1
|
Goff PS, Patel S, Carter T, Marks MS, Sviderskaya EV. Enhanced MC1R-signalling and pH modulation facilitate melanogenesis within late endosomes of BLOC-1-deficient melanocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602505. [PMID: 39026869 PMCID: PMC11257453 DOI: 10.1101/2024.07.08.602505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoprotective melanins in the skin are synthesised by epidermal melanocytes within specialised lysosome-related organelles called melanosomes. Melanosomes coexist with lysosomes; thus, melanocytes employ specific trafficking machineries to ensure correct cargo delivery to either the endolysosomal system or maturing melanosomes. Mutations in some of the protein complexes required for melanogenic cargo delivery, such as biogenesis of lysosome-related organelles complex 1 (BLOC-1), result in hypopigmentation due to mistrafficking of cargo to endolysosomes. We show that hypopigmented BLOC-1-deficient melanocytes retain melanogenic capacity that can be enhanced by treatment with cAMP elevating agents despite the mislocalisation of melanogenic proteins. The melanin formed in BLOC-1-deficient melanocytes is not generated in melanosomes but rather within late endosomes/lysosomes to which some cargoes mislocalise. Although these organelles generally are acidic, a cohort of late endosomes/lysosomes have a sufficiently neutral pH to facilitate melanogenesis, perhaps due to mislocalised melanosomal transporters and melanogenic enzymes. Modulation of the pH of late endosomes/lysosomes by genetic manipulation or via treatment with lysosomotropic agents significantly enhances the melanin content of BLOC-1-deficient melanocytes. Our data suggest that upregulation of mistargeted cargoes can facilitate reprogramming of a subset of endolysosomes to generate some functions of lysosome-related organelles.
Collapse
|
2
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
3
|
Lin S, Sanchez-Bretaño A, Leslie JS, Williams KB, Lee H, Thomas NS, Callaway J, Deline J, Ratnayaka JA, Baralle D, Schmitt MA, Norman CS, Hammond S, Harlalka GV, Ennis S, Cross HE, Wenger O, Crosby AH, Baple EL, Self JE. Evidence that the Ser192Tyr/Arg402Gln in cis Tyrosinase gene haplotype is a disease-causing allele in oculocutaneous albinism type 1B (OCA1B). NPJ Genom Med 2022; 7:2. [PMID: 35027574 PMCID: PMC8758782 DOI: 10.1038/s41525-021-00275-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Oculocutaneous albinism type 1 (OCA1) is caused by pathogenic variants in the TYR (tyrosinase) gene which encodes the critical and rate-limiting enzyme in melanin synthesis. It is the most common OCA subtype found in Caucasians, accounting for ~50% of cases worldwide. The apparent 'missing heritability' in OCA is well described, with ~25-30% of clinically diagnosed individuals lacking two clearly pathogenic variants. Here we undertook empowered genetic studies in an extensive multigenerational Amish family, alongside a review of previously published literature, a retrospective analysis of in-house datasets, and tyrosinase activity studies. Together this provides irrefutable evidence of the pathogenicity of two common TYR variants, p.(Ser192Tyr) and p.(Arg402Gln) when inherited in cis alongside a pathogenic TYR variant in trans. We also show that homozygosity for the p.(Ser192Tyr)/p.(Arg402Gln) TYR haplotype results in a very mild, but fully penetrant, albinism phenotype. Together these data underscore the importance of including the TYR p.(Ser192Tyr)/p.(Arg402Gln) in cis haplotype as a pathogenic allele causative of OCA, which would likely increase molecular diagnoses in this missing heritability albinism cohort by 25-50%.
Collapse
Affiliation(s)
- Siying Lin
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Aida Sanchez-Bretaño
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Katie B Williams
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - N Simon Thomas
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Jonathan Callaway
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - James Deline
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Melanie A Schmitt
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, USA
| | - Chelsea S Norman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The Rosalind Franklin Institute, Rutherford Appleton Laboratories, Harwell Science and Innovation Campus, Didcot, UK
| | - Sheri Hammond
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Gaurav V Harlalka
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
- Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Olivia Wenger
- New Leaf Clinic, PO Box 336, 16014 East Chestnut Street, Mount Eaton, OH, 44691, USA
- Department of Pediatrics, Akron Children's Hospital, 214 West Bowery Street, Akron, OH, 44308, USA
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter, UK.
| | - Jay E Self
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
4
|
Cryopreservation of Iranian Markhoz goat fibroblast cells as an endangered national genetic resource. Mol Biol Rep 2021; 48:6241-6248. [PMID: 34398426 PMCID: PMC8365128 DOI: 10.1007/s11033-021-06534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Background The continuous accessibility of local animals for sustainable use is being eroded annually. Thus, a strategic vision for the conservation of biodiversity is of far-reaching emphasis to deal with unprecedented challenges in the local population extension facing in the future. This study aimed to establish and cryopreserve endangered Markhoz goat (Capra hircus) fibroblast cell lines in vitro. Methods and results These primary fibroblast cells were isolated from 58 Iranian Markhoz goats and individually cultured by explant technique in DMEM medium supplemented with 10% FBS and 2 mM L-Glutamine, in the presence of Penicillin (200 U/ml)—Streptomycin (200 mg/ml) during the first passage number. The extracted cell lines were confirmed morphologically as fibroblast cells. The population doubling time for DMEM-cultured cells was 23 ± 0.5 h. Chromosomal analysis indicated a total chromosome number of 2n = 60 with > 95% frequency. The cultured cells were checked for bacteria, fungi, yeast, and mycoplasma contaminations and the results were reported negative. The efficiencies of the fluorescent protein encoded by VSV-G (pMDG) and lentiviral pCSGW vectors reported in a range of 65% value. According to the species identification analysis, the goat cell lines were banked and confirmed without any miss- and cross-contamination. Conclusions The significant issue in this paper can be concluded about the first report of the establishment of endangered Markhoz goat cell banking inside the country. This study demonstrated the successful establishment of a genetically stable fibroblast bank as a valuable genetic resource for the endangered Iranian Markhoz goat breed.
Collapse
|
5
|
Le L, Escobar IE, Ho T, Lefkovith AJ, Latteri E, Haltaufderhyde KD, Dennis MK, Plowright L, Sviderskaya EV, Bennett DC, Oancea E, Marks MS. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation. Mol Biol Cell 2020; 31:2687-2702. [PMID: 32966160 PMCID: PMC7927184 DOI: 10.1091/mbc.e20-03-0200] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iliana E Escobar
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Tina Ho
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ariel J Lefkovith
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily Latteri
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| | - Kirk D Haltaufderhyde
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Megan K Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and.,Biology Department, Marist College, Poughkeepsie, NY 12601
| | - Lynn Plowright
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Pathology and Laboratory Medicine and Department of Physiology and
| |
Collapse
|
6
|
Elyasi Gorji Z, J. Khaledi K, Daneshvar Amoli A, Ganjibakhsh M, Nasimian A, Gohari NS, Izadpanah M, Vakhshiteh F, Farghadan M, Mohammadi Moghanjoghi S, Rahmati H, Shahzadeh Fazeli SA, Farzaneh P. Establishment and characteristics of Iranian Sistani cattle fibroblast bank: a way to genetic conservation. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0640-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Hahn JM, McFarland KL, Combs KA, Supp DM. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. BURNS & TRAUMA 2016; 4:30. [PMID: 27574697 PMCID: PMC4994224 DOI: 10.1186/s41038-016-0055-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022]
Abstract
Background Keloids are an extreme form of abnormal scarring that result from a pathological fibroproliferative wound healing process. The molecular mechanisms driving keloid pathology remain incompletely understood, hindering development of targeted, effective therapies. Recent studies in our laboratory demonstrated that keloid keratinocytes exhibit adhesion abnormalities and display a transcriptional signature reminiscent of cells undergoing epithelial-mesenchymal transition (EMT), suggesting a role for EMT in keloid pathology. In the current study, we further define the EMT-like phenotype of keloid scars and investigate regulation of EMT-related genes in keloid. Methods Primary keratinocytes from keloid scar and normal skin were cultured in the presence or absence of transforming growth factor beta 1 (TGF-β1) +/− inhibitors of TGF-β1 and downstream signaling pathways. Gene expression was measured using quantitative polymerase chain reaction. Migration was analyzed using an in vitro wound healing assay. Proteins in keloid scar and normal skin sections were localized by immunohistochemistry. Statistical analyses utilized SigmaPlot (SyStat Software, San Jose, CA) or SAS® (SAS Institute, Cary, NC). Results In keloid and normal keratinocytes, TGF-β1 regulated expression of EMT-related genes, including hyaluronan synthase 2, vimentin, cadherin-11, wingless-type MMTV integration site family, member 5A, frizzled 7, ADAM metallopeptidase domain 19, and interleukin-6. Inhibition of canonical TGF-β1 signaling in keloid keratinocytes significantly inhibited expression of these genes, and TGF-β1 stimulation of normal keratinocytes increased their expression. The inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway or the p38 mitogen-activated protein kinase pathway attenuated TGF-β1-induced expression of subsets of these genes. Migration of keloid keratinocytes, previously shown to be increased compared with normal keratinocytes, was significantly reduced by inhibition of TGF-β1 or ERK1/2 signaling. Biomarkers of EMT, including reduced E-cadherin and increased active β-catenin, were observed in keloid epidermis in vivo. However, evidence of basement membrane breakdown in keloid scar was not observed. Conclusions The results suggest that keloid keratinocytes exist in an EMT-like metastable state, similar to activated keratinocytes in healing wounds. The EMT-like gene expression pattern of keloid keratinocytes is regulated by canonical and non-canonical TGF-β1 signaling pathways. Therefore, interventions targeting TGF-β1-regulated EMT-like gene expression in keloid keratinocytes may serve to suppress keloid scarring. Electronic supplementary material The online version of this article (doi:10.1186/s41038-016-0055-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Kevin L McFarland
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Kelly A Combs
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Dorothy M Supp
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA ; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
8
|
Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle. PLoS One 2015; 10:e0143702. [PMID: 26619124 PMCID: PMC4664286 DOI: 10.1371/journal.pone.0143702] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/08/2015] [Indexed: 01/21/2023] Open
Abstract
The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes.
Collapse
|
9
|
Jagirdar K, Smit DJ, Ainger SA, Lee KJ, Brown DL, Chapman B, Zhen Zhao Z, Montgomery GW, Martin NG, Stow JL, Duffy DL, Sturm RA. Molecular analysis of common polymorphisms within the human Tyrosinase locus and genetic association with pigmentation traits. Pigment Cell Melanoma Res 2014; 27:552-64. [PMID: 24739399 DOI: 10.1111/pcmr.12253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 01/13/2023]
Abstract
We have compared the melanogenic activities of cultured melanocytes carrying two common TYR alleles as homozygous 192S-402R wild-type, heterozygous and homozygous variant. This includes assays of TYR protein, DOPAoxidase activity, glycosylation and temperature sensitivity of protein and DOPAoxidase levels. Homozygous wild-type strains on average had higher levels of TYR protein and enzyme activity than other genotypes. Homozygous 402Q/Q melanocytes produced significantly less TYR protein, displayed altered trafficking and glycosylation, with reduced DOPAoxidase. However, near wild-type TYR activity levels could be recovered at lower growth temperature. In a sample population from Southeast Queensland, these two polymorphisms were present on four TYR haplotypes, designated as WT 192S-402R, 192Y-402R and 192S-402Q with a double-variant 192Y-402Q of low frequency at 1.9%. Based on cell culture findings and haplotype associations, we have used an additive model to assess the penetrance of the ten possible TYR genotypes derived from the combination of these haplotypes.
Collapse
Affiliation(s)
- Kasturee Jagirdar
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shang X, Lin X, Manorek G, Howell SB. Claudin-3 and claudin-4 regulate sensitivity to cisplatin by controlling expression of the copper and cisplatin influx transporter CTR1. Mol Pharmacol 2013; 83:85-94. [PMID: 23053666 DOI: 10.1124/mol.112.079798] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Claudin-3 (CLDN3) and claudin-4 (CLDN4) are the major structural molecules that form tight junctions (TJs) between epithelial cells. We found that knockdown of the expression of either CLDN3 or CLDN4 produced marked changes in the phenotype of ovarian cancer cells, including an increase in resistance to cisplatin (cDDP). The effect of CLND3 and CLDN4 on cDDP cytotoxicity, cDDP cellular accumulation, and DNA adduct formation was compared in the CLDN3- and CLDN4-expressing parental human ovarian carcinoma 2008 cells and CLDN3 and CLDN4 knockdown sublines (CLDN3KD and CLDN4KD, respectively). Knockdown of CLDN3 or CLDN4 rendered human ovarian carcinoma 2008 cells resistant to cDDP in both in vitro culture and in vivo xenograft model. The net accumulation of platinum (Pt) and the Pt-DNA adduct levels were reduced in CLDN3KD and CLDN4KD cells. The endogenous mRNA levels of copper influx transporter CTR1 were found to be significantly reduced in the knockdown cells, and exogenous expression of CTR1 restored their sensitivity to cDDP. Reexpression of an shRNAi-resistant CLDN3 or CLDN4 up-regulated CTR1 levels, reversed the cDDP resistance, and enhanced TJ formation in the knockdown cells. Baseline copper (Cu) level, Cu uptake, and Cu cytotoxicity were also reduced in CLDN3KD and CLDN4KD cells. Cu-dependent tyrosinase activity was also markedly reduced in both types of CLDN knockdown cells when incubated with the substrate l-DOPA. These results indicate that CLDN3 and CLDN4 affect sensitivity of the ovarian cancer cells to the cytotoxic effect of cDDP by regulating expression of the Cu transporter CTR1.
Collapse
Affiliation(s)
- Xiying Shang
- Moores UCSD Cancer Center, University of California-San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | | | | | | |
Collapse
|
11
|
Kadam RS, Scheinman RI, Kompella UB. Pigmented-MDCK (P-MDCK) cell line with tunable melanin expression: an in vitro model for the outer blood-retinal barrier. Mol Pharm 2012; 9:3228-35. [PMID: 23003570 DOI: 10.1021/mp300305f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Retinal pigment epithelium, which forms the outer blood-retinal barrier, is a critical barrier for transport of drugs to the retina. The purpose of this study was to develop a pigmented MDCK (P-MDCK) cell line as a rapidly established in vitro model for the outer blood-retinal barrier to assess the influence of melanin pigment on solute permeability. A melanin synthesizing P-MDCK cell line was developed by lentiviral transduction of human tyrosinase and p-protein genes in MDCK (NBL-2) cells. Melanin content, tyrosinase activity (conversion of L-dopa to dopachrome), and transepithelial electrical resistance (TEER) were measured. Expression of tyrosinase protein and p-protein in P-MDCK cells was confirmed by confocal microscopy. Effect of l-tyrosine (0 to 2 mM) in culture medium on melanin synthesis in P-MDCK cells was evaluated. Cell uptake and transepithelial transport of pigment-binding chloroquine (Log D = 1.59) and a negative control salicylic acid (Log D = -1.14) were investigated. P-MDCK cells expressed tyrosinase and p-protein. Tyrosinase activity was 4.5-fold higher in P-MDCK cells compared to wild type MDCK cells. The transepithelial electrical resistance stabilized by day 4 in both cell types, with the TEER being 958 ± 33 and 964 ± 58 Ω·cm(2) for P-MDCK and wild type cells, respectively. Melanin content in P-MDCK cells depended on the concentration of l-tyrosine in culture medium, and increased from 3 to 54 μg/mg protein with an increase in l-tyrosine content from 0 to 2 mM. When the cells were grown in 2 mM l-tyrosine, uptake of chloroquine was 2.3-fold higher and the transepithelial transport was 2.2-fold lower in P-MDCK cells when compared to wild type MDCK cells. No significant difference was observed for both cell uptake and transport of salicylic acid. We developed a P-MDCK cell line with tunable melanin synthesis as a rapidly developing surrogate for retinal pigment epithelium.
Collapse
Affiliation(s)
- Rajendra S Kadam
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | |
Collapse
|
12
|
Zhang Q, Cooper RK, Wolters WR, Tiersch TR. Isolation, culture and characterization of a primary fibroblast cell line from channel catfish. Cytotechnology 2012; 26:83-90. [PMID: 22358545 DOI: 10.1023/a:1007911619537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A primary cell line (designated as CCf) derived from caudal fin tissue of channel catfish, Ictalurus punctatus, was developed using explant techniques. The cell line grew fastest in media supplied with FBS and channel catfish serum. The duplication time of the cell line under optimal conditions was ∼56 h at a plating density of 1.1 × 10(5) cells/ml. The cell line has been propagated continuously for 25 passages (1:4 dilution per passage), cryopreserved, and recovered successfully at different passages. The cultured cells had fibroblastic morphology, and synthesized fibronectin and Type I and III collagens in the cytoplasm. The cell line maintained the normal diploid chromosome number (58) of channel catfish throughout the experiment. Nucleolus organizer regions were located on the short arms of a pair of medium-sized submetacentrics, which is typical for channel catfish. This study provides a method for acquiring a cell line from juvenile catfish without sacrifice, and is especially useful for early screening of valuable fishes.
Collapse
Affiliation(s)
- Q Zhang
- School of Forestry, Wildlife, and Fisheries, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | | | | | | |
Collapse
|
13
|
van der Poel S, Wolthoorn J, van den Heuvel D, Egmond M, Groux-Degroote S, Neumann S, Gerritsen H, van Meer G, Sprong H. Hyperacidification of Trans-Golgi Network and Endo/Lysosomes in Melanocytes by Glucosylceramide-Dependent V-ATPase Activity. Traffic 2011; 12:1634-47. [DOI: 10.1111/j.1600-0854.2011.01263.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Krumholz A, Vanvickle-Chavez SJ, Yao J, Fleming TP, Gillanders WE, Wang LV. Photoacoustic microscopy of tyrosinase reporter gene in vivo. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:080503. [PMID: 21895303 PMCID: PMC3162617 DOI: 10.1117/1.3606568] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/23/2011] [Accepted: 06/10/2011] [Indexed: 05/19/2023]
Abstract
Photoacoustic tomography is a hybrid modality based on optical absorption excitation and ultrasonic detection. It is sensitive to melanin, one of the primary absorbers in skin. For cells that do not naturally contain melanin, melanin production can be induced by introducing the gene for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical resolution photoacoustic microscopy was used in the ex vivo study reported here, where the signal from transfected cells increased by more than 10 times over wild-type cells. A subsequent in vivo experiment was conducted to demonstrate the capability of photoacoustic microscopy to spectrally differentiate between tyrosinase-catalyzed melanin and various other absorbers in tissue.
Collapse
|
15
|
Manley CA, Leibman NF, Wolchok JD, Rivière IC, Bartido S, Craft DM, Bergman PJ. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs. J Vet Intern Med 2010; 25:94-9. [PMID: 21143299 DOI: 10.1111/j.1939-1676.2010.0627.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Malignant melanoma of dogs is a highly aggressive neoplasm and is the 2nd most common digit tumor. Metastatic disease is a common sequela for which few effective treatment options exist. Studies show that xenogeneic tyrosinase DNA vaccination yields immune responses and prolongation of survival in dogs with oral malignant melanoma. OBJECTIVES/HYPOTHESIS Describe clinical findings and tumor characteristics of a cohort of dogs with digit malignant melanoma, and evaluate the prognostic utility of a proposed staging system. Determine if a novel xenogeneic DNA vaccine is safe and potentially effective for treatment of dogs with digit melanoma. ANIMALS Fifty-eight dogs with digit malignant melanoma treated at the Animal Medical Center between 2004 and 2007. METHODS Retrospective, medical records review of dogs with digit melanoma treated with xenogeneic DNA vaccine. RESULTS Overall median survival time (MST) for dogs treated with loco-regional control and xenogeneic DNA vaccine was 476 days with a 1-year survival rate of 63%. MST for dogs presenting with metastasis was 105 days versus 533 days for dogs presenting without metastasis (P < .0001). Forty-eight percent of the dogs in the latter group were alive at 2 and 3 years. A proposed staging system proved prognostic with stages I-IV dogs surviving >952, >1,093, 321, and 76 days, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE The xenogeneic murine tyrosinase DNA vaccine was safe and appears effective when used in conjunction with local and regional disease control. The proposed staging system was prognostic in this study and future studies might benefit from utilizing this staging system.
Collapse
Affiliation(s)
- C A Manley
- Donaldson-Atwood Cancer Clinic, The Animal Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hasegawa T. Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson's disease. Int J Mol Sci 2010; 11:1082-9. [PMID: 20480001 PMCID: PMC2869230 DOI: 10.3390/ijms11031082] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/03/2010] [Indexed: 11/24/2022] Open
Abstract
Oxidized metabolites of dopamine known as dopamine quinone derivatives are thought to play a pivotal role in the degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease. Although such quinone derivatives are usually produced via the autoxidation of catecholamines, tyrosinase, which is a key enzyme in melanin biosynthesis via the production of DOPA and subsequent molecules, can potentially accelerate the induction of catecholamine quinone derivatives by its oxidase activity. We have developed neuronal cell lines in which the expression of human tyrosinase was inducible. Overexpression of tyrosinase resulted in increased intracellular dopamine content in association with the formation of melanin pigments in neuronal somata, which eventually causes apoptotic cell death. This cellular model will provide a useful tool for detailed analyses of the neurotoxicity of oxidized catechol metabolites.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Department of Neurology Tohoku University School of Medicine, Aobaku, Sendai, Miyagi, Japan.
| |
Collapse
|
17
|
Sitaram A, Piccirillo R, Palmisano I, Harper DC, Dell'Angelica EC, Schiaffino MV, Marks MS. Localization to mature melanosomes by virtue of cytoplasmic dileucine motifs is required for human OCA2 function. Mol Biol Cell 2008; 20:1464-77. [PMID: 19116314 DOI: 10.1091/mbc.e08-07-0710] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes.
Collapse
Affiliation(s)
- Anand Sitaram
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Robila V, Ostankovitch M, Altrich-VanLith ML, Theos AC, Drover S, Marks MS, Restifo N, Engelhard VH. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes and is influenced by melanosomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7843-52. [PMID: 19017974 PMCID: PMC2659719 DOI: 10.4049/jimmunol.181.11.7843] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many human solid tumors express MHC class II (MHC-II) molecules, and proteins normally localized to melanosomes give rise to MHC-II-restricted epitopes in melanoma. However, the pathways by which this response occurs have not been defined. We analyzed the processing of one such epitope, gp100(44-59), derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1(high)/MHC-II(+) late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp100(44-59) presentation. By depletion of the AP-2 adaptor protein using small interfering RNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp100(44-59) epitope production. The gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC-II molecules. The gp100(44-59) presentation is dramatically reduced, and processing occurs entirely in early endosomes or stage I melanosomes. This occurrence suggests that melanosomes are inefficient Ag-processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC-II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition.
Collapse
Affiliation(s)
- Valentina Robila
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Marina Ostankovitch
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Michelle L. Altrich-VanLith
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Alexander C. Theos
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Sheila Drover
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NF Canada A1B3V6
| | - Michael S. Marks
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Nicholas Restifo
- National Cancer Institute, National Institutes of Health Bethesda, MD 20892
| | - Victor H. Engelhard
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| |
Collapse
|
19
|
Affiliation(s)
- T Takeuchi
- Biological Institute, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Halaban R, Moellmann G. Recent advances in the molecular biology of pigmentation: mouse models. PIGMENT CELL RESEARCH 2008; Suppl 2:67-78. [PMID: 1409441 DOI: 10.1111/j.1600-0749.1990.tb00352.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
21
|
An SM, Kim HJ, Kim JE, Boo YC. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother Res 2008; 22:1200-7. [DOI: 10.1002/ptr.2435] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Raposo G, Marks MS. Melanosomes--dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 2007; 8:786-97. [PMID: 17878918 PMCID: PMC2786984 DOI: 10.1038/nrm2258] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light onto the molecular machinery that controls specialized endosomal sorting events.
Collapse
Affiliation(s)
- Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France.
| | | |
Collapse
|
23
|
Ray K, Chaki M, Sengupta M. Tyrosinase and ocular diseases: Some novel thoughts on the molecular basis of oculocutaneous albinism type 1. Prog Retin Eye Res 2007; 26:323-58. [PMID: 17355913 DOI: 10.1016/j.preteyeres.2007.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tyrosinase (TYR) is a multifunctional copper-containing glycoenzyme (approximately 80 kDa), which plays a key role in the rate-limiting steps of the melanin biosynthetic pathway. This membrane-bound protein, possibly evolved by the fusion of two different copper-binding proteins, is mainly expressed in epidermal, ocular and follicular melanocytes. In the melanocytes, TYR functions as an integrated unit with other TYR-related proteins (TYRP1, TYRP2), lysosome-associated membrane protein 1 (LAMP1) and melanocyte-stimulating hormone receptors; thus forming a melanogenic complex. Mutations in the TYR gene (TYR, 11q14-21, MIM 606933) cause oculocutaneous albinism type 1 (OCA1, MIM 203100), a developmental disorder having an autosomal recessive mode of inheritance. In addition, TYR can act as a modifier locus for primary congenital glaucoma (PCG) and it also contributes significantly in the eye developmental process. Expression of TYR during neuroblast division helps in later pathfinding by retinal ganglion cells from retina to the dorsal lateral geniculate nucleus. However, mutation screening of TYR is complicated by the presence of a pseudogene-TYR like segment (TYRL, 11p11.2, MIM 191270), sharing approximately 98% sequence identity with the 3' region of TYR. Thus, in absence of a full-proof strategy, any nucleotide variants identified in the 3' region of TYR could actually be present in TYRL. Interestingly, despite extensive search, the second TYR mutation in 15% of the OCA1 cases remains unidentified. Several possible locations of these "uncharacterized mutations" (UCMs) have been speculated so far. Based on the structure of TYR gene, its sequence context and some experimental evidences, we propose two additional possibilities, which on further investigations might shed light on the molecular basis of UCMs in TYR of OCA1 patients; (i) partial deletion of the exons 4 and 5 region of TYR that is homologous with TYRL and (ii) variations in the polymorphic GA complex repeat located between distal and proximal elements of the human TYR promoter that can modulate the expression of the gene leading to disease pathogenesis.
Collapse
Affiliation(s)
- Kunal Ray
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | |
Collapse
|
24
|
Hasegawa T, Sugeno N, Takeda A, Matsuzaki-Kobayashi M, Kikuchi A, Furukawa K, Miyagi T, Itoyama Y. Role of Neu4L sialidase and its substrate ganglioside GD3 in neuronal apoptosis induced by catechol metabolites. FEBS Lett 2007; 581:406-12. [PMID: 17234188 DOI: 10.1016/j.febslet.2006.12.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/22/2006] [Accepted: 12/18/2006] [Indexed: 11/30/2022]
Abstract
Mammalian sialidases are key enzymes in the degradation of glycoconjugates. Neu4L sialidase is localized to mitochondria and specifically expressed in brain. To elucidate the pathophysiological roles of Neu4L in the nervous system, we investigated the possible involvement of Neu4L in the apoptotic neurodegeneration under the existence of catechol metabolites generated by tyrosinase. We demonstrated that: (i) the expression level of Neu4L was dramatically decreased prior to apoptosis; (ii) the apoptotic phenotype was characterized by cytochrome c release into cytosol concomitant with the trafficking of ganglioside GD3 to mitochondria; and (iii) the inhibitor of glucosylceramide synthase partially recovered cell viability. Neu4L and its substrate GD3 may act as key molecules in the mitochondrial apoptotic pathway in neuronal cells.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Valencia JC, Hoashi T, Pawelek JM, Solano F, Hearing VJ. Pmel17: controversial indeed but critical to melanocyte function. ACTA ACUST UNITED AC 2006; 19:250-2; author reply 253-7. [PMID: 16704461 DOI: 10.1111/j.1600-0749.2006.00308.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Bergman PJ, Camps-Palau MA, McKnight JA, Leibman NF, Craft DM, Leung C, Liao J, Riviere I, Sadelain M, Hohenhaus AE, Gregor P, Houghton AN, Perales MA, Wolchok JD. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 2006; 24:4582-5. [PMID: 16188351 DOI: 10.1016/j.vaccine.2005.08.027] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Canine malignant melanoma (CMM) is an aggressive neoplasm treated with surgery and/or fractionated RT; however, metastatic disease is common and chemoresistant. Preclinical and clinical studies by our laboratory and others have shown that xenogeneic DNA vaccination with tyrosinase family members can produce immune responses resulting in tumor rejection or protection and prolongation of survival. These studies provided the impetus for development of a xenogeneic DNA vaccine program in CMM. MATERIALS AND METHODS Cohorts of three dogs each received increasing doses of xenogeneic plasmid DNA encoding either human tyrosinase (huTyr; 100/500/1500 mcg), murine GP75 (muGP75; 100/500/1500 mcg), murine tyrosinase (muTyr; 5 dogs each at 100/500 mcg), muTyr+/-HuGM-CSF (9 dogs at 50 mcg muTyr, 3 dogs each at 100/400/800 mcg HuGM-CSF, or 3 dogs each at 50 mcg muTyr with 100/400/800 mcg HuGM-CSF), or 50 mcg MuTyr intramuscularly biweekly for a total of four vaccinations. RESULTS The Kaplan-Meier median survival time (KM MST) for all stage II-IV dogs treated with huTyr, muGP75 and muTyr are 389, 153 and 224 days, respectively. Preliminarily, the KM MST for stage II-IV dogs treated with 50 mcg MuTyr, 100/400/800 mcg HuGM-CSF or combination MuTyr/HuGM-CSF are 242, 148 and >402 (median not reached) days, respectively. Thirty-three stage II-III dogs with loco-regionally controlled CMM across the xenogeneic vaccine studies have a KM MST of 569 days. Minimal to mild pain was noted on vaccination and one dog experienced vitiligo. We have recently investigated antibody responses in dogs vaccinated with HuTyr and found 2- to 5-fold increases in circulating antibodies to human tyrosinase. CONCLUSIONS The results of these trials demonstrate that xenogeneic DNA vaccination in CMM: (1) is safe, (2) leads to the development of anti-tyrosinase antibodies, (3) is potentially therapeutic, and (4) is an attractive candidate for further evaluation in an adjuvant, minimal residual disease Phase II setting for CMM.
Collapse
Affiliation(s)
- P J Bergman
- Donaldson-Atwood Cancer Clinic & Flaherty Comparative Oncology Laboratory, The Animal Medical Center, 510 East 62nd Street, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Christensen R, Kolvraa S, Jensen TG. Manipulation of the Phenylalanine Metabolism in Human Keratinocytes by Retroviral Mediated Gene Transfer. Cells Tissues Organs 2005; 179:170-8. [PMID: 16046863 DOI: 10.1159/000085952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2005] [Indexed: 11/19/2022] Open
Abstract
Phenylketonuria (PKU) is an inherited disease causing increased levels of phenylalanine in body fluids due to deficiency of hepatic phenylalanine hydroxylase (PAH) or other enzymes involved in the phenylalanine metabolism. With the long-term goal of using gene transfer to the skin to remove phenylalanine, we have previously shown that overexpression of PAH, catalyzing the hydroxylation of phenylalanine, and GTP cyclohydrolase (GTP-CH), involved in the formation of the necessary cofactor BH4,are required. Here we investigate whether manipulation of additional steps in the phenylalanine clearance pathway can further improve the phenylalanine uptake and metabolism. Transport of phenylalanine into human keratinocytes could be increased by overexpressing the two subunits LAT1 and 4F2hc of the large neutral amino acid transporter. The PAH enzyme activity was titrated by employing mutant PAH enzymes with different specific activity and by increasing the PAH copy number in transduced keratinocytes using a repeated transduction procedure. Finally, the intracellular tyrosine concentration was lowered by overexpression of tyrosinase converting tyrosine to dopaquinone. However, measured over a 24-hour period neither of these manipulations resulted in an increased phenylalanine uptake. These results suggest that other enzymes than GTP-CH, involved in BH4 synthesis and/or regeneration, can be rate-limiting in the genetically modified keratinocytes.
Collapse
Affiliation(s)
- Rikke Christensen
- Department of Human Genetics, University of Aarhus, Aarhus, Denmark.
| | | | | |
Collapse
|
28
|
Busam KJ, Wolchok J, Jungbluth AA, Chapman P. Diffuse melanosis after chemotherapy-induced tumor lysis syndrome in a patient with metastatic melanoma. J Cutan Pathol 2004; 31:274-80. [PMID: 14984582 DOI: 10.1111/j.0303-6987.2003.00154.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diffuse melanosis is a rare event associated with advanced metastatic malignant melanoma. A 35-year-old woman with stage IV melanoma is presented, who developed slate bluish-gray to brown discoloration of her skin after chemotherapy-induced tumor lysis syndrome. A number of studies were performed to re-evaluate possible mechanisms of melanosis. Skin tissue was examined on routine hematoxylin-and-eosin-stained sections, Fontana stains, immunohistochemical studies with antibodies for Melan-A, gp100, tyrosinase, FXIIIa, and CD68, and by electron microscopy. The main cell types found to contain melanin pigment were histiocytes and dendritic cells. In the dermis, they were distributed mainly around venules. In the subcutaneous fat, they were scattered throughout the fat lobule. Melanin pigment was not only seen within cells but also extracellularly. No melanoma cells were seen in the skin. No increase in melanin pigment or number of melanocytes was seen in the epidermis. A bone marrow biopsy contained melanophages but no melanoma cells. Ultrastructural examination of the patient's serum revealed the presence of melanosomes. Sequence analysis of the tumor's cDNA failed to identify any mutations in the tyrosinase gene, and no tyrosinase protein was detected in non-melanocytic cells, indicating that it was unlikely that a mutation had resulted in a secretory form of the protein. These findings document that diffuse melanosis may result from tumor lysis, with release of melanosomes into the bloodstream.
Collapse
Affiliation(s)
- Klaus J Busam
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
29
|
Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Furukawa K, Shibahara S, Itoyama Y. Increased dopamine and its metabolites in SH-SY5Y neuroblastoma cells that express tyrosinase. J Neurochem 2003; 87:470-5. [PMID: 14511124 DOI: 10.1046/j.1471-4159.2003.02008.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxidized metabolites of dopamine, known as dopamine quinone derivatives, are thought to play a pivotal role in the degeneration of dopaminergic neurons. Although such quinone derivatives are usually produced via the autoxidation of catecholamines, tyrosinase, which is a key enzyme in melanin biosynthesis via the production of DOPA and subsequent molecules, may potentially accelerate the induction of catecholamine quinone derivatives by its oxidase activity. In the present study, we developed neuronal cell lines in which the expression of human tyrosinase was inducible. Overexpression of tyrosinase in cultured cell lines resulted in (i) increased intracellular dopamine content; (ii) induction of oxidase activity not only for DOPA but also for dopamine; (iii) formation of melanin pigments in cell soma; and (iv) increased intracellular reactive oxygen species. Interestingly, the expressed tyrosinase protein was initially distributed in the entire cytoplasm and then accumulated to form catecholamine-positive granular structures by 3 days after the induction. The granular structures consisted of numerous rounded, dark bodies of melanin pigments and were largely coincident with the distribution of lysosomes. This cellular model that exhibits increased dopamine production will provide a useful tool for detailed analyses of the potentially noxious effects of oxidized catecholamine metabolites.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyaga, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Alfke H, Stöppler H, Nocken F, Heverhagen JT, Kleb B, Czubayko F, Klose KJ. In vitro MR imaging of regulated gene expression. Radiology 2003; 228:488-92. [PMID: 12801999 DOI: 10.1148/radiol.2282012006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To design and evaluate a construct that allows regulated expression of the magnetic resonance (MR) imaging reporter gene human tyrosinase under control of the tetracycline response element. MATERIALS AND METHODS A breast cancer cell line (MCF-7) was transfected with a plasmid that codes for the tetracycline-controlled transactivator and a new construct. In this construct, the reporter gene human tyrosinase is under control of the tetracycline response element, thus allowing suppression of gene expression by adding doxycycline (tetracycline switched off). A reverse transcription polymerase chain reaction was conducted to evaluate gene expression. Additionally, immunohistochemical investigation of tyrosinase and melanin staining was undertaken to analyze the presence of these molecules. After culture in an iron- and holotransferrin-enriched medium, cells were imaged in a 1.0-T clinical MR imager by using a surface coil and T1-weighted spin-echo and gradient-echo sequences. RESULTS Two stable transfected cell clones were established. Cells cultured with doxycycline showed no background expression of the human tyrosinase gene, whereas withdrawal of doxycycline resulted in detectable tyrosinase messenger RNA expression. Gene expression results in a detectable tyrosinase protein level and melanin content. Increased signal intensity on T1-weighted MR images in cells that expressed the reporter gene was observed in comparison to genetically identical cells with the reporter gene switched off. CONCLUSION Our construct enables MR imaging of regulated tyrosinase gene expression in vitro.
Collapse
Affiliation(s)
- Heiko Alfke
- Department of Radiology, Philipps University, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Francis E, Wang N, Parag H, Halaban R, Hebert DN. Tyrosinase maturation and oligomerization in the endoplasmic reticulum require a melanocyte-specific factor. J Biol Chem 2003; 278:25607-17. [PMID: 12724309 DOI: 10.1074/jbc.m303411200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosinase is a glycoprotein responsible for the synthesis of melanin in melanocytes. A large number of mutations have been identified in tyrosinase, with many leading to its misfolding, endoplasmic reticulum (ER) retention, and degradation. Here we describe the folding and maturation of human tyrosinase (TYR) using an in vitro translation system coupled with ER-derived microsomes or with semipermeabilized cells, as an intact ER source. TYR remained misfolded as determined by its sensitivity to trypsin digestion and its persistent interaction with the ER resident lectin chaperones calnexin and calreticulin when produced in ER-derived microsomes or nonmelanocytic semipermeabilized cells. However, when TYR was translocated into semipermeabilized melanocytes, chaperone interactions were transient, maturation progressed to a trypsin-resistant state, and a TYR homodimer was formed. The use of semipermeabilized mouse melanocytes defective for tyrosinase or other melanocyte-specific proteins as the ER source indicated that proper TYR maturation and oligomerization were greatly aided by the presence of wild type tyrosinase and tyrosinase-related protein 1. These findings suggested that oligomerization is a step in proper TYR maturation within the ER that requires melanocyte-specific factors.
Collapse
Affiliation(s)
- Edwin Francis
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
32
|
Nguyen T, Novak EK, Kermani M, Fluhr J, Peters LL, Swank RT, Wei ML. Melanosome morphologies in murine models of hermansky-pudlak syndrome reflect blocks in organelle development. J Invest Dermatol 2002; 119:1156-64. [PMID: 12445206 DOI: 10.1046/j.1523-1747.2002.19535.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hermansky-Pudlak syndrome is an autosomal recessive disease characterized by pigment dilution and prolonged bleeding time. At least 15 mutant mouse strains have been classified as models of Hermansky-Pudlak syndrome. Some of the genes are implicated in intracellular vesicle trafficking: budding, targeting, and secretion. Many of the Hermansky-Pudlak syndrome genes remain uncharacterized and their functions are unknown. Clues to the functions of these genes can be found by analyzing the physiologic and cellular phenotypes. Here we have examined the morphology of the melanosomes in the skin of 10 of the mutant mouse Hermansky-Pudlak syndrome strains by transmission electron microscopy. We demonstrate that the morphologies reflect inhibition of organelle maturation or transfer. The Hermansky-Pudlak syndrome strains are classified into morphologic groups characterized by the step at which melanosome biogenesis or transfer to keratinocytes is inhibited, with the cappuccino strain observed to be blocked at the earliest step and gunmetal blocked at the latest step. We show that all Hermansky-Pudlak syndrome mutant strains except gunmetal have an increase in unpigmented or hypopigmented immature melanosomal forms, leading to the hypopigmented coat colors seen in these strains. In contrast, the hypopigmentation seen in the gunmetal strain is due to the retention of melanosomes in melanocytes, and inefficient transfer into keratinocytes.
Collapse
Affiliation(s)
- Thuyen Nguyen
- Department of Dermatology, Veterans Affairs Medical Center, University of California, San Francisco 94121, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Han R, Baden HP, Brissette JL, Weiner L. Redefining the skin's pigmentary system with a novel tyrosinase assay. PIGMENT CELL RESEARCH 2002; 15:290-7. [PMID: 12100495 DOI: 10.1034/j.1600-0749.2002.02027.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In mammalian skin, melanin is produced by melanocytes and transferred to epithelial cells, with the epithelial cells thought to receive pigment only and not generate it. Melanin formation requires the enzyme tyrosinase, which catalyzes multiple reactions in the melanin biosynthetic pathway. Here, we reassess cutaneous melanogenesis using tyramide-based tyrosinase assay (TTA), a simple test for tyrosinase activity in situ. In the TTA procedure, tyrosinase reacts with biotinyl tyramide, causing the substrate to deposit near the enzyme. These biotinylated deposits are then visualized with streptavidin conjugated to a fluorescent dye. In the skin and eye, TTA was highly specific for tyrosinase and served as a sensitive indicator of pigment cell distribution and status. In clinical skin samples, the assay detected pigment cell defects, such as melanocytic nevi and vitiligo, providing confirmation of medical diagnoses. In murine skin, TTA identified a new tyrosinase-positive cell type--the medullary cells of the hair--providing the first example of cutaneous epithelial cells with a melanogenic activity. Presumably, the epithelial tyrosinase originates in melanocytes and is acquired by medullary cells during pigment transfer. As tyrosinase by itself can generate pigment from tyrosine, it is likely that medullary cells produce melanin de novo. Thus, we propose that melanocytes convert medullary cells into pigment cells by transfer of the melanogenic apparatus, an unusual mechanism of differentiation that expands the skin's pigmentary system.
Collapse
Affiliation(s)
- Rong Han
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
34
|
Raposo G, Marks MS. The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic 2002; 3:237-48. [PMID: 11929605 DOI: 10.1034/j.1600-0854.2002.030401.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanosomes are lysosome-related organelles within which melanin pigments are synthesized and stored in melanocytes and retinal pigment epithelial cells. Early ultrastructural studies of pigment cells revealed that melanosomes consist of a complex series of organelles; more recently, these structures have been correlated with cargo constituents. By studying the fate of melanosomal and endosomal cargo in melanocytic cells, the effects of disease-related mutations on melanosomal morphology, and the genes affected by these mutations, we are beginning to gain novel insights into the biogenesis of these complex organelles and their relationship to the endocytic pathway. These insights demonstrate how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.
Collapse
Affiliation(s)
- Graça Raposo
- UMR-144, Institut Curie, CNRS, Paris, Cedex 75005, France.
| | | |
Collapse
|
35
|
Liu TF, Kandala G, Setaluri V. PDZ domain protein GIPC interacts with the cytoplasmic tail of melanosomal membrane protein gp75 (tyrosinase-related protein-1). J Biol Chem 2001; 276:35768-77. [PMID: 11441007 DOI: 10.1074/jbc.m103585200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tyrosinase and tyrosinase-related proteins (TRPs) are a family of melanosomal membrane proteins involved in mammalian pigmentation. Whereas the melanogenic functions of TRPs are localized in their amino-terminal domains that reside within the lumen of melanosomes, the sorting and targeting of these proteins to melanosomes is mediated by signals in their cytoplasmic domains. To identify proteins that interact with the cytoplasmic tail of gp75 (TRP-1), the most abundant melanosomal membrane protein, we performed yeast two-hybrid screening of a melanocyte cDNA library. Here, we show that the cytoplasmic domain of gp75 interacts with a PDZ domain-containing protein. The gp75-interacting protein is identical to GIPC, an RGS (regulator of G protein signaling)/GAIP-interacting protein, and to SEMCAP-1, a transmembrane semaphorin-binding protein. Carboxyl-terminal amino acid residues, Ser-Val-Val, of gp75 are necessary and sufficient for interaction of gp75 with the single PDZ domain in GIPC. Although endogenous and transfected GIPCs bind efficiently to transiently expressed gp75, only a small amount of GIPC is found associated with gp75 at steady state. Using a strategy to selectively synchronize the biosynthesis of endogenous gp75, we demonstrate that only newly synthesized gp75 associates with GIPC, primarily in the juxtanuclear Golgi region. Our data suggest that GIPC/SEMCAP-1 plays a role in biosynthetic sorting of proteins, specifically gp75, to melanosomes.
Collapse
Affiliation(s)
- T F Liu
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
36
|
Xu Y, Bartido S, Setaluri V, Qin J, Yang G, Houghton AN. Diverse roles of conserved asparagine-linked glycan sites on tyrosinase family glycoproteins. Exp Cell Res 2001; 267:115-25. [PMID: 11412044 DOI: 10.1006/excr.2001.5232] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tyrosinase family of genes has been conserved throughout vertebrate evolution. The role of conserved N-glycan sites in sorting, stability, and activity of tyrosinase family proteins was investigated using two family members from two different species, mouse gp75/tyrosinase-related protein (TRP)-1/Tyrp1 and human tyrosinase. Potential N-linked glycosylation sites on the lumenal domains of mouse gp75/TRP-1/Tyrp1 and human tyrosinase were eliminated by site-directed mutagenesis (Asn to Gln substitutions). Our results show that selected conserved N-glycan sites on tyrosinase family members are crucial for stability in the secretory pathway and endocytic compartment and for enzymatic activity. Different glycan sites on the same tyrosinase family polypeptide can perform distinct functions, and conserved sites on tyrosinase family paralogues can perform different functions.
Collapse
Affiliation(s)
- Y Xu
- The Swim Across America Laboratory, The Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Toyofuku K, Wada I, Spritz RA, Hearing VJ. The molecular basis of oculocutaneous albinism type 1 (OCA1): sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation. Biochem J 2001; 355:259-69. [PMID: 11284711 PMCID: PMC1221735 DOI: 10.1042/0264-6021:3550259] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disease resulting from mutations of the tyrosinase gene (TYR). To elucidate the molecular basis of OCA1 phenotypes, we analysed the early processing and maturation of several different types of mutant tyrosinase with various degrees of structural abnormalities (i.e. two large deletion mutants, two missense mutants that completely destroy catalytic function and three missense mutants that have a temperature-sensitive phenotype). When expressed in COS7 cells, all mutant tyrosinases were sensitive to endoglycosidase H digestion, and immunostaining showed their localization in the endoplasmic reticulum (ER) and their failure to be sorted further to their target organelles. Pulse-chase experiments showed that all mutant tyrosinases were retained by calnexin in the ER and that they were degraded at similarly rapid rates, which coincided with their dissociation from calnexin. Temperature-sensitive mutant enzymes were sorted more efficiently at 31 degrees C than at 37 degrees C, and their degradation was accelerated at 37 degrees C compared with 31 degrees C. Thus in contrast to the current concept that mutant tyrosinases are transported to melanosomes but are functionally inactive there, our results suggest that mutant tyrosinases may not be transported to melanosomes in the first place. We conclude that a significant component of mutant tyrosinase malfunction in OCA1 results from their retention and degradation in the ER compartment. This quality-control process is highly sensitive to minimal changes in protein folding, and so even relatively minor mutations in peripheral sequences of the enzyme not involved with catalytic activity may result in a significant reduction of functional enzyme in melanosomes.
Collapse
Affiliation(s)
- K Toyofuku
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 1B25, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Ujvari A, Aron R, Eisenhaure T, Cheng E, Parag HA, Smicun Y, Halaban R, Hebert DN. Translation rate of human tyrosinase determines its N-linked glycosylation level. J Biol Chem 2001; 276:5924-31. [PMID: 11069924 DOI: 10.1074/jbc.m009203200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosinase is a type I membrane glycoprotein essential for melanin synthesis. Mutations in tyrosinase lead to albinism due, at least in part, to aberrant retention of the protein in the endoplasmic reticulum and subsequent degradation by the cytosolic ubiquitin-proteasomal pathway. A similar premature degradative fate for wild type tyrosinase also occurs in amelanotic melanoma cells. To understand critical cotranslational events, the glycosylation and rate of translation of tyrosinase was studied in normal melanocytes, melanoma cells, an in vitro cell-free system, and semi-permeabilized cells. Site-directed mutagenesis revealed that all seven N-linked consensus sites are utilized in human tyrosinase. However, glycosylation at Asn-290 (Asn-Gly-Thr-Pro) was suppressed, particularly when translation proceeded rapidly, producing a protein doublet with six or seven N-linked core glycans. The inefficient glycosylation of Asn-290, due to the presence of a proximal Pro, was enhanced in melanoma cells possessing 2-3-fold faster (7.7-10.0 amino acids/s) protein translation rates compared with normal melanocytes (3.5 amino acids/s). Slowing the translation rate with the protein synthesis inhibitor cycloheximide increased the glycosylation efficiency in live cells and in the cell-free system. Therefore, the rate of protein translation can regulate the level of tyrosinase N-linked glycosylation, as well as other potential cotranslational maturation events.
Collapse
Affiliation(s)
- A Ujvari
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 2001; 152:809-24. [PMID: 11266471 PMCID: PMC2195785 DOI: 10.1083/jcb.152.4.809] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2000] [Accepted: 12/29/2000] [Indexed: 11/22/2022] Open
Abstract
Melanosomes and premelanosomes are lysosome-related organelles with a unique structure and cohort of resident proteins. We have positioned these organelles relative to endosomes and lysosomes in pigmented melanoma cells and melanocytes. Melanosome resident proteins Pmel17 and TRP1 localized to separate vesicular structures that were distinct from those enriched in lysosomal proteins. In immunogold-labeled ultrathin cryosections, Pmel17 was most enriched along the intralumenal striations of premelanosomes. Increased pigmentation was accompanied by a decrease in Pmel17 and by an increase in TRP1 in the limiting membrane. Both proteins were largely excluded from lysosomal compartments enriched in LAMP1 and cathepsin D. By kinetic analysis of fluid phase uptake and immunogold labeling, premelanosomal proteins segregated from endocytic markers within an unusual endosomal compartment. This compartment contained Pmel17, was accessed by BSA-gold after 15 min, was acidic, and displayed a cytoplasmic planar coat that contained clathrin. Our results indicate that premelanosomes and melanosomes represent a distinct lineage of organelles, separable from conventional endosomes and lysosomes within pigmented cells. Furthermore, they implicate an unusual clathrin-coated endosomal compartment as a site from which proteins destined for premelanosomes and lysosomes are sorted.
Collapse
Affiliation(s)
- Graça Raposo
- Curie Institute, Research Section, Paris, 7505 France
| | | | - Diane M. Murphy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joanne F. Berson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
40
|
Kaur J, Hill HZ. Transfection of nonmelanocytic cells with tyrosinase gene constructs for survival studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:216-222. [PMID: 11746757 DOI: 10.1002/em.1074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To better understand the role of melanin in the response of cells to radiation, the vector pcTYR containing the tyrosinase cDNA and a control vector pcTYW with no tyrosinase cDNA were transfected and expressed in nonpigmented CHOK1-A(L) 1282B5 cells. A pigmented clone was selected from the pcTYR transfectants and an antibiotic-resistant clone was selected from the controls. Melanin was assessed qualitatively by electron paramagnetic resonance (EPR) and quantitatively by a 14C-based assay. The EPR signal detectable in pcTYR-containing cells was at least twice that of pcTYW and parental CHOK1-A(L) cells and the tyrosinase activity was found to be at least six times greater. Melanin was classified to be eumelanin. Survivals of the transfectants were compared to those of the parent cells after irradiation by UVC from a germicidal lamp, UVB from TL01 lamps, UVA from Alisun lamps, UVB/UVA from FS20 lamps, and by gamma-rays from a 137Cs source. Compared to the pcTYW-containing cells, the pigmented cells were more sensitive to killing by UVC, and resistant to killing by UVA and gamma-rays. There were no significant differences in survival after the other irradiations. These results suggest that the pigment synthesized by the activity of tyrosinase alone, unmodified by the activities of TRP1 and TRP2, is protective against the types of reactive oxygen species produced by UVA and gamma-rays but not protective against lethal damage from photons in the UVB range and sensitizes to UVC photons.
Collapse
Affiliation(s)
- J Kaur
- Section of Cancer Biology, Department of Radiology, New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | |
Collapse
|
41
|
Ancans J, Thody AJ. Activation of melanogenesis by vacuolar type H(+)-ATPase inhibitors in amelanotic, tyrosinase positive human and mouse melanoma cells. FEBS Lett 2000; 478:57-60. [PMID: 10922469 DOI: 10.1016/s0014-5793(00)01795-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we describe the activation of melanogenesis by selective vacuolar type H(+)-ATPase inhibitors (bafilomycin A1 and concanamycin A) in amelanotic human and mouse melanoma cells which express tyrosinase but show no melanogenesis. Addition of the inhibitors activated tyrosinase within 4 h, and by 24 h the cells contained measurable amounts of melanin. These effects were not inhibited by cycloheximide (2 microgram/ml) which is consistent with a post-translational mechanism of activation. Our findings suggest that melanosomal pH could be an important and dynamic factor in the control of melanogenesis in mammalian cells.
Collapse
Affiliation(s)
- J Ancans
- Department of Biomedical Sciences, University of Bradford, BD7 1DP, Bradford, UK
| | | |
Collapse
|
42
|
Halaban R, Svedine S, Cheng E, Smicun Y, Aron R, Hebert DN. Endoplasmic reticulum retention is a common defect associated with tyrosinase-negative albinism. Proc Natl Acad Sci U S A 2000; 97:5889-94. [PMID: 10823941 PMCID: PMC18529 DOI: 10.1073/pnas.97.11.5889] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Accepted: 03/16/2000] [Indexed: 11/18/2022] Open
Abstract
Tyrosinase is a melanocyte-specific enzyme critical for the synthesis of melanin, a process normally restricted to a post-Golgi compartment termed the melanosome. Loss-of-function mutations in tyrosinase are the cause of oculocutaneous albinism, demonstrating the importance of the enzyme in pigmentation. In the present study, we explored the possibility that trafficking of albino tyrosinase from the endoplasmic reticulum (ER) to the Golgi apparatus and beyond is disrupted. Toward this end, we analyzed the common albino mouse mutation Tyr(C85S), the frequent human albino substitution TYR(T373K), and the temperature-sensitive tyrosinase TYR(R402Q)/Tyr(H402A) found in humans and mice, respectively. Intracellular localization was monitored in albino melanocytes carrying the native mutation, as well as in melanocytes ectopically expressing green fluorescent protein-tagged tyrosinase. Enzymatic characterization of complex glycans and immunofluorescence colocalization with organelle-specific resident proteins established that all four mutations produced defective proteins that were retained in the ER. TYR(R402Q)/Tyr(H402A) Golgi processing and transport to melanosomes were promoted at the permissive temperature of 32 degrees C, but not at the nonpermissive 37 degrees C temperature. Furthermore, evidence of protein misfolding was demonstrated by the prolonged association of tyrosinase mutants with calnexin and calreticulin, known ER chaperones that play a key role in the quality-control processes of the secretory pathway. From these results we concluded that albinism, at least in part, is an ER retention disease.
Collapse
Affiliation(s)
- R Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Androlewicz MJ. Oligosaccharide trimming plays a role in the endoplasmic reticulum-associated degradation of tyrosinase. Biochem Biophys Res Commun 2000; 271:22-7. [PMID: 10777675 DOI: 10.1006/bbrc.2000.2577] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of glucosidase and mannosidase inhibitors on the ER-associated degradation of tyrosinase was assessed in transiently transfected COS-7 cells. We found that the glucosidase inhibitors castanospermine and deoxynojirimycin had very little effect on tyrosinase degradation, whereas the mannosidase inhibitors deoxymannojirimycin and kifunensine significantly delayed the rate of tyrosinase degradation as measured by pulse-chase analysis. In addition, we show that tyrosinase degradation is sensitive to the proteasome inhibitor lactacystin and that tyrosinase associates with endogenous calnexin in COS-7 cells. Our data support a model of tyrosinase degradation that involves mannose trimming, calnexin association, and the retrograde transport of tyrosinase from the ER to the cytosol for proteasomal degradation. The pathways of tyrosinase degradation have important ramifications with regard to the exact types of antigenic epitopes that are presented to the immune system.
Collapse
Affiliation(s)
- Y Wang
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, and Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | | |
Collapse
|
44
|
Cangul IT, van Garderen E, van der Poel HJ, Weijer K, Misdorp W. Tyrosinase gene expression in clear cell sarcoma indicates a melanocytic origin: insight from the first reported canine case. APMIS 1999; 107:982-8. [PMID: 10598869 DOI: 10.1111/j.1699-0463.1999.tb01500.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to characterize a metastasizing soft tissue tumor in a dog, which clinically, grossly and histologically showed a close resemblance to human clear cell sarcoma, a soft tissue variant of malignant melanoma. Ultrastructurally, melanosomes were found, indicating a melanocytic origin of the tumor. Using reverse-transcription polymerase chain reaction, expression of the gene encoding tyrosinase was determined in tumor cells. With this first case of canine clear cell sarcoma, as well as the earlier report from our laboratory on amelanotic melanomas in the cat, we demonstrate that expression of the tyrosinase gene may occur in a broader range of less differentiated melanocytic tumors in different species, including man.
Collapse
Affiliation(s)
- I T Cangul
- Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Abstract
The adoptive transfer of tumor-infiltrating lymphocytes (TIL) along with interleukin (IL)-2 into autologous patients with cancer resulted in the objective regression of tumor, indicating that T cells play an important role in tumor regression. In the last few years, efforts have been made towards understanding the molecular basis of T-cell-mediated antitumor immunity and elucidating the molecular nature of tumor antigens recognized by T cells. Tumor antigens identified thus far could be classified into several categories: tissue-specific differentiation antigens, tumor-specific shared antigens and tumor-specific unique antigens. CD4+ T cells play a central role in orchestrating the host immune response against cancer, infectious diseases and autoimmune diseases, and we thus have attempted to identify major histocompatibility complex (MHC) class II-restricted tumor antigens as well. The identification of tumor rejection antigens provides new opportunities for the development of therapeutic strategies against cancer. This review will summarize the current status of MHC class I- and class II-restricted human tumor antigens, and their potential application to cancer treatment.
Collapse
Affiliation(s)
- R F Wang
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20814, USA.
| | | |
Collapse
|
46
|
Calvo PA, Frank DW, Bieler BM, Berson JF, Marks MS. A cytoplasmic sequence in human tyrosinase defines a second class of di-leucine-based sorting signals for late endosomal and lysosomal delivery. J Biol Chem 1999; 274:12780-9. [PMID: 10212263 DOI: 10.1074/jbc.274.18.12780] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinct cytoplasmic sorting signals target integral membrane proteins to late endosomal compartments, but it is not known whether different signals direct targeting by different pathways. The availability of multiple pathways may permit some cell types to divert proteins to specialized compartments, such as the melanosome of pigmented cells. To address this issue, we characterized sorting determinants of tyrosinase, a tissue-specific resident protein of the melanosome. The cytoplasmic domain of tyrosinase was both necessary and sufficient for internalization and steady state localization to late endosomes and lysosomes in HeLa cells. Mutagenesis of two leucine residues within a conventional di-leucine motif ablated late endosomal localization. However, the properties of this di-leucine-based signal were distinguished from that of CD3gamma by overexpression studies; overexpression of the tyrosinase signal, but not the well characterized CD3gamma signal, induced a 4-fold enlargement of late endosomes and lysosomes and interfered with endosomal sorting mediated by both tyrosine- and other di-leucine-based signals. These properties suggest that the tyrosinase and CD3gamma di-leucine signals are distinctly recognized and sorted by distinct pathways to late endosomes in non-pigmented cells. We speculate that melanocytic cells utilize the second pathway to divert proteins to the melanosome.
Collapse
Affiliation(s)
- P A Calvo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6082, USA
| | | | | | | | | |
Collapse
|
47
|
Abe T, Sato M, Tamai M. Dedifferentiation of the retinal pigment epithelium compared to the proliferative membranes of proliferative vitreoretinopathy. Curr Eye Res 1998; 17:1103-9. [PMID: 9872531 DOI: 10.1076/ceyr.17.12.1103.5126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To examine the gene expression for melanogenesis of retinal pigment epithelial cells during dedifferentiation and to compare the condition to that of eyes obtaining anatomical success after surgery for proliferative vitreoretinopathy. METHODS Gene expression for melanogenesis was determined by reverse transcriptase-polymerase chain reaction of tyrosinase and tyrosinase-related protein-1 genes in normal and cultured retinal pigment epithelial cells and in proliferative membranes in patients with proliferative vitreoretinopathy. RESULTS Gene expression for melanogenesis was classified into three types during dedifferentiation of retinal pigment epithelial cells: (1) tyrosinase-related protein-1 gene expression, (2) tyrosinase and tyrosinase-related protein-1 gene expression and (3) no expression of these genes. The expression of these genes were maintained better in mediums with basic fibroblast growth factor than in medium without basic fibroblast growth factor. Of the anatomically unsuccessful patients with proliferative vitreoretinopathy treated by surgery, 76.9% showed both tyrosinase and tyrosinase-related protein-1 gene expression; only 20% of the anatomically successful patients showed the gene expression. CONCLUSIONS We reported three different conditions of retinal pigment epithelial cells based on gene expression for melanogenesis during dedifferentiation. The different condition of the retinal pigment epithelial cells may have some relationship to the anatomical results for proliferative vitreoretinopathy surgery.
Collapse
Affiliation(s)
- T Abe
- Department of Ophthalmology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| | | | | |
Collapse
|
48
|
Tsuboi T, Kondoh H, Hiratsuka J, Mishima Y. Enhanced melanogenesis induced by tyrosinase gene-transfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma. PIGMENT CELL RESEARCH 1998; 11:275-82. [PMID: 9877098 DOI: 10.1111/j.1600-0749.1998.tb00736.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific and powerful cancer killing effect for melanoma by boron neutron capture therapy (BNCT) using DOPA analogue, 10B-p-boronophenylalanine (10B-BPA), has been established, but amelanotic melanoma is insufficiently responsive to 10B-BPA BNCT in comparison with actively melanin-producing melanoma. Although the accumulation mechanism of 10B-BPA within melanoma was not established, we have recently obtained findings suggesting that melanin monomers, key intermediates for melanin polymer formation, play a critical role in 10B-BPA accumulation. In addition, there are some kinds of human amelanotic melanomas, such as MEL2A, in which expression of tyrosinase is repressed or lacking though tyrosinase-related protein (TRP)-1 and TRP-2 are well expressed. Thus, by using a similarly tyrosinase-lacking mouse amelanotic melanoma cell line, A1059, we constructed TA1059 cells by transfecting human tyrosinase-cDNA into these cells. TA1059 cells acquired higher DOPA-oxidase and DOPAchrome tautomerase activity as well as eumelanin content at even higher levels than those of B16F10 cells. TA1059 cells showed about 2.5 times higher P-boronophenylalanine (BPA) uptake than A1059 cells in culture. In animal experiments, by using these cell lines, tumor growth of TA1059 was significantly suppressed by 10B-BPA BNCT as compared with A1059. These findings indicate that the induction of active melanin biosynthesis by melanogenic gene-transfer effectively improves the treatment of amelanotic melanoma by BNCT.
Collapse
Affiliation(s)
- T Tsuboi
- Mishima Institute for Dermatological Research, Kobe, Japan
| | | | | | | |
Collapse
|
49
|
April CS, Jackson IJ, Kidson SH. Molecular cloning and sequence analysis of a chicken cDNA encoding tyrosinase-related protein-2/DOPAchrome tautomerase. Gene 1998; 219:45-53. [PMID: 9756992 DOI: 10.1016/s0378-1119(98)00403-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have cloned and sequenced a chicken cDNA encoding an l-DOPAchrome tautomerase (DCT) from an embryonic melanocyte cDNA library. The chicken DCT gene encodes a deduced protein of 516 amino acids (aas) and shares 69.2% and 69.9% aa sequence identity with the deduced mouse and human DCT proteins, respectively. Northern blot hybridisation analysis reveals a DCT transcript of 3.5kb in RNA from the retinal pigment epithelium (RPE) of chick embryos. Genomic Southern blot hybridisation analysis suggests that the chicken DCT gene consists of several introns and spans between 15 and 30kb of the chicken genome. This study completes the sequencing of all the members of the chicken tyrosinase-related protein gene family and provides evidence that this gene family is conserved between avians and mammals.
Collapse
Affiliation(s)
- C S April
- Department of Anatomy and Cell Biology, Medical School, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | | |
Collapse
|
50
|
Abstract
During the last 7 years significant progress has been made in the identification of melanoma-associated antigens recognized by cytotoxic T lymphocytes (CTL). These antigens belong to three main groups: cancer/testis-specific antigens (MAGE, BAGE, GAGE, PRAME and NY-ESO-1), melanocyte differentiation antigens (tyrosinase, Melan-A/MART-1, gp100, TRP-1 and TRP-2), and mutated or aberrantly expressed antigens (MUM-1, CDK4, beta-catenin, gp100-in4, p15 and N-acetylglucosaminyltransferase V). In this review we have summarized the available data concerning the characterization of melanoma-associated antigens, focusing on their immunogenic and protective properties. The development of a strong immune response to differentiation antigens is limited by the existence of tolerance to these "self"-antigens, permitting the involvement of only T cells with low affinity T-cell receptors. Among the melanoma differentiation antigens, only gp100 has been shown to be a tumor regression antigen. The cancer/testis-specific antigens such as MAGE and PRAME should potentially be highly immunogenic antigens. They contain several potential HLA class I binding epitopes and are present only in the testes, which are not accessible to the cells of the immune system owing to the lack of direct contact with the immune cells and the lack of HLA class I expression on the surface of germ cells. But only two patients have been found who responded to these antigens in vivo, indicating their genuinely low immunogenicity. A comparison of the predicted secondary structures of these two groups of antigens (cancer/testis-specific and differentiation antigens) revealed enrichment of long alpha-helical stretches in the cancer/testis-specific antigens. We hypothesize that such highly organized stable structures could, first, reduce denaturation of the protein and, thus, ubiquitinylation as a degradation signal, and, second, diminish the efficiency of the protein unfolding - a necessary step in the proteolytic cleavage by proteasomes. High structural stability could therefore be responsible for the low immunogenicity of these proteins. In this case, modifications decreasing the stability of these proteins might be a means of improving the immune response to these potentially therapeutically useful antigens.
Collapse
Affiliation(s)
- A F Kirkin
- Department of Tumor Cell Biology, Institute of Cancer Biology, Danish Cancer Society, Copenhagen
| | | | | |
Collapse
|