1
|
Castelan-Ramírez I, Flores-Maldonado C, Hernández-Martínez D, Salazar-Villatoro L, Saucedo-Campos AD, Segura-Cobos D, Méndez-Cruz AR, Omaña-Molina M. Advances in the study of extracellular vesicles of Naegleria fowleri and their role in contact-independent pathogenic mechanisms. Parasit Vectors 2025; 18:164. [PMID: 40312759 PMCID: PMC12046931 DOI: 10.1186/s13071-025-06786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are spherical membrane particles released by prokaryotic and eukaryotic cells. EVs produced by pathogenic organisms are known to play a role in host-pathogen interactions; however, despite some reports on Naegleria fowleri EVs, their potential role in inducing cytopathic effects remains poorly understood. In this study, we evaluated the role of N. fowleri EVs in contact-independent pathogenic mechanisms. METHODS Extracellular vesicles were characterized via transmission electron microscopy, nanoparticle tracking analysis, SDS-PAGE, mass spectrometry, Western blotting, and zymography. EVs internalization by trophozoites and MDCK epithelial cells was also determined. Finally, mammalian cells were coincubated with EVs to evaluate haemolytic activity, epithelial paracellular ionic permeability alterations, and necrosis. RESULTS Naegleria fowleri extracellular vesicles, ranging from 82.5 to 576.5 nm in size, were isolated, with a mean of 216.8 nm and a mode of 165.3 nm. Proteomic analysis identified 1006 proteins in the EVs, including leishmanolysin, a protein associated with pathogenic mechanisms such as adhesion and enzymatic processes. The proteolytic activity of EVs was found to be primarily due to serine protease. Furthermore, EVs were internalized by both trophozoites and MDCK cells. Additionally, EVs exhibited haemolytic activity in erythrocytes as well as increased ionic permeability and necrosis in MDCK cells 24 h postinteraction. CONCLUSIONS Naegleria fowleri EVs exhibit proteolytic and haemolytic activity and are internalized by trophozoites and MDCK epithelial cell monolayers, increasing the ionic permeability of the monolayer and inducing necrosis. Furthermore, these vesicles contain molecules associated with pathogenic processes such as leishmanolysin. Our results suggest that EVs facilitate paracellular invasion, migration, and damage caused by trophozoites and play a significant role in pathogenic processes as part of a contact-independent mechanism, which, in conjunction with a contact-dependent mechanism, enhances our understanding of the pathogenicity exhibited by this amphizoic amoeba during its invasion of target tissues.
Collapse
Affiliation(s)
- Ismael Castelan-Ramírez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de Mexico, México
- Laboratorio de Amibas Anfizóicas, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, México
| | | | - Dolores Hernández-Martínez
- Laboratorio de Amibas Anfizóicas, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, México
| | | | | | - David Segura-Cobos
- Laboratorio de Amibas Anfizóicas, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, México
| | - Adolfo René Méndez-Cruz
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, México
| | - Maritza Omaña-Molina
- Laboratorio de Amibas Anfizóicas, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, México.
| |
Collapse
|
2
|
Wu Y, Benson MA, Sun SX. Fluid and solute transport by cells and a model of systemic circulation. PLoS Comput Biol 2025; 21:e1012935. [PMID: 40258085 PMCID: PMC12040233 DOI: 10.1371/journal.pcbi.1012935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 04/29/2025] [Accepted: 03/06/2025] [Indexed: 04/23/2025] Open
Abstract
Active fluid circulation and solute transport are essential functions of living organisms, enabling the efficient delivery of oxygen and nutrients to various physiological compartments. Since fluid circulation occurs in a network, the systemic flux and pressure are not simple outcomes of individual components. Rather, they are emergent properties of network elements and network topology. Moreover, consistent pressure and osmolarity gradients are maintained across compartments such as the kidney, interstitium, and blood vessels. The mechanisms by which these gradients and network properties are established and maintained are unanswered questions in systems physiology. Previous studies have shown that epithelial cells are fluid pumps and can actively generate pressure and osmolarity gradients. The polarization and activity of solute transporters in epithelial cells, which drive fluid flux, are influenced by pressure and osmolarity gradients. Therefore, there is an unexplored coupling between pressure and osmolarity in the circulatory network. In this work, we develop a mathematical framework that integrates the influence of pressure and osmolarity on solute transport. We use this model to explore both cellular fluid transport and systemic circulation. Using a simple network featuring the kidney-vascular interface, we show that our model naturally generates pressure and osmolarity gradients across the kidney, vessels and renal interstitium. While the current model uses this interface as an example, the findings can be generalized to other physiological compartments. This model demonstrates how systemic transport properties can depend on cellular properties and, conversely, how cell states are influenced by systemic properties. When epithelial and endothelial pumps are considered together, we predict how pressures at various points in the network depend on the overall osmolarity of the system. The model can be improved by including physiological geometries and expanding solute species, and highlights the interplay of fluid properties with cell function in living organisms.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Morgan A. Benson
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
4
|
Corbett MP, Gabriel V, Livania V, Díaz-Regañón D, Ralston A, Zdyrski C, Liu D, Minkler S, Wickham H, Lincoln A, Paukner K, Atherly T, Merodio MM, Sahoo DK, Meyerholz DK, Allenspach K, Mochel JP. A Preclinical Model to Assess Intestinal Barrier Integrity Using Canine Enteroids and Colonoids. BIOLOGY 2025; 14:270. [PMID: 40136526 PMCID: PMC11939752 DOI: 10.3390/biology14030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
While two-dimensional (2D) cell cultures, such as Caco-2 and Madin-Darby canine kidney (MDCK) cells are widely used in a variety of biological models, these two-dimensional in vitro systems present inherent limitations in replicating the complexities of in vivo biology. Recent progress in three-dimensional organoid technology has the potential to address these limitations. In this study, the characteristics of conventional 2D cell culture systems were compared to those of canine intestinal organoids (enteroids, ENT, and colonoids, COL). Light microscopy and transmission electron microscopy were employed to evaluate the microanatomy of ENT, COL, Caco-2, and MDCK cell monolayers, while transepithelial electrical resistance (TEER) values were measured to assess monolayer integrity. The TEER values of canine ENT monolayers more closely approximated reported TEER values for human small intestines compared to Caco-2 and MDCK monolayers. Additionally, canine ENT demonstrated greater monolayer stability than Caco-2 and MDCK cells. Notably, while all systems displayed desmosomes, canine ENT and COL exclusively produced mucus. These findings highlight the potential of the canine organoid system as a more biologically relevant model for in vitro studies, addressing the limitations of conventional 2D cell culture systems.
Collapse
Affiliation(s)
- Megan P. Corbett
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Vojtech Gabriel
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA (D.L.)
| | - Vanessa Livania
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA (D.L.)
| | - David Díaz-Regañón
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Abigail Ralston
- 3D Health Solutions Inc., Athens, GA 30602, USA (C.Z.); (K.A.)
| | - Christopher Zdyrski
- 3D Health Solutions Inc., Athens, GA 30602, USA (C.Z.); (K.A.)
- Department of Pathology, Precision One Health Initiative, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Dongjie Liu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA (D.L.)
| | - Sarah Minkler
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA (D.L.)
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA (D.L.)
| | - Addison Lincoln
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA (D.L.)
| | - Karel Paukner
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Todd Atherly
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA (D.L.)
| | - Maria M. Merodio
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (M.M.M.); (D.K.S.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (M.M.M.); (D.K.S.)
| | - David K. Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Athens, GA 30602, USA (C.Z.); (K.A.)
- Department of Pathology, Precision One Health Initiative, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jonathan P. Mochel
- 3D Health Solutions Inc., Athens, GA 30602, USA (C.Z.); (K.A.)
- Department of Pathology, Precision One Health Initiative, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Zanatta D, Betanzos A, Azuara-Liceaga E, Montaño S, Orozco E. Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains. Int J Mol Sci 2024; 25:7609. [PMID: 39062867 PMCID: PMC11277477 DOI: 10.3390/ijms25147609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein of the endosomal sorting complexes required for transport (ESCRT) machinery. Here, to study the role of different parts of EhADH during virulence events, we produced trophozoites overexpressing the three domains of EhADH, Bro1 (1-400 aa), Linker (246-446 aa) and Adh (444-687 aa) to evaluate their role in virulence. The TrophozBro11-400 slightly increased adherence and phagocytosis, but these trophozoites showed a higher ability to destroy cell monolayers, augment the permeability of cultured epithelial cells and mouse colon, and produce more damage to hamster livers. The TrophozLinker226-446 also increased the virulence properties, but with lower effect than the TrophozBro11-400. In addition, this fragment participates in cholesterol transport and GTPase binding. Interestingly, the TrophozAdh444-687 produced the highest effect on adherence and phagocytosis, but it poorly influenced the monolayers destruction; nevertheless, they augmented the colon and liver damage. To identify the protein partners of each domain, we used recombinant peptides. Pull-down assays and mass spectrometry showed that Bro1 domain interplays with EhADH, Gal/GalNAc lectin, EhCPs, ESCRT machinery components and cytoskeleton proteins. While EhADH, ubiquitin, EhRabB, EhNPC1 and EhHSP70 were associated to the Linker domain, and EhADH, EhHSP70, EhPrx and metabolic enzymes interacted to the Adh domain. The diverse protein association confirms that EhADH is a versatile molecule with multiple functions probably given by its capacity to form distinct molecular complexes.
Collapse
Affiliation(s)
- Dxinegueela Zanatta
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Elisa Azuara-Liceaga
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, Mexico City 03100, Mexico;
| | - Sarita Montaño
- Laboratory of Bioinformatics and Molecular Simulation, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Sinaloa 80030, Mexico;
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| |
Collapse
|
6
|
Contreras RG, Torres-Carrillo A, Flores-Maldonado C, Shoshani L, Ponce A. Na +/K +-ATPase: More than an Electrogenic Pump. Int J Mol Sci 2024; 25:6122. [PMID: 38892309 PMCID: PMC11172918 DOI: 10.3390/ijms25116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium pump, or Na+/K+-ATPase (NKA), is an essential enzyme found in the plasma membrane of all animal cells. Its primary role is to transport sodium (Na+) and potassium (K+) ions across the cell membrane, using energy from ATP hydrolysis. This transport creates and maintains an electrochemical gradient, which is crucial for various cellular processes, including cell volume regulation, electrical excitability, and secondary active transport. Although the role of NKA as a pump was discovered and demonstrated several decades ago, it remains the subject of intense research. Current studies aim to delve deeper into several aspects of this molecular entity, such as describing its structure and mode of operation in atomic detail, understanding its molecular and functional diversity, and examining the consequences of its malfunction due to structural alterations. Additionally, researchers are investigating the effects of various substances that amplify or decrease its pumping activity. Beyond its role as a pump, growing evidence indicates that in various cell types, NKA also functions as a receptor for cardiac glycosides like ouabain. This receptor activity triggers the activation of various signaling pathways, producing significant morphological and physiological effects. In this report, we present the results of a comprehensive review of the most outstanding studies of the past five years. We highlight the progress made regarding this new concept of NKA and the various cardiac glycosides that influence it. Furthermore, we emphasize NKA's role in epithelial physiology, particularly its function as a receptor for cardiac glycosides that trigger intracellular signals regulating cell-cell contacts, proliferation, differentiation, and adhesion. We also analyze the role of NKA β-subunits as cell adhesion molecules in glia and epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (R.G.C.); (A.T.-C.); (C.F.-M.); (L.S.)
| |
Collapse
|
7
|
Wu Y, Benson MA, Sun SX. Cell-Driven Fluid Dynamics: A Physical Model of Active Systemic Circulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594862. [PMID: 38826192 PMCID: PMC11142051 DOI: 10.1101/2024.05.19.594862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Active fluid circulation and transport are key functions of living organisms, which drive efficient delivery of oxygen and nutrients to various physiological compartments. Because fluid circulation occurs in a network, the systemic flux and pressure are not simple outcomes of any given component. Rather, they are emergent properties of network elements and network topology. Moreover, consistent pressure and osmolarity gradients across compartments such as the kidney, interstitium, and vessels are known. How these gradients and network properties are established and maintained is an unanswered question in systems physiology. Previous studies have shown that epithelial cells are fluid pumps that actively generate pressure and osmolarity gradients. Polarization and activity of ion exchangers that drive fluid flux in epithelial cells are affected by pressure and osmolarity gradients. Therefore, there is an unexplored coupling between the pressure and osmolarity in the circulating network. Here we develop a mathematical theory that integrates the influence of pressure and osmolarity on solute transport and explores both cell fluid transport and systemic circulation. This model naturally generates pressure and osmolarity gradients across physiological compartments, and demonstrates how systemic transport properties can depend on cell properties, and how the cell state can depend on systemic properties. When epithelial and endothelial pumps are considered together, we predict how pressures at various points in the network depend on the overall osmolarity of the system. The model can be improved by including physiological geometries and expanding solute species, and highlights the interplay of fluid properties with cell function in living organisms.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Morgan A. Benson
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Shim G, Breinyn IB, Martínez-Calvo A, Rao S, Cohen DJ. Bioelectric stimulation controls tissue shape and size. Nat Commun 2024; 15:2938. [PMID: 38580690 PMCID: PMC10997591 DOI: 10.1038/s41467-024-47079-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues sheath organs and electro-mechanically regulate ion and water transport to regulate development, homeostasis, and hydrostatic organ pressure. Here, we demonstrate how external electrical stimulation allows us to control these processes in living tissues. Specifically, we electrically stimulate hollow, 3D kidneyoids and gut organoids and find that physiological-strength electrical stimulation of ∼ 5 - 10 V/cm powerfully inflates hollow tissues; a process we call electro-inflation. Electro-inflation is mediated by increased ion flux through ion channels/transporters and triggers subsequent osmotic water flow into the lumen, generating hydrostatic pressure that competes against cytoskeletal tension. Our computational studies suggest that electro-inflation is strongly driven by field-induced ion crowding on the outer surface of the tissue. Electrically stimulated tissues also break symmetry in 3D resulting from electrotaxis and affecting tissue shape. The ability of electrical cues to regulate tissue size and shape emphasizes the role and importance of the electrical micro-environment for living tissues.
Collapse
Affiliation(s)
- Gawoon Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, 08540, NJ, USA
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, 08540, NJ, USA
| | - Alejandro Martínez-Calvo
- Princeton Center for Theoretical Science, Princeton University, Princeton, 08540, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, 08540, NJ, USA
| | - Sameeksha Rao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, 08540, NJ, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, 08540, NJ, USA.
| |
Collapse
|
9
|
Lewallen CF, Chien A, Maminishkis A, Hirday R, Reichert D, Sharma R, Wan Q, Bharti K, Forest CR. A biologically validated mathematical model for decoding epithelial apical, basolateral, and paracellular electrical properties. Am J Physiol Cell Physiol 2023; 325:C1470-C1484. [PMID: 37899750 PMCID: PMC10861025 DOI: 10.1152/ajpcell.00200.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Epithelial tissues form selective barriers to ions, nutrients, waste products, and infectious agents throughout the body. Damage to these barriers is associated with conditions such as celiac disease, cystic fibrosis, diabetes, and age-related macular degeneration. Conventional electrophysiology measurements like transepithelial resistance can quantify epithelial tissue maturity and barrier integrity but are limited in differentiating between apical, basolateral, and paracellular transport pathways. To overcome this limitation, a combination of mathematical modeling, stem cell biology, and cell physiology led to the development of 3 P-EIS, a novel mathematical model and measurement technique. 3 P-EIS employs an intracellular pipette and extracellular electrochemical impedance spectroscopy to accurately measure membrane-specific properties of epithelia, without the constraints of prior models. 3 P-EIS was validated using electronic circuit models of epithelia with known resistances and capacitances, confirming a median error of 19% (interquartile range: 14%-26%) for paracellular and transcellular resistances and capacitances (n = 5). Patient stem cell-derived retinal pigment epithelium tissues were measured using 3 P-EIS, successfully isolating the cellular responses to adenosine triphosphate. 3 P-EIS enhances quality control in epithelial cell therapies and has extensive applicability in drug testing and disease modeling, marking a significant advance in epithelial physiology.NEW & NOTEWORTHY This interdisciplinary paper integrates mathematics, biology, and physiology to measure epithelial tissue's apical, basolateral, and paracellular transport pathways. A key advancement is the inclusion of intracellular voltage recordings using a sharp pipette, enabling precise quantification of relative impedance changes between apical and basolateral membranes. This enhanced electrochemical impedance spectroscopy technique offers insights into epithelial transport dynamics, advancing disease understanding, drug interactions, and cell therapies. Its broad applicability contributes significantly to epithelial physiology research.
Collapse
Affiliation(s)
- Colby F Lewallen
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Athena Chien
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Arvydas Maminishkis
- Translational Research CORE, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Rishabh Hirday
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Dominik Reichert
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Qin Wan
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Craig R Forest
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
10
|
Ponce A, Larre I, Jimenez L, Roldán ML, Shoshani L, Cereijido M. Ouabain's Influence on TRPV4 Channels of Epithelial Cells: An Exploration of TRPV4 Activity, Expression, and Signaling Pathways. Int J Mol Sci 2023; 24:16687. [PMID: 38069012 PMCID: PMC10705919 DOI: 10.3390/ijms242316687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Ouabain, a substance originally obtained from plants, is now classified as a hormone because it is produced endogenously in certain animals, including humans. However, its precise effects on the body remain largely unknown. Previous studies have shown that ouabain can influence the phenotype of epithelial cells by affecting the expression of cell-cell molecular components and voltage-gated potassium channels. In this study, we conducted whole-cell clamp assays to determine whether ouabain affects the activity and/or expression of TRPV4 channels. Our findings indicate that ouabain has a statistically significant effect on the density of TRPV4 currents (dITRPV4), with an EC50 of 1.89 nM. Regarding treatment duration, dITRPV4 reaches its peak at around 1 h, followed by a subsequent decline and then a resurgence after 6 h, suggesting a short-term modulatory effect related to on TRPV4 channel activity and a long-term effect related to the promotion of synthesis of new TRPV4 channel units. The enhancement of dITRPV4 induced by ouabain was significantly lower in cells seeded at low density than in cells in a confluent monolayer, indicating that the action of ouabain depends on intercellular contacts. Furthermore, the fact that U73122 and neomycin suppress the effect caused by ouabain in the short term suggests that the short-term induced enhancement of dITRPV4 is due to the depletion of PIP2 stores. In contrast, the fact that the long-term effect is inhibited by PP2, wortmannin, PD, FR18, and IKK16 suggests that cSrc, PI3K, Erk1/2, and NF-kB are among the components included in the signaling pathways.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (L.J.); (M.L.R.); (L.S.); (M.C.)
| | - Isabel Larre
- Department of Physiology, Faculty of Medicine, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico;
- Department of Clinical and Translational Science, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lidia Jimenez
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (L.J.); (M.L.R.); (L.S.); (M.C.)
| | - Maria Luisa Roldán
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (L.J.); (M.L.R.); (L.S.); (M.C.)
| | - Liora Shoshani
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (L.J.); (M.L.R.); (L.S.); (M.C.)
| | - Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (L.J.); (M.L.R.); (L.S.); (M.C.)
| |
Collapse
|
11
|
Campos-Blázquez JP, Flores-Maldonado C, Gallardo JM, Bonilla-Delgado J, Pedraza-Ramírez AA, López-Méndez O, Cortés-Malagón EM, Contreras RG. Ouabain promotes claudin-1, -2, and -4 autophagic degradation through oxidative stress and AMPK activation in MDCK cells. AUTOPHAGY REPORTS 2023; 2:2256146. [PMID: 40395300 PMCID: PMC12005440 DOI: 10.1080/27694127.2023.2256146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Epithelial cells transport substances through the cellular and paracellular pathways. The last one depends on tight junctions, particularly on claudins, the family of integral membrane proteins responsible for the permeability and selectivity of these junctions. 300 nM ouabain (OUA) induces endocytosis and lysosomal degradation of claudin-2 and -4 in an Src and ERK1/2 kinases-dependent manner. Here we investigate whether OUA-induced lysosomal degradation of claudins implicates autophagy in renal epithelial Madin-Darby canine kidney cells. During autophagy, LC3 protein binds phosphatidylethanolamine and incorporates, together with protein p62, into the phagophore. Subsequently, the autolysosome degrades both LC3 and p62 proteins. OUA's occupancy of its site in the Na⁺/K⁺ATPase (300 nM, 10 h) increases autophagic flux because of degradation of LC3 and p62 and an increase in the number of autophagosomes, as detected by fluorescent LC3 and p62 puncta and the rise in autolysosomes seen by the GFP-LC3-RFP probe. Finally, OUA increases the colocalisation of claudin-1, -2, or -4 with p62 in these puncta. OUA induces autophagy increasing reactive oxygen species generation that activates AMP-activated protein kinase, phosphorylating ULK1 at S555. The autophagy inducer rapamycin causes a degradation of the studied claudins comparable to the one generated by OUA. Furthermore, the autophagy inhibitor dorsomorphin blocks OUA-induced autophagy and claudin-1, -2, and -4 degradation. These results demonstrated that OUA induces claudin-1, -2, and -4 autophagy through oxidative stress. Abbreviations: AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATP: Adenosine triphosphate; DM: dorsomorphin; EGFR: epidermal growth factor receptor; ERK: extracellular signal-regulated kinase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; LC3: microtubule-associated protein 1A/1B-light chain 3; MDCK: Madin-Darby canine kidney; mTOR: mammalian target of rapamycin; NAC: N-acetylcysteine; OUA: ouabain; PCC: Pearson's correlation coefficient; PE: phosphatidylethanolamine, Rapa: rapamycin; ROS: reactive oxygen species; SNK: Student-Newman-Keuls; TER: transepithelial electrical resistance; TJs: tight junctions; ULK1: Unc-51-like kinase 1.
Collapse
Affiliation(s)
- Jessica P. Campos-Blázquez
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Catalina Flores-Maldonado
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Juan M. Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional “Siglo XXI” Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José Bonilla-Delgado
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, and Department of Biotechnology, Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Toluca, Mexico
| | - Alan A. Pedraza-Ramírez
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Octavio López-Méndez
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the IPN (Cinvestav-IPN), Mexico City, Mexico
| | | | - Rubén G. Contreras
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the IPN (Cinvestav-IPN), Mexico City, Mexico
| |
Collapse
|
12
|
Martínez-Rendón J, Hinojosa L, Xoconostle-Cázares B, Ramírez-Pool JA, Castillo A, Cereijido M, Ponce A. Ouabain Induces Transcript Changes and Activation of RhoA/ROCK Signaling in Cultured Epithelial Cells (MDCK). Curr Issues Mol Biol 2023; 45:7538-7556. [PMID: 37754259 PMCID: PMC10528288 DOI: 10.3390/cimb45090475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Ouabain, an organic compound with the ability to strengthen the contraction of the heart muscle, was originally derived from plants. It has been observed that certain mammalian species, including humans, naturally produce ouabain, leading to its classification as a new type of hormone. When ouabain binds to Na+/K+-ATPase, it elicits various physiological effects, although these effects are not well characterized. Previous studies have demonstrated that ouabain, within the concentration range found naturally in the body (10 nmol/L), affects the polarity of epithelial cells and their intercellular contacts, such as tight junctions, adherens junctions, and gap junctional communication. This is achieved by activating signaling pathways involving cSrc and Erk1/2. To further investigate the effects of ouabain within the hormonally relevant concentration range (10 nmol/L), mRNA-seq, a high-throughput sequencing technique, was employed to identify differentially expressed transcripts. The discovery that the transcript encoding MYO9A was among the genes affected prompted an exploration of whether RhoA and its downstream effector ROCK were involved in the signaling pathways through which ouabain influences cell-to-cell contacts in epithelial cells. Supporting this hypothesis, this study reveals the following: (1) Ouabain increases the activation of RhoA. (2) Treatment with inhibitors of RhoA activation (Y27) and ROCK (C3) eliminates the enhancing effect of ouabain on the tight junction seal and intercellular communication via gap junctions. These findings further support the notion that ouabain acts as a hormone to emphasize the epithelial phenotype.
Collapse
Affiliation(s)
- Jacqueline Martínez-Rendón
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (J.M.-R.); (L.H.); (A.C.); (M.C.)
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Campus UAZ Siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Lorena Hinojosa
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (J.M.-R.); (L.H.); (A.C.); (M.C.)
| | - Beatriz Xoconostle-Cázares
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, Ciudad de Mexico 07360, Mexico; (B.X.-C.); (J.A.R.-P.)
| | - José Abrahán Ramírez-Pool
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, Ciudad de Mexico 07360, Mexico; (B.X.-C.); (J.A.R.-P.)
| | - Aída Castillo
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (J.M.-R.); (L.H.); (A.C.); (M.C.)
| | - Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (J.M.-R.); (L.H.); (A.C.); (M.C.)
| | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (J.M.-R.); (L.H.); (A.C.); (M.C.)
| |
Collapse
|
13
|
Maupérin M, Sassi A, Méan I, Feraille E, Citi S. Knock Out of CGN and CGNL1 in MDCK Cells Affects Claudin-2 but Has a Minor Impact on Tight Junction Barrier Function. Cells 2023; 12:2004. [PMID: 37566083 PMCID: PMC10417749 DOI: 10.3390/cells12152004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Cingulin (CGN) and paracingulin (CGNL1) are cytoplasmic proteins of tight junctions (TJs), where they play a role in tethering ZO-1 to the actomyosin and microtubule cytoskeletons. The role of CGN and CGNL1 in the barrier function of epithelia is not completely understood. Here, we analyzed the effect of the knock out (KO) of either CGN or CGNL1 or both on the paracellular permeability of monolayers of kidney epithelial (MDCK) cells. KO cells displayed a modest but significant increase in the transepithelial resistance (TER) of monolayers both in the steady state and during junction assembly by the calcium switch, whereas the permeability of the monolayers to 3 kDa dextran was not affected. The permeability to sodium was slightly but significantly decreased in KO cells. This phenotype correlated with slightly increased mRNA levels of claudin-2, slightly decreased protein levels of claudin-2, and reduced junctional accumulation of claudin-2, which was rescued by CGN or CGNL1 but not by ZO-1 overexpression. These results confirm previous observations indicating that CGN and CGNL1 are dispensable for the barrier function of epithelia and suggest that the increase in the TER in clonal lines of MDCK cells KO for CGN, CGNL1, or both is due to reduced protein expression and junctional accumulation of the sodium pore-forming claudin, claudin-2.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Ali Sassi
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Eric Feraille
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
14
|
Lorentzen EM, Henriksen S, Rinaldo CH. Modelling BK Polyomavirus dissemination and cytopathology using polarized human renal tubule epithelial cells. PLoS Pathog 2023; 19:e1011622. [PMID: 37639485 PMCID: PMC10491296 DOI: 10.1371/journal.ppat.1011622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Most humans have a lifelong imperceptible BK Polyomavirus (BKPyV) infection in epithelial cells lining the reno-urinary tract. In kidney transplant recipients, unrestricted high-level replication of donor-derived BKPyV in the allograft underlies polyomavirus-associated nephropathy, a condition with massive epithelial cell loss and inflammation causing premature allograft failure. There is limited understanding on how BKPyV disseminates throughout the reno-urinary tract and sometimes causes kidney damage. Tubule epithelial cells are tightly connected and have unique apical and basolateral membrane domains with highly specialized functions but all in vitro BKPyV studies have been performed in non-polarized cells. We therefore generated a polarized cell model of primary renal proximal tubule epithelial cells (RPTECs) and characterized BKPyV entry and release. After 8 days on permeable inserts, RPTECs demonstrated apico-basal polarity. BKPyV entry was most efficient via the apical membrane, that in vivo faces the tubular lumen, and depended on sialic acids. Progeny release started between 48 and 58 hours post-infection (hpi), and was exclusively detected in the apical compartment. From 72 hpi, cell lysis and detachment gradually increased but cells were mainly shed by extrusion and the barrier function was therefore maintained. The decoy-like cells were BKPyV infected and could transmit BKPyV to uninfected cells. By 120 hpi, the epithelial barrier was disrupted by severe cytopathic effects, and BKPyV entered the basolateral compartment mimicking the interstitial space. Addition of BKPyV-specific neutralizing antibodies to this compartment inhibited new infections. Taken together, we propose that during in vivo low-level BKPyV replication, BKPyV disseminates inside the tubular system, thereby causing minimal damage and delaying immune detection. However, in kidney transplant recipients lacking a well-functioning immune system, replication in the allograft will progress and eventually cause denudation of the basement membrane, leading to an increased number of decoy cells, high-level BKPyV-DNAuria and DNAemia, the latter a marker of allograft damage.
Collapse
Affiliation(s)
- Elias Myrvoll Lorentzen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stian Henriksen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Cacheux J, Bancaud A, Alcaide D, Suehiro JI, Akimoto Y, Sakurai H, Matsunaga YT. Endothelial tissue remodeling induced by intraluminal pressure enhances paracellular solute transport. iScience 2023; 26:107141. [PMID: 37416478 PMCID: PMC10320514 DOI: 10.1016/j.isci.2023.107141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
The endothelial layers of the microvasculature regulate the transport of solutes to the surrounding tissues. It remains unclear how this barrier function is affected by blood flow-induced intraluminal pressure. Using a 3D microvessel model, we compare the transport of macromolecules through endothelial tissues at mechanical rest or with intraluminal pressure, and correlate these data with electron microscopy of endothelial junctions. On application of an intraluminal pressure of 100 Pa, we demonstrate that the flow through the tissue increases by 2.35 times. This increase is associated with a 25% expansion of microvessel diameter, which leads to tissue remodeling and thinning of the paracellular junctions. We recapitulate these data with the deformable monopore model, in which the increase in paracellular transport is explained by the augmentation of the diffusion rate across thinned junctions under mechanical stress. We therefore suggest that the deformation of microvasculatures contributes to regulate their barrier function.
Collapse
Affiliation(s)
- Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Aurélien Bancaud
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
- CNRS, LAAS, 7 Avenue Du Colonel Roche, 31400 Toulouse, France
| | - Daniel Alcaide
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Jun-Ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Yukiko T. Matsunaga
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
16
|
Miyazaki S, Otani T, Sugihara K, Fujimori T, Furuse M, Miura T. Mechanism of interdigitation formation at apical boundary of MDCK cell. iScience 2023; 26:106594. [PMID: 37250331 PMCID: PMC10214399 DOI: 10.1016/j.isci.2023.106594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
It has been reported that the MDCK cell tight junction shows stochastic fluctuation and forms the interdigitation structure, but the mechanism of the pattern formation remains to be elucidated. In the present study, we first quantified the shape of the cell-cell boundary at the initial phase of pattern formation. We found that the Fourier transform of the boundary shape shows linearity in the log-log plot, indicating the existence of scaling. Next, we tested several working hypotheses and found that the Edwards-Wilkinson equation, which consists of stochastic movement and boundary shortening, can reproduce the scaling property. Next, we examined the molecular nature of stochastic movement and found that myosin light chain puncta may be responsible. Quantification of boundary shortening indicates that mechanical property change may also play some role. Physiological meaning and scaling properties of the cell-cell boundary are discussed.
Collapse
Affiliation(s)
- Shintaro Miyazaki
- Academic Society of Mathematical Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tetsuhisa Otani
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | - Mikio Furuse
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
17
|
Kim YS, Yuan J, Dewar A, Borg JP, Threadgill DW, Sun X, Dey SK. An unanticipated discourse of HB-EGF with VANGL2 signaling during embryo implantation. Proc Natl Acad Sci U S A 2023; 120:e2302937120. [PMID: 37155852 PMCID: PMC10193979 DOI: 10.1073/pnas.2302937120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Implantation is the first direct encounter between the embryo and uterus during pregnancy, and Hbegf is the earliest known molecular signaling for embryo-uterine crosstalk during implantation. The downstream effectors of heparin-binding EGF (HB-EGF) in implantation remain elusive due to the complexity of EGF receptor family. This study shows that the formation of implantation chamber (crypt) triggered by HB-EGF is disrupted by uterine deletion of Vangl2, a key planar cell polarity component (PCP). We found that HB-EGF binds to ERBB2 and ERBB3 to recruit VANGL2 for tyrosine phosphorylation. Using in vivo models, we show that uterine VAGL2 tyrosine phosphorylation is suppressed in Erbb2/Erbb3 double conditional knockout mice. In this context, severe implantation defects in these mice lend support to the critical role of HB-EGF-ERBB2/3-VANGL2 in establishing a two-way dialogue between the blastocyst and uterus. In addition, the result addresses an outstanding question how VANGL2 is activated during implantation. Taken together, these observations reveal that HB-EGF regulates the implantation process by influencing uterine epithelial cell polarity comprising VANGL2.
Collapse
Affiliation(s)
- Yeon Sun Kim
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Jia Yuan
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Amanda Dewar
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer - Equipe labellisée Ligue Contre le Cancer, 13009Marseille, France
- Institut Universitaire de France, 73231Paris, France
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A & M University, College Station, TX77843
| | - Xiaofei Sun
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| | - Sudhansu K. Dey
- Center of Reproductive Sciences, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45299
| |
Collapse
|
18
|
Dawney NS, Cammarota C, Jia Q, Shipley A, Glichowski JA, Vasandani M, Finegan TM, Bergstralh DT. A novel tool for the unbiased characterization of epithelial monolayer development in culture. Mol Biol Cell 2023; 34:ar25. [PMID: 36696175 PMCID: PMC10092640 DOI: 10.1091/mbc.e22-04-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The function of an epithelial tissue is intertwined with its architecture. Epithelial tissues are often described as pseudo-two-dimensional, but this view may be partly attributed to experimental bias: many model epithelia, including cultured cell lines, are easiest to image from the "top-down." We measured the three-dimensional architecture of epithelial cells in culture and found that it varies dramatically across cultured regions, presenting a challenge for reproducibility and cross-study comparisons. We therefore developed a novel tool (Automated Layer Analysis, "ALAn") to characterize architecture in an unbiased manner. Using ALAn, we find that cultured epithelial cells can organize into four distinct architectures and that architecture correlates with cell density. Cells exhibit distinct biological properties in each architecture. Organization in the apical-basal axis is determined early in monolayer development by substrate availability, while disorganization in the apical-basal axis arises from an inability to form substrate connections. Our work highlights the need to carefully control for three-dimensional architecture when using cell culture as a model system for epithelial cell biology and introduces a novel tool, built on a set of rules that can be widely applied to epithelial cell culture.
Collapse
Affiliation(s)
- Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Christian Cammarota
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627
| | - Qingyuan Jia
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Alicia Shipley
- Department of Biology, University of Rochester, Rochester, NY 14627
| | | | | | - Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627
| |
Collapse
|
19
|
Cereijido M, Jimenez L, Hinojosa L, Castillo A, Martínez-Rendon J, Ponce A. Ouabain-Induced Changes in the Expression of Voltage-Gated Potassium Channels in Epithelial Cells Depend on Cell-Cell Contacts. Int J Mol Sci 2022; 23:13257. [PMID: 36362049 PMCID: PMC9655981 DOI: 10.3390/ijms232113257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/25/2023] Open
Abstract
Ouabain is a cardiac glycoside, initially isolated from plants, and currently thought to be a hormone since some mammals synthesize it endogenously. It has been shown that in epithelial cells, it induces changes in properties and components related to apical-basolateral polarity and cell-cell contacts. In this work, we used a whole-cell patch clamp to test whether ouabain affects the properties of the voltage-gated potassium currents (Ik) of epithelial cells (MDCK). We found that: (1) in cells arranged as mature monolayers, ouabain induced changes in the properties of Ik; (2) it also accelerated the recovery of Ik in cells previously trypsinized and re-seeded at confluence; (3) in cell-cell contact-lacking cells, ouabain did not produce a significant change; (4) Na+/K+ ATPase might be the receptor that mediates the effect of ouabain on Ik; (5) the ouabain-induced changes in Ik required the synthesis of new nucleotides and proteins, as well as Golgi processing and exocytosis, as evidenced by treatment with drugs inhibiting those processes; and (5) the signaling cascade included the participation of cSrC, PI3K, Erk1/2, NF-κB and β-catenin. These results reveal a new role for ouabain as a modulator of the expression of voltage-gated potassium channels, which require cells to be in contact with themselves.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Lidia Jimenez
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Lorena Hinojosa
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Aida Castillo
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Jacqueline Martínez-Rendon
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ Siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| |
Collapse
|
20
|
Myconoside Affects the Viability of Polarized Epithelial MDCKII Cell Line by Interacting with the Plasma Membrane and the Apical Junctional Complexes. SEPARATIONS 2022. [DOI: 10.3390/separations9090239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenyl glycoside myconoside, extracted from Balkan endemic Haberlea rhodopensis, has a positive effect on human health, but the exact molecular mechanism of its action is still unknown. The cell membrane and its associated junctional complex are the first targets of exogenous compound action. We aimed to study the effect of myconoside on membrane organization and cytoskeleton components involved in the maintenance of cell polarity in the MDCKII cell line. By fluorescent spectroscopy and microscopy, we found that at low concentrations, myconoside increases the cell viability by enhancing membrane lipid order and adherent junctions. The opposite effect is observed in high myconoside doses. We hypothesized that the cell morphological and physicochemical changes of the analyzed cell compartments are directly related to cell viability and cell apical-basal polarity. Our finding contributes to a better understanding of the beneficial application of phytochemical myconoside in pharmacology and medicine.
Collapse
|
21
|
Takeuchi H, Kato Y, Sasaki N, Tanigaki K, Yamaga S, Mita E, Kuboniwa M, Matsusaki M, Amano A. Surface pre-reacted glass-ionomer eluate protects gingival epithelium from penetration by lipopolysaccharides and peptidoglycans via transcription factor EB pathway. PLoS One 2022; 17:e0271192. [PMID: 35895663 PMCID: PMC9328573 DOI: 10.1371/journal.pone.0271192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Surface pre-reacted glass-ionomer (S-PRG) filler, produced by PRG technology for use with various dental materials, is bioactive and known to release ions from a glass-ionomer phase. We previously reported that coxsackievirus and adenovirus receptor (CXADR), a tight junction associated protein, was located in the epithelial barrier of gingival epithelium. In the present study, the tissue protective effects of an S-PRG eluate prepared with S-PRG filler were investigated using a three-dimensional human gingival epithelial tissue model. The results showed that the S-PRG eluate specifically induced CXADR expression at the transcriptional level of messenger RNA as well as the protein level, and also nuclear translocation of transcription factor EB (TFEB) in gingival epithelial cells. Furthermore, shigyakusan, a TFEB inhibitor, canceled induction of the CXADR protein by the S-PRG eluate. Additionally, gingival epithelial permeation by 40-kDa dextran, lipopolysaccharide, and peptidoglycan in the 3D-tissue models was prevented by the eluate, with those effects abrogated by knockdown of CXADR. These findings suggest that S-PRG eluate increases CXADR expression via the TFEB pathway, thus inhibiting penetration of bacterial virulence factors into subepithelial tissues.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Yuta Kato
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Keita Tanigaki
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Ena Mita
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
22
|
Hoffmann LA, Carenza LN, Eckert J, Giomi L. Theory of defect-mediated morphogenesis. SCIENCE ADVANCES 2022; 8:eabk2712. [PMID: 35427161 PMCID: PMC9012457 DOI: 10.1126/sciadv.abk2712] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Growing experimental evidence indicates that topological defects could serve as organizing centers in the morphogenesis of tissues. Here, we provide a quantitative explanation for this phenomenon, rooted in the buckling theory of deformable active polar liquid crystals. Using a combination of linear stability analysis and computational fluid dynamics, we demonstrate that active layers, such as confined cell monolayers, are unstable to the formation of protrusions in the presence of disclinations. The instability originates from an interplay between the focusing of the elastic forces, mediated by defects, and the renormalization of the system's surface tension by the active flow. The posttransitional regime is also characterized by several complex morphodynamical processes, such as oscillatory deformations, droplet nucleation, and active turbulence. Our findings offer an explanation of recent observations on tissue morphogenesis and shed light on the dynamics of active surfaces in general.
Collapse
Affiliation(s)
- Ludwig A. Hoffmann
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
| | - Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, Netherlands
- Corresponding author.
| |
Collapse
|
23
|
Brooks JR, Mungloo I, Mirfendereski S, Quint JP, Paul D, Jaberi A, Park JS, Yang R. An equivalent circuit model for localized electroporation on porous substrates. Biosens Bioelectron 2022; 199:113862. [PMID: 34923307 PMCID: PMC8741749 DOI: 10.1016/j.bios.2021.113862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
In vitro intracellular delivery is a fundamental challenge with no widely adopted methods capable of both delivering to millions of cells and controlling that delivery to a high degree of accuracy. One promising method is porous substrate electroporation (PSEP), where cells are cultured on porous substrates and electric fields are used to permeabilize discrete portions of the cell membrane for delivery. A major obstacle to the widespread use of PSEP is a poor understanding of the various impedances that constitute the system, including the impedances of the porous substrate and the cell monolayer, and how these impedances are influenced by experimental parameters. In response, we used impedance measurements to develop an equivalent circuit model that closely mimics the behavior of each of the main components of the PSEP system. This circuit model reveals for the first time the distribution of voltage across the electrode-electrolyte interface impedances, the channels of the porous substrate, the cell monolayer, and the transmembrane potential during PSEP. We applied sample waveforms through our model to understand how waveforms can be improved for future studies. Our model was validated from intracellular delivery of protein using PSEP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ruiguo Yang
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
24
|
Pongkorpsakol P, Satianrapapong W, Wongkrasant P, Steinhagen PR, Tuangkijkul N, Pathomthongtaweechai N, Muanprasat C. Establishment of Intestinal Epithelial Cell Monolayers and Their Use in Calcium Switch Assay for Assessment of Intestinal Tight Junction Assembly. Methods Mol Biol 2022; 2367:273-290. [PMID: 33861461 DOI: 10.1007/7651_2021_347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Intestinal barrier function relies primarily on the assembly and integrity of tight junctions, which forms a size-selective barrier. This barrier restricts paracellular movement of solutes in various types of epithelia. Of note, extracellular Ca2+ concentration affects tight junction assembly. Therefore, the removal and re-addition of Ca2+ into cell culture medium of cultured intestinal epithelial cells causes destabilization and reassembly of tight junction to membrane periphery near apical surface, respectively. Based on this principle, the Ca2+-switch assay was established to investigate tight junction assembly in fully differentiated intestinal epithelial cells. This chapter provides a stepwise protocol for culture of intestinal epithelial cell monolayers using T84 cell line as an in vitro model and the Ca2+-switch assay for evaluating tight junction assembly.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Wilasinee Satianrapapong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | - Nuttha Tuangkijkul
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
25
|
Zhao B, Fan Y, Li H, Zhang C, Han R, Che D. Mitigative effects of Eleutheroside E against the mechanical barrier dysfunction induced by soybean agglutinin in IPEC-J2 cell line. J Anim Physiol Anim Nutr (Berl) 2022; 106:664-670. [PMID: 35014099 DOI: 10.1111/jpn.13677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 01/20/2023]
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor which decreases the mechanical barrier function in intestinal porcine jejunum epithelial cells (IPEC-J2). Eleutheroside E (EE) is a key part of Acanthopanax senticosus to exert pharmacological effects. This study aims to investigate the effects of EE on the barrier function in IPEC-J2 cells and to determine the ability of EE to enhance the protective effect of barrier function against SBA exposure. The IPEC-J2 cells were cultured in mediums with concentration of 0.1 mg/ml EE, 0.5 ml/ml SBA and 0.1 mg/ml EE pre-treated then treated with 0.5 mg/ml SBA. Then, the transepithelial electric resistance (TEER) value, inflammatory cytokines mRNA expression, tight junction mRNA and protein expression were tested by epithelial Voltohm meter, q-PCR and Western blot method respectively. The results showed that cells treated with 0.1 mg/ml EE had lower permeability (p < 0.05) while 0.5 mg/ml SBA treatment had higher permeability through tested TEER, and higher tight junction proteins (Claudin-3 and ZO-1) expressions and genes (Claudin-3, Occludin and ZO-1) expressions (p < 0.05) in 0.1 mg/ml EE group. IPEC-J2 cells pre-treated with 0.1 mg/ml EE could significantly improve the inflammatory response caused by 0.5 mg/ml SBA by up-regulation for IL-10, TGF-β, and down-regulation gene expression of IL-6, TNF-α and IFN-γ (p < 0.05). In conclusion, 0.1 mg/ml EE can improve the mechanical barrier function and could protect the effects while 0.5 mg/ml of SBA-induced barrier dysfunction in IPEC-J2.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huijuan Li
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- College of Animal Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Rui Han
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
26
|
Ajalik RE, Alenchery RG, Cognetti JS, Zhang VZ, McGrath JL, Miller BL, Awad HA. Human Organ-on-a-Chip Microphysiological Systems to Model Musculoskeletal Pathologies and Accelerate Therapeutic Discovery. Front Bioeng Biotechnol 2022; 10:846230. [PMID: 35360391 PMCID: PMC8964284 DOI: 10.3389/fbioe.2022.846230] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Human Microphysiological Systems (hMPS), otherwise known as organ- and tissue-on-a-chip models, are an emerging technology with the potential to replace in vivo animal studies with in vitro models that emulate human physiology at basic levels. hMPS platforms are designed to overcome limitations of two-dimensional (2D) cell culture systems by mimicking 3D tissue organization and microenvironmental cues that are physiologically and clinically relevant. Unlike animal studies, hMPS models can be configured for high content or high throughput screening in preclinical drug development. Applications in modeling acute and chronic injuries in the musculoskeletal system are slowly developing. However, the complexity and load bearing nature of musculoskeletal tissues and joints present unique challenges related to our limited understanding of disease mechanisms and the lack of consensus biomarkers to guide biological therapy development. With emphasis on examples of modeling musculoskeletal tissues, joints on chips, and organoids, this review highlights current trends of microphysiological systems technology. The review surveys state-of-the-art design and fabrication considerations inspired by lessons from bioreactors and biological variables emphasizing the role of induced pluripotent stem cells and genetic engineering in creating isogenic, patient-specific multicellular hMPS. The major challenges in modeling musculoskeletal tissues using hMPS chips are identified, including incorporating biological barriers, simulating joint compartments and heterogenous tissue interfaces, simulating immune interactions and inflammatory factors, simulating effects of in vivo loading, recording nociceptors responses as surrogates for pain outcomes, modeling the dynamic injury and healing responses by monitoring secreted proteins in real time, and creating arrayed formats for robotic high throughput screens. Overcoming these barriers will revolutionize musculoskeletal research by enabling physiologically relevant, predictive models of human tissues and joint diseases to accelerate and de-risk therapeutic discovery and translation to the clinic.
Collapse
Affiliation(s)
- Raquel E. Ajalik
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Rahul G. Alenchery
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - John S. Cognetti
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Victor Z. Zhang
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Benjamin L. Miller
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Dermatology, University of Rochester, Rochester, NY, United States
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- *Correspondence: Hani A. Awad,
| |
Collapse
|
27
|
Cell3: a new vision for study of the endomembrane system in mammalian cells. Biosci Rep 2021; 41:230388. [PMID: 34874399 PMCID: PMC8655501 DOI: 10.1042/bsr20210850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The endomembrane system of mammalian cells provides massive capacity for the segregation of biochemical reactions into discrete locations. The individual organelles of the endomembrane system also require the ability to precisely transport material between these compartments in order to maintain cell homeostasis; this process is termed membrane traffic. For several decades, researchers have been systematically identifying and dissecting the molecular machinery that governs membrane trafficking pathways, with the overwhelming majority of these studies being carried out in cultured cells growing as monolayers. In recent years, a number of methodological innovations have provided the opportunity for cultured cells to be grown as 3-dimensional (3D) assemblies, for example as spheroids and organoids. These structures have the potential to better replicate the cellular environment found in tissues and present an exciting new opportunity for the study of cell function. In this mini-review, we summarize the main methods used to generate 3D cell models and highlight emerging studies that have started to use these models to study basic cellular processes. We also describe a number of pieces of work that potentially provide the basis for adaptation for deeper study of how membrane traffic is coordinated in multicellular assemblies. Finally, we comment on some of the technological challenges that still need to be overcome if 3D cell biology is to become a mainstream tool toward deepening our understanding of the endomembrane system in mammalian cells.
Collapse
|
28
|
Cervero P, Vrenken K, Klose M, Rehm K, Linder S. Nectin stabilization at adherens junctions is counteracted by Rab5a-dependent endocytosis. Eur J Cell Biol 2021; 100:151184. [PMID: 34826799 DOI: 10.1016/j.ejcb.2021.151184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions undergo constant remodeling, which is crucial for the control of vascular integrity. Indeed, transport of junctional components such as cadherins is understood in increasing depth. However, little is known about the respective pathways regulating localization of nectin at cell-cell junctions. Here, we performed an siRNA-based screen of vesicle regulators of the RabGTPase family, leading to the identification of a novel role for Rab5a in the endocytosis nectin-2 at adherens junctions of primary human endothelial cells (HUVEC). Confocal microscopy experiments revealed disordered nectin-2 localization at adherens junctions upon Rab5a depletion. In addition, internalized nectin-2 was shown to prominently localize to Rab5a-positive vesicles in both fixed and living cells. As shown previously, nectin-2 stabilization at junctions is achieved via drebrin-dependent coupling to the subcortical actin cytoskeleton. Consistently, depletion of drebrin in this study leads to enhanced internalization of nectin-2 from junctions. Strikingly, simultaneous silencing of Rab5a and drebrin restored the junctional localization of nectin-2, pointing to Rab5a as counteracting the drebrin-dependent stabilization of nectin-2 at adherens junctions. This mechanism could be further validated by transendothelial resistance measurements. Collectively, our results identify Rab5a as a key player in the endocytosis of nectin-2 and thus in the regulation of adherens junction integrity in primary human endothelial cells.
Collapse
Affiliation(s)
- Pasquale Cervero
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kirsten Vrenken
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, P.O.Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Matthias Klose
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kerstin Rehm
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
29
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
30
|
Sugawara T, Furuse K, Otani T, Wakayama T, Furuse M. Angulin-1 seals tricellular contacts independently of tricellulin and claudins. J Cell Biol 2021; 220:e202005062. [PMID: 34269802 PMCID: PMC8289698 DOI: 10.1083/jcb.202005062] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tricellular tight junctions (tTJs) are specialized tight junctions (TJs) that seal the intercellular space at tricellular contacts (TCs), where the vertices of three epithelial cells meet. Tricellulin and angulin family membrane proteins are known constituents of tTJs, but the molecular mechanism of tTJ formation remains elusive. Here, we investigated the roles of angulin-1 and tricellulin in tTJ formation in MDCK II cells by genome editing. Angulin-1-deficient cells lost the plasma membrane contact at TCs with impaired epithelial barrier function. The C terminus of angulin-1 bound to the TJ scaffold protein ZO-1, and disruption of their interaction influenced the localization of claudins at TCs, but not the tricellular sealing. Strikingly, the plasma membrane contact at TCs was formed in tricellulin- or claudin-deficient cells. These findings demonstrate that angulin-1 is responsible for the plasma membrane seal at TCs independently of tricellulin and claudins.
Collapse
Affiliation(s)
- Taichi Sugawara
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| |
Collapse
|
31
|
Le Verge-Serandour M, Turlier H. A hydro-osmotic coarsening theory of biological cavity formation. PLoS Comput Biol 2021; 17:e1009333. [PMID: 34478457 PMCID: PMC8445475 DOI: 10.1371/journal.pcbi.1009333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/16/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Fluid-filled biological cavities are ubiquitous, but their collective dynamics has remained largely unexplored from a physical perspective. Based on experimental observations in early embryos, we propose a model where a cavity forms through the coarsening of myriad of pressurized micrometric lumens, that interact by ion and fluid exchanges through the intercellular space. Performing extensive numerical simulations, we find that hydraulic fluxes lead to a self-similar coarsening of lumens in time, characterized by a robust dynamic scaling exponent. The collective dynamics is primarily controlled by hydraulic fluxes, which stem from lumen pressures differences and are dampened by water permeation through the membrane. Passive osmotic heterogeneities play, on the contrary, a minor role on cavity formation but active ion pumping can largely modify the coarsening dynamics: it prevents the lumen network from a collective collapse and gives rise to a novel coalescence-dominated regime exhibiting a distinct scaling law. Interestingly, we prove numerically that spatially biasing ion pumping may be sufficient to position the cavity, suggesting a novel mode of symmetry breaking to control tissue patterning. Providing generic testable predictions, our model forms a comprehensive theoretical basis for hydro-osmotic interaction between biological cavities, that shall find wide applications in embryo and tissue morphogenesis.
Collapse
Affiliation(s)
- Mathieu Le Verge-Serandour
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS UMR7241, INSERM U1050, Paris, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS UMR7241, INSERM U1050, Paris, France
| |
Collapse
|
32
|
Shashikanth N, Rizzo HE, Pongkorpsakol P, Heneghan JF, Turner JR. Electrophysiologic Analysis of Tight Junction Size and Charge Selectivity. Curr Protoc 2021; 1:e143. [PMID: 34106526 DOI: 10.1002/cpz1.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tight junctions form selectively permeable barriers that limit paracellular flux across epithelial-lined surfaces. Rather than being absolute barriers, tight junctions in many tissues allow ions, water, and other small molecules to cross on the basis of size and charge selectivity via the high-capacity pore pathway. Most probes currently used to assess tight junction permeability exceed the maximum size capacity of the pore pathway. As a result, available analytical tools have generally been limited to measurement of transepithelial electrical resistances. These provide no information regarding size selectivity and, therefore, cannot be used to distinguish between the pore pathway and the leak pathway, a low-capacity route that accommodates larger macromolecules. This article describes use of dilution potential and bi-ionic potential measurements for analysis of tight junction size and charge selectivity within monolayers of cultured epithelial cells. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Culture of MDCK monolayers on semipermeable supports and induction of claudin-2 expression Basic Protocol 2: Configuring voltage/current clamp and other equipment Basic Protocol 3: Measuring dilution and bi-ionic potentials Basic Protocol 4: Calculating ion permeabilities and pore diameter Support Protocol: Preparation of agar bridges and electrophysiology rig setup.
Collapse
Affiliation(s)
- Nitesh Shashikanth
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Heather E Rizzo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pawin Pongkorpsakol
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - John F Heneghan
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Ouabain Enhances Gap Junctional Intercellular Communication by Inducing Paracrine Secretion of Prostaglandin E2. Int J Mol Sci 2021; 22:ijms22126244. [PMID: 34200582 PMCID: PMC8230150 DOI: 10.3390/ijms22126244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Ouabain is a cardiac glycoside that has been described as a hormone, with interesting effects on epithelial physiology. We have shown previously that ouabain induces gap junctional intercellular communication (GJIC) in wild, sensitive cells (MDCK-S), but not in cells that have become insensitive (MDCK-I) by modifying their Na+-K+-ATPase. We have also demonstrated that prostaglandin E2 (PGE2) is able to induce increased GJIC by a mechanism other than ouabain, that does not depend on Na+-K+-ATPase. In this work we show, by dye transfer assays, that when MDCK-S and MDCK-I are randomly mixed, to form monolayers, the latter stablish GJIC, because of stimulation by a compound released to the extracellular media, by MDCK-S cells, after treatment with ouabain, as evidenced by the fact that monolayers of only MDCK-I cells, treated with a conditioned medium (CM) that is obtained after incubation of MDCK-S monolayers with ouabain, significantly increase their GJIC. The further finding that either (1) pre-treatment with COX-2 inhibitors or (2) addition to CM of antagonists of EP2 receptor abolish CM's ability to induce GJIC in MDCK-I monolayers indicate that PGE2 is the GJIC-inducing compound. Therefore, these results indicate that, in addition to direct stimulation, mediated by Na+-K+-ATPase, ouabain enhances GJIC indirectly through the paracrine production of PGE2.
Collapse
|
34
|
Domínguez G, Cardiel E, Sánchez E, Hernández PR. Assessment of the effects of exposure to extremely low-frequency magnetic fields on MDCK epithelial cell lines under a controlled environment. JOURNAL OF RADIATION RESEARCH 2021; 62:259-268. [PMID: 33592097 PMCID: PMC7948907 DOI: 10.1093/jrr/rrab001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
To assess the effects of exposure to extremely low-frequency magnetic fields (ELF-MFs) on MDCK cell lines, experiments were performed in a chamber under controlled conditions (temperature, humidity and CO2). Therefore, the measured physicochemical and electrical changes in the cells are due solely to the magnetic field exposure and not to external factors. A developed sinusoidal magnetic field generator produced the ELF-MFs with a uniform magnetic field and adjustable intensity and frequency. Three experimental indicators were used: (i) transepithelial electrical impedance (TEEI); (ii) cell migration and proliferation; and (iii) expression of the proteins of the tight junctions, and changes in the area and shape of the cell nuclei. No significant effects on TEEI values were observed when 10 and 50 G 60 Hz magnetic fields were applied to confluent cell monolayers. There were no significant differences in migration and proliferation of the cell monolayer exposed to 60 Hz magnetic fields10 and 50 G , but a contact inhibition factor was observed. The expression of the CLDN-1 protein decreased by 90% compared with the control, while ZO-1 protein expression increased by 120%. No significant effects were observed in the area and shape of the cell nuclei. Experimentation in a controlled environment, under physiological conditions, ensures that the observed effects were strictly due to exposure to magnetic fields. Different exposure conditions are necessary to determine the impact on TEEI and cell migration-proliferation indicators.
Collapse
Affiliation(s)
- Gonzalo Domínguez
- Department of Electrical Engineering, Bioelectronics section, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Eladio Cardiel
- Department of Electrical Engineering, Bioelectronics section, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Elsa Sánchez
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | |
Collapse
|
35
|
Zhang C, Chen Y, Sun S, Zhang Y, Wang L, Luo Z, Liu M, Dong L, Dong N, Wu Q. A conserved LDL-receptor motif regulates corin and CD320 membrane targeting in polarized renal epithelial cells. eLife 2020; 9:56059. [PMID: 33136001 PMCID: PMC7605860 DOI: 10.7554/elife.56059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Selective protein distribution on distinct plasma membranes is important for epithelial cell function. To date, how proteins are directed to specific epithelial cell surface is not fully understood. Here we report a conserved DSSDE motif in LDL-receptor (LDLR) modules of corin (a transmembrane serine protease) and CD320 (a receptor for vitamin B12 uptake), which regulates apical membrane targeting in renal epithelial cells. Altering this motif prevents specific apical corin and CD320 expression in polarized Madin-Darby canine kidney (MDCK) cells. Mechanistic studies indicate that this DSSDE motif participates in a Rab11a-dependent mechanism that specifies apical sorting. In MDCK cells, inhibition of Rab11a, but not Rab11b, expression leads to corin and CD320 expression on both apical and basolateral membranes. Together, our results reveal a novel molecular recognition mechanism that regulates LDLR module-containing proteins in their specific apical expression in polarized renal epithelial cells.
Collapse
Affiliation(s)
- Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Liang Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| |
Collapse
|
36
|
Caron TJ, Scott KE, Sinha N, Muthupalani S, Baqai M, Ang LH, Li Y, Turner JR, Fox JG, Hagen SJ. Claudin-18 Loss Alters Transcellular Chloride Flux but not Tight Junction Ion Selectivity in Gastric Epithelial Cells. Cell Mol Gastroenterol Hepatol 2020; 11:783-801. [PMID: 33069918 PMCID: PMC7847960 DOI: 10.1016/j.jcmgh.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Tight junctions form a barrier to the paracellular passage of luminal antigens. Although most tight junction proteins reside within the apical tight junction complex, claudin-18 localizes mainly to the basolateral membrane where its contribution to paracellular ion transport is undefined. Claudin-18 loss in mice results in gastric neoplasia development and tumorigenesis that may or may not be due to tight junction dysfunction. The aim here was to investigate paracellular permeability defects in stomach mucosa from claudin-18 knockout (Cldn18-KO) mice. METHODS Stomach tissue from wild-type, heterozygous, or Cldn18-KO mice were stripped of the external muscle layer and mounted in Ussing chambers. Transepithelial resistance, dextran 4 kDa flux, and potential difference (PD) were calculated from the chambered tissues after identifying differences in tissue histopathology that were used to normalize these measurements. Marker expression for claudins and ion transporters were investigated by transcriptomic and immunostaining analysis. RESULTS No paracellular permeability defects were evident in stomach mucosa from Cldn18-KO mice. RNAseq identified changes in 4 claudins from Cldn18-KO mice, particularly the up-regulation of claudin-2. Although claudin-2 localized to tight junctions in cells at the base of gastric glands, its presence did not contribute overall to mucosal permeability. Stomach tissue from Cldn18-KO mice also had no PD versus a lumen-negative PD in tissues from wild-type mice. This difference resulted from changes in transcellular Cl- permeability with the down-regulation of Cl- loading and Cl- secreting anion transporters. CONCLUSIONS Our findings suggest that Cldn18-KO has no effect on tight junction permeability in the stomach from adult mice but rather affects anion permeability. The phenotype in these mice may thus be secondary to transcellular anion transporter expression/function in the absence of claudin-18.
Collapse
Affiliation(s)
- Tyler J Caron
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kathleen E Scott
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nishita Sinha
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mahnoor Baqai
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Lay-Hong Ang
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Yue Li
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Harvard Medical School, Boston, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Susan J Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
37
|
Uc PY, Miranda J, Raya-Sandino A, Alarcón L, Roldán ML, Ocadiz-Delgado R, Cortés-Malagón EM, Chávez-Munguía B, Ramírez G, Asomoza R, Shoshani L, Gariglio P, González-Mariscal L. E7 oncoprotein from human papillomavirus 16 alters claudins expression and the sealing of epithelial tight junctions. Int J Oncol 2020; 57:905-924. [PMID: 32945372 PMCID: PMC7473757 DOI: 10.3892/ijo.2020.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/16/2020] [Indexed: 11/24/2022] Open
Abstract
Tight junctions (TJs) are cell-cell adhesion structures frequently altered by oncogenic transformation. In the present study the role of human papillomavirus (HPV) 16 E7 oncoprotein on the sealing of TJs was investigated and also the expression level of claudins in mouse cervix and in epithelial Madin-Darby Canine Kidney (MDCK) cells. It was found that there was reduced expression of claudins -1 and -10 in the cervix of 7-month-old transgenic K14E7 mice treated with 17β-estradiol (E2), with invasive cancer. In addition, there was also a transient increase in claudin-1 expression in the cervix of 2-month-old K14E7 mice, and claudin-10 accumulated at the border of cells in the upper layer of the cervix in FvB mice treated with E2, and in K14E7 mice treated with or without E2. These changes were accompanied by an augmented paracellular permeability of the cervix in 2- and 7-monthold FvB mice treated with E2, which became more pronounced in K14E7 mice treated with or without E2. In MDCK cells the stable expression of E7 increased the space between adjacent cells and altered the architecture of the monolayers, induced the development of an acute peak of transepithelial electrical resistance accompanied by a reduced expression of claudins -1, -2 and -10, and an increase in claudin-4. Moreover, E7 enhances the ability of MDCK cells to migrate through a 3D matrix and induces cell stiffening and stress fiber formation. These observations revealed that cell transformation induced by HPV16 E7 oncoprotein was accompanied by changes in the pattern of expression of claudins and the degree of sealing of epithelial TJs.
Collapse
Affiliation(s)
- Perla Yaceli Uc
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - María Luisa Roldán
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Enoc Mariano Cortés-Malagón
- Research Unit on Genetics and Cancer, Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Georgina Ramírez
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - René Asomoza
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Liora Shoshani
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| |
Collapse
|
38
|
A Low Cost Antibody Signal Enhancer Improves Immunolabeling in Cell Culture, Primate Brain and Human Cancer Biopsy. Neuroscience 2020; 439:275-286. [DOI: 10.1016/j.neuroscience.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
39
|
Contributions of Myosin Light Chain Kinase to Regulation of Epithelial Paracellular Permeability and Mucosal Homeostasis. Int J Mol Sci 2020; 21:ijms21030993. [PMID: 32028590 PMCID: PMC7037368 DOI: 10.3390/ijms21030993] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Intestinal barrier function is required for the maintenance of mucosal homeostasis. Barrier dysfunction is thought to promote progression of both intestinal and systemic diseases. In many cases, this barrier loss reflects increased permeability of the paracellular tight junction as a consequence of myosin light chain kinase (MLCK) activation and myosin II regulatory light chain (MLC) phosphorylation. Although some details about MLCK activation remain to be defined, it is clear that this triggers perijunctional actomyosin ring (PAMR) contraction that leads to molecular reorganization of tight junction structure and composition, including occludin endocytosis. In disease states, this process can be triggered by pro-inflammatory cytokines including tumor necrosis factor-α (TNF), interleukin-1β (IL-1β), and several related molecules. Of these, TNF has been studied in the greatest detail and is known to activate long MLCK transcription, expression, enzymatic activity, and recruitment to the PAMR. Unfortunately, toxicities associated with inhibition of MLCK expression or enzymatic activity make these unsuitable as therapeutic targets. Recent work has, however, identified a small molecule that prevents MLCK1 recruitment to the PAMR without inhibiting enzymatic function. This small molecule, termed Divertin, restores barrier function after TNF-induced barrier loss and prevents disease progression in experimental chronic inflammatory bowel disease.
Collapse
|
40
|
Influence of Endogenous Cardiac Glycosides, Digoxin, and Marinobufagenin in the Physiology of Epithelial Cells. Cardiol Res Pract 2019; 2019:8646787. [PMID: 32089875 PMCID: PMC7024086 DOI: 10.1155/2019/8646787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/20/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiac glycosides are a group of compounds widely known for their action in cardiac tissue, some of which have been found to be endogenously produced (ECG). We have previously studied the effect of ouabain, an endogenous cardiac glycoside, on the physiology of epithelial cells, and we have shown that in concentrations in the nanomolar range, it affects key properties of epithelial cells, such as tight junction, apical basolateral polarization, gap junctional intercellular communication (GJIC), and adherent junctions. In this work, we study the influence of digoxin and marinobufagenin, two other endogenously expressed cardiac glycosides, on GJIC as well as the degree of transepithelial tightness due to tight junction integrity (TJ). We evaluated GJIC by dye transfer assays and tight junction integrity by transepithelial electrical resistance (TER) measurements, as well as immunohistochemistry and western blot assays of expression of claudins 2 and 4. We found that both digoxin and marinobufagenin improve GJIC and significantly enhance the tightness of the tight junctions, as evaluated from TER measurements. Immunofluorescence assays show that both compounds promote enhanced basolateral localization of claudin-4 but not claudin 2, while densitometric analysis of western blot assays indicate a significantly increased expression of claudin 4. These changes, induced by digoxin and marinobufagenin on GJIC and TER, were not observed on MDCK-R, a modified MDCK cell line that has a genetically induced insensitive α1 subunit, indicating that Na-K-ATPase acts as a receptor mediating the actions of both ECG. Plus, the fact that the effect of both cardiac glycosides was suppressed by incubation with PP2, an inhibitor of c-Src kinase, PD98059, an inhibitor of mitogen extracellular kinase-1 and Y-27632, a selective inhibitor of ROCK, and a Rho-associated protein kinase, indicate altogether that the signaling pathways involved include c-Src and ERK1/2, as well as Rho-ROCK. These results widen and strengthen our general hypothesis that a very important physiological role of ECG is the control of the epithelial phenotype and the regulation of cell-cell contacts.
Collapse
|
41
|
Olivier S, Leclerc J, Grenier A, Foretz M, Tamburini J, Viollet B. AMPK Activation Promotes Tight Junction Assembly in Intestinal Epithelial Caco-2 Cells. Int J Mol Sci 2019; 20:E5171. [PMID: 31635305 PMCID: PMC6829419 DOI: 10.3390/ijms20205171] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is principally known as a major regulator of cellular energy status, but it has been recently shown to play a key structural role in cell-cell junctions. The aim of this study was to evaluate the impact of AMPK activation on the reassembly of tight junctions in intestinal epithelial Caco-2 cells. We generated Caco-2 cells invalidated for AMPK α1/α2 (AMPK dKO) by CRISPR/Cas9 technology and evaluated the effect of the direct AMPK activator 991 on the reassembly of tight junctions following a calcium switch assay. We analyzed the integrity of the epithelial barrier by measuring the trans-epithelial electrical resistance (TEER), the paracellular permeability, and quantification of zonula occludens 1 (ZO-1) deposit at plasma membrane by immunofluorescence. Here, we demonstrated that AMPK deletion induced a delay in tight junction reassembly and relocalization at the plasma membrane during calcium switch, leading to impairments in the establishment of TEER and paracellular permeability. We also showed that 991-induced AMPK activation accelerated the reassembly and reorganization of tight junctions, improved the development of TEER and paracellular permeability after calcium switch. Thus, our results show that AMPK activation ensures a better recovery of epithelial barrier function following injury.
Collapse
Affiliation(s)
- Séverine Olivier
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Jocelyne Leclerc
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Adrien Grenier
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Jérôme Tamburini
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| |
Collapse
|
42
|
Otani T, Nguyen TP, Tokuda S, Sugihara K, Sugawara T, Furuse K, Miura T, Ebnet K, Furuse M. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J Cell Biol 2019; 218:3372-3396. [PMID: 31467165 PMCID: PMC6781433 DOI: 10.1083/jcb.201812157] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
Tight junctions (TJs) establish the epithelial barrier and are thought to form a membrane fence to regulate epithelial polarity, although the roles of TJs in epithelial polarity remain controversial. Claudins constitute TJ strands in conjunction with the cytoplasmic scaffolds ZO-1 and ZO-2 and play pivotal roles in epithelial barrier formation. However, how claudins and other TJ membrane proteins cooperate to organize TJs remains unclear. Here, we systematically knocked out TJ components by genome editing and show that while ZO-1/ZO-2-deficient cells lacked TJ structures and epithelial barriers, claudin-deficient cells lacked TJ strands and an electrolyte permeability barrier but formed membrane appositions and a macromolecule permeability barrier. Moreover, epithelial polarity was disorganized in ZO-1/ZO-2-deficient cells, but not in claudin-deficient cells. Simultaneous deletion of claudins and a TJ membrane protein JAM-A resulted in a loss of membrane appositions and a macromolecule permeability barrier and in sporadic epithelial polarity defects. These results demonstrate that claudins and JAM-A coordinately regulate TJ formation and epithelial polarity.
Collapse
Affiliation(s)
- Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Shinsaku Tokuda
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Sugawara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity," Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University of Münster, Münster, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
43
|
Duclut C, Sarkar N, Prost J, Jülicher F. Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies. Proc Natl Acad Sci U S A 2019; 116:19264-19273. [PMID: 31492815 PMCID: PMC6765252 DOI: 10.1073/pnas.1908481116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We discuss the physical mechanisms that promote or suppress the nucleation of a fluid-filled lumen inside a cell assembly or a tissue. We discuss lumen formation in a continuum theory of tissue material properties in which the tissue is described as a 2-fluid system to account for its permeation by the interstitial fluid, and we include fluid pumping as well as active electric effects. Considering a spherical geometry and a polarized tissue, our work shows that fluid pumping and tissue flexoelectricity play a crucial role in lumen formation. We furthermore explore the large variety of long-time states that are accessible for the cell aggregate and its lumen. Our work reveals a role of the coupling of mechanical, electrical, and hydraulic phenomena in tissue lumen formation.
Collapse
Affiliation(s)
- Charlie Duclut
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
| | - Niladri Sarkar
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, Netherlands
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Frank Jülicher
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany;
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
44
|
Zhao B, Che D, Adams S, Guo N, Han R, Zhang C, Qin G, Farouk MH, Jiang H. N-Acetyl-d-galactosamine prevents soya bean agglutinin-induced intestinal barrier dysfunction in intestinal porcine epithelial cells. J Anim Physiol Anim Nutr (Berl) 2019; 103:1198-1206. [PMID: 30934149 DOI: 10.1111/jpn.13091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Soya bean agglutinin (SBA) is a glycoprotein and the main anti-nutritional component in most soya bean feedstuffs. It is mainly a non-fibre carbohydrate-based protein and represents about 10% of soya bean-based anti-nutritional effects. In this study, we sought to determine the effects of N-Acetyl-D-galactosamine (GalNAc or D-GalNAc) on the damage induced by SBA on the membrane permeability and tight junction proteins of piglet intestinal epithelium (IPEC-J2) cells. The IPEC-J2 cells were pre-cultured with 0, 0.125 × 10-4 , 0.25 × 10-4 , 0.5 × 10-4 , 1.0 × 10-4 and 2.0 × 10-4 mmol/L GalNAc at different time period (1, 2, 4 and 8 hr) before being exposed to 0.5 mg/ml SBA for 24 hr. The results indicate that pre-incubation with GalNAc mitigates the mechanical barrier injury as reflected by a significant increase in trans-epithelial electric resistance (TEER) value and a decrease in alkaline phosphatase (ALP) activity in cell culture medium pre-treated with GalNAc before incubation with SBA as both indicate a reduction in cellular membrane permeability. In addition, mRNA levels of the tight junction proteins occludin and claudin-3 were lower in the SBA-treated groups without pre-treatment with GalNAc. The mRNA expression of occludin was reduced by 17.3% and claudin-3 by 42% (p < 0.01). Moreover, the corresponding protein expression levels were lowered by 17.8% and 43.5% (p < 0.05) respectively. However, in the GalNAc pre-treated groups, occludin and claudin-3 mRNAs were reduced by 1.6% (p > 0.05) and 2.7% (p < 0.01), respectively, while the corresponding proteins were reduced by 4.3% and 7.2% (p < 0.05). In conclusion, GalNAc may prevent the effect of SBA on membrane permeability and tight junction proteins on IPEC-J2s.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Seidu Adams
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Guo
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- Department of Animal Science and Technology, Changchun University of science and technology, Changchun, China
| | - Guixin Qin
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Hailong Jiang
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
45
|
Awadia S, Huq F, Arnold TR, Goicoechea SM, Sun YJ, Hou T, Kreider-Letterman G, Massimi P, Banks L, Fuentes EJ, Miller AL, Garcia-Mata R. SGEF forms a complex with Scribble and Dlg1 and regulates epithelial junctions and contractility. J Cell Biol 2019; 218:2699-2725. [PMID: 31248911 PMCID: PMC6683736 DOI: 10.1083/jcb.201811114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/18/2019] [Accepted: 04/12/2019] [Indexed: 01/15/2023] Open
Abstract
The canonical Scribble polarity complex is implicated in regulation of epithelial junctions and apical polarity. Here, we show that SGEF, a RhoG-specific GEF, forms a ternary complex with Scribble and Dlg1, two members of the Scribble complex. SGEF targets to apical junctions in a Scribble-dependent fashion and functions in the regulation of actomyosin-based contractility and barrier function at tight junctions as well as E-cadherin-mediated formation of adherens junctions. Surprisingly, SGEF does not control the establishment of polarity. However, in 3D cysts, SGEF regulates the formation of a single open lumen. Interestingly, SGEF's nucleotide exchange activity regulates the formation and maintenance of adherens junctions, and in cysts the number of lumens formed, whereas SGEF's scaffolding activity is critical for regulation of actomyosin contractility and lumen opening. We propose that SGEF plays a key role in coordinating junctional assembly and actomyosin contractility by bringing together Scribble and Dlg1 and targeting RhoG activation to cell-cell junctions.
Collapse
Affiliation(s)
- Sahezeel Awadia
- Department of Biological Sciences, The University of Toledo, Toledo, OH
| | - Farah Huq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Torey R Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | - Young Joo Sun
- Department of Biochemistry, University of Iowa, Iowa City, IA
| | - Titus Hou
- Department of Biochemistry, University of Iowa, Iowa City, IA
| | | | - Paola Massimi
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
46
|
Karimi S, Jonsson H, Lundh T, Roos S. Lactobacillus reuteri strains protect epithelial barrier integrity of IPEC-J2 monolayers from the detrimental effect of enterotoxigenic Escherichia coli. Physiol Rep 2019; 6. [PMID: 29368445 PMCID: PMC5789714 DOI: 10.14814/phy2.13514] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 12/30/2022] Open
Abstract
Lactobacillus reuteri is an inhabitant of the gastrointestinal (GI) tract of mammals and birds and several strains of this species are known to be effective probiotics. The mechanisms by which L. reuteri confers its health‐promoting effects are far from being fully understood, but protection of the mucosal barrier is thought to be important. Leaky gut is a state of abnormal intestinal permeability with implications for the pathophysiology of various gastrointestinal disorders. Enterotoxigenic Escherichia coli (ETEC) can invade the intestinal mucosa and induce changes in barrier function by producing enterotoxin or by direct invasion of the intestinal epithelium. Our hypothesis was that L. reuteri can protect the mucosal barrier, and the goal of the study was to challenge this hypothesis by monitoring the protective effect of L. reuteri strains on epithelial dysfunction caused by ETEC. Using an infection model based on the porcine intestinal cell line IPEC‐J2, it was demonstrated that pretreatment of the cells with human‐derived L. reuteri strains (ATCC PTA 6475, DSM 17938 and 1563F) and a rat strain (R2LC) reduced the detrimental effect of ETEC in a dose‐dependent manner, as monitored by permeability of FITC‐dextran and transepithelial electrical resistance (TEER). Moreover, the results revealed that ETEC upregulated proinflammatory cytokines IL‐6 and TNFα and decreased expression of the shorter isoform of ZO‐1 (187 kDa) and E‐cadherin. In contrast, pretreatment with L. reuteri DSM 17938 and 1563F downregulated expression of IL‐6 and TNFα, and led to an increase in production of the longer isoform of ZO‐1 (195 kDa) and maintained E‐cadherin expression. Interestingly, expression of ZO‐1 (187 kDa) was preserved only when the infected cells were pretreated with strain 1563F. These findings demonstrate that L. reuteri strains exert a protective effect against ETEC‐induced mucosal integrity disruption.
Collapse
Affiliation(s)
- Shokoufeh Karimi
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hans Jonsson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
47
|
Xiao R, Yuan L, He W, Yang X. Zinc ions regulate opening of tight junction favouring efflux of macromolecules via the GSK3β/snail-mediated pathway. Metallomics 2019; 10:169-179. [PMID: 29292464 DOI: 10.1039/c7mt00288b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element presenting in particularly high concentration in the brain. In some regions, e.g. lateral amygdala, subiculum and hippocampus, rapidly-exchangeable zinc may transiently reach even up to 600 μM. To explore the possible roles of high-concentration Zn2+ in regulating the blood-brain barrier (BBB), we investigated the effects of Zn2+ on the functions and structures of the tight junction (TJ) with an in vitro model of a Madin-Darby canine kidney (MDCK) cell monolayer. The experimental results indicated that high concentrations (>200 μM) of Zn2+ can affect the TJ integrity in a polarized manner. Basolateral addition of Zn2+ led to reversible TJ opening with pore paths of r ∼ 2 nm or more depending on Zn2+ concentration. The efflux/influx ratios of different sized probes were found to be ∼4.6 for FD4 (MW 4000) and ∼1.8 for Eu-DTPA (MW 560), suggesting that the Zn2+-induced paracelluar channels favour efflux especially for macromolecules. Further mechanistic studies revealed that the elevated intracellular Zn2+ taken from the basolateral side can increase phosphorylation of glycogen synthase kinase (GSK) 3β, primarily due to the inhibition of calcineurin (CaN), thus resulting in the elevation of the snail transcriptional repressors. Subsequently, Zn2+ can cause the down-regulation of claudin-1, breakage of occludin and ZO-1 rings, and collapse of basolateral F-actin structures. These overall factors result in the formation of a trumpet-like paracellular channel, which allows asymmetric solute permeation. The ERK1/2 and JNK1/2 pathways may also be involved in the Zn2+-induced TJ opening process, while the activation of matrix metalloproteinase was not observed. Our results may suggest a potential role of zinc in regulation of BBB permeability associated with brain clearance of metabolites through the glymphatic system.
Collapse
Affiliation(s)
- Ruyue Xiao
- State Key laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | | | | | | |
Collapse
|
48
|
Bachinger D, Mayer E, Kaschubek T, Schieder C, König J, Teichmann K. Influence of phytogenics on recovery of the barrier function of intestinal porcine epithelial cells after a calcium switch. J Anim Physiol Anim Nutr (Berl) 2018; 103:210-220. [PMID: 30353576 PMCID: PMC7379982 DOI: 10.1111/jpn.12997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/26/2018] [Indexed: 12/13/2022]
Abstract
Background The gut barrier is essential for animal health as it prevents the passage of potentially harmful foreign substances. The epithelial tight junctions support the intestinal barrier and can be disrupted by stress caused, for example, by pathogens or dietary or environmental factors, predisposing the host to disease. In animal husbandry, phytogenics (plant‐derived feed additives) are used to support and maintain growth, feed efficiency and health. Therefore, several phytogenics were tested in vitro for their influence on the barrier function recovery of intestinal porcine epithelial cells (IPEC‐J2) after disruption, particularly on the abundance of tight junction proteins. Results IPEC‐J2 treated with 1,000 µg/ml liquorice root extract, 80 µg/ml plant powder mix, or 80 µg/ml angelica root powder showed significantly higher trans‐epithelial electric resistance (TEER) 24 hr after tight junction disruption via a calcium switch assay than the control. In contrast, cells treated with 1,000 µg/ml oak bark extract showed a significantly lower TEER after 6 hr but not at later time points. The increased TEER caused by the liquorice root extract correlated with an increase in the abundance of the tight junction protein claudin‐4. Conclusions This study suggests potential beneficial effects of liquorice and angelica root extracts on the gut barrier function when used as feed additives for livestock. Further studies, especially in vivo, are necessary to confirm these findings.
Collapse
Affiliation(s)
| | | | - Theresa Kaschubek
- BIOMIN Research Center, Tulln an der Donau, Austria.,Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | | - Jürgen König
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | |
Collapse
|
49
|
Betanzos A, Zanatta D, Bañuelos C, Hernández-Nava E, Cuellar P, Orozco E. Epithelial Cells Expressing EhADH, An Entamoeba histolytica Adhesin, Exhibit Increased Tight Junction Proteins. Front Cell Infect Microbiol 2018; 8:340. [PMID: 30324093 PMCID: PMC6172307 DOI: 10.3389/fcimb.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
In Entamoeba histolytica, the EhADH adhesin together with the EhCP112 cysteine protease, form a 124 kDa complex named EhCPADH. This complex participates in trophozoite adherence, phagocytosis and cytolysis of target cells. EhCPADH and EhCP112 are both involved on epithelium damage, by opening tight junctions (TJ) and reaching other intercellular junctions. EhADH is a scaffold protein belonging to the ALIX family that contains a Bro1 domain, expresses at plasma membrane, endosomes and cytoplasm of trophozoites, and is also secreted to the medium. Contribution of EhADH to TJ opening still remains unknown. In this paper, to elucidate the role of EhADH on epithelium injury, we followed two strategies: producing a recombinant protein (rEhADH) and transfecting the ehadh gene in MDCK cells. Results from the first strategy revealed that rEhADH reached the intercellular space of epithelial cells and co-localized with claudin-1 and occludin at TJ region; later, rEhADH was mainly internalized by clathrin-coated vesicles. In the second strategy, MDCK cells expressing EhADH (MDCK-EhADH) showed the adhesin at plasma membrane. In addition, MDCK-EHADH cells exhibited adhesive features, producing epithelial aggregation and adherence to erythrocytes, as described in trophozoites. Surprisingly, the adhesin expression produced an increase of claudin-1, occludin, ZO-1 and ZO-2 at TJ, and also the transepithelial electric resistance (TEER), which is a measure of TJ gate function. Moreover, MDCK-EhADH cells resulted more susceptible to trophozoites attack, as showed by TEER and cytopathic experiments. Overall, our results indicated that EhADH disturbed TJ from the extracellular space and also intracellularly, suggesting that EhADH affects by itself TJ proteins, and possibly synergizes the action of other parasite molecules during epithelial invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dxinegueela Zanatta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Patricia Cuellar
- Centro Regional de Educación Superior, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
50
|
Yeste J, Illa X, Alvarez M, Villa R. Engineering and monitoring cellular barrier models. J Biol Eng 2018; 12:18. [PMID: 30214484 PMCID: PMC6134550 DOI: 10.1186/s13036-018-0108-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
Epithelia and endothelia delineate tissue compartments and control their environments by regulating the passage of ions and solutes. This barrier function is essential for the development and maintenance of multicellular organisms, and its dysfunction is associated with numerous human diseases. Recent advances in biomaterials and microfabrication technologies have evolved in vitro approaches for modelling biological barriers. Current microphysiological systems have become more efficient and reliable in mimicking the cell microenvironment. Additionally, methods for the quantification of barrier permeability have long provided significant insight into their underlying mechanisms. In this review, we outline the current techniques to quantify the barrier function of engineered tissues, and we also give an overview of recent microphysiological systems of biological barriers that emulate the microenvironment and microarchitecture of native tissues.
Collapse
Affiliation(s)
- Jose Yeste
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Mar Alvarez
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| |
Collapse
|