1
|
Hoffman A, Nizet V. The Prospect of Biomimetic Immune Cell Membrane-Coated Nanomedicines for Treatment of Serious Bacterial Infections and Sepsis. J Pharmacol Exp Ther 2024; 389:289-300. [PMID: 38580449 PMCID: PMC11125797 DOI: 10.1124/jpet.123.002095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Invasive bacterial infections and sepsis are persistent global health concerns, complicated further by the escalating threat of antibiotic resistance. Over the past 40 years, collaborative endeavors to improve the diagnosis and critical care of septic patients have improved outcomes, yet grappling with the intricate immune dysfunction underlying the septic condition remains a formidable challenge. Anti-inflammatory interventions that exhibited promise in murine models failed to manifest consistent survival benefits in clinical studies through recent decades. Novel therapeutic approaches that target bacterial virulence factors, for example with monoclonal antibodies, aim to thwart pathogen-driven damage and restore an advantage to the immune system. A pioneering technology addressing this challenge is biomimetic nanoparticles-a therapeutic platform featuring nanoscale particles enveloped in natural cell membranes. Borne from the quest for a durable drug delivery system, the original red blood cell-coated nanoparticles showcased a broad capacity to absorb bacterial and environmental toxins from serum. Tailoring the membrane coating to immune cell sources imparts unique characteristics to the nanoparticles suitable for broader application in infectious disease. Their capacity to bind both inflammatory signals and virulence factors assembles the most promising sepsis therapies into a singular, pathogen-agnostic therapeutic. This review explores the ongoing work on immune cell-coated nanoparticle therapeutics for infection and sepsis. SIGNIFICANCE STATEMENT: Invasive bacterial infections and sepsis are a major global health problem made worse by expanding antibiotic resistance, meaning better treatment options are urgently needed. Biomimetic cell-membrane-coated nanoparticles are an innovative therapeutic platform that deploys a multifaceted mechanism to action to neutralize microbial virulence factors, capture endotoxins, and bind excessive host proinflammatory cytokines, seeking to reduce host tissue injury, aid in microbial clearance, and improve patient outcomes.
Collapse
Affiliation(s)
- Alexandria Hoffman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California (A.H., V.N.); and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California (V.N.)
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California (A.H., V.N.); and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California (V.N.)
| |
Collapse
|
2
|
Zhu Z, Hu Z, Li S, Fang R, Ono HK, Hu DL. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int J Mol Sci 2023; 25:395. [PMID: 38203566 PMCID: PMC10778951 DOI: 10.3390/ijms25010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton-Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| |
Collapse
|
3
|
Activation of Human Platelets by Staphylococcus aureus Secreted Protease Staphopain A. Pathogens 2022; 11:pathogens11111237. [DOI: 10.3390/pathogens11111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Infection by Staphylococcus aureus is the leading cause of infective endocarditis (IE). Activation of platelets by this pathogen results in their aggregation and thrombus formation which are considered to be important steps in the development and pathogenesis of IE. Here, we show that a secreted cysteine protease, staphopain A, activates human platelets and induces their aggregation. The culture supernatant of a scpA mutant deficient in staphopain A production was reduced in its ability to trigger platelet aggregation. The platelet agonist activity of purified staphopain A was inhibited by staphostatin A, a specific inhibitor, thus implicating its protease activity in the agonism. In whole blood, using concentrations of staphopain A that were otherwise insufficient to induce platelet aggregation, increased binding to collagen and thrombus formation was observed. Using antagonists specific to protease-activated receptors 1 and 4, we demonstrate their role in mediating staphopain A induced platelet activation.
Collapse
|
4
|
Bian N, Chen X, Ren X, Yu Z, Jin M, Chen X, Liu C, Luan Y, Wei L, Chen Y, Song W, Zhao Y, Wang B, Jiang T, Zhang C, Shu Z, Su X, Wang L. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J Microbiol Biotechnol 2022; 38:200. [PMID: 35995893 DOI: 10.1007/s11274-022-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus (S. aureus), a Gram-positive bacteria, is an incurable cause of hospital and community-acquired infections. Inhibition bacterial virulence is a viable strategy against S. aureus infections based on the multiple virulence factors secreted by S. aureus. Alpha-hemolysin (Hla) plays a crucial role in bacteria virulence without affecting bacterial viability. Here, we identified that 7,8-Dihydroxyflavone (7,8-DHF), a natural compound, was able to decrease the expression of and did not affect the in vitro growth of S. aureus USA300 at a concentration of 32 μg/mL. It was verified by western blot and RT-qPCR that the natural compound could inhibit the transcription and translation of Hla. Further mechanism studies revealed that 7,8-DHF has a negative effect on transcriptional regulator agrA and RNAIII, preventing the upregulation of virulence gene. Cytotoxicity assays showed that 7,8-DHF did not produce significant cytotoxicity to A549 cells. Animal experiments showed that the combination of 7,8-DHF and vancomycin had a more significant therapeutic effect on S. aureus infection, reflecting the synergistic effect of 7,8-DHF with antibiotics. In conclusion, 7,8-DHF was able to target Hla to protect host cells from hemolysis while limiting the development of bacterial resistance.
Collapse
Affiliation(s)
- Nan Bian
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangqian Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinran Ren
- School of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Zishu Yu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoyu Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chang Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yanhe Luan
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Chen
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zunhua Shu
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
5
|
Jahn K, Handtke S, Palankar R, Kohler TP, Wesche J, Wolff M, Bayer J, Wolz C, Greinacher A, Hammerschmidt S. α-hemolysin of Staphylococcus aureus impairs thrombus formation. J Thromb Haemost 2022; 20:1464-1475. [PMID: 35303391 DOI: 10.1111/jth.15703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Toxins are key virulence determinants of pathogens and can impair the function of host immune cells, including platelets. Insights into pathogen toxin interference with platelets will be pivotal to improve treatment of patients with bacterial bloodstream infections. MATERIALS AND METHODS In this study, we deciphered the effects of Staphylococcus aureus toxins α-hemolysin, LukAB, LukDE, and LukSF on human platelets and compared the effects with the pore forming toxin pneumolysin of Streptococcus pneumoniae. Activation of platelets and loss of platelet function were investigated by flow cytometry, aggregometry, platelet viability, fluorescence microscopy, and intracellular calcium release. Thrombus formation was assessed in whole blood. RESULTS α-hemolysin (Hla) is known to be a pore-forming toxin. Hla-induced calcium influx initially activates platelets as indicated by CD62P and αIIbβ3 integrin activation, but also induces finally alterations in the phenotype of platelets. In contrast to Hla and pneumolysin, S. aureus bicomponent pore-forming leukocidins LukAB, LukED, and LukSF do not bind to platelets and had no significant effect on platelet activation and viability. The presence of small amounts of Hla (0.2 µg/ml) in whole blood abrogates thrombus formation indicating that in systemic infections with S. aureus the stability of formed thrombi is impaired. Damage of platelets by Hla was not neutralized by intravenous immune globulins. CONCLUSION Our findings might be of clinical relevance for S. aureus induced endocarditis. Stabilizing the aortic-valve thrombi by inhibiting Hla-induced impairment of platelets might reduce the risk for septic (micro-)embolization.
Collapse
Affiliation(s)
- Kristin Jahn
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Jan Wesche
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martina Wolff
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janina Bayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Andreas Greinacher
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
7
|
Lerche CJ, Schwartz F, Pries-Heje MM, Fosbøl EL, Iversen K, Jensen PØ, Høiby N, Hyldegaard O, Bundgaard H, Moser C. Potential Advances of Adjunctive Hyperbaric Oxygen Therapy in Infective Endocarditis. Front Cell Infect Microbiol 2022; 12:805964. [PMID: 35186793 PMCID: PMC8851036 DOI: 10.3389/fcimb.2022.805964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Patients with infective endocarditis (IE) form a heterogeneous group by age, co-morbidities and severity ranging from stable patients to patients with life-threatening complications with need for intensive care. A large proportion need surgical intervention. In-hospital mortality is 15-20%. The concept of using hyperbaric oxygen therapy (HBOT) in other severe bacterial infections has been used for many decades supported by various preclinical and clinical studies. However, the availability and capacity of HBOT may be limited for clinical practice and we still lack well-designed studies documenting clinical efficacy. In the present review we highlight the potential beneficial aspects of adjunctive HBOT in patients with IE. Based on the pathogenesis and pathophysiological conditions of IE, we here summarize some of the important mechanisms and effects by HBOT in relation to infection and inflammation in general. In details, we elaborate on the aspects and impact of HBOT in relation to the host response, tissue hypoxia, biofilm, antibiotics and pathogens. Two preclinical (animal) studies have shown beneficial effect of HBOT in IE, but so far, no clinical study has evaluated the feasibility of HBOT in IE. New therapeutic options in IE are much needed and adjunctive HBOT might be a therapeutic option in certain IE patients to decrease morbidity and mortality and improve the long-term outcome of this severe disease.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Virus and Microbiology Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Christian Johann Lerche,
| | - Franziska Schwartz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Guo M, Yi T, Wang Q, Wang D, Feng P, Kesheng D, Chunyan H. TSST-1 protein exerts indirect effect on platelet activation and apoptosis. Platelets 2022; 33:998-1008. [PMID: 35073811 DOI: 10.1080/09537104.2022.2026907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thrombocytopenia or platelet dysfunction is a risk factor for severe infection. Staphylococcus aureus (S. aureus) releases a variety of virulence factors especially toxic shock syndrome toxin 1 (TSST-1), which may cause toxic shock syndrome. S. aureus, when carrying the tst gene, is more prone to cause toxic shock syndrome and is responsible for an especially high rate of mortality. However, the effect of TSST-1 protein on platelets is unknown. Patients with the tst gene positive S. aureus bacteremia showed more serious infection, higher mortality and lower platelet count. The tst gene positive S. aureus strains induce more platelet apoptosis and activation and corresponding up-regulation of Bak and down-regulation of Bcl-XL in addition to the activation of Caspase-3. C57BL/6 mice infected with the tst gene positive strains resulted in both a decrease in platelet count and an increase in platelet apoptosis and/or activation events and mortality. Moreover, TSST-1 protein, encoded by tst gene, caused the decrease of platelet count, the increase of platelet apoptosis and activation events and the level of inflammatory cytokines in vivo. However, TSST-1 protein was unable to induce traditional activation and apoptosis on human platelets in vitro. These results suggested that TSST-1 protein may exert indirect effects on platelet activation and apoptosis in vivo.
Collapse
Affiliation(s)
- Min Guo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tiantian Yi
- Department of Clinical Laboratory, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Qian Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Daqing Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dai Kesheng
- Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - He Chunyan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Leeten K, Jacques N, Lancellotti P, Oury C. Aspirin or Ticagrelor in Staphylococcus aureus Infective Endocarditis: Where Do We Stand? Front Cell Dev Biol 2021; 9:716302. [PMID: 34692677 PMCID: PMC8529053 DOI: 10.3389/fcell.2021.716302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Infective endocarditis is a challenging disease with a high mortality and morbidity rate. Antibiotic prophylaxis is currently recommended in high-risk infective endocarditis patients. However, the use of antibiotics faces the challenge of a low efficacy and contributes further to the emerging infection rate by antibiotic-resistant strains, emphasizing the need for new therapeutic strategies. Platelets are essential in the initial phase of infective endocarditis, acting as first-line immune responders. During the first phase of disease, bacteria can interact with platelets and counteract platelet antimicrobial activities. Mechanistic in vitro and animal studies on the effect of aspirin on bacteria-platelet interactions and the prevention of vegetation development showed promising results. However, data from clinical studies on the outcome of infective endocarditis patients who were receiving medically indicated aspirin therapy remain controversial. Therefore, the benefit of antiplatelet agents in infective endocarditis prevention has been questioned. Besides aspirin, it has been discovered that the platelet P2Y12 receptor antagonist ticagrelor has antibacterial properties in addition to its potent antiplatelet activity. Furthermore, a recent study in mice and a case report remarkably indicated the ability of this drug to eradicate Staphylococcus aureus bacteremia. This review will focus on current knowledge on antibacterial activity of ticagrelor, compared to aspirin, pointing out main unanswered questions. The goal is to provide food for thought as to whether a prior ticagrelor therapy might be beneficial for the prevention of infective endocarditis.
Collapse
Affiliation(s)
- Kirsten Leeten
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Nicolas Jacques
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Cécile Oury
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| |
Collapse
|
10
|
Sun J, Uchiyama S, Olson J, Morodomi Y, Cornax I, Ando N, Kohno Y, Kyaw MMT, Aguilar B, Haste NM, Kanaji S, Kanaji T, Rose WE, Sakoulas G, Marth JD, Nizet V. Repurposed drugs block toxin-driven platelet clearance by the hepatic Ashwell-Morell receptor to clear Staphylococcus aureus bacteremia. Sci Transl Med 2021; 13:13/586/eabd6737. [PMID: 33762439 DOI: 10.1126/scitranslmed.abd6737] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus (SA) bloodstream infections cause high morbidity and mortality (20 to 30%) despite modern supportive care. In a human bacteremia cohort, we found that development of thrombocytopenia was correlated to increased mortality and increased α-toxin expression by the pathogen. Platelet-derived antibacterial peptides are important in bloodstream defense against SA, but α-toxin decreased platelet viability, induced platelet sialidase to cause desialylation of platelet glycoproteins, and accelerated platelet clearance by the hepatic Ashwell-Morell receptor (AMR). Ticagrelor (Brilinta), a commonly prescribed P2Y12 receptor inhibitor used after myocardial infarction, blocked α-toxin-mediated platelet injury and resulting thrombocytopenia, thereby providing protection from lethal SA infection in a murine intravenous challenge model. Genetic deletion or pharmacological inhibition of AMR stabilized platelet counts and enhanced resistance to SA infection, and the anti-influenza sialidase inhibitor oseltamivir (Tamiflu) provided similar therapeutic benefit. Thus, a "toxin-platelet-AMR" regulatory pathway plays a critical role in the pathogenesis of SA bloodstream infection, and its elucidation provides proof of concept for repurposing two commonly prescribed drugs as adjunctive therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Josh Sun
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Satoshi Uchiyama
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Ingrid Cornax
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Nao Ando
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Yohei Kohno
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - May M T Kyaw
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Bernice Aguilar
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Nina M Haste
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - George Sakoulas
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Jamey D Marth
- Center for Nanomedicine, UC Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Victor Nizet
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, CA 92093, USA. .,Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Development of combination vaccine conferring optimal protection against six pore-forming toxins of Staphylococcus aureus. Infect Immun 2021; 89:e0034221. [PMID: 34227839 DOI: 10.1128/iai.00342-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Gram-positive pathogen Staphylococcus aureus, pore-forming toxins (PFTs) such as leukocidins and hemolysins play prominent roles in staphylococcal pathogenesis by killing host immune cells and red blood cells (RBCs). However, it remains unknown which combination of toxin antigens would induce the broadest protective immune response against those toxins. In this study, by targeting six major staphylococcal PFTs (i.e., HlgAB, HlgCB, LukAB, LukED, LukSF-PV, and Hla), we generated ten recombinant toxins or toxin-subunits, three toxoids, and their rabbit antibodies. Using the cytolytic assay for RBCs and polymorphonuclear cells (PMNs), we determined the best combination of toxin antibodies conferring the broadest protection against those staphylococcal PFTs. Although anti-HlgA IgG (HlgA-IgG) showed low cross-reactivity to other toxin components, it was essential to protect rabbit and human RBCs and human PMNs. For the protection of rabbit RBCs, HlaH35L toxoid-IgG was also required, whereas, for human PMNs, LukS-IgG and LukAE323AB-IgG were essential too. When the toxin/toxoid antigens HlgA, LukS-PV, HlaH35L, and LukAE323AB were used to immunize rabbits, they increased rabbit survival; however, they did not block staphylococcal abscess formation in kidneys. Based on these results, we proposed that the combination of HlgA, LukS, HlaH35L, and LukAE323AB is the optimal vaccine component to protect human RBCs and PMNs from staphylococcal PFTs. We also concluded that a successful S. aureus vaccine requires not only those toxin antigens but also other antigens that can induce immune response blocking staphylococcal colonization.
Collapse
|
12
|
Lorenz D, Maurer F, Philipp D, Albrecht F, Hüppe T, Sessler DI, Wolf B, Volk T, Kreuer S, Fink T. Changes in volatile organic compounds provoked by lipopolysaccharide- or alpha toxin-induced inflammation in ventilated rats. J Breath Res 2020; 15:016003. [PMID: 33103661 DOI: 10.1088/1752-7163/abb449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inflammation may alter volatile organic compounds (VOCs) in exhaled breath. We therefore used ion mobility spectrometry (IMS) to evaluate exhaled breath components in two non-infectious inflammatory models. Fifty male Sprague Dawley rats were anesthetized and ventilated for 24 h. Five treatments were randomly assigned: (1) lipopolysaccharide low dose [5 mg/kg]; (2) lipopolysaccharide high dose [10 mg/kg]; (3) alpha toxin low dose [40 µg/kg]; (4) alpha toxin high dose [80 µg/kg]; and, (5) NaCl 0.9% as control group. Gas was sampled from the expiratory line of the ventilator every 20 min and analyzed with IMS combined with a multi-capillary column. VOCs were identified by comparison with an established database. Survival analysis was performed by log-rank test, other analyses by one-way or paired ANOVA-tests and post-hoc analysis according to Holm-Sidak. Rats given NaCl and low-dose alpha toxin survived 24 h. The median survival time in alpha toxin high-dose group was 23 (95%-confidence interval (CI): 21, 24) h. In contrast, the median survival time in rats given high-dose lipopolysaccharide was 12 (95% CI: 9, 14) and only 13 (95% CI: 10, 16) h in those given high-dose lipopolysaccharide. 73 different VOCs were detected, of which 35 were observed only in the rats, 38 could be found both in the blank measurements of ventilator air and in the exhaled air of the rats. Forty-nine of the VOCs were identifiable from a registry of compounds. Exhaled volatile compounds were comparable in each group before injection of lipopolysaccharide and alpha toxin. In the LPS groups, 1-pentanol increased and 2-propanol decreased. After alpha toxin treatment, 1-butanol and 1-pentanol increased whereas butanal and isopropylamine decreased. Induction of a non-infectious systemic inflammation (niSI) by lipopolysaccharide and alpha toxin changes VOCs in exhaled breath. Exhalome analysis may help identify niSI.
Collapse
Affiliation(s)
- Dominik Lorenz
- CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Building 57, 66421, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang S, Duan Y, Zhang Q, Komarla A, Gong H, Gao W, Zhang L. Drug Targeting via Platelet Membrane-Coated Nanoparticles. SMALL STRUCTURES 2020; 1:2000018. [PMID: 33817693 PMCID: PMC8011559 DOI: 10.1002/sstr.202000018] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Platelets possess distinct surface moieties responsible for modulating their adhesion to various disease-relevant substrates involving vascular damage, immune evasion, and pathogen interactions. Such broad biointerfacing capabilities of platelets have inspired the development of platelet-mimicking drug carriers that preferentially target drug payloads to disease sites for enhanced therapeutic efficacy. Among these carriers, platelet membrane-coated nanoparticles (denoted 'PNPs') made by cloaking synthetic substrates with the plasma membrane of platelets have emerged recently. Their 'top-down' design combines the functionalities of natural platelet membrane and the engineering flexibility of synthetic nanomaterials, which together create synergy for effective drug delivery and novel therapeutics. Herein, we review the recent progress of engineering PNPs with different structures for targeted drug delivery, focusing on three areas, including targeting injured blood vessels to treat vascular diseases, targeting cancer cells for cancer treatment and detection, and targeting drug-resistant bacteria to treat infectious diseases. Overall, current studies have established PNPs as versatile nanotherapeutics for drug targeting with strong potentials to improve the treatment of various diseases.
Collapse
Affiliation(s)
- Shuyan Wang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Anvita Komarla
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Prevention of P2 Receptor-Dependent Thrombocyte Activation by Pore-Forming Bacterial Toxins Improves Outcome in A Murine Model of Urosepsis. Int J Mol Sci 2020; 21:ijms21165652. [PMID: 32781764 PMCID: PMC7460651 DOI: 10.3390/ijms21165652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Urosepsis is a potentially life-threatening, systemic reaction to uropathogenic bacteria entering the bloodstream of the host. One of the hallmarks of sepsis is early thrombocyte activation with a following fall in circulating thrombocytes as a result of intravascular aggregation and sequestering of thrombocytes in the major organs. Development of a thrombocytopenic state is associated with a poorer outcome of sepsis. Uropathogenic Escherichia coli frequently produce the pore-forming, virulence factor α-haemolysin (HlyA), of which the biological effects are mediated by ATP release and subsequent activation of P2 receptors. Thus, we speculated that inhibition of thrombocyte P2Y1 and P2Y12 receptors might ameliorate the septic response to HlyA-producing E. coli. The study combined in vitro measurements of toxin-induced thrombocyte activation assessed as increased membrane abundance of P-selectin, fibronectin and CD63 and data from in vivo murine model of sepsis-induced by HlyA-producing E. coli under infusion of P2Y1 and P2Y12 antagonists. Our data show that the P2Y1 receptor antagonist almost abolishes thrombocyte activation by pore-forming bacterial toxins. Inhibition of P2Y1, by constant infusion of MRS2500, markedly increased the survival in mice with induced sepsis. Moreover, MRS2500 partially prevented the sepsis-induced depletion of circulating thrombocytes and dampened the sepsis-associated increase in proinflammatory cytokines. In contrast, P2Y12 receptor inhibition had only a marginal effect in vivo and in vitro. Taken together, inhibition of the P2Y1 receptor gives a subtle dampening of the thrombocyte activation and the cytokine response to bacteraemia, which may explain the improved survival observed by P2Y1 receptor antagonists.
Collapse
|
15
|
How Fungal Glycans Modulate Platelet Activation via Toll-Like Receptors Contributing to the Escape of Candida albicans from the Immune Response. Antibiotics (Basel) 2020; 9:antibiotics9070385. [PMID: 32645848 PMCID: PMC7399910 DOI: 10.3390/antibiotics9070385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Platelets are essential for vascular repair and for the maintenance of blood homeostasis. They contribute to the immune defence of the host against many infections caused by bacteria, viruses and fungi. Following infection, platelet function is modified, and these cells form aggregates with microorganisms leading, to a decrease in the level of circulating platelets. During candidaemia, mannans, β-glucans and chitin, exposed on the cell wall of Candida albicans, an opportunistic pathogenic yeast of humans, play an important role in modulation of the host response. These fungal polysaccharides are released into the circulation during infection and their detection allows the early diagnosis of invasive fungal infections. However, their role in the modulation of the immune response and, in particular, that of platelets, is not well understood. The structure and solubility of glycans play an important role in the orientation of the immune response of the host. This short review focuses on the effect of fungal β-glucans and chitin on platelet activation and how these glycans modulate platelet activity via Toll-like receptors, contributing to the escape of C. albicans from the immune response.
Collapse
|
16
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Li K, Han X, Li R, Xu Z, Pan T, Liu J, Li B, Wang S, Diao Y, Liu X. Composition, Antivirulence Activity, and Active Property Distribution of the Fruit of Terminalia chebula Retz. J Food Sci 2019; 84:1721-1729. [PMID: 31206192 DOI: 10.1111/1750-3841.14655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023]
Abstract
The fruit of Terminalia chebula Retz., or Tibet Olive, is widely used as a food supplement in China. It possesses some natural antimicrobial properties; however, its chemical composition and antivirulence effects have not been identified. In this work, 29 compounds were identified from the peel of T. chebula fruit by ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Both the extract of T. chebula and its phenolic acid, corilagin, showed antivirulent activity against Staphylococcus aureus. Specifically, they inhibited biofilm formation. The half maximal inhibitory concentration was 0.13 and 3.18 µg/mL for the extract and corilagin, respectively, whereas for α-hemolysin secretion, the respective concentrations were 30 and 10 µg/mL. Its mechanism of action may be due to reducing the transcription of genes related to quorum sensing. These genes included staphylococcal accessory regulator A, intercellular adhesion accessory gene regulator A, and RNAIII. These findings provide evidence that this food supplement could be an effective antivirulent with corilagin as its active ingredient. PRACTICAL APPLICATION: Corilagin from the fruit of Terminalia chebula Retz. may be used as an antibacterial for its antivirulent activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Kun Li
- College of Chemistry and Chemical Engineering, Liaoning Normal Univ., Dalian, P.R. China
| | - Xianwei Han
- College of Chemistry and Chemical Engineering, Liaoning Normal Univ., Dalian, P.R. China
| | - Ruzhuo Li
- College of Chemistry and Chemical Engineering, Liaoning Normal Univ., Dalian, P.R. China
| | - Zhongren Xu
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Taowen Pan
- Inst. of Integrative Medicine, Dalian Medical Univ., Dalian, P.R. China
| | - Jing Liu
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Bin Li
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Shouyu Wang
- The First Affiliated Hospital of Dalian Medical Univ., Dalian, P.R. China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Xinguang Liu
- Inst. of Integrative Medicine, Dalian Medical Univ., Dalian, P.R. China
| |
Collapse
|
18
|
Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, Jorch SK, Deppermann C, Bubeck Wardenburg J, Davis RP, Jenne CN, Stover KC, Sellman BR, Kubes P. α-Toxin Induces Platelet Aggregation and Liver Injury during Staphylococcus aureus Sepsis. Cell Host Microbe 2018; 24:271-284.e3. [PMID: 30033122 DOI: 10.1016/j.chom.2018.06.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
Abstract
During sepsis, small blood vessels can become occluded by large platelet aggregates of poorly understood etiology. During Staphylococcal aureus infection, sepsis severity is linked to the bacterial α-toxin (α-hemolysin, AT) through unclear mechanisms. In this study, we visualized intravascular events in the microcirculation and found that intravenous AT injection induces rapid platelet aggregation, forming dynamic micro-thrombi in the microcirculation. These aggregates are retained in the liver sinusoids and kidney glomeruli, causing multi-organ dysfunction. Acute staphylococcal infection results in sequestration of most bacteria by liver macrophages. Platelets are initially recruited to these macrophages and help eradicate S. aureus. However, at later time points, AT causes aberrant and damaging thrombosis throughout the liver. Treatment with an AT neutralizing antibody (MEDI4893∗) prevents platelet aggregation and subsequent liver damage, without affecting the initial and beneficial platelet recruitment. Thus, AT neutralization may represent a promising approach to combat staphylococcal-induced intravascular coagulation and organ dysfunction.
Collapse
Affiliation(s)
- Bas G J Surewaard
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Medical Microbiology, University Medical Center, Utrecht, the Netherlands
| | - Ajitha Thanabalasuriar
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Zhutian Zeng
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Christine Tkaczyk
- Department of Microbial Sciences, Medimmune, LLC, Gaithersburg, MD, USA
| | - Taylor S Cohen
- Department of Microbial Sciences, Medimmune, LLC, Gaithersburg, MD, USA
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center, Utrecht, the Netherlands
| | - Selina K Jorch
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Carsten Deppermann
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics and Division of Pediatric Critical Care Medicine at Washington University School of Medicine, St. Louis, MO, USA
| | - Rachelle P Davis
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Kendall C Stover
- Department of Microbial Sciences, Medimmune, LLC, Gaithersburg, MD, USA
| | - Bret R Sellman
- Department of Microbial Sciences, Medimmune, LLC, Gaithersburg, MD, USA
| | - Paul Kubes
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
19
|
Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel) 2018; 10:toxins10060252. [PMID: 29921792 PMCID: PMC6024779 DOI: 10.3390/toxins10060252] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases.
Collapse
|
20
|
How I evaluate and treat thrombocytopenia in the intensive care unit patient. Blood 2016; 128:3032-3042. [PMID: 28034871 DOI: 10.1182/blood-2016-09-693655] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Multiple causes (pseudothrombocytopenia, hemodilution, increased consumption, decreased production, increased sequestration, and immune-mediated destruction of platelets) alone or in combination make thrombocytopenia very common in intensive care unit (ICU) patients. Persisting thrombocytopenia in critically ill patients is associated with, but not causative of, increased mortality. Identification of the underlying cause is key for management decisions in individual patients. While platelet transfusion might be indicated in patients with impaired platelet production or increased platelet destruction, it could be deleterious in patients with increased intravascular platelet activation. Sepsis and trauma are the most common causes of thrombocytopenia in the ICU. In these patients, treatment of the underlying disease will also increase platelet counts. Heparin-induced thrombocytopenia requires alternative anticoagulation at a therapeutic dose and immune thrombocytopenia immunomodulatory treatment. Thrombocytopenia with symptomatic bleeding at or above World Health Organization grade 2 or planned invasive procedures are established indications for platelet transfusions, while the evidence for a benefit of prophylactic platelet transfusions is weak and controversial. If the platelet count does not increase after transfusion of 2 fresh ABO blood group-identical platelet concentrates (therapeutic units), ongoing platelet consumption and high-titer anti-HLA class I antibodies should be considered. The latter requires transfusion of HLA-compatible platelet concentrates.
Collapse
|
21
|
Arbesu I, Bucsaiova M, Fischer MB, Mannhalter C. Platelet-borne complement proteins and their role in platelet-bacteria interactions. J Thromb Haemost 2016; 14:2241-2252. [PMID: 27590476 PMCID: PMC5299534 DOI: 10.1111/jth.13495] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
Essentials Platelets play an important role in pathogen recognition. Platelets contain several complement factors and can interact with E. coli. Platelet's complement protein C3 differs from plasmatic C3 in its electrophoretic mobility. Upon contact with bacteria, platelets are activated and can enhance complement activation. SUMMARY Background The role of platelets in immune defense is increasingly being recognized. Platelets bind complement proteins from plasma, initiate complement activation, and interact with bacteria. However, the contribution of platelets to complement-mediated defense against bacterial infections is not known in detail. Objectives To assess platelet interactions with Escherichia coli strains, and evaluate the contributions of platelet complement proteins to host defense. Methods We studied the cell-cell interactions of a pathogenic and a non-pathogenic E. coli strain with platelet concentrates, washed platelets and manually isolated platelets by flow cytometry and ELISA. The presence of complement proteins and complement RNA in megakaryocytes and platelets was analyzed by PCR, RT-PCR, confocal microscopy, and western blotting. Results Incubation with E. coli leads to platelet activation, as indicated by the expression of CD62P and CD63 on the platelet surface. RNA and protein analyses show that megakaryocytes and platelets contain complement C3, and that platelet C3 migrates differently on polyacrylamide gels than plasmatic C3. Activation of platelets by bacteria leads to translocation of C3 to the cell surface. This translocation is not induced by thrombin receptor activating peptide or lipopolysaccharide. Interaction of platelets with E. coli occurs even in the absence of plasma proteins, and is independent of platelet toll-like receptor 4 and α2b β3 (glycoprotein IIbIIIa). Conclusion Platelets contain a specific form of C3. Importantly, they can modulate immune defense against bacteria by enhancing plasmatic complement activation.
Collapse
Affiliation(s)
- I. Arbesu
- Department of Laboratory MedicineMedical UniversityViennaAustria
| | - M. Bucsaiova
- Department of Laboratory MedicineMedical UniversityViennaAustria
| | - M. B. Fischer
- Center for Biomedical TechnologyDonau‐Universität KremsKremsAustria
- Department of Blood Serology and Transfusion MedicineMedical University of ViennaViennaAustria
| | - C. Mannhalter
- Department of Laboratory MedicineMedical UniversityViennaAustria
| |
Collapse
|
22
|
Abstract
The primary function of platelets is to patrol the vasculature and seal vessel breaches to limit blood loss. However, it is becoming increasingly clear that they also contribute to pathophysiological conditions like thrombosis, atherosclerosis, stroke and infection. Severe sepsis is a devastating disease that claims hundreds of thousands of lives every year in North America and is a major burden to the public health system. Platelet surface receptors like GPIb, αIIbβ3, TLR2 and TLR4 are involved in direct platelet-bacteria interactions. Plasma proteins like fibrinogen and vWF enable indirect interactions. Furthermore, platelet granules contain a plethora of proteins that modulate the immune response as well as microbicidal agents which can directly lyse bacteria. Bacterial toxins are potent platelet activators and can cause intravascular platelet aggregation. Platelets contribute to the antibacterial response of the host involving Kupffer cells, neutrophils and the complement system. In this review we summarize the current knowledge about platelet-bacteria interactions and highlight recent advances in the field.
Collapse
Affiliation(s)
- Carsten Deppermann
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
23
|
Powers ME, Becker REN, Sailer A, Turner JR, Bubeck Wardenburg J. Synergistic Action of Staphylococcus aureus α-Toxin on Platelets and Myeloid Lineage Cells Contributes to Lethal Sepsis. Cell Host Microbe 2016; 17:775-87. [PMID: 26067604 DOI: 10.1016/j.chom.2015.05.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/15/2015] [Accepted: 05/22/2015] [Indexed: 02/06/2023]
Abstract
Multi-organ failure contributes to mortality in bacterial sepsis. Platelet and immune cell activation contribute to organ injury during sepsis, but the mechanisms by which bacterial virulence factors initiate these responses remain poorly defined. We demonstrate that during lethal sepsis, Staphylococcus aureus α-toxin simultaneously alters platelet activation and promotes neutrophil inflammatory signaling through interactions with its cellular receptor ADAM10. Platelet intoxication prevents endothelial barrier repair and facilitates formation of injurious platelet-neutrophil aggregates, contributing to lung and liver injury that is mitigated by ADAM10 deletion on platelets and myeloid lineage cells. While platelet- or myeloid-specific ADAM10 knockout does not alter sepsis mortality, double-knockout animals are highly protected. These results define a pathway by which a single bacterial toxin utilizes a widely expressed receptor to coordinate progressive, multi-organ disease in lethal sepsis. As an expression-enhancing ADAM10 polymorphism confers susceptibility to severe human sepsis, these studies highlight the importance of understanding molecular host-microbe interactions.
Collapse
Affiliation(s)
- Michael E Powers
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Russell E N Becker
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Anne Sailer
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jerrold R Turner
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Abstract
Bacteria that enter the bloodstream will encounter components of the cellular and soluble immune response. Platelets contribute to this response and have emerged as an important target for bacterial pathogens. Bacteria produce diverse extracellular proteins and toxins that have been reported to modulate platelet function. These interactions can result in complete or incomplete platelet activation or inhibition of platelet activation, depending on the bacteria and bacterial product. The nature of the platelet response may be highly relevant to disease pathogenesis.
Collapse
Affiliation(s)
- Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University , Lund , Sweden
| |
Collapse
|
25
|
Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog 2014; 10:e1003871. [PMID: 24550724 PMCID: PMC3923759 DOI: 10.1371/journal.ppat.1003871] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
26
|
Abstract
Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.
Collapse
Affiliation(s)
- Bryan J. Berube
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
- Department of Pediatrics, The University of Chicago, 5721 S. Maryland Ave. Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-834-9763; Fax: +1-773-834-8150
| |
Collapse
|
27
|
Skals M, Praetorius HA. Mechanisms of cytolysin-induced cell damage -- a role for auto- and paracrine signalling. Acta Physiol (Oxf) 2013; 209:95-113. [PMID: 23927595 DOI: 10.1111/apha.12156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/21/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022]
Abstract
Cytolysins inflict cell damage by forming pores in the plasma membrane. The Na(+) conductivity of these pores results in an ion influx that exceeds the capacity of the Na(+) /K(+) -pump to extrude Na(+) . This net load of intracellular osmolytes results in swelling and eventual lysis of the attacked cell. Many nucleated cells have the capacity to reduce the potential damage of pore-forming proteins, whereas erythrocytes have been regarded as essentially defenceless against cytolysin-induced cell damage. This review addresses how autocrine/paracrine signalling and the cells intrinsic volume regulation markedly influence the fate of the cell after membrane insertion of cytolysins. Moreover, it regards the various steps that may explain the relative large degree of diversity between cell types and species as well as highlights some of the current gaps in the mechanistic understanding of cytolysin-induced cell injury.
Collapse
Affiliation(s)
- M. Skals
- Department of Biomedicine; Aarhus University; Aarhus C; Denmark
| | | |
Collapse
|
28
|
Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood 2012; 120:5014-20. [PMID: 23086749 DOI: 10.1182/blood-2012-04-420661] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacteria can enter the bloodstream in response to infectious insults. Bacteremia elicits several immune and clinical complications, including thrombocytopenia. A primary cause of thrombocytopenia is shortened survival of platelets. We demonstrate that pathogenic bacteria induce apoptotic events in platelets that include calpain-mediated degradation of Bcl-x(L), an essential regulator of platelet survival. Specifically, bloodstream bacterial isolates from patients with sepsis induce lateral condensation of actin, impair mitochondrial membrane potential, and degrade Bcl-x(L) protein in platelets. Bcl-x(L) protein degradation is enhanced when platelets are exposed to pathogenic Escherichia coli that produce the pore-forming toxin α-hemolysin, a response that is markedly attenuated when the gene is deleted from E coli. We also found that nonpathogenic E coli gain degrading activity when they are forced to express α-hemolysin. Like α-hemolysin, purified α-toxin readily degrades Bcl-x(L) protein in platelets, as do clinical Staphylococcus aureus isolates that produce α-toxin. Inhibition of calpain activity, but not the proteasome, rescues Bcl-x(L) protein degradation in platelets coincubated with pathogenic E coli including α-hemolysin producing strains. This is the first evidence that pathogenic bacteria can trigger activation of the platelet intrinsic apoptosis program and our results suggest a new mechanism by which bacterial pathogens might cause thrombocytopenia in patients with bloodstream infections.
Collapse
|
29
|
Durgaryan AA, Matevosyan MB, Seferyan TY, Sargsyan MA, Grigoryan SL, Galoian KA, Galoyan AA. The protective and immunomodulatory effects of hypothalamic proline-rich polypeptide galarmin against methicillin-resistant Staphylococcus aureus infection in mice. Eur J Clin Microbiol Infect Dis 2012; 31:2153-65. [PMID: 22322358 DOI: 10.1007/s10096-012-1550-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/06/2012] [Indexed: 12/23/2022]
Abstract
The present research summarizes the protective and immunomodulatory activity of hypothalamic proline-rich polypeptide galarmin against methicillin-resistant Staphylococcus aureus (MRSA). The protective effect of galarmin was shown on MRSA-infected animals' survival and weight loss recovery. The immunological impact of galarmin was evaluated in terms of immunocompetent cell recruitment, serum immunoglobulins, complement components C3 and C4, and pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, IL-1b, TNFa, and KC) secretion. Galarmin efficiently protects mice against lethal MRSA infection (100% of survival vs. 0% in the untreated group) when intramuscularly injected 24 h before infection and during the 1-h post-infection period at a concentration of 1 μg per mouse, while its higher concentrations (5 and 10 μg) were protective when injected in parallel to the infection process. The protective effect of galarmin was not due to a direct effect on MRSA, but should be attributed to an action on the host response to infection. Galarmin significantly increased and modulated the levels of IL-6, IL-8, IL-1b, IL-10, and KC in both peritoneal lavages and blood, leukocyte and platelet counts, lymphocytes percentage, serum IgM and IgG, and complement C3 and C4 components secretion. The experimental results allow concluding that galarmin is a powerful immunomodulatory and protective agent for the in vivo prophylaxis and treatment of MRSA-induced infection.
Collapse
Affiliation(s)
- A A Durgaryan
- Department of Neurohormones Biochemistry, H. Buniatian Institute of Biochemistry NAS RA, 5/1 P. Sevak Str., 0014, Yerevan, Armenia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Schubert S, Schwertz H, Weyrich AS, Franks ZG, Lindemann S, Otto M, Behr H, Loppnow H, Schlitt A, Russ M, Presek P, Werdan K, Buerke M. Staphylococcus aureus α-toxin triggers the synthesis of B-cell lymphoma 3 by human platelets. Toxins (Basel) 2011; 3:120-33. [PMID: 22069700 PMCID: PMC3202813 DOI: 10.3390/toxins3020120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 01/20/2023] Open
Abstract
The frequency and severity of bacteremic infections has increased over the last decade and bacterial endovascular infections (i.e., sepsis or endocarditis) are associated with high morbidity and mortality. Bacteria or secreted bacterial products modulate platelet function and, as a result, affect platelet accumulation at sites of vascular infection and inflammation. However, whether bacterial products regulate synthetic events in platelets is not known. In the present study, we determined if prolonged contact with staphylococcal α-toxin signals platelets to synthesize B-cell lymphoma (Bcl-3), a protein that regulates clot retraction in murine and human platelets. We show that α-toxin induced α(IIb)β(3)-dependent aggregation (EC(50) 2.98 µg/mL ± 0.64 µg/mL) and, over time, significantly altered platelet morphology and stimulated de novo accumulation of Bcl-3 protein in platelets. Adherence to collagen or fibrinogen also increased the expression of Bcl-3 protein by platelets. α-toxin altered Bcl-3 protein expression patterns in platelets adherent to collagen, but not fibrinogen. Pretreatment of platelets with inhibitors of protein synthesis or the mammalian Target of Rapamycin (mTOR) decreased Bcl-3 protein expression in α-toxin stimulated platelets. In conclusion, Staphylococcusaureus-derived α-toxin, a pore forming exotoxin, exerts immediate (i.e., aggregation) and prolonged (i.e., protein synthesis) responses in platelets, which may contribute to increased thrombotic events associated with gram-positive sepsis or endocarditis.
Collapse
Affiliation(s)
- Sebastian Schubert
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Hansjörg Schwertz
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Andrew S. Weyrich
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Zechariah G. Franks
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Stephan Lindemann
- Department of Medicine III, Eberhard Karls University, Tübingen, Germany;
| | - Monika Otto
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Hagen Behr
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Harald Loppnow
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Axel Schlitt
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Martin Russ
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Peter Presek
- Clinical Pharmacology, Martin Luther University, Halle, Saale, Germany;
| | - Karl Werdan
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Michael Buerke
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| |
Collapse
|
31
|
Abstract
Many bacteria are capable of interacting with platelets and inducing platelet aggregation. This interaction may be a direct interaction between a bacterial surface protein and a platelet receptor or may be an indirect interaction where plasma proteins bind to the bacterial surface and subsequently bind to a platelet receptor. However, these interactions usually do not trigger platelet activation as a secondary co-signal is also required. This is usually due to specific antibody bound to the bacteria interacting with FcgammaRIIa on the platelet surface. Secreted bacterial products such as gingipains and lipopolysaccharide may also be capable of triggering platelet activation.
Collapse
Affiliation(s)
- Steven W. Kerrigan
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Dermot Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
32
|
Rouzet F, Sarda-Mantel L, Michel JB, Le Guludec D. Molecular imaging of platelet activation in thrombus. J Nucl Cardiol 2009; 16:277-86. [PMID: 19224152 DOI: 10.1007/s12350-009-9053-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/06/2009] [Indexed: 11/24/2022]
Affiliation(s)
- François Rouzet
- Department of Nuclear Medicine, Bichat-Claude Bernard Hospital, AP-HP, Paris, France.
| | | | | | | |
Collapse
|
33
|
Yarovinsky TO, Monick MM, Husmann M, Hunninghake GW. Interferons increase cell resistance to Staphylococcal alpha-toxin. Infect Immun 2008; 76:571-7. [PMID: 18070901 PMCID: PMC2223481 DOI: 10.1128/iai.01088-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/18/2007] [Accepted: 11/28/2007] [Indexed: 12/28/2022] Open
Abstract
Many bacterial pathogens, including Staphylococcus aureus, use a variety of pore-forming toxins as important virulence factors. Staphylococcal alpha-toxin, a prototype beta-barrel pore-forming toxin, triggers the release of proinflammatory mediators and induces primarily necrotic death in susceptible cells. However, whether host factors released in response to staphylococcal infections may increase cell resistance to alpha-toxin is not known. Here we show that prior exposure to interferons (IFNs) prevents alpha-toxin-induced membrane permeabilization, the depletion of ATP, and cell death. Moreover, pretreatment with IFN-alpha decreases alpha-toxin-induced secretion of interleukin 1beta (IL-1beta). IFN-alpha, IFN-beta, and IFN-gamma specifically protect cells from alpha-toxin, whereas tumor necrosis factor alpha (TNF-alpha), IL-6, and IL-4 have no effects. Furthermore, we show that IFN-alpha-induced protection from alpha-toxin is not dependent on caspase-1 or mitogen-activated protein kinases, but requires protein synthesis and fatty acid synthase activity. Our results demonstrate that IFNs may increase cell resistance to staphylococcal alpha-toxin via the regulation of lipid metabolism and suggest that interferons play a protective role during staphylococcal infections.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Yale University School of Medicine, Department of Immunobiology, TAC S555, 300 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
34
|
Staphylococcal Presence Alters Thrombus Formation Under Physiological Shear Conditions in Whole Blood Studies. Ann Biomed Eng 2008; 36:349-55. [DOI: 10.1007/s10439-007-9434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
|
35
|
Schaufuss P, Müller F, Valentin-Weigand P. Isolation and characterization of a haemolysin from Trichophyton mentagrophytes. Vet Microbiol 2007; 122:342-9. [PMID: 17336469 DOI: 10.1016/j.vetmic.2007.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/21/2007] [Accepted: 01/23/2007] [Indexed: 11/23/2022]
Abstract
Haemolytic activities of Trichophyton (T.) mentagrophytes were detected and characterized by qualitative and quantitative assays. On Columbia agar supplemented with blood from horses, cattle or sheep, T. mentagrophytes expressed a strong zone of complete haemolysis. No haemolytic activities could be detected in the closely related T. verrucosum var. ochraceum. The same results were obtained after cultivation of the fungi on sterile cellulose acetate filters placed on the surface on Columbia blood agar. After removal of the filter, complete haemolysis was detected below the colony of T. mentagrophytes. A soluble haemolysin from culture supernatant of this strain was isolated and partially purified. Specific haemolytic activity per mg protein was enriched 2.6-fold in filtrate F(1), a fraction obtained as filtrate after filtration through 3kDa cut-off membranes. The partially purified haemolysin was neither affected by proteinase K treatment, nor by high and low temperatures, suggesting that it represents a small peptide haemolysin. Accordingly, in a commercial enzymatic activity test only the crude culture filtrate, but none of the subsequent purification fractions showed reactivity. Evaluation of the specificity of the haemolysin using erythrocytes from different mammalian species revealed that sensitivity was highest to those of equines, followed by erythrocytes from sheep, cattle, swine, dogs and humans. None of the erythrocytes was lysed by filtrate F(1) from T. verrucosum var. ochraceum. Furthermore, different eukaryotic cell lines from different species were tested in their sensitivity to cytolytic activities of the haemolysin, but no membrane damage could be detected.
Collapse
Affiliation(s)
- P Schaufuss
- Serumwerk Memsen WDT, Memsen 13, Hoyerhagen, Germany.
| | | | | |
Collapse
|
36
|
Ghosh G, Bachas LG, Anderson KW. Biosensor incorporating cell barrier architectures for detecting Staphylococcus aureus alpha toxin. Anal Bioanal Chem 2006; 387:567-74. [PMID: 17119934 DOI: 10.1007/s00216-006-0949-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/13/2006] [Accepted: 10/16/2006] [Indexed: 11/28/2022]
Abstract
Alpha toxin is a common virulent factor of Staphylococcus aureus and is believed to play crucial roles in pathogenicity induced by S. aureus. Alpha toxin is also known to induce permeability to endothelial cell monolayers in vitro due to the formation of interendothelial gaps. The present study is directed towards measuring alpha toxin using a whole-cell-based biosensor. The biosensor, consisting of a confluent monolayer of human umbilical vein endothelial cells (HUVECs) on a potassium ion-selective electrode, takes advantage of cell permeability dysfunction to detect the presence of small quantities of alpha toxin. When a confluent monolayer of cells was formed on the membrane surface, the response of the electrode toward the marker ion, potassium, was inhibited. Upon exposing this sensor to varying concentrations of alpha toxin for 20 min, an increase in sensor response to potassium was observed. The response thus obtained was indirectly related to the concentration of alpha toxin. The detection limit of this sensor for alpha toxin was found to be 0.1 ng/ml. Cell monolayers were stained with silver nitrate to quantify the formation of intercellular gaps as well as to study the effect of this toxin on HUVECs morphology. A strong positive correlation was observed between the response obtained from the biosensor and the area of the intercellular gaps. Silver staining also revealed the tendency of cells to round up upon being exposed to alpha toxin.
Collapse
Affiliation(s)
- Gargi Ghosh
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
37
|
Abstract
In recent years, the frequency of serious cardiovascular infections such as endocarditis has increased, particularly in association with nosocomially acquired antibiotic-resistant pathogens. Growing evidence suggests a crucial role for the interaction of bacteria with human platelets in the pathogenesis of cardiovascular infections. Here, we review the nature of the interactions between platelets and bacteria, and the role of these interactions in the pathogenesis of endocarditis and other cardiovascular diseases.
Collapse
Affiliation(s)
- J Ross Fitzgerald
- Centre for Infectious Diseases, The Chancellor's Building, New Royal Infirmary, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | | | | |
Collapse
|
38
|
Aksimentiev A, Schulten K. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 2005; 88:3745-61. [PMID: 15764651 PMCID: PMC1305609 DOI: 10.1529/biophysj.104.058727] [Citation(s) in RCA: 511] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2004] [Accepted: 02/08/2005] [Indexed: 01/28/2023] Open
Abstract
alpha-Hemolysin of Staphylococcus aureus is a self-assembling toxin that forms a water-filled transmembrane channel upon oligomerization in a lipid membrane. Apart from being one of the best-studied toxins of bacterial origin, alpha-hemolysin is the principal component in several biotechnological applications, including systems for controlled delivery of small solutes across lipid membranes, stochastic sensors for small solutes, and an alternative to conventional technology for DNA sequencing. Through large-scale molecular dynamics simulations, we studied the permeability of the alpha-hemolysin/lipid bilayer complex for water and ions. The studied system, composed of approximately 300,000 atoms, included one copy of the protein, a patch of a DPPC lipid bilayer, and a 1 M water solution of KCl. Monitoring the fluctuations of the pore structure revealed an asymmetric, on average, cross section of the alpha-hemolysin stem. Applying external electrostatic fields produced a transmembrane ionic current; repeating simulations at several voltage biases yielded a current/voltage curve of alpha-hemolysin and a set of electrostatic potential maps. The selectivity of alpha-hemolysin to Cl(-) was found to depend on the direction and the magnitude of the applied voltage bias. The results of our simulations are in excellent quantitative agreement with available experimental data. Analyzing trajectories of all water molecule, we computed the alpha-hemolysin's osmotic permeability for water as well as its electroosmotic effect, and characterized the permeability of its seven side channels. The side channels were found to connect seven His-144 residues surrounding the stem of the protein to the bulk solution; the protonation of these residues was observed to affect the ion conductance, suggesting the seven His-144 to comprise the pH sensor that gates conductance of the alpha-hemolysin channel.
Collapse
Affiliation(s)
- Aleksij Aksimentiev
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
39
|
|
40
|
Menestrina G, Dalla Serra M, Comai M, Coraiola M, Viero G, Werner S, Colin DA, Monteil H, Prévost G. Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett 2003; 552:54-60. [PMID: 12972152 DOI: 10.1016/s0014-5793(03)00850-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus strains causing human pathologies produce several toxins, including a pore-forming protein family formed by the single-component alpha-hemolysin and the bicomponent leukocidins and gamma-hemolysins. The last comprise two protein elements, S and F, that co-operatively form the active toxin. alpha-Hemolysin is always expressed by S. aureus strains, whereas bicomponent leukotoxins are more specifically involved in a few diseases. X-ray crystallography of the alpha-hemolysin pore has shown it is a mushroom-shaped, hollow heptamer, almost entirely consisting of beta-structure. Monomeric F subunits have a very similar core structure, except for the transmembrane stem domain which has to refold during pore formation. Large deletions in this domain abolished activity, whereas shorter deletions sometimes improved it, possibly by removing some of the interactions stabilizing the folded structure. Even before stem extension is completed, the formation of an oligomeric pre-pore can trigger Ca(2+)-mediated activation of some white cells, initiating an inflammatory response. Within the bicomponent toxins, gamma-hemolysins define three proteins (HlgA, HlgB, HlgC) that can generate two toxins: HlgA+HlgB and HlgC+HlgB. Like alpha-hemolysin they form pores in planar bilayers with similar conductance, but opposite selectivity (cation instead of anion) for the presence of negative charges in the ion pathway. gamma-Hemolysin pores seem to be organized as alpha-hemolysin, but should contain an even number of each component, alternating in a 1:1 stoichiometry.
Collapse
Affiliation(s)
- G Menestrina
- CNR-ITC Istituto di Biofisica, Sezione di Trento, Via Sommarive 18, I-38050 Povo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Youssefian T, Drouin A, Massé JM, Guichard J, Cramer EM. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 2002; 99:4021-9. [PMID: 12010803 DOI: 10.1182/blood-2001-12-0191] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelets can bind and phagocytose infectious microorganisms and so enable their transport for a prolonged time. To investigate the subcellular events of these interactions, platelets were incubated either with Staphylococcus aureus or with HIV and analyzed by electron microscopy (EM) and immuno-EM. HIV and bacteria internalization occurred exclusively within platelets showing morphological evidence of activation. Platelet activation enhanced the degree of bacterial internalization. Immunolabeling revealed that the engulfing vacuoles and the open canalicular system (OCS) were composed of distinct antigens. The engulfing vacuoles eventually became the site of prominent alpha-granule release. In platelets incubated with HIV, characteristic endocytic vacuoles were identified close to the plasma membrane, tightly surrounding 1 or 2 HIV particles. Virus particles were also located within the OCS. Immunogold labeling for the viral core protein p24 confirmed the presence of HIV within platelets. Finally, examination of platelets from a patient with acquired immunodeficiency syndrome and high viremia suggested that HIV endocytosis may also occur in vivo.
Collapse
|
42
|
Rose F, Dahlem G, Guthmann B, Grimminger F, Maus U, Hänze J, Duemmer N, Grandel U, Seeger W, Ghofrani HA. Mediator generation and signaling events in alveolar epithelial cells attacked by S. aureus alpha-toxin. Am J Physiol Lung Cell Mol Physiol 2002; 282:L207-14. [PMID: 11792625 DOI: 10.1152/ajplung.00156.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus alpha-toxin is a pore-forming bacterial exotoxin that has been implicated as a significant virulence factor in human staphylococcal diseases. In primary cultures of rat pneumocyte type II cells and the human A549 alveolar epithelial cell line, purified alpha-toxin provoked rapid-onset phosphatidylinositol (PtdIns) hydrolysis as well as liberation of nitric oxide and the prostanoids PGE(2), PGI(2), and thromboxane A(2). In addition, sustained upregulation of proinflammatory interleukin (IL)-8 mRNA expression and protein secretion occurred. "Priming" with low-dose IL-1beta markedly enhanced the IL-8 response to alpha-toxin, which was then accompanied by IL-6 appearance. The cytokine response was blocked by the intracellular Ca(2+)-chelating reagent 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, the protein kinase C inhibitor bis-indolyl maleimide I, as well as two independent inhibitors of nuclear factor-kappaB activation, pyrrolidine dithiocarbamate and caffeic acid phenethyl ester. We conclude that alveolar epithelial cells are highly reactive target cells of staphylococcal alpha-toxin. alpha-Toxin pore-associated transmembrane Ca(2+) flux and PtdIns hydrolysis-related signaling with downstream activation of protein kinase C and nuclear translocation of nuclear factor-kappaB are suggested to represent important underlying mechanisms. Such reactivity of the alveolar epithelial cells may be relevant for pathogenic sequelae in staphylococcal lung disease.
Collapse
Affiliation(s)
- Frank Rose
- Department of Internal Medicine, Justus-Liebig University, Giessen D-35392, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Menestrina G, Serra MD, Prévost G. Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 2001; 39:1661-72. [PMID: 11595629 DOI: 10.1016/s0041-0101(01)00153-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Staphylococcal alpha-hemolysin is the prototype of a family of bacterial exotoxins with membrane-damaging function, which share sequence and structure homology. These toxins are secreted in a soluble form which finally converts into a transmembrane pore by assembling an oligomeric beta-barrel, with hydrophobic residues facing the lipids and hydrophilic residues facing the lumen of the channel. Besides alpha-hemolysin the family includes other single chain toxins forming homo-oligomers, e.g. beta-toxin of Clostridium perfringens, hemolysin II and cytotoxin K of Bacillus cereus, but also the staphylococcal bi-component toxins, like gamma-hemolysins and leucocidins, which are only active as the combination of two similar proteins which form hetero-oligomers. The molecular basis of membrane insertion has become clearer after the determination of the crystal structure of both the oligomeric pore and the soluble monomer. Studies on this family of beta-barrel pore-forming toxins are important for many aspects: (i) they are involved in serious pathologies of humans and farmed animals, (ii) they are a good model system to investigate protein-membrane interaction and (iii) they are the basic elements for the construction of nanopores with biotechnological applications in various fields.
Collapse
Affiliation(s)
- G Menestrina
- CNR-ITC Centro Fisica Stati Aggregati, Via Sommarive 18, I-38050 Povo, Trento, Italy.
| | | | | |
Collapse
|
44
|
Affiliation(s)
- G Prévost
- Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3, rue Koeberlé, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
45
|
Abstract
This article reviews the literature regarding the structure and function of two types of exotoxins expressed by Staphylococcus aureus, pyrogenic toxin superantigens (PTSAgs) and hemolysins. The molecular basis of PTSAg toxicity is presented in the context of two diseases known to be caused by these exotoxins: toxic shock syndrome and staphylococcal food poisoning. The family of staphylococcal PTSAgs presently includes toxic shock syndrome toxin-1 (TSST-1) and most of the staphylococcal enterotoxins (SEs) (SEA, SEB, SEC, SED, SEE, SEG, and SEH). As the name implies, the PTSAgs are multifunctional proteins that invariably exhibit lethal activity, pyrogenicity, superantigenicity, and the capacity to induce lethal hypersensitivity to endotoxin. Other properties exhibited by one or more staphylococcal PTSAgs include emetic activity (SEs) and penetration across mucosal barriers (TSST-1). A detailed review of the molecular mechanisms underlying the toxicity of the staphylococcal hemolysins is also presented.
Collapse
|
46
|
Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 2000; 13:16-34, table of contents. [PMID: 10627489 PMCID: PMC88931 DOI: 10.1128/cmr.13.1.16] [Citation(s) in RCA: 779] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This article reviews the literature regarding the structure and function of two types of exotoxins expressed by Staphylococcus aureus, pyrogenic toxin superantigens (PTSAgs) and hemolysins. The molecular basis of PTSAg toxicity is presented in the context of two diseases known to be caused by these exotoxins: toxic shock syndrome and staphylococcal food poisoning. The family of staphylococcal PTSAgs presently includes toxic shock syndrome toxin-1 (TSST-1) and most of the staphylococcal enterotoxins (SEs) (SEA, SEB, SEC, SED, SEE, SEG, and SEH). As the name implies, the PTSAgs are multifunctional proteins that invariably exhibit lethal activity, pyrogenicity, superantigenicity, and the capacity to induce lethal hypersensitivity to endotoxin. Other properties exhibited by one or more staphylococcal PTSAgs include emetic activity (SEs) and penetration across mucosal barriers (TSST-1). A detailed review of the molecular mechanisms underlying the toxicity of the staphylococcal hemolysins is also presented.
Collapse
Affiliation(s)
- M M Dinges
- Department of Microbiology, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
47
|
Dalla Serra M, Bernhart I, Nordera P, Di Giorgio D, Ballio A, Menestrina G. Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:401-409. [PMID: 10226373 DOI: 10.1094/mpmi.1999.12.5.401] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Syringopeptin 25A, a pseudomonad lipodepsipeptide, can form ion channels in planar lipid membranes. Pore conductance is around 40 pS in 0.1 M NaCl. Channel opening is strongly voltage dependent and requires a negative potential on the same side of the membrane where the toxin was added. These pores open and close with a lifetime of several seconds. At negative voltages, an additional pore state of around 10 pS and a lifetime of around 30 ms is also present. The voltage dependence of the rates of opening and closing of the stable pores is exponential. This allows estimation of the equivalent charge that is moved across the membrane during the process of opening at about 2.6 elementary charges. When NaCl is present, the pore is roughly 3 times more permeant for anions than for cations. The current voltage characteristic of the pore is nonlinear, i.e., pore conductance is larger at negative than at positive voltages. The maximal conductance of the pore depends on the concentration of the salt present, in a way that varies almost linearly with the conductivity of the solution. From this, an estimate of a minimal pore radius of 0.4 nm was derived.
Collapse
Affiliation(s)
- M Dalla Serra
- CNR-ITC Centro Fisica Stati Aggregati, Povo, Trento, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Moss JE, Aliprantis AO, Zychlinsky A. The regulation of apoptosis by microbial pathogens. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 187:203-59. [PMID: 10212981 DOI: 10.1016/s0074-7696(08)62419-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the past few years, there has been remarkable progress unraveling the mechanism and significance of eukaryotic programmed cell death (PCD), or apoptosis. Not surprisingly, it has been discovered that numerous, unrelated microbial pathogens engage or circumvent the host's apoptotic program. In this chapter, we briefly summarize apoptosis, emphasizing those studies which assist the reader in understanding the subsequent discussion on PCD and pathogens. We then examine the relationship between virulent bacteria and apoptosis. This section is organized to reflect both common and diverse mechanisms employed by bacteria to induce PCD. A short discussion of parasites and fungi is followed by a detailed description of the interaction of viral pathogens with the apoptotic machinery. Throughout the review, apoptosis is considered within the broader contexts of pathogenesis, virulence, and host defense. Our goals are to update the reader on this rapidly expanding field and identify topics in the current literature which demand further investigation.
Collapse
Affiliation(s)
- J E Moss
- Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York City 10016, USA
| | | | | |
Collapse
|
49
|
Tao M, Yamashita H, Watanabe K, Nagatake T. Possible virulence factors of Staphylococcus aureus in a mouse septic model. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 23:135-46. [PMID: 10076910 DOI: 10.1111/j.1574-695x.1999.tb01232.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Twenty clinical isolates of Staphylococcus aureus were examined to elucidate the virulence factors which are directly related to lethality in a mouse septic model. Heat or formalin treatment of the organism abolished the lethal activity of the live organism during challenge intravenously administered via the tail vein. Nevertheless, injection of ten times concentrated culture supernatant fluid (SUP) showed lethal activity in the mouse. However, there was no lethality when SUP was heated at 60 degrees C for 15 min. To examine variations of SUP lethality among strains, we collected 20 strains of S. aureus from four different hospitals. Then, we compared several factors for SUP lethality, which were the extracellular toxins and enzymes, such as toxic shock syndrome toxin 1, enterotoxin A, B, D, and hemolysins (alpha,beta,gamma), and also cytotoxic activity to human polymorphonuclear leukocytes and Vero cells. No difference was found among these factors except cytotoxic activity to Vero cells. Furthermore, we compared two strains in a mouse septic model according to the grade of bacteremia and lethal events. We found that mortality was higher with challenge by the strain whose SUP was lethal in comparison to the strain whose SUP was not lethal, even though the viable bacteria counts in the septic blood in both strains were not significantly different. This strongly supports the possibility that extracellular products, not the cell wall components, of S. aureus play the key role in the lethal event in this mouse septic model. In addition, among the extracellular products, those which have cytotoxic activity to Vero cells may contribute to the lethality in sepsis caused by S. aureus in this murine model.
Collapse
Affiliation(s)
- M Tao
- Department of Internal Medicine, Institute of Tropical Medicine, Nagasaki University, Japan
| | | | | | | |
Collapse
|
50
|
Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus TA, Hacker J. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 1998; 42:2817-23. [PMID: 9797209 PMCID: PMC105949 DOI: 10.1128/aac.42.11.2817] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Concentrations of antibiotics below the MIC are able to modulate the expression of virulence-associated genes. In this study, the influence of subinhibitory doses of 31 antibiotics on the expression of the gene encoding the staphylococcal alpha-toxin (hla), a major virulence factor of Staphylococcus aureus, was investigated with a novel gene fusion protocol. The most striking observation was a strong induction of hla expression by subinhibitory concentrations of beta-lactams and an almost complete inhibition of alpha-toxin expression by clindamycin. Whereas glycopeptide antibiotics had no effect, the macrolide erythromycin and several aminoglycosides reduced and fluoroquinolones slightly stimulated hla expression. Furthermore, Northern blot analysis of hla mRNA and Western blot (immunoblot) analysis of culture supernatants of both methicillin-sensitive and methicillin-resistant S. aureus strains revealed that methicillin-induced alpha-toxin expression is a common phenomenon of alpha-toxin-producing strains. Some methicillin-resistant S. aureus isolates produced up to 30-fold more alpha-toxin in the presence of 10 microg of methicillin per ml than in its absence. The results indicate that the novel gene fusion technique is a useful tool for studying the modulation of virulence gene expression by antibiotics. Moreover, the results suggest that the effects of certain antibiotics on virulence properties may be relevant for the management of S. aureus infections.
Collapse
Affiliation(s)
- K Ohlsen
- Institut für Molekulare Infektionsbiologie der Universität Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|