1
|
Lew AJ, Beniash E, Gilbert PUPA, Buehler MJ. Role of the Mineral in the Self-Healing of Cracks in Human Enamel. ACS NANO 2022; 16:10273-10280. [PMID: 35748426 DOI: 10.1021/acsnano.1c10407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human enamel is an incredibly resilient biological material, withstanding repeated daily stresses for decades. The mechanisms behind this resilience remain an open question, with recent studies demonstrating a crack-deflection mechanism contributing to enamel toughness and other studies detailing the roles of the organic matrix and remineralization. Here, we focus on the mineral and hypothesize that self-healing of cracks in enamel nanocrystals may be an additional mechanism acting to prevent catastrophic failure. To test this hypothesis, we used a molecular dynamics (MD) approach to compare the fracture behavior of hydroxyapatite (HAP) and calcite, the main minerals in human enamel and sea urchin teeth, respectively. We find that cracks heal under pressures typical of mastication by fusion of crystals in HAP but not in calcite, which is consistent with the resilience of HAP enamel that calcite teeth lack. Scanning transmission electron microscopy (STEM) images of structurally intact ("sound") human enamel show dashed-line nanocracks that resemble and therefore might be the cracks healed by fusion of crystals produced in silico. The fast, self-healing mechanism shown here is common in soft materials and ceramics but has not been observed in single crystalline materials at room temperature. The crack self-healing in sound enamel nanocrystals, therefore, is unique in the human body and unique in materials science, with potential applications in designing bioinspired materials.
Collapse
Affiliation(s)
- Andrew J Lew
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elia Beniash
- Departments of Oral Biology and Bioengineering, Center for Craniofacial Regeneration, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
- Departments of Chemistry, Materials Science and Engineering, Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Akkineni S, Zhu C, Chen J, Song M, Hoff SE, Bonde J, Tao J, Heinz H, Habelitz S, De Yoreo JJ. Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites. Proc Natl Acad Sci U S A 2022; 119:e2106965119. [PMID: 35522709 PMCID: PMC9172371 DOI: 10.1073/pnas.2106965119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of β-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca–Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general.
Collapse
Affiliation(s)
- Susrut Akkineni
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Miao Song
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Samuel E. Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Center for Applied Life Sciences, Lund University, Lund, SE-221 00, Sweden
| | - Jinhui Tao
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA 94143
| | - James J. De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
3
|
Bai Y, Bonde J, Carneiro KMM, Zhang Y, Li W, Habelitz S. A Brief History of the Discovery of Amelogenin Nanoribbons In Vitro and In Vivo. J Dent Res 2021; 100:1429-1433. [PMID: 34612757 DOI: 10.1177/00220345211043463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Without evidence for an organic framework, biological and biochemical processes observed during amelogenesis provided limited information on how extracellular matrix proteins control the development of the complex fibrous architecture of human enamel. Over a decade ago, amelogenin nanoribbons were first observed from recombinant proteins during in vitro mineralization experiments in our laboratory. In enamel from mice lacking the enzyme kallikrein 4 (KLK4), we later uncovered ribbon-like protein structures that matched the morphology, width, and thickness of the nanoribbons assembled by recombinant proteins. Interestingly, similar structures had already been described since the 1960s, when enamel sections from various mammals were demineralized and stained for transmission electron microscopy analysis. However, at that time, researchers were not aware of the ability of amelogenin to form nanoribbons and instead associated the filamentous nanostructures with possible imprints of mineral ribbons in the gel-like matrix of developing enamel. Further evidence for the significance of amelogenin nanoribbons for enamel development was stipulated when recent mineralization experiments succeeded in templating and orienting the growth of apatite ribbons along the protein nanoribbon framework. This article provides a brief historical review of the discovery of amelogenin nanoribbons in our laboratory in the context of reports by others on similar structures in the developing enamel matrix.
Collapse
Affiliation(s)
- Y Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - J Bonde
- Division of Pure and Applied Biochemistry, Center of Applied Life Science, Lund University, Lund, Sweden
| | - K M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Y Zhang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - W Li
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - S Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Habelitz S, Bai Y. Mechanisms of Enamel Mineralization Guided by Amelogenin Nanoribbons. J Dent Res 2021; 100:1434-1443. [PMID: 34009057 DOI: 10.1177/00220345211012925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nanofibrous nature and its intricate structural organization are the basis for the extraordinary ability of sound enamel to outlive masticatory forces at minimal failure rates. Apatite nanofibers of several hundreds of micrometers to possibly millimeters in length originate during the secretory stage of amelogenesis as 2-nm-thin and 15-nm-wide ribbons that develop and grow in length under the guidance of a dynamic mixture of specialized proteins, the developing enamel matrix (DEM). A critical role in the unidirectional and oriented growth of enamel mineral ribbons has been attributed to amelogenin, the major constituent of the DEM. This review elaborates on recent studies on the ability of ribbon-like assemblies of amelogenin to template the formation of an amorphous calcium phosphate precursor that transforms into apatite mineral ribbons similar to the ones observed in developing enamel. A mechanistic model of the biological processes that drive biomineralization in enamel is presented in the context of a comparative analysis of enamel mouse models and earlier structural data of the DEM emphasizing a regulatory role of the matrix metalloproteinase 20 in mineral deposition and the involvement of a process-directing agent for the templated mineral growth directed by amelogenin nanoribbons.
Collapse
Affiliation(s)
- S Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Y Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Sharma V, Srinivasan A, Nikolajeff F, Kumar S. Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomater 2021; 120:20-37. [PMID: 32413577 DOI: 10.1016/j.actbio.2020.04.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
Abstract
Biomineralization can be considered as nature's strategy to produce and sustain biominerals, primarily via creation of hard tissues for protection and support. This review examines the biomineralization process within the hard tissues of the human body with special emphasis on the mechanisms and principles of bone and teeth mineralization. We describe the detailed role of proteins and inorganic ions in mediating the mineralization process. Furthermore, we highlight the various available models for studying bone physiology and mineralization starting from the historical static cell line-based methods to the most advanced 3D culture systems, elucidating the pros and cons of each one of these methods. With respect to the mineralization process in teeth, enamel and dentin mineralization is discussed in detail. The key role of intrinsically disordered proteins in modulating the process of mineralization in enamel and dentine is given attention. Finally, nanotechnological interventions in the area of bone and teeth mineralization, diseases and tissue regeneration is also discussed. STATEMENT OF SIGNIFICANCE: This article provides an overview of the biomineralization process within hard tissues of the human body, which encompasses the detailed mechanism innvolved in the formation of structures like teeth and bone. Moreover, we have discussed various available models used for studying biomineralization and also explored the nanotechnological applications in the field of bone regeneration and dentistry.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Abstract
As the hardest tissue formed by vertebrates, enamel represents nature's engineering masterpiece with complex organizations of fibrous apatite crystals at the nanometer scale. Supramolecular assemblies of enamel matrix proteins (EMPs) play a key role as the structural scaffolds for regulating mineral morphology during enamel development. However, to achieve maximum tissue hardness, most organic content in enamel is digested and removed at the maturation stage, and thus knowledge of a structural protein template that could guide enamel mineralization is limited at this date. Herein, by examining a gene-modified mouse that lacked enzymatic degradation of EMPs, we demonstrate the presence of protein nanoribbons as the structural scaffolds in developing enamel matrix. Using in vitro mineralization assays we showed that both recombinant and enamel-tissue-based amelogenin nanoribbons are capable of guiding fibrous apatite nanocrystal formation. In accordance with our understanding of the natural process of enamel formation, templated crystal growth was achieved by interaction of amelogenin scaffolds with acidic macromolecules that facilitate the formation of an amorphous calcium phosphate precursor which gradually transforms into oriented apatite fibers along the protein nanoribbons. Furthermore, this study elucidated that matrix metalloproteinase-20 is a critical regulator of the enamel mineralization as only a recombinant analog of a MMP20-cleavage product of amelogenin was capable of guiding apatite mineralization. This study highlights that supramolecular assembly of the scaffold protein, its enzymatic processing, and its ability to interact with acidic carrier proteins are critical steps for proper enamel development.
Collapse
|
7
|
Koldehoff J, Swain MV, Schneider GA. The geometrical structure of interfaces in dental enamel: A FIB-STEM investigation. Acta Biomater 2020; 104:17-27. [PMID: 31917293 DOI: 10.1016/j.actbio.2019.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022]
Abstract
In this study a high resolution structural analysis revealed that enamel prisms are surrounded by an interface that is discontinuous with frequent mineral to mineral contact separated by gaps. This contact manifests either by crystallites bridging the boundary between prismatic and interprismatic enamel or continuous crystallites curving and bridging the interprismatic enamel to the prisms. The geometrical resolution of this TEM investigation of the interfaces is ≤2 nm as a basis for micromechanical models. Within this resolution, contrary to existing structural descriptions of dental enamel structure in materials science literature, here the crystallites themselves are shown to be either in direct contact with each other, sometimes even fusing together, or are separated by gaps. Image analysis revealed that on average only 57 ± 15% of the interface consists of points of no contact between crystallites. This work reveals structural features of dental enamel that contribute important understanding to both the architecture and mechanical properties of this biological material. A new structural model is proposed and the implications for the mechanical properties of dental enamel are discussed. STATEMENT OF SIGNIFICANCE: In this study a high resolution structural analysis, employing focused ion beam and transmission electron microscopy revealed that enamel prisms are surrounded by interfaces that are discontinuous with frequent mineral to mineral contact separated by gaps. Although the interfaces in enamel have been investigated previously, existing studies are lacking in detail considering the geometry and morphology of the interfaces. We think that this result is of great importance when it comes to the understanding of the mechanical properties. In our opinion the concept of soft sheaths is no longer feasible. The resulting observations are included in a new structural model which provides new qualitative insights into the mechanical behavior. Existing analytical models were applied to simulate the new geometrical structure.
Collapse
|
8
|
Yang X, Yamazaki H, Yamakoshi Y, Duverger O, Morasso MI, Beniash E. Trafficking and secretion of keratin 75 by ameloblasts in vivo. J Biol Chem 2019; 294:18475-18487. [PMID: 31628189 PMCID: PMC6885611 DOI: 10.1074/jbc.ra119.010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
A highly specialized cytoskeletal protein, keratin 75 (K75), expressed primarily in hair follicles, nail beds, and lingual papillae, was recently discovered in dental enamel, the most highly mineralized hard tissue in the human body. Among many questions this discovery poses, the fundamental question regarding the trafficking and secretion of this protein, which lacks a signal peptide, is of an utmost importance. Here, we present evidence that K75 is expressed during the secretory stage of enamel formation and is present in the forming enamel matrix. We further show that K75 is secreted together with major enamel matrix proteins amelogenin and ameloblastin, and it was detected in Golgi and the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) but not in rough ER (rER). Inhibition of ER-Golgi transport by brefeldin A did not affect the association of K75 with Golgi, whereas ameloblastin accumulated in rER, and its transport from rER into Golgi was disrupted. Together, these results indicate that K75, a cytosolic protein lacking a signal sequence, is secreted into the forming enamel matrix utilizing portions of the conventional ER-Golgi secretory pathway. To the best of our knowledge, this is the first study providing insights into mechanisms of keratin secretion.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Hajime Yamazaki
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Olivier Duverger
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
9
|
Abstract
Enamel is the hardest and most resilient tissue in the human body. Enamel includes morphologically aligned, parallel, ∼50 nm wide, microns-long nanocrystals, bundled either into 5-μm-wide rods or their space-filling interrod. The orientation of enamel crystals, however, is poorly understood. Here we show that the crystalline c-axes are homogenously oriented in interrod crystals across most of the enamel layer thickness. Within each rod crystals are not co-oriented with one another or with the long axis of the rod, as previously assumed: the c-axes of adjacent nanocrystals are most frequently mis-oriented by 1°-30°, and this orientation within each rod gradually changes, with an overall angle spread that is never zero, but varies between 30°-90° within one rod. Molecular dynamics simulations demonstrate that the observed mis-orientations of adjacent crystals induce crack deflection. This toughening mechanism contributes to the unique resilience of enamel, which lasts a lifetime under extreme physical and chemical challenges.
Collapse
|
10
|
Rathsam C, Farahani RM, Hains PG, Valova VA, Charadram N, Zoellner H, Swain M, Hunter N. Characterization of inter-crystallite peptides in human enamel rods reveals contribution by the Y allele of amelogenin. J Struct Biol 2018; 204:26-37. [PMID: 29959991 DOI: 10.1016/j.jsb.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/18/2022]
Abstract
Proteins of the inter-rod sheath and peptides within the narrow inter-crystallite space of the rod structure are considered largely responsible for visco-elastic and visco-plastic properties of enamel. The present study was designed to investigate putative peptides of the inter-crystallite space. Entities of 1-6 kDa extracted from enamel rods of erupted permanent teeth were analysed by mass spectrometry (MS) and shown to comprise N-terminal amelogenin (AMEL) peptides either containing or not containing exon 4 product. Other dominant entities consisted of an N-terminal peptide from ameloblastin (AMBN) and a series of the most hydrophobic peptides from serum albumin (ALBN). Amelogenin peptides encoded by the Y-chromosome allele were strongly detected in Enamel from male teeth. Location of N-terminal AMEL peptides as well as AMBN and ALBN, between apatite crystallites, was disclosed by immunogold scanning electron microscopy (SEM). Density plots confirmed the relative abundance of these products including exon 4+ AMEL peptides that have greater capacity for binding to hydroxyapatite. Hydrophilic X and Y peptides encoded in exon 4 differ only in substitution of non-polar isoleucine in Y for polar threonine in X with reduced disruption of the hydrophobic N-terminal structure in the Y form. Despite similarity of X and Y alleles of AMEL the non-coding region upstream from exon 4 shows significant variation with implications for segregation of processing of transcripts from exon 4. Detection of fragments from multiple additional proteins including keratins (KER), fetuin A (FETUA), proteinases and proteinase inhibitors, likely reflect biochemical events during enamel formation.
Collapse
Affiliation(s)
- Catherine Rathsam
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia.
| | - Ramin M Farahani
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia; Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| | - Peter G Hains
- Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Valentina A Valova
- Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Nattida Charadram
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia; Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| | - Hans Zoellner
- Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| | - Michael Swain
- Faculty of Dentistry, The University of Sydney, New South Wales, Australia; Faculty of Dentistry, Kuwait University, Kuwait
| | - Neil Hunter
- Institute of Dental Research, Westmead Institute for Medical Research and Centre for Oral Health, Westmead, New South Wales, Australia; Faculty of Dentistry, The University of Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Pandya M, Lin T, Li L, Allen MJ, Jin T, Luan X, Diekwisch TGH. Posttranslational Amelogenin Processing and Changes in Matrix Assembly during Enamel Development. Front Physiol 2017; 8:790. [PMID: 29089900 PMCID: PMC5651044 DOI: 10.3389/fphys.2017.00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/20/2023] Open
Abstract
The extracellular tooth enamel matrix is a unique, protein-rich environment that provides the structural basis for the growth of long and parallel oriented enamel crystals. Here we have conducted a series of in vivo and in vitro studies to characterize the changes in matrix shape and organization that take place during the transition from ameloblast intravesicular matrices to extracellular subunit compartments and pericrystalline sheath proteins, and correlated these changes with stages of amelogenin matrix protein posttranslational processing. Our transmission electron microscopic studies revealed a 2.5-fold difference in matrix subunit compartment dimensions between secretory vesicle and extracellular enamel protein matrix as well as conformational changes in matrix structure between vesicles, stippled materials, and pericrystalline matrix. Enamel crystal growth in organ culture demonstrated granular mineral deposits associated with the enamel matrix framework, dot-like mineral deposits along elongating initial enamel crystallites, and dramatic changes in enamel matrix configuration following the onset of enamel crystal formation. Atomic force micrographs provided evidence for the presence of both linear and hexagonal/ring-shaped full-length recombinant amelogenin protein assemblies on mica surfaces, while nickel-staining of the N-terminal amelogenin N92 His-tag revealed 20 nm diameter oval and globular amelogenin assemblies in N92 amelogenin matrices. Western blot analysis comparing loosely bound and mineral-associated protein fractions of developing porcine enamel organs, superficial and deep enamel layers demonstrated (i) a single, full-length amelogenin band in the enamel organ followed by 3 kDa cleavage upon entry into the enamel layer, (ii) a close association of 8–16 kDa C-terminal amelogenin cleavage products with the growing enamel apatite crystal surface, and (iii) a remaining pool of N-terminal amelogenin fragments loosely retained between the crystalline phases of the deep enamel layer. Together, our data establish a temporo-spatial correlation between amelogenin protein processing and the changes in enamel matrix configuration that take place during the transition from intracellular vesicle compartments to extracellular matrix assemblies and the formation of protein coats along elongating apatite crystal surfaces. In conclusion, our study suggests that enzymatic cleavage of the amelogenin enamel matrix protein plays a key role in the patterning of the organic matrix framework as it affects enamel apatite crystal growth and habit.
Collapse
Affiliation(s)
- Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States
| | - Tiffani Lin
- UCLA School of Dentistry, Los Angeles, CA, United States.,Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Leo Li
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States.,University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Tianquan Jin
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States.,Biocytogen, Worcester, MA, United States
| | - Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States.,Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Huang X, Deng M, Liu M, Cheng L, Exterkate RAM, Li J, Zhou X, Ten Cate JM. Comparison of Composition and Anticaries Effect of Galla Chinensis Extracts with Different Isolation Methods. Open Dent J 2017; 11:447-459. [PMID: 28979574 PMCID: PMC5611702 DOI: 10.2174/1874210601711010447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 02/05/2023] Open
Abstract
Objectives: Galla chinensis water extract (GCE) has been demonstrated to inhibit dental caries by favorably shifting the demineralization/remineralization balance of enamel and inhibiting the biomass and acid formation of dental biofilm. The present study focused on the comparison of composition and anticaries effect of Galla chinensis extracts with different isolation methods, aiming to improve the efficacy of caries prevention. Methods: The composition of water extract (GCE), ethanol extract (eGCE) and commercial tannic acid was compared. High performance liquid chromatography coupled to electrospray ionization-time of flight-mass spectrometry (HPLC-ESI-TOF-MS) analysis was used to analyze the main ingredients. In vitro pH-cycling regime and polymicrobial biofilms model were used to assess the ability of different Galla chinensis extracts to inhibit enamel demineralization, acid formation and biofilm formation. Results: All the GCE, eGCE and tannic acid contained a high level of total phenolics. HPLC-ESI-TOF-MS analysis showed that the main ingredients of GCE were gallic acid (GA), while eGCE mainly contained 4-7 galloylglucopyranoses (GGs) and tannic acid mainly contained 5-10 GGs. Furthermore, eGCE and tannic acid showed a better effect on inhibiting enamel demineralization, acid formation and biofilm formation compared to GCE. Conclusions: Galla chinensis extracts with higher tannin content were suggested to have higher potential to prevent dental caries.
Collapse
Affiliation(s)
- Xuelian Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology, Endodontology, Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.,Division of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Meng Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Oral Biology Program, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Mingdong Liu
- Department of Analytical Toxicology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R A M Exterkate
- Department of Cariology, Endodontology, Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jacob M Ten Cate
- Department of Cariology, Endodontology, Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
13
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
14
|
Margolis HC, Beniash E, Fowler CE. Role of Macromolecular Assembly of Enamel Matrix Proteins in Enamel Formation. J Dent Res 2016; 85:775-93. [PMID: 16931858 DOI: 10.1177/154405910608500902] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Unlike other mineralized tissues, mature dental enamel is primarily (> 95% by weight) composed of apatitic crystals and has a unique hierarchical structure. Due to its high mineral content and organized structure, enamel has exceptional functional properties and is the hardest substance in the human body. Enamel formation (amelogenesis) is the result of highly orchestrated extracellular processes that regulate the nucleation, growth, and organization of forming mineral crystals. However, major aspects of the mechanism of enamel formation are not well-understood, although substantial evidence suggests that protein-protein and protein-mineral interactions play crucial roles in this process. The purpose of this review is a critical evaluation of the present state of knowledge regarding the potential role of the assembly of enamel matrix proteins in the regulation of crystal growth and the structural organization of the resulting enamel tissue. This review primarily focuses on the structure and function of amelogenin, the predominant enamel matrix protein. This review also provides a brief description of novel in vitro approaches that have used synthetic macromolecules ( i.e., surfactants and polymers) to regulate the formation of hierarchical inorganic (composite) structures in a fashion analogous to that believed to take place in biological systems, such as enamel. Accordingly, this review illustrates the potential for developing bio-inspired approaches to mineralized tissue repair and regeneration. In conclusion, the authors present a hypothesis, based on the evidence presented, that the full-length amelogenin uniquely regulates proper enamel formation through a process of cooperative mineralization, and not as a pre-formed matrix.
Collapse
Affiliation(s)
- H C Margolis
- Department of Biomineralization, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA.
| | | | | |
Collapse
|
15
|
Amyloid-like ribbons of amelogenins in enamel mineralization. Sci Rep 2016; 6:23105. [PMID: 27009419 PMCID: PMC4806362 DOI: 10.1038/srep23105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022] Open
Abstract
Enamel, the outermost layer of teeth, is an acellular mineralized tissue that cannot regenerate; the mature tissue is composed of high aspect ratio apatite nanocrystals organized into rods and inter-rod regions. Amelogenin constitutes 90% of the protein matrix in developing enamel and plays a central role in guiding the hierarchical organization of apatite crystals observed in mature enamel. To date, a convincing link between amelogenin supramolecular structures and mature enamel has yet to be described, in part because the protein matrix is degraded during tissue maturation. Here we show compelling evidence that amelogenin self-assembles into an amyloid-like structure in vitro and in vivo. We show that enamel matrices stain positive for amyloids and we identify a specific region within amelogenin that self-assembles into β-sheets. We propose that amelogenin nanoribbons template the growth of apatite mineral in human enamel. This is a paradigm shift from the current model of enamel development.
Collapse
|
16
|
Tamamura R, Kono T, Okada H, Kuwada-Kusunose T, Suzuki K, Gotouda H, Sakae T. Crystallographic Study of the Immature Bovine Incisor Enamel and Dentin. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ryo Tamamura
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Tetsuro Kono
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Hiroyuki Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Takao Kuwada-Kusunose
- Department of Liberal Arts (Biology), Nihon University School of Dentistry at Matsudo
| | - Kunihiro Suzuki
- Department of Liberal Arts (Biology), Nihon University School of Dentistry at Matsudo
| | - Hiroya Gotouda
- Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo
| | - Toshiro Sakae
- Department of Histology, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
17
|
Prajapati S, Tao J, Ruan Q, De Yoreo JJ, Moradian-Oldak J. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. Biomaterials 2016; 75:260-270. [PMID: 26513418 PMCID: PMC4654413 DOI: 10.1016/j.biomaterials.2015.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022]
Abstract
Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair.
Collapse
Affiliation(s)
- Saumya Prajapati
- University of Southern California, Herman Ostrow School of Dentistry, Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033, USA
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Qichao Ruan
- University of Southern California, Herman Ostrow School of Dentistry, Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Janet Moradian-Oldak
- University of Southern California, Herman Ostrow School of Dentistry, Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033, USA.
| |
Collapse
|
18
|
Tao J, Buchko GW, Shaw WJ, De Yoreo JJ, Tarasevich BJ. Sequence-Defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10451-10460. [PMID: 26381243 PMCID: PMC4917396 DOI: 10.1021/acs.langmuir.5b02549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The interactions between proteins and surfaces are critical to a number of important processes including biomineralization, the biocompatibility of biomaterials, and the function of biosensors. Although many proteins exist as monomers or small oligomers, amelogenin is a unique protein that self-assembles into supramolecular structures called "nanospheres," aggregates of hundreds of monomers that are 20-60 nm in diameter. The nanosphere quaternary structure is observed in solution; however, the quaternary structure of amelogenin adsorbed onto hydroxyapatite (HAP) surfaces is not known even though it may be important to amelogenin's function in forming highly elongated and intricately assembled HAP crystallites during enamel formation. We report studies of the interactions of the enamel protein, amelogenin (rpM179), with a well-defined (100) face prepared by the synthesis of large crystals of HAP. High-resolution in situ atomic force microscopy (AFM) was used to directly observe protein adsorption onto HAP at the molecular level within an aqueous solution environment. Our study shows that the amelogenin nanospheres disassemble onto the HAP surface, breaking down into oligomeric (25-mer) subunits of the larger nanosphere. In some cases, the disassembly event is directly observed by in situ imaging for the first time. Quantification of the adsorbate amounts by size analysis led to the determination of a protein binding energy (17.1k(b)T) to a specific face of HAP (100). The kinetics of disassembly are greatly slowed in aged solutions, indicating that there are time-dependent increases in oligomer-oligomer binding interactions within the nanosphere. A small change in the sequence of amelogenin by the attachment of a histidine tag to the N-terminus of rpM179 to form rp(H)M180 results in the adsorption of a complete second layer on top of the underlying first layer. Our research elucidates how supramolecular protein structures interact and break down at surfaces and how small changes in the primary sequence of amelogenin can affect the disassembly process.
Collapse
|
19
|
Zhang J, Huang X, Huang S, Deng M, Xie X, Liu M, Liu H, Zhou X, Li J, Ten Cate JM. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values. Acta Odontol Scand 2015; 73:595-601. [PMID: 25644205 DOI: 10.3109/00016357.2015.1007478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. METHODS The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. RESULTS GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). CONCLUSIONS GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.
Collapse
Affiliation(s)
- Jingyang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Onuma K, Iijima M. <i>In Situ</i> Atomic Force Microscopy Observation of Octacalcium Phosphate (100) Face Dissolution in Weak Acidic Solutions. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jcpt.2015.51001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Sanii B, Martinez-Avila O, Simpliciano C, Zuckermann RN, Habelitz S. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix. J Dent Res 2014; 93:918-22. [PMID: 25048248 PMCID: PMC4213250 DOI: 10.1177/0022034514544216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/21/2014] [Accepted: 06/29/2014] [Indexed: 11/15/2022] Open
Abstract
The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel.
Collapse
Affiliation(s)
- B Sanii
- Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, CA 94720, USA Keck Science Department, Claremont McKenna, Scripps and Pitzer Colleges, Claremont, CA 91711, USA
| | - O Martinez-Avila
- University of California, Department of Preventive and Restorative Dental Sciences, San Francisco, CA 94143, USA
| | - C Simpliciano
- University of California, Department of Preventive and Restorative Dental Sciences, San Francisco, CA 94143, USA
| | - R N Zuckermann
- Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, CA 94720, USA
| | - S Habelitz
- University of California, Department of Preventive and Restorative Dental Sciences, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN DENTISTRY 2013; 2013:684607. [PMID: 24159389 PMCID: PMC3789414 DOI: 10.1155/2013/684607] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development.
Collapse
Affiliation(s)
- John D. Bartlett
- Harvard School of Dental Medicine & Chair, Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge MA 02142, USA
| |
Collapse
|
23
|
Martinez-Avila O, Wu S, Kim SJ, Cheng Y, Khan F, Samudrala R, Sali A, Horst JA, Habelitz S. Self-assembly of filamentous amelogenin requires calcium and phosphate: from dimers via nanoribbons to fibrils. Biomacromolecules 2012; 13:3494-502. [PMID: 22974364 PMCID: PMC3496023 DOI: 10.1021/bm300942c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enamel matrix self-assembly has long been suggested as the driving force behind aligned nanofibrous hydroxyapatite formation. We tested if amelogenin, the main enamel matrix protein, can self-assemble into ribbon-like structures in physiologic solutions. Ribbons 17 nm wide were observed to grow several micrometers in length, requiring calcium, phosphate, and pH 4.0-6.0. The pH range suggests that the formation of ion bridges through protonated histidine residues is essential to self-assembly, supported by a statistical analysis of 212 phosphate-binding proteins predicting 12 phosphate-binding histidines. Thermophoretic analysis verified the importance of calcium and phosphate in self-assembly. X-ray scattering characterized amelogenin dimers with dimensions fitting the cross-section of the amelogenin ribbon, leading to the hypothesis that antiparallel dimers are the building blocks of the ribbons. Over 5-7 days, ribbons self-organized into bundles composed of aligned ribbons mimicking the structure of enamel crystallites in enamel rods. These observations confirm reports of filamentous organic components in developing enamel and provide a new model for matrix-templated enamel mineralization.
Collapse
Affiliation(s)
- Olga Martinez-Avila
- Department of Preventative and Restorative Dental Sciences, 707 Parnassus Ave., San Francisco, CA 94143, University of California
| | - Shenping Wu
- Department of Biochemistry & Biophysics, 600 16th Street, Room S312B, San Francisco, CA 94158 University of California
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall Room 503B, 1700 4th Street, San Francisco, CA 94158 University of California
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, 600 16th Street, Room S312B, San Francisco, CA 94158 University of California
| | - Feroz Khan
- Department of Preventative and Restorative Dental Sciences, 707 Parnassus Ave., San Francisco, CA 94143, University of California
| | - Ram Samudrala
- Department of Microbiology, 208 Rosen Building, Box 357735 · Seattle WA 98195 University of Washington
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, Byers Hall Room 503B, 1700 4th Street, San Francisco, CA 94158 University of California
| | - Jeremy A. Horst
- Department of Orofacial Sciences, 513 Parnassus Ave. San Francisco, CA 94143 University of California
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, 707 Parnassus Ave., San Francisco, CA 94143, University of California
| |
Collapse
|
24
|
Huang XL, Liu MD, Li JY, Zhou XD, ten Cate JM. Chemical composition of Galla chinensis extract and the effect of its main component(s) on the prevention of enamel demineralization in vitro. Int J Oral Sci 2012; 4:146-51. [PMID: 22935747 PMCID: PMC3464986 DOI: 10.1038/ijos.2012.44] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To determine the chemical composition of Galla chinensis extract (GCE) by several analysis techniques and to compare the efficacy of GCE and its main component(s) in inhibition of enamel demineralization, for the development of future anticaries agents, main organic composition of GCE was qualitatively determined by liquid chromatography–time of flight–mass spectrometry (LC–TOF–MS) and quantified by high-performance liquid chromatography–diode array detector (HPLC–DAD). Inorganic ions were tested by inductively coupled plasma–atomic emission spectroscopy and F was especially measured by ion chromatography. Then, bovine enamel blocks were randomly divided into four treatment groups and were subjected to a pH-cycling regime for 12 times. Each cycle included 5-min applications with one of four treatments: 4 g⋅L−1 GCE solution, 4 g⋅L−1 gallic acid (GA) solution, 1 g⋅L−1 NaF solution (positive control), deionized water (DDW, negative control), and then 60-min application in pH 5.0 acidic buffer and 5-min application in neutral buffer. Acidic buffers were retained for calcium analysis. The main organic composition of GCE were GA and its isomer, and, to a lesser extent, small molecule gallotannins. The content of GA in GCE was 71.3%±0.2% (w/w). Inorganic ions were present in various amounts, of which Ca was (136±2.82) µg⋅g−1, and Zn was (6.8±0.1) µg⋅g−1. No F was detected in GCE. In pH cycling, GA showed an effect similar to GCE in inhibiting enamel demineralization (P>0.05). GA was found to be the main effective, demineralization inhibiting component of GCE and could be a promising agent for the development of anticaries agents.
Collapse
Affiliation(s)
- Xue-Lian Huang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
25
|
Martinez-Avila OM, Wu S, Cheng Y, Lee R, Khan F, Habelitz S. Self-assembly of amelogenin proteins at the water-oil interface. Eur J Oral Sci 2012; 119 Suppl 1:75-82. [PMID: 22243231 DOI: 10.1111/j.1600-0722.2011.00907.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Self-assembly of amelogenin plays a key role in controlling enamel biomineralization. Recently, we generated self-aligning nanoribbons of amelogenin in water-in-oil emulsions stabilized by the full-length protein (rH174). Here, we tested the hypothesis that the hydrophilic C-terminus is critical for self-assembly of amelogenin into nanoribbons. The self-assembled structures of two amelogenin cleavage products, rH163 and rH146, were compared with structures of rH174 at different pH values and degrees of saturation using atomic force microscopy, electron microscopy, and dynamic light scattering. We observed that the number density of rH174 nanoribbons increased significantly when the initial pH was raised from 4.5 to 5.6. Nanoribbons, as well as unique helical nanostructures, were also readily observed when amelogenin rH146 was used, but showed little tendency for parallel alignment and did not bundle into fibrils like rH174. In contrast, rH163 rarely formed nanoribbons but predominantly assembled into nanospheres under the same conditions. We conclude that the presence of a hydrophilic C-terminus may not be a prerequisite for nanoribbon formation but may be critical for ribbon alignment and subsequent fibril formation. These results highlight the contribution of the hydrophobic domain in the self-assembly of elongated structures of amelogenins. Molecular mechanisms governing these processes based on the formation of reverse micelles are discussed.
Collapse
Affiliation(s)
- Olga M Martinez-Avila
- Department of Preventative and Restorative Dental Sciences, University of California, San Francisco, CA 94143-0758, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principels of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties and the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
27
|
Dusevich V, Xu C, Wang Y, Walker MP, Gorski JP. Identification of a protein-containing enamel matrix layer which bridges with the dentine-enamel junction of adult human teeth. Arch Oral Biol 2012; 57:1585-94. [PMID: 22609172 DOI: 10.1016/j.archoralbio.2012.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/12/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the ultrastructure and chemical composition of the dentine-enamel junction and adjacent enamel of minimally processed third molar tooth sections. DESIGN Undecalcified human third molar erupted teeth were sectioned and etched with 4% EDTA or 37% phosphoric acid prior to visualization by scanning electron microscopy. Confocal Raman spectroscopy was carried out at 50 μm and more than 400 μm away from the dentine-enamel junction before and after mild etching. RESULTS A novel organic protein-containing enamel matrix layer was identified for the first time using scanning electron microscopy of etched bucco-lingual sections of crowns. This layer resembles a three-dimensional fibrous meshwork that is visually distinct from enamel "tufts". Previous studies have generally used harsher solvent conditions which likely removed this layer and precluded its prior characterization. The shape of the organic enamel layer generally reflected that of sheath regions of enamel rods and extended from the dentine-enamel junction about 100-400 μm into the cuspal enamel. This layer exhibited a Raman CH stretching peak at ∼2931 cm(-1) characteristic of proteins and this signal correlated directly with the presence and location of the matrix layer as identified by scanning electron microscopy. CONCLUSIONS The enamel protein layer was most prominent close to the dentine-enamel junction and was largely absent in cuspal enamel >400 μm away from the dentine enamel junction. We hypothesize that this protein containing matrix layer could provide an important biomechanical linkage between the enamel and the dentine-enamel junction and by extension, with the dentine, of the adult tooth (246 words).
Collapse
Affiliation(s)
- Vladimir Dusevich
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, 64108, United States
| | | | | | | | | |
Collapse
|
28
|
Yang X, Sun Z, Ma R, Fan D, Moradian-Oldak J. Amelogenin "nanorods" formation during proteolysis by Mmp-20. J Struct Biol 2011; 176:220-8. [PMID: 21840397 PMCID: PMC3185149 DOI: 10.1016/j.jsb.2011.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
Amelogenin is cleaved by enamelysin (Mmp-20) soon after its secretion, and the cleavage products accumulate in specific locations during enamel formation, suggesting that parent amelogenin proteolysis is necessary for activating its functions. To investigate the precise roles of Mmp-20 and its influence on the assembly of amelogenin, an in vitro enzymatic digestion process mimicking the initial stages of amelogenin proteolysis was investigated at near-physiological conditions using recombinant porcine amelogenin (rP172) and enamelysin. Hierarchically organized nanorod structures formed during different digestion stages were detected by TEM. At the earliest stage, uniformly dispersed parent amelogenin spherical particles, mixed with some darker stained smaller spheres, and accompanying elongated chain-like nanostructures were observed. Cylindrical nanorods, which appeared to be the result of tight assembly of thin subunit cylindrical discs with thicknesses ranging from ∼2.5 to ∼6.0nm, were formed after an hour of proteolysis. These subunit building blocks stacked to form nanorods with maximum length of ∼100nm. With the production of more cleavage products, additional morphologies spontaneously evolved from the cylindrical nanorods. Larger ball-like aggregates ultimately formed at the end of proteolysis. The uniform spherical particles, nanorods, morphological patterns evolved from nanorods, and globular aggregated microstructures were successively formed by means of co-assembly of amelogenin and its cleavage products during a comparatively slow proteolysis process. We propose that, following the C-terminal cleavage of amelogenin, co-assembly with its fragments leads to formation of nanorod structures whose properties eventually dictate the super-structural organization of enamel matrix, controlling the elongated growth of enamel apatite crystals.
Collapse
Affiliation(s)
- Xiudong Yang
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, 2250 Alcazar St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
29
|
Yang X, Wang L, Qin Y, Sun Z, Henneman ZJ, Moradian-Oldak J, Nancollas GH. How amelogenin orchestrates the organization of hierarchical elongated microstructures of apatite. J Phys Chem B 2010; 114:2293-300. [PMID: 20104924 PMCID: PMC2848079 DOI: 10.1021/jp910219s] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenin (Amel) accelerates the nucleation of hydroxyapatite (HAP) in supersaturated solutions of calcium phosphate (Ca-P), shortening the induction time (delay period), under near-physiological conditions of pH, temperature, and ionic strength. Hierarchically organized Amel and amorphous calcium phosphate (ACP) nanorod microstructures are formed involving a coassembly of Amel-ACP particles at low supersaturations and low protein concentrations in a slow, well-controlled, constant composition (CC) crystallization system. At the earliest nucleation stages, the CC method allows the capture of prenucleation clusters and intermediate nanoclusers, spherical nanoparticles, and nanochains prior to enamel-like nanorod microstructure formations at later maturation stages. Amel-ACP nanoscaled building blocks are formed spontaneously by synergistic interactions between flexible Amel protein molecules and Ca-P prenucleation clusters, and these spherical nanoparticles evolve by orientated aggregation to form nanochains. Our results suggest that, in vivo, Amel may determine the structure of enamel by controlling prenucleation cluster aggregation at the earliest stages by forming stable Amel-ACP microstructures prior to subsequent crystal growth and mineral maturation.
Collapse
Affiliation(s)
- Xiudong Yang
- Department of Chemistry, The State University of New York at Buffalo, Amherst, New York 14260
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueling Qin
- Department of Physics, The State University of New York at Buffalo, Amherst, New York 14260
| | - Zhi Sun
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033
| | - Zachary J. Henneman
- Department of Chemistry, The State University of New York at Buffalo, Amherst, New York 14260
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033
| | - George H. Nancollas
- Department of Chemistry, The State University of New York at Buffalo, Amherst, New York 14260
| |
Collapse
|
30
|
Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML. Regulation of pH During Amelogenesis. Calcif Tissue Int 2010; 86:91-103. [PMID: 20016979 PMCID: PMC2809306 DOI: 10.1007/s00223-009-9326-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/24/2009] [Indexed: 12/31/2022]
Abstract
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
Collapse
Affiliation(s)
- Rodrigo S. Lacruz
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| | - Antonio Nanci
- Faculty of Dentistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Ira Kurtz
- David Geffen School Medicine at the University of California at Los Angeles, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095 USA
| | - J. Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina at Chapel Hill, CB No. 7450 Brauer Hall, Chapel Hill, NC 27599 USA
| | - Michael L. Paine
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| |
Collapse
|
31
|
Zhang L, Xue J, Li J, Zou L, Hao Y, Zhou X, Li W. Effects of Galla chinensis on inhibition of demineralization of regular bovine enamel or enamel disposed of organic matrix. Arch Oral Biol 2009; 54:817-22. [DOI: 10.1016/j.archoralbio.2009.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 05/02/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
32
|
Zhang L, Zou L, Li J, Hao Y, Xiao L, Zhou X, Li W. Effect of enamel organic matrix on the potential of
Galla chinensis
to promote the remineralization of initial enamel carious lesions
in vitro. Biomed Mater 2009; 4:034102. [DOI: 10.1088/1748-6041/4/3/034102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Affiliation(s)
- Lijun Wang
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260
| | - George H. Nancollas
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260
| |
Collapse
|
34
|
Wang L, Guan X, Yin H, Moradian-Oldak J, Nancollas GH. Mimicking the Self-Organized Microstructure of Tooth Enamel. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2008; 112:5892-5899. [PMID: 19169386 PMCID: PMC2630287 DOI: 10.1021/jp077105+] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Under near-physiological pH, temperature, and ionic strength, amelogenin (Amel) accelerates hydroxyapatite (HAP) nucleation kinetics, decreasing the induction time in a concentration-dependent manner. Hierarchically organized apatite microstructures are achieved by self-assembly involving nucleated nanocrystallites and Amel oligomers and nanospheres at low supersaturations and protein concentrations in a slow and well-controlled constant composition (CC) system. The CC method allows the capture of an intermediate structure, the nanorod, following the formation of the critical nuclei at the earliest nucleation stages of calcium phosphate crystallization. The nanorod building blocks form spontaneously by synergistic interactions between flexible Amel protein assemblies and rigid calcium phosphate nanocrystallites. These intermediate structures further assemble by a self-epitaxial growth mechanism to form the final hierarchically organized microstructures that are compositionally and morphologically similar to natural enamel. This in vitro observation provides direct evidence that Amel promotes apatite crystallization and organization. We interpret our observations to propose that in vivo Amel may maximally exert an influence on the structural control of developing enamel crystals at the earliest nucleation stages.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Amherst, New York 1426
| | - Xiangying Guan
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Amherst, New York 1426
| | - Haoyong Yin
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Amherst, New York 1426
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 9003
| | - George H. Nancollas
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Amherst, New York 1426
| |
Collapse
|
35
|
Kaya AD, Türkün M, Arici M. Reversal of Compromised Bonding in Bleached Enamel Using Antioxidant Gel. Oper Dent 2008; 33:441-7. [PMID: 18666503 DOI: 10.2341/07-115] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clinical Relevance
Dental bond strength is significantly reduced when bonding is performed immediately after bleaching treatments. It has also been reported that the application of an antioxidant after bleaching treatment improves the adhesive bond strength of oxidized enamel tissue. The application of an antioxidant in gel form by the patient makes the application process easier and shortens time spent in the clinic.
Collapse
Affiliation(s)
- Aysegül Demirbas Kaya
- Department of Restorative Dentistry and Endodontics, Ege University, School of Dentistry, Izmir, Turkey.
| | | | | |
Collapse
|
36
|
Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro. J Struct Biol 2007; 160:57-69. [PMID: 17719243 PMCID: PMC2375294 DOI: 10.1016/j.jsb.2007.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/22/2007] [Accepted: 06/23/2007] [Indexed: 11/25/2022]
Abstract
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. This study examines the effect of temperature and pH on amelogenin self-assembly under physiological pH conditions in vitro, using dynamic light scattering, turbidity measurements, and transmission electron microscopy. Full-length recombinant amelogenins from mouse (rM179) and pig (rP172) were investigated, along with proteolytic cleavage products (rM166 and native P148) lacking the hydrophilic C-terminus of parent molecules. Results indicated that the self-assembly of full-length amelogenin is primarily triggered by pH in the temperature range from 13 to 37 degrees C and not by temperature. Furthermore, very large assemblies of all proteins studied formed through the rearrangement of similarly sized nanospherical particles, although at different pH values: pH 7.7 (P148), pH 7.5 (rM166), pH 7.2 (rP172), and pH 7.2 (rM179). Structural differences were also observed. The full-length molecules formed apparently tightly connected elongated, high-aspect ratio assemblies comprised of small spheres, while the amelogenin cleavage products appeared as loosely associated spherical particles, suggesting that the hydrophilic C-terminus plays an essential role in higher-order amelogenin assembly. Hence, tightly controlled pH values during secretory amelogenesis may serve to regulate the functions of both full-length and cleaved amelogenins.
Collapse
|
37
|
Fan Y, Sun Z, Wang R, Abbott C, Moradian-Oldak J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials 2007; 28:3034-42. [PMID: 17382381 PMCID: PMC1995434 DOI: 10.1016/j.biomaterials.2007.02.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Fabricating the structures similar to dental enamel through the in vitro preparation method is of great interest in the fields of dentistry and material sciences. Developing enamel is composed of calcium phosphate mineral, water, and enamel matrix proteins, mainly amelogenins. To prepare a material mimicking such composition a novel approach of simultaneously assembling amelogenin and calcium phosphate precipitates by electrolytic deposition (ELD) was established. It was found that recombinant full-length amelogenin (rP172) self-assembled into nanochain structures during ELD (following increase in solution pH), and had significant effect on the induction of the parallel bundles of calcium phosphate nanocrystals, grown on semiconductive silicon wafer surface. When a truncated amelogenin (rP148) was used; no nanochain assembly was observed, neither parallel bundles were formed. The coating obtained in the presence of rP172 had improved elastic modulus and hardness when compared to the coating incorporated with rP148. Our data suggest that the formation of organized bundles in amelogenin-apatite composites is mainly driven by amelogenin nanochain assembly and highlights the potential of such composite for future application as dental restorative materials.
Collapse
Affiliation(s)
- Yuwei Fan
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103 Los Angeles, CA 90033, USA
| | - Zhi Sun
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103 Los Angeles, CA 90033, USA
| | - Rizhi Wang
- Department of Material Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher Abbott
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103 Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103 Los Angeles, CA 90033, USA
| |
Collapse
|
38
|
Moradian-Oldak J. The emergence of "nanospheres" as basic structural components adopted by amelogenin. J Dent Res 2007; 86:487-90. [PMID: 17525347 DOI: 10.1177/154405910708600603] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
39
|
Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH. Amelogenin Promotes the Formation of Elongated Apatite Microstructures in a Controlled Crystallization System. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2007; 111:6398-6404. [PMID: 20333260 PMCID: PMC2843430 DOI: 10.1021/jp0675429] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that play a pivotal role in controlling the oriented and elongated growth of highly ordered apatitic crystals during enamel biomineralization. However, the mechanisms of amelogenin-mediated mineralization have not yet been fully elucidated. Here we report that amelogenin dramatically accelerates the nucleation kinetics by decreasing the induction time in a dose-dependent manner in a controlled constant composition (CC) in vitro crystallization system. Remarkably, at very low protein concentrations, elongated microstructures which are similar in appearance to apatitic crystals in enamel were formed at relatively low supersaturations, through interfacial structural match/synergy between structured amelogenin assemblies and apatite nanocrystallites. This heterogeneous crystallization study provides experimental evidence to support the concept that templating by amelogenin very early in the crystallization process facilitates the formation of developing enamel crystals.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260
| | | | | | | | | |
Collapse
|
40
|
Moradian-Oldak J, Du C, Falini G. On the formation of amelogenin microribbons. Eur J Oral Sci 2006; 114 Suppl 1:289-96; discussion 327-9, 382. [PMID: 16674701 DOI: 10.1111/j.1600-0722.2006.00285.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported the remarkable spontaneous self-assembly and hierarchical organization of amelogenin 'microribbons' and their ability to facilitate oriented growth of apatite crystals in vitro. In a letter of correction we communicated the finding that the X-ray diffraction pattern reported in our original report was that of cellulose contaminant and not amelogenin microribbon. We have re-evaluated our data and confirmed the protein nature of the microribbons using Fourier transform infrared and Raman microspectroscopy. Some microribbons were remarkably similar in their morphology to that of cellulose fibers. The size distribution of amelogenin microribbons was wider, particularly in width and length, and generally smaller than those originally reported. Here we present additional detailed information on the formation of a series of intermediate hierarchical structures of amelogenin assemblies prior to the formation of microribbon. The most significant finding was that full-length amelogenin nanospheres had a tendency to assemble into collinear arrays whose function is assumed to be critical at the initial stage of enamel mineral deposition. The present data gives an insight into the step-by-step assembly process of amelogenin from nanometer scale molecules to micrometer scale organized structures that can be used as templates for controlled and oriented growth of apatite mineralization in vitro.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
41
|
do Espírito Santo AR, Novaes PD, Line SRP. Anisotropic properties of the enamel organic extracellular matrix. Eur J Oral Sci 2006; 114 Suppl 1:333-7; discussion 349-50, 382. [PMID: 16674708 DOI: 10.1111/j.1600-0722.2006.00326.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enamel biosynthesis is initiated by the secretion, processing, and self-assembly of a complex mixture of proteins. This supramolecular ensemble controls the nucleation of the crystalline mineral phase. The detection of anisotropic properties by polarizing microscopy has been extensively used to detect macromolecular organizations in ordinary histological sections. The aim of this work was to study the birefringence of enamel organic matrix during the development of rat molar and incisor teeth. Incisor and molar teeth of rats were fixed in 2% paraformaldehyde/0.5% glutaraldehyde in 0.2 M phosphate-buffered saline (PBS), pH 7.2, and decalcified in 5% nitric acid/4% formaldehyde. After paraffin embedding, 5-microm-thick sections were obtained, treated with xylene, and hydrated. Form birefringence curves were obtained after measuring optical retardations in imbibing media, with different refractive indices. Our observations showed that enamel organic matrix of rat incisor and molar teeth is strongly birefringent, presenting an ordered supramolecular structure. The birefringence starts during the early secretion phase and disappears at the maturation phase. The analysis of enamel organic matrix birefringence may be used to detect the effects of genetic and environmental factors on the supramolecular orientation of enamel matrix and their effects on the structure of mature enamel.
Collapse
|
42
|
Moradian-Oldak J, Goldberg M. Amelogenin Supra-Molecular Assembly in vitro Compared with the Architecture of the Forming Enamel Matrix. Cells Tissues Organs 2006; 181:202-18. [PMID: 16612086 DOI: 10.1159/000091382] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tooth enamel is formed in the extracellular space within an organic matrix enriched in amelogenin proteins. Amelogenin nanosphere assembly is a key factor in controlling the oriented and organized growth of enamel apatite crystals. Recently, we have reported the formation of higher ordered structures resulting from organized association and self-orientation of amelogenin nanospheres in vitro. This remarkable hierarchical organization includes self-assembly of amelogenin molecules into subunits of 4-6 nm in diameter followed by their assembly to form nanospheres of 15-25 nm in radii. Chains of >100 nm length are then formed as the result of nanosphere association. These linear arrays of nanospheres assemble to form the microribbons that are hundreds of microns in length, tens of microns in width, and a few microns in thickness. Here, we review the step by step process of amelogenin self-assembly during the formation of microribbon structures in vitro. Assembly properties of selected amelogenins lacking the hydrophilic C terminus will then be reviewed. We will consider amelogenin as a template for the organized growth of crystals in vitro. Finally, we will compare the structures formed in vitro with globular and periodic structures observed earlier, in vivo, by different sample preparation conditions. We propose that the alignment of amelogenin nanospheres into long chains is evident in vivo, and is an important indication for the function of this protein in controlling the oriented and elongated growth of apatite crystals during enamel biomineralization.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, Calif. 90033, USA.
| | | |
Collapse
|
43
|
Du C, Moradian-Oldak J. Tooth regeneration: challenges and opportunities for biomedical material research. Biomed Mater 2006; 1:R10-7. [DOI: 10.1088/1748-6041/1/1/r02] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 2005; 307:1450-4. [PMID: 15746422 DOI: 10.1126/science.1105675] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although both tooth enamel and bone are composed of organized assemblies of carbonated apatite crystals, enamel is unusual in that it does not contain collagen nor does it remodel. Self-assembly of amelogenin protein into nanospheres has been recognized as a key factor in controlling the oriented and elongated growth of carbonated apatite crystals during dental enamel biomineralization. We report the in vitro formation of birefringent microribbon structures that were generated through the supramolecular assembly of amelogenin nanospheres. These microribbons have diffraction patterns that indicate a periodic structure of crystalline units along the long axis. The growth of apatite crystals orientated along the c axis and parallel to the long axes of the microribbons was observed in vitro. The linear arrays (chains) of nanospheres observed as intermediate states before the microribbon formation give an important indication as to the function of amelogenin in controlling the oriented growth of apatite crystals during enamel mineralization.
Collapse
Affiliation(s)
- Chang Du
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
45
|
Girija V, Stephen HCY. Characterization of lipid in mature enamel using confocal laser scanning microscopy. J Dent 2003; 31:303-11. [PMID: 12799114 DOI: 10.1016/s0300-5712(03)00068-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To characterize the lipid components of organic matrix in mature human enamel using Confocal Laser Scanning Microscopy (CLSM) coupled with a hydrophobic fluorescent probe. METHODS Twenty-four longitudinal sections of human enamel were fixed with 3.7% paraformaldehyde (PFA), partially decalcified with 0.5 M of EDTA, and labelled with a fluorescent probe (Nile red) before CLSM characterization. Based on the fluorescence spectra of Nile red in ethanol (1 microgram/ml), each enamel section was evaluated with 543 nm light source and with 590 nm long pass filter. Spectrophotometric analysis was carried out to characterize the autofluorescence and Nile red lipid fluorescence in mature enamel. Special optical parameters of the microscope were chosen to rule out the intrinsic fluorescence of the samples, and that induced by PFA. RESULTS The intensity of autofluorescence and PFA-induced fluorescence were negligible above 565 nm; whereas the fluorescence of Nile red peaked at around 600 nm. Lipid material was identified in the cross-striations, the lines of Retzius, the Hunter-Schreger bands, inter-prismatic spaces, and inter-prismatic spaces in the mature human enamel. CONCLUSIONS This technique successfully revealed the distribution of lipid components of organic matrix in mature human enamel and may be promising in assessing the changes of enamel organic elements in the developmental, pathological or experimental conditions.
Collapse
Affiliation(s)
- Veerappan Girija
- Department of Preventive Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | | |
Collapse
|
46
|
Abstract
The remarkable properties of enamel crystals and their arrangements in an extraordinary micro-architecture are clear indications that the processes of crystal nucleation and growth in the extracellular matrix are highly controlled. The major extracellular events involved in enamel formation are: (a) delineation of space by the secretory ameloblasts and the dentino-enamel junction; (b) self-assembly of amelogenin proteins to form the supramolecular structural framework; (c) transportation of calcium and phosphate ions by the ameloblasts resulting in a supersaturated solution; (d) nucleation of apatite crystallites; and (e) elongated growth of the crystallites. Finally, during the 'maturation' step, rapid growth and thickening of the crystallites take place, which is concomitant with progressive degradation and eventual removal of the enamel extracellular matrix components (mainly amelogenins). This latter stage during which physical hardening of enamel occurs is perhaps unique to dental enamel. We have focused our in vitro studies on three major extracellular events: matrix assembly, matrix processing and control of crystal growth. This paper summarizes current knowledge on the assembly, processing and effect on crystal morphology by amelogenin proteins. The correlation between these three events and putative functional roles for amelogenin protein are discussed.
Collapse
Affiliation(s)
- J Moradian-Oldak
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, 2250 Alcazar St., Los Angeles, CA 90033, USA.
| |
Collapse
|
47
|
Takagi T, Ogasawara T, Tagami J, Akao M, Kuboki Y, Nagai N, LeGeros RZ. pH and carbonate levels in developing enamel. Connect Tissue Res 2001; 38:181-7; discussion 201-5. [PMID: 11063026 DOI: 10.3109/03008209809017035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our earlier studies showed that the surface of developing and calcifying enamel changes its pH alternatively along the tooth axis when stained with pH indicating dyes. Based on the pH conditions, the enamel at this stage was distinguished as neutral zone (N1 and N2) and acid zone (A1 and A2). The aim of the present study was to correlate changes of pH with proteolytic activity and crystal size of the calcifying bovine enamel. Specimens of developing bovine enamel were separated into four maturing stages using pH staining methods. Crystal chemistry of the developing enamel was investigated using thermogravimetry (TGA), ICP emission spectrometry, X-ray diffractometry (XRD) and infrared spectroscopy (IR). Previous biochemical analysis of proteolytic enzyme activity from enamel indicated that the optimal pH of the major protease was approximately pH 6.0, coinciding with the pH of the A1 zone. IR, TGA and XRD analyses showed that most of the organic components of the enamel decomposed at 580 degrees C. Higher levels of carbonate were observed in the secretory stages than in mature enamel. The Ca/P molar ratio of the enamel apatite was lower than the stoichiometric value of 1.67. These results suggest that growth and maturation of enamel apatite crystals is related to a decrease in the carbonate level and appear to be related to the alternative calcification and decomposition of enamel proteins.
Collapse
Affiliation(s)
- T Takagi
- Department of Biochemistry, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
In the early mineralized enamel crystals, ribbon-like crystals appear near the ameloblasts. Some ribbon-like crystals showed helical or spiral structure within restricted environment during the preparation of embryonic bovine specimens for electron microscope. These specimens did not suffer from the cutting damages nor staining effects. The main cause of the helix structure is considered a result of the dehydration during preparation. The periodic structure must reflect the regularity of initial enamel crystals. If dehydration caused the ribbon-like crystal to induce the periodic helix, it is one possibility that the earliest enamel crystal is OCP which has been proposed as a precursor of HA. Because it is considered that OCP is more sensitive to dehydration and more symmetric structure than biological HA. The periodicity of the helical ribbon-like structure was about 25 to 55 nm long and could be compared to the periodicity of organic helices which had observed in an immature rat enamel.
Collapse
Affiliation(s)
- K Suzuki
- Department of Anatomy, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | | | | |
Collapse
|
49
|
Hsu CY, Jordan TH, Dederich DN, Wefel JS. Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J Dent Res 2000; 79:1725-30. [PMID: 11023270 DOI: 10.1177/00220345000790091401] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the past two decades, accumulated evidence has clearly demonstrated the inhibitory effects of laser irradiation on enamel demineralization, but the exact mechanisms of these effects remain unclear. The purpose of this study was to investigate the effects of low-energy CO2 laser irradiation on demineralization of both normal human enamel and human enamel with its organic matrix removed. Twenty-four human molars were collected, cleaned, and cut into two halves. One half of each tooth was randomly selected and its lipid and protein content extracted. The other half of each tooth was used as the matched control. Each tooth half had two window areas. All the left windows were treated with a low-energy laser irradiation, whereas the right windows served as the non-laser controls. After caries-like lesion formation in a pH-cycling environment, microradiographs of tooth sections were taken for quantification of demineralization. The mean mineral losses (with standard deviation) of the enamel control, the lased enamel, the non-organic enamel control, and the lased non-organic enamel subgroups were 3955 (1191), 52(49), 4565(1311), and 1191 (940), respectively. A factorial ANOVA showed significant effects of laser irradiation (p = 0.0001), organic matrix (p = 0.0125), and the laser-organic matrix interaction (p = 0.0377). The laser irradiation resulted in a greater than 98% reduction in mineral loss, but the laser effect dropped to about 70% when the organic matrix in the enamel was removed. The results suggest that clinically applicable CO2 laser irradiation may cause an almost complete inhibition of enamel demineralization.
Collapse
Affiliation(s)
- C Y Hsu
- Department of Preventive Dentistry, Faculty of Dentistry, National University of Singapore
| | | | | | | |
Collapse
|
50
|
Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999; 126:270-99. [PMID: 10441532 DOI: 10.1006/jsbi.1999.4130] [Citation(s) in RCA: 422] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biomineralization of the dental enamel matrix with a carbonated hydroxyapatite mineral generates one of the most remarkable examples of a vertebrate mineralized tissue. Recent advances in the molecular biology of ameloblast gene products have now revealed the primary structures of the principal proteins involved in this extracellular mineralizing system, amelogenins, tuftelins, ameloblastins, enamelins, and proteinases, but details of their secondary, tertiary, and quaternary structures, their interactions with other matrix and or cell surface proteins, and their functional role in dental enamel matrix mineralization are still largely unknown. This paper reviews our current knowledge of these molecules, the probable molecular structure of the enamel matrix, and the functional role of these extracellular matrix proteins. Recent studies on the major structural role played by the amelogenin proteins are discussed, and some new data on synthetic amelogenin matrices are reviewed.
Collapse
Affiliation(s)
- A G Fincham
- Center for Craniofacial Molecular Biology, School of Dentistry, Los Angeles, California 90089, USA
| | | | | |
Collapse
|