 in Bartter Syndrome and Blood Pressure Regulation. Cells 2024; 13:818. [PMID: 38786040 PMCID: PMC11120568 DOI: 10.3390/cells13100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations in NKCC2 generate antenatal Bartter syndrome type 1 (type 1 BS), a life-threatening salt-losing nephropathy characterized by arterial hypotension, as well as electrolyte abnormalities. In contrast to the genetic inactivation of NKCC2, inappropriate increased NKCC2 activity has been associated with salt-sensitive hypertension. Given the importance of NKCC2 in salt-sensitive hypertension and the pathophysiology of prenatal BS, studying the molecular regulation of this Na-K-2Cl cotransporter has attracted great interest. Therefore, several studies have addressed various aspects of NKCC2 regulation, such as phosphorylation and post-Golgi trafficking. However, the regulation of this cotransporter at the pre-Golgi level remained unknown for years. Similar to several transmembrane proteins, export from the ER appears to be the rate-limiting step in the cotransporter's maturation and trafficking to the plasma membrane. The most compelling evidence comes from patients with type 5 BS, the most severe form of prenatal BS, in whom NKCC2 is not detectable in the apical membrane of thick ascending limb (TAL) cells due to ER retention and ER-associated degradation (ERAD) mechanisms. In addition, type 1 BS is one of the diseases linked to ERAD pathways. In recent years, several molecular determinants of NKCC2 export from the ER and protein quality control have been identified. The aim of this review is therefore to summarize recent data regarding the protein quality control of NKCC2 and to discuss their potential implications in BS and blood pressure regulation.
Collapse
Affiliation(s)
- Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| |
Collapse
|
42
|
Afjadi MN, Dabirmanesh B, Uversky VN. Therapeutic approaches in proteinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:341-388. [PMID: 38811085 DOI: 10.1016/bs.pmbts.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
43
|
Wang G, Zhao H, Zou J, Liang W, Zhao Z, Li D. Role of BcSfb3, the subunit of COPII vesicles, in fungal development and pathogenicity, ER-phagy and autophagy in the gray mold fungus Botrytis cinerea. Int J Biol Macromol 2024; 263:130379. [PMID: 38403214 DOI: 10.1016/j.ijbiomac.2024.130379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Cytoplasmic coat protein complex II (COPII) plays a multifunctional role in the transport of newly synthesized proteins, autophagosome formation, and endoplasmic reticulum (ER)-ER-phagy. However, the molecular mechanisms of the COPII subunit in ER-phagy in plant pathogens remain unknown. Here, we identified the subunit of COPII vesicles (BcSfb3) and explored the importance of BcSfb3 in Botrytis cinerea. BcSfb3 deletion affected vegetative growth, conidiation, conidial morphology, and plasma membrane integrity. We confirmed that the increase in infectious hyphal growth was delayed in the ΔBcSfb3 mutant, reducing its pathogenicity in the host plant. Furthermore, the ΔBcSfb3 mutant was sensitive to ER stress, which caused massive ER expansion and induced the formation of ER whorls that were taken up into the vacuole. Further examination demonstrated that BcSfb3 deletion caused ER stress initiated by unfolded protein response, and which led to the promotion of ER-phagy and autophagy that participate in sclerotia formation. In conclusion, these results demonstrate that BcSfb3 plays an important role in fungal development, pathogenesis, ER-phagy and autophagy in B. cinerea.
Collapse
Affiliation(s)
- Guanbo Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Haonan Zhao
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Jian Zou
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Zhijian Zhao
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming 650203, China.
| | - Delong Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China; Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
44
|
Kespohl B, Hegele AL, Düsterhöft S, Bakker H, Buettner FFR, Hartig R, Lokau J, Garbers C. Molecular characterization of the craniosynostosis-associated interleukin-11 receptor variants p.T306_S308dup and p.E364_V368del. FEBS J 2024; 291:1667-1683. [PMID: 37994264 DOI: 10.1111/febs.17015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Interleukin-11 (IL-11) is a member of the IL-6 family of cytokines and is an important factor for bone homeostasis. IL-11 binds to and signals via the membrane-bound IL-11 receptor (IL-11R, classic signaling) or soluble forms of the IL-11R (sIL-11R, trans-signaling). Mutations in the IL11RA gene, which encodes the IL-11R, are associated with craniosynostosis, a human condition in which one or several of the sutures close prematurely, resulting in malformation of the skull. The biological mechanisms of how mutations within the IL-11R are linked to craniosynostosis are mostly unexplored. In this study, we analyze two variants of the IL-11R described in craniosynostosis patients: p.T306_S308dup, which results in a duplication of three amino-acid residues within the membrane-proximal fibronectin type III domain, and p.E364_V368del, which results in a deletion of five amino-acid residues in the so-called stalk region adjacent to the plasma membrane. The stalk region connects the three extracellular domains to the transmembrane and intracellular region of the IL-11R and contains cleavage sites for different proteases that generate sIL-11R variants. Using a combination of bioinformatics and different biochemical, molecular, and cell biology methods, we show that the IL-11R-T306_S308dup variant does not mature correctly, is intracellularly retained, and does not reach the cell surface. In contrast, the IL-11R-E364_V368del variant is fully biologically active and processed normally by proteases, thus allowing classic and trans-signaling of IL-11. Our results provide evidence that mutations within the IL11RA gene may not be causative for craniosynostosis and suggest that other regulatory mechanism(s) are involved but remain to be identified.
Collapse
Affiliation(s)
- Birte Kespohl
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | - Anna-Lena Hegele
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology and Service Unit Multiparametric Bioimaging and Cytometry, Medical Faculty, University of Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| |
Collapse
|
45
|
Knopf JD, Steigleder SS, Korn F, Kühnle N, Badenes M, Tauber M, Theobald SJ, Rybniker J, Adrain C, Lemberg MK. RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling. Nat Commun 2024; 15:1528. [PMID: 38453906 PMCID: PMC10920636 DOI: 10.1038/s41467-024-45615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
The toll-like receptor 4 (TLR4) is a central regulator of innate immunity that primarily recognizes bacterial lipopolysaccharide cell wall constituents to trigger cytokine secretion. We identify the intramembrane protease RHBDL4 as a negative regulator of TLR4 signaling. We show that RHBDL4 triggers degradation of TLR4's trafficking factor TMED7. This counteracts TLR4 transport to the cell surface. Notably, TLR4 activation mediates transcriptional upregulation of RHBDL4 thereby inducing a negative feedback loop to reduce TLR4 trafficking to the plasma membrane. This secretory cargo tuning mechanism prevents the over-activation of TLR4-dependent signaling in an in vitro Mycobacterium tuberculosis macrophage infection model and consequently alleviates septic shock in a mouse model. A hypomorphic RHBDL4 mutation linked to Kawasaki syndrome, an ill-defined inflammatory disorder in children, further supports the pathophysiological relevance of our findings. In this work, we identify an RHBDL4-mediated axis that acts as a rheostat to prevent over-activation of the TLR4 pathway.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Susanne S Steigleder
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Friederike Korn
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University and Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Marina Tauber
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Arines FM, Wielenga A, Henn D, Burata OE, Garcia FN, Stockbridge RB, Li M. Lysosomal membrane transporter purification and reconstitution for functional studies. Mol Biol Cell 2024; 35:ar28. [PMID: 38117592 PMCID: PMC10916862 DOI: 10.1091/mbc.e23-06-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
Lysosomes achieve their function through numerous transporters that import or export nutrients across their membrane. However, technical challenges in membrane protein overexpression, purification, and reconstitution hinder our understanding of lysosome transporter function. Here, we developed a platform to overexpress and purify the putative lysine transporter Ypq1 using a constitutive overexpression system in protease- and ubiquitination-deficient yeast vacuoles. Using this method, we purified and reconstituted Ypq1 into proteoliposomes and showed lysine transport function, supporting its role as a basic amino acid transporter on the vacuole membrane. We also found that the absence of lysine destabilizes purified Ypq1 and causes it to aggregate, consistent with its propensity to be downregulated in vivo upon lysine starvation. Our approach may be useful for the biochemical characterization of many transporters and membrane proteins to understand organellar transport and regulation.
Collapse
Affiliation(s)
- Felichi Mae Arines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Aleksander Wielenga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Olive E. Burata
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Francisco Narro Garcia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
47
|
Hoyer MJ, Capitanio C, Smith IR, Paoli JC, Bieber A, Jiang Y, Paulo JA, Gonzalez-Lozano MA, Baumeister W, Wilfling F, Schulman BA, Harper JW. Combinatorial selective ER-phagy remodels the ER during neurogenesis. Nat Cell Biol 2024; 26:378-392. [PMID: 38429475 PMCID: PMC10940164 DOI: 10.1038/s41556-024-01356-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024]
Abstract
The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions, ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis, where a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodelling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of the ER and the role of individual ER-phagy receptors is limited. Here we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodelling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodelling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both the magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodelling and versatile genetic toolkit provide a quantitative framework for understanding the contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.
Collapse
Affiliation(s)
- Melissa J Hoyer
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cristina Capitanio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ian R Smith
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Velia Therapeutics, San Diego, CA, USA
| | - Julia C Paoli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna Bieber
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yizhi Jiang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Miguel A Gonzalez-Lozano
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Wolfgang Baumeister
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
48
|
Kok M, Hartnett-Scott K, Happe CL, MacDonald ML, Aizenman E, Brodsky JL. The expression system influences stability, maturation efficiency, and oligomeric properties of the potassium-chloride co-transporter KCC2. Neurochem Int 2024; 174:105695. [PMID: 38373478 PMCID: PMC10923169 DOI: 10.1016/j.neuint.2024.105695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The neuron-specific K+/Cl- co-transporter 2, KCC2, which is critical for brain development, regulates γ-aminobutyric acid-dependent inhibitory neurotransmission. Consistent with its function, mutations in KCC2 are linked to neurodevelopmental disorders, including epilepsy, schizophrenia, and autism. KCC2 possesses 12 transmembrane spans and forms an intertwined dimer. Based on its complex architecture and function, reduced cell surface expression and/or activity have been reported when select disease-associated mutations are present in the gene encoding the protein, SLC12A5. These data suggest that KCC2 might be inherently unstable, as seen for other complex polytopic ion channels, thus making it susceptible to cellular quality control pathways that degrade misfolded proteins. To test these hypotheses, we examined KCC2 stability and/or maturation in five model systems: yeast, HEK293 cells, primary rat neurons, and rat and human brain synaptosomes. Although studies in yeast revealed that KCC2 is selected for endoplasmic reticulum-associated degradation (ERAD), experiments in HEK293 cells supported a more subtle role for ERAD in maintaining steady-state levels of KCC2. Nevertheless, this system allowed for an analysis of KCC2 glycosylation in the ER and Golgi, which serves as a read-out for transport through the secretory pathway. In turn, KCC2 was remarkably stable in primary rat neurons, suggesting that KCC2 folds efficiently in more native systems. Consistent with these data, the mature glycosylated form of KCC2 was abundant in primary rat neurons as well as in rat and human brain. Together, this work details the first insights into the influence that the cellular and membrane environments have on several fundamental KCC2 properties, acknowledges the advantages and disadvantages of each system, and helps set the stage for future experiments to assess KCC2 in a normal or disease setting.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karen Hartnett-Scott
- Department of Neurobiology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cassandra L Happe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
50
|
Roberts BS, Mitra D, Abishek S, Beher R, Satpute-Krishnan P. The p24-family and COPII subunit SEC24C facilitate the clearance of alpha1-antitrypsin Z from the endoplasmic reticulum to lysosomes. Mol Biol Cell 2024; 35:ar45. [PMID: 38294851 PMCID: PMC10916869 DOI: 10.1091/mbc.e23-06-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
A subpopulation of the alpha-1-antitrypsin misfolding Z mutant (ATZ) is cleared from the endoplasmic reticulum (ER) via an ER-to-lysosome-associated degradation (ERLAD) pathway. Here, we report that the COPII subunit SEC24C and the p24-family of proteins facilitate the clearance of ATZ via ERLAD. In addition to the previously reported ERLAD components calnexin and FAM134B, we discovered that ATZ coimmunoprecipitates with the p24-family members TMP21 and TMED9. This contrasts with wild type alpha1-antitrypsin, which did not coimmunoprecipitate with FAM134B, calnexin or the p24-family members. Live-cell imaging revealed that ATZ and the p24-family members traffic together from the ER to lysosomes. Using chemical inhibitors to block ER exit or autophagy, we demonstrated that p24-family members and ATZ co-accumulate at SEC24C marked ER-exit sites or in ER-derived compartments, respectively. Furthermore, depletion of SEC24C, TMP21, or TMED9 inhibited lysosomal trafficking of ATZ and resulted in the increase of intracellular ATZ levels. Conversely, overexpression of these p24-family members resulted in the reduction of ATZ levels. Intriguingly, the p24-family members coimmunoprecipitate with ATZ, FAM134B, and SEC24C. Thus, we propose a model in which the p24-family functions in an adaptor complex linking SEC24C with the ERLAD machinery for the clearance of ATZ.
Collapse
Affiliation(s)
| | - Debashree Mitra
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Sudhanshu Abishek
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Richa Beher
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | |
Collapse
|