1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Srdic-Rajic T, Metlas R. Antibody VH domain sequence analysis by a bioinformatics approach based on electronic amino acid properties may help to predict paratop location. Immunol Lett 2021; 241:55-57. [PMID: 34785254 DOI: 10.1016/j.imlet.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Gene as the basic functional unit of DNA encodes information about the product such as protein. The majority of proteins realize function through protein-protein interactions involving short protein motifs. However, some proteins such as antibodies are established by the rearrangement of several (V-D-J) gene segments with the potential addition of nontemplated nucleotides that may change information encoded by the respective gene segment used. Antibody VH domain sequence analysis by ISM bioinformatics approach that is based on amino acids physicochemical features, enable to distinguish the contribution of the information encoded by VH gene or generated during VDJ gene recombination for antibody-antigen interaction. The data presented in this report revealed the significance of CDRH3 for the interaction of antibody specific for immunogenic molecules while CDRH3 contribution is minor for antibody interaction with nonimmunogenic molecules such as haptens and native mammalian dsDNA. Thus, paratopes might be located in the CDRH3 or VH regions.
Collapse
Affiliation(s)
- Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for oncology and radiology of Serbia, Belgrade,Serbia
| | - Radmila Metlas
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, Belgrade, Serbia.
| |
Collapse
|
3
|
Anumukonda K, Francis M, Currie P, Tulenko F, Hsu E. Heavy chain-only antibody genes in fish evolved to generate unique CDR3 repertoire. Eur J Immunol 2021; 52:247-260. [PMID: 34708869 DOI: 10.1002/eji.202149588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
In addition to conventional immunoglobulin, camelids and cartilaginous fish express a special class of antibody that consists only of heavy (H) chain (HCAbs). In the holocephalan elephantfish, there are two HCAb classes, one of which has evolved surprising features. The H-chain genes in cartilaginous fish are organized as 20-200 minigenes, or clusters, each consisting of VH, 1-3 DH, JH gene segments with one set of constant region exons. We report that HHC2 (holocephalan H-chain antibody 2) evolved from IgM H-chain clusters, but its DH gene segments have diverged considerably. The three DH in HHC2 clusters are A-rich, so that one to three potential reading frames for each DH encode lysine and arginine. All three are incorporated into the rearranged VDJ, ensuring that the ligand-binding site carries multiple basic residues, as cDNA sequences demonstrate. The electropositive character in HHC2 CDR3 is accompanied by a paucity of aromatic amino acids, the latter feature at variance to the established, interactive role of tyrosine not only in ligand-binding but generally at interfaces of protein complexes. The selection for these divergent HHC2 features challenges currently accepted ideas on what determines antibody reactivity and molecular recognition.
Collapse
Affiliation(s)
- Kamala Anumukonda
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Malcolm Francis
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Frank Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| |
Collapse
|
4
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
5
|
Dorraji SE, Kanapathippillai P, Hovd AMK, Stenersrød MR, Horvei KD, Ursvik A, Figenschau SL, Thiyagarajan D, Fenton CG, Pedersen HL, Fenton KA. Kidney Tertiary Lymphoid Structures in Lupus Nephritis Develop into Large Interconnected Networks and Resemble Lymph Nodes in Gene Signature. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2203-2225. [PMID: 32818496 DOI: 10.1016/j.ajpath.2020.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Immune aggregates organized as tertiary lymphoid structures (TLS) are observed within the kidneys of patients with systemic lupus erythematosus and lupus nephritis (LN). Renal TLS was characterized in lupus-prone New Zealand black × New Zealand white F1 mice analyzing cell composition and vessel formation. RNA sequencing was performed on transcriptomes isolated from lymph nodes, macrodissected TLS from kidneys, and total kidneys of mice at different disease stages by using a personal genome machine and RNA sequencing. Formation of TLS was found in anti-double-stranded DNA antibody-positive mice, and the structures were organized as interconnected large networks with distinct T/B cell zones with adjacent dendritic cells, macrophages, plasma cells, high endothelial venules, supporting follicular dendritic cells network, and functional germinal centers. Comparison of gene profiles of whole kidney, renal TLS, and lymph nodes revealed a similar gene signature of TLS and lymph nodes. The up-regulated genes within the kidneys of lupus-prone mice during LN development reflected TLS formation, whereas the down-regulated genes were involved in metabolic processes of the kidney cells. A comparison with human LN gene expression revealed similar up-regulated genes as observed during the development of murine LN and TLS. In conclusion, kidney TLS have a similar cell composition, structure, and gene signature as lymph nodes and therefore may function as a kidney-specific type of lymph node.
Collapse
Affiliation(s)
- Seyed Esmaeil Dorraji
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Premasany Kanapathippillai
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Aud-Malin Karlsson Hovd
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Mikael Ryan Stenersrød
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Anita Ursvik
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Stine Linn Figenschau
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Christopher Graham Fenton
- Genomic Support Center, Department of Clinical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromso, Norway
| | - Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Kristin Andreassen Fenton
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
6
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Srdic-Rajic T, Kohler H, Jurisic V, Metlas R. Antibody Epitope Specificity for dsDNA Phosphate Backbone Is an Intrinsic Property of the Heavy Chain Variable Germline Gene Segment Used. Front Immunol 2018; 9:2378. [PMID: 30405605 PMCID: PMC6200867 DOI: 10.3389/fimmu.2018.02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/25/2018] [Indexed: 11/29/2022] Open
Abstract
Analysis of protein sequences by the informational spectrum method (ISM) enables characterization of their specificity according to encoded information represented with defined frequency (F). Our previous data showed that F(0.367) is characteristic for variable heavy chain (VH) domains (a combination of variable (V), diversity (D) and joining (J) gene segments) of the anti-phosphocholine (PC) T15 antibodies and mostly dependent on the CDR2 region, a site for PC phosphate group binding. Because the T15 dsDNA-reactive U4 mutant also encodes F(0.367), we hypothesized that the same frequency may also be characteristic for anti-DNA antibodies. Data obtained from an analysis of 60 spontaneously produced anti-DNA antibody VH domain sequences supported our hypothesis only for antibodies, which use V gene segment in germline configuration, such as S57(VH31), MRL-DNA22, and VH11, members of the VH1 (J558) and VH7 (S107) gene families. The important finding is that out of seven V gene segments used by spontaneous anti-DNA antibodies, F(0.367) is only expressed by the germline configuration of these three V gene segments. The data suggest that antibody specificity for the phosphate group moiety delineated as F(0.367) is the intrinsic property of the V germline gene segments used, whereas paratope/epitope interaction with antigens bearing this epitope, such as PC or dsDNA, requires corresponding antibody VH conformation that is susceptible to somatic mutation(s).
Collapse
Affiliation(s)
- Tatjana Srdic-Rajic
- Department of Experimental Pharmacology, National Cancer Research Center, Belgrade, Serbia
| | - Heinz Kohler
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY, United States
| | - Vladimir Jurisic
- Faculties of Medicinal Science, University of Kragujevac, Kragujevac, Serbia
| | - Radmila Metlas
- Vinča Institute of Nuclear Science, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Aranburu A, Höök N, Gerasimcik N, Corleis B, Ren W, Camponeschi A, Carlsten H, Grimsholm O, Mårtensson IL. Age-associated B cells expanded in autoimmune mice are memory cells sharing H-CDR3-selected repertoires. Eur J Immunol 2018; 48:509-521. [PMID: 29266242 DOI: 10.1002/eji.201747127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/07/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022]
Abstract
Age-associated B cells (ABCs) represent a distinct cell population expressing low levels of CD21 (CD21-/low ). The Ig repertoire expressed by ABCs in aged mice is diverse and exhibits signs of somatic hypermutation (SHM). A CD21-/low B-cell population is expanded in autoimmune diseases, e.g. systemic lupus erythematosus, as well as in lupus-prone NZB/W mice and in mice lacking a pre-B cell receptor (SLC-/- ). However, the nature of the CD21-/low B cells (hereafter ABCs) in autoimmunity is not well understood. Here we show that in young SLC-/- mice, the vast majority of the ABCs express memory B-cell (MBC) markers in contrast to wild-type controls. A similar population is present in lupus-prone MRL mice before and at disease onset. In SLC-/- mice, a majority of the ABCs are IgM+ , their VH genes have undergone SHM, show clonal diversification and clonal restriction at the H-CDR3 level. ABC hybridomas, established from SLC-/- mice, secrete typical lupus autoantibodies, e.g. anti-Smith antigen, and some of those that bind to DNA comprise a H-CDR3 that is identical to previously described IgM anti-DNA antibodies from lupus-prone mice. Together, these results reveal that ABCs in autoimmune mice are comprised of autoreactive MBCs expressing highly restricted H-CDR3 repertoires.
Collapse
Affiliation(s)
- Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Nina Höök
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Natalija Gerasimcik
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Bjorn Corleis
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weicheng Ren
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.,B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Perera J, Zheng Z, Li S, Gudjonson H, Kalinina O, Benichou JIC, Block KE, Louzoun Y, Yin D, Chong AS, Dinner AR, Weigert M, Huang H. Self-Antigen-Driven Thymic B Cell Class Switching Promotes T Cell Central Tolerance. Cell Rep 2017; 17:387-398. [PMID: 27705788 DOI: 10.1016/j.celrep.2016.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022] Open
Abstract
B cells are unique antigen-presenting cells because their antigen presentation machinery is closely tied to the B cell receptor. Autoreactive thymic B cells can efficiently present cognate self-antigens to mediate CD4+ T cell-negative selection. However, the nature of thymocyte-thymic B cell interaction and how this interaction affects the selection of thymic B cell repertoire and, in turn, the T cell repertoire are not well understood. Here we demonstrate that a large percentage of thymic B cells have undergone class switching intrathymically. Thymic B cell class switching requires cognate interaction with specific T cells. Class-switched thymic B cells have a distinct repertoire compared with unswitched thymic B cells or splenic B cells. Particularly, autoreactive B cell specificities preferentially expand in the thymus by undergoing class switching, and these enriched, class-switched autoreactive thymic B cells play an important role in CD4 T cell tolerance.
Collapse
Affiliation(s)
- Jason Perera
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Zhong Zheng
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Shuyin Li
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Herman Gudjonson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Graduate Program in the Biophysical Sciences, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Olga Kalinina
- Knapp Center for Lupus and Immunology Research, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer I C Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Katharine E Block
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Dengping Yin
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Aaron R Dinner
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Graduate Program in the Biophysical Sciences, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Martin Weigert
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Knapp Center for Lupus and Immunology Research, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Haochu Huang
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Hannestad K, Scott H. A Nonadjuvanted IgG2a Monoclonal Antibody against Nucleosomes Elicits Potent T Cell-Dependent, Idiotype-Specific IgG1 Responses and Glomerular IgG1/IgG2a Deposits in Normal Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:489-500. [PMID: 28592426 DOI: 10.4049/jimmunol.1600718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
Abstract
Idiotypes (Ids) are unique epitopes of Ab V regions and can trigger anti-Id immune responses, but immunization with several nonadjuvanted isologous IgG mAbs has induced tolerance to their Ids. We immunized non-lupus-prone mice with 11 allotype "a" of IgG2a (IgG2aa) and 4 IgG2c nonadjuvanted, isologous mAbs purified from serum-free medium. Of five IgG2aa mAbs with specificity for nucleosomes, the repeating histone-DNA subunit of chromatin, four elicited an IgG1 anti-mAb response and one mAb was nonimmunogenic. In contrast, none of six IgG2aa mAbs with unknown specificity triggered anti-mAb responses. The data suggested a link between immunogenicity and specificity for nucleosomes. One anti-nucleosome IgG2aa mAb, termed 3F7.A10, copurified with self-histones and was a potent immunogen for BALB/c mice. The response against IgG2aa 3F7.A10 was CD4+ Th cell-dependent, dominated by the IgG1 subclass, and Id specific. Ultracentrifugation converted the purified 3F7.A10 mAb into a weak immunogen, suggesting that the mAb had formed immunogenicity-enhancing immune complexes (ICs) with nucleosomal Ags during cell culture. BALB/c mice injected with viable MHC-incompatible 3F7.A10 hybridoma cells grown in serum-free medium mounted strong anti-Id responses. TLR9-deficient mice responded significantly weaker to Id-3F7.A10 than did TLR9-sufficient mice, suggesting that the cognate BCR efficiently internalizes the Id in an IC with nucleosomes. Passive transfer of IgG2aa 3F7.A10 to BALB/c mice with high titers of IgG1 anti-3F7.A10 led to glomerular deposits of IgG1/IgG2a complexes. The immunogenicity of Id-3F7.A10 raises the possibility that diverse Ids of nucleosome-specific Abs form ICs with nucleosomes released from dying cells and elicit spontaneous formation of anti-Id Abs in vivo.
Collapse
Affiliation(s)
- Kristian Hannestad
- Department of Immunology, Oslo University Hospital, University of Oslo, 0372 Oslo, Norway; and
| | - Helge Scott
- Institute of Pathology, Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
11
|
Polyspecificity of Anti-lipid A Antibodies and Its Relevance to the Development of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:181-202. [PMID: 28887790 DOI: 10.1007/5584_2017_94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The process of natural selection favours germ-line gene segments that encode CDRs that have the ability to recognize a range of structurally related antigens. This presents an immunological advantage to the host, as it can confer protection against a common pathogen and still cope with new or changing antigens. Cross-reactive and polyspecific antibodies also play a central role in autoimmune responses, and a link has been shown to exist between auto-reactive B cells and certain bacterial infections. Bacterial DNA, lipids, and carbohydrates have been implicated in the progression of autoimmune diseases such as systemic lupus erythematosus. As well, reports of anti-lipid A antibody polyspecificity towards single-stranded DNA together with the observed sequence homology amongst isolated auto- and anti-lipid A antibodies has prompted further study of this phenomenon. Though the lipid A epitope appears cryptic during Gram-negative bacterial infection, there have been several reported instances of lipid A-specific antibodies isolated from human sera, some of which have exhibited polyspecificity for single stranded DNA. In such cases, the breakdown of negative selection through polyspecificity can have the unfortunate consequence of autoimmune disease. This review summarizes current knowledge regarding such antibodies and emphasizes the features of S1-15, A6, and S55-5, anti-lipid A antibodies whose structures were recently determined by X-ray crystallography.
Collapse
|
12
|
Lobo PI. Role of Natural Autoantibodies and Natural IgM Anti-Leucocyte Autoantibodies in Health and Disease. Front Immunol 2016; 7:198. [PMID: 27375614 PMCID: PMC4893492 DOI: 10.3389/fimmu.2016.00198] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
We review how polyreactive natural IgM autoantibodies (IgM-NAA) protect the host from invading micro-organisms and host neo-antigens that are constantly being produced by oxidation mechanisms and cell apoptosis. Second, we discuss how IgM-NAA and IgM anti-leukocyte antibodies (IgM-ALA) inhibits autoimmune inflammation by anti-idiotypic mechanisms, enhancing removal of apoptotic cells, masking neo-antigens, and regulating the function of dendritic cells (DC) and effector cells. Third, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies, triggered by genetic mechanisms (e.g., SLE) or micro-organisms, as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Studies in IgM knockout mice have clearly demonstrated that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive, and autoimmune mechanisms. It is, therefore, not surprising why the host positively selects such autoreactive B1 cells that generate IgM-NAA, which are also evolutionarily conserved. Fourth, we show that IgM-ALA levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury, or after a transplant. We also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. We also review IgG-NAA that are more abundant than IgM-NAA in plasma. However, we need to understand if the (Fab)(2) region of IgG-NAA has physiological relevance in non-disease states, as in plasma, their functional activity is blocked by IgM-NAA having anti-idiotypic activity. Some IgG-NAA are produced by B2 cells that have escaped tolerance mechanisms and we show how such pathogenic IgG-NAA are regulated to prevent autoimmune disease. The Fc region of IgG-NAA can influence inflammation and B cell function in vivo by binding to activating and inhibitory FcγR. IgM-NAA has therapeutic potential. Polyclonal IgM infusions can be used to abrogate on-going inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM or DC pretreated ex vivo with IgM or by increasing in vivo IgM with a vaccine approach. Cell therapy is appealing as less IgM will be required.
Collapse
Affiliation(s)
- Peter Isaac Lobo
- Department of Internal Medicine, Division of Nephrology, Center of Immunology, Inflammation and Regenerative Medicine, University of Virginia Health Center, Charlottesville, VA, USA
| |
Collapse
|
13
|
Haji-Ghassemi O, Müller-Loennies S, Rodriguez T, Brade L, Kosma P, Brade H, Evans SV. Structural Basis for Antibody Recognition of Lipid A: INSIGHTS TO POLYSPECIFICITY TOWARD SINGLE-STRANDED DNA. J Biol Chem 2015; 290:19629-40. [PMID: 26085093 DOI: 10.1074/jbc.m115.657874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Indexed: 01/14/2023] Open
Abstract
Septic shock is a leading cause of death, and it results from an inflammatory cascade triggered by the presence of microbial products in the blood. Certain LPS from Gram-negative bacteria are very potent inducers and are responsible for a high percentage of septic shock cases. Despite decades of research, mAbs specific for lipid A (the endotoxic principle of LPS) have not been successfully developed into a clinical treatment for sepsis. To understand the molecular basis for the observed inability to translate in vitro specificity for lipid A into clinical potential, the structures of antigen-binding fragments of mAbs S1-15 and A6 have been determined both in complex with lipid A carbohydrate backbone and in the unliganded form. The two antibodies have separate germ line origins that generate two markedly different combining-site pockets that are complementary both in shape and charge to the antigen. mAb A6 binds lipid A through both variable light and heavy chain residues, whereas S1-15 utilizes exclusively the variable heavy chain. Both antibodies bind lipid A such that the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains the lack of LPS recognition. Longstanding reports of polyspecificity of anti-lipid A antibodies toward single-stranded DNA combined with observed homology of S1-15 and A6 and the reports of several single-stranded DNA-specific mAbs prompted the determination of the structure of S1-15 in complex with single-stranded DNA fragments, which may provide clues about the genesis of autoimmune diseases such as systemic lupus erythematosus, thyroiditis, and rheumatic autoimmune diseases.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada
| | - Sven Müller-Loennies
- the Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany, and
| | - Teresa Rodriguez
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada
| | - Lore Brade
- the Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany, and
| | - Paul Kosma
- the Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Helmut Brade
- the Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany, and
| | - Stephen V Evans
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada,
| |
Collapse
|
14
|
Detanico T, Guo W, Wysocki LJ. Predominant role for activation-induced cytidine deaminase in generating IgG anti-nucleosomal antibodies of murine SLE. J Autoimmun 2015; 58:67-77. [PMID: 25634361 DOI: 10.1016/j.jaut.2015.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Serum IgG anti-nuclear antibodies (ANA) directed to complexes of DNA and histones are a hallmark of systemic lupus erythematosus (SLE) and reflect a failure in lymphocyte self-tolerance. A prior study utilizing spontaneously autoimmune B6.Nba2 mice deficient in terminal deoxynucleotidyl transferase (TdT) and with heterozygous deficiencies in Jh and Igk loci underscored the importance of somatic hypermutation (SHM) as a major generator of SLE-associated ANA. This interpretation had to be qualified because of severely limited opportunities for receptor editing and restricted VHCDR3 diversity. Therefore, we performed the converse study using mice that carried functional Tdt genes and wild type Jh and Igk loci but that could not undergo SHM. Analyses of ANA and ANA-producing hybridomas from B6.Nba2 Aicda(-/-) mice revealed that few animals produced high titers of the prototypical ANA directed to complexes of histones and DNA, that this response was delayed and that those cells that did produce such antibody exhibited limited clonal expansion, unusual Jk use and only infrequent dual receptor expression. This, together with the additional finding of an intrinsic propensity for SHM to generate Arg codons selectively in CDRs, reinforce the view that most IgG autoimmune clones producing prototypical anti-nucleosome antibodies in wild type mice are created by SHM.
Collapse
Affiliation(s)
- Thiago Detanico
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Wenzhong Guo
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Lawrence J Wysocki
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
15
|
Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2014; 36:495-517. [PMID: 25102991 DOI: 10.1007/s00281-014-0440-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkably complex and heterogeneous systemic autoimmune disease. Disease complexity within individuals and heterogeneity among individuals, even genetically identical individuals, is driven by stochastic execution of a complex inherited program. Genome-wide association studies (GWAS) have progressively improved understanding of which genes are most critical to the potential for SLE and provided illuminating insight about the immune mechanisms that are engaged in SLE. What initiates expression of the genetic program to cause SLE within an individual and how that program is initiated remains poorly understood. If we extrapolate from all of the different experimental mouse models for SLE, we can begin to appreciate why SLE is so heterogeneous and consequently why prediction of disease outcome is so difficult. In this review, we critically evaluate extrinsic versus intrinsic cellular functions in the clearance and elimination of cellular debris and how dysfunction in that system may promote autoimmunity to nuclear antigens. We also examine several mouse models genetically prone to SLE either because of natural inheritance or inheritance of induced mutations to illustrate how different immune mechanisms may initiate autoimmunity and affect disease pathogenesis. Finally, we describe the heterogeneity of disease manifestations in SLE and discuss the mechanisms of disease pathogenesis with emphasis on glomerulonephritis. Particular attention is given to discussion of how anti-DNA autoantibody initiates experimental lupus nephritis (LN) in mice.
Collapse
|
16
|
Ullal AJ, Marion TN, Pisetsky DS. The role of antigen specificity in the binding of murine monoclonal anti-DNA antibodies to microparticles from apoptotic cells. Clin Immunol 2014; 154:178-87. [PMID: 24873886 DOI: 10.1016/j.clim.2014.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus and markers of underlying immune system disturbances. These antibodies bind to both single-stranded and double-stranded DNA, mediating pathogenesis by forming immune complexes. As shown recently, DNA in blood exists in both free and particulate forms, with DNA representing an important component of microparticles. Microparticles are membrane-bound vesicles containing nuclear molecules, released by membrane blebbing during cell death and activation. A panel of monoclonal NZB/NZW F1 anti-DNA antibodies was tested for binding to microparticles generated from apoptotic THP-1 and Jurkat cells. These studies showed that only certain anti-DNA antibodies in the panel, specific for double-stranded DNA, bound to microparticles. Binding to particles was reduced by soluble DNA or DNase treatment. Together, these results indicate that particle binding is a feature of only certain anti-DNA antibodies, reflecting immunochemical properties of the antibodies and the nature of the exposed DNA antigens.
Collapse
Affiliation(s)
- Anirudh J Ullal
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA
| | - Tony N Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David S Pisetsky
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA; Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
17
|
The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin Immunopathol 2014; 36:301-11. [PMID: 24763531 DOI: 10.1007/s00281-014-0428-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/01/2014] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with various clinical manifestations affecting different tissues. A characteristic feature of SLE is the presence of autoantibodies against double-stranded (ds)DNA, histones and nucleosomes, and other chromatin components. SLE is a prototype type III hypersensitivity reaction. Local deposition of anti-nuclear antibodies in complex with released chromatin induces serious inflammatory conditions by activation of the complement system. The severe renal manifestation, lupus nephritis, is classified based on histological findings in renal biopsies. Apoptotic debris, including chromatin, is present in the extracellular matrix and circulation of patients with SLE. This may be due to an aberrant process of apoptosis and/or insufficient clearance of apoptotic cells/chromatin. The non-cleared apoptotic debris may lead to activation of both the innate and adaptive immune systems. In addition, an aberrant presentation of peptides by antigen-presenting cells, disturbed selection processes for lymphocytes, and deregulated lymphocyte responses may be involved in the development of autoimmunity. In the present review, we briefly will summarize current knowledge on the pathogenesis of SLE. We will also critically discuss and challenge central issues that need to be addressed in order to fully understand the pathogenic mechanisms involved in the development of SLE and in order to have an improved diagnosis for SLE. Disappointingly, in our opinion, there are still more questions than answers for the pathogenesis, diagnosis, and treatment of SLE.
Collapse
|
18
|
Rahman A, Giles IP. Structure and function of autoantibodies and their role in autoimmune rheumatic diseases. Expert Rev Clin Immunol 2014; 2:225-36. [DOI: 10.1586/1744666x.2.2.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Carcamo WC, Calise SJ, von Mühlen CA, Satoh M, Chan EKL. Molecular cell biology and immunobiology of mammalian rod/ring structures. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:35-74. [PMID: 24411169 DOI: 10.1016/b978-0-12-800097-7.00002-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleotide biosynthesis is a highly regulated process necessary for cell growth and replication. Cytoplasmic structures in mammalian cells, provisionally described as rods and rings (RR), were identified by human autoantibodies and recently shown to include two key enzymes of the CTP/GTP biosynthetic pathways, cytidine triphosphate synthetase (CTPS) and inosine monophosphate dehydrogenase (IMPDH). Several studies have described CTPS filaments in mammalian cells, Drosophila, yeast, and bacteria. Other studies have identified IMPDH filaments in mammalian cells. Similarities among these studies point to a common evolutionarily conserved cytoplasmic structure composed of a subset of nucleotide biosynthetic enzymes. These structures appear to be a conserved metabolic response to decreased intracellular GTP and/or CTP pools. Antibodies to RR were found to develop in some hepatitis C patients treated with interferon-α and ribavirin. Additionally, the presence of anti-RR antibodies was correlated with poor treatment outcome.
Collapse
Affiliation(s)
- Wendy C Carcamo
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - S John Calise
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, Florida, USA; Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
20
|
LMW heparin prevents increased kidney expression of proinflammatory mediators in (NZBxNZW)F1 mice. Clin Dev Immunol 2013; 2013:791262. [PMID: 24151519 PMCID: PMC3789300 DOI: 10.1155/2013/791262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/05/2013] [Accepted: 08/15/2013] [Indexed: 01/03/2023]
Abstract
We have previously demonstrated that continuous infusion of low molecular weight (LMW) heparin delays autoantibody production and development of lupus nephritis in (NZBxNZW)F1 (B/W) mice. In this study we investigated the effect of LMW heparin on renal cytokine and chemokine expression and on nucleosome-mediated activation of nucleosome-specific splenocytes. Total mRNA extracted from kidneys of heparin-treated or -untreated B/W mice was analysed by qPCR for the expression of several cytokines, chemokines, and Toll-like receptors. Splenocytes taken from B/W mice were stimulated with nucleosomes with or without the presence of heparin. Splenocyte cell proliferation as thymidine incorporation and the expression of costimulatory molecules and cell activation markers were measured. Heparin treatment of B/W mice reduced the in vivo expression of CCR2, IL1 β , and TLR7 compared to untreated B/W mice. Nucleosome-induced cell proliferation of splenocytes was not influenced by heparin. The expression of CD80, CD86, CD69, CD25, CTLA-4, and TLR 2, 7, 8, and 9 was upregulated upon stimulation by nucleosomes, irrespective of whether heparin was added to the cell culture or not. In conclusion, treatment with heparin lowers the kidney expression of proinflammatory mediators in B/W mice but does not affect nucleosomal activation of splenocytes.
Collapse
|
21
|
Giles BM, Boackle SA. Linking complement and anti-dsDNA antibodies in the pathogenesis of systemic lupus erythematosus. Immunol Res 2013; 55:10-21. [PMID: 22941560 DOI: 10.1007/s12026-012-8345-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus is a severe autoimmune disease that affects multiple organ systems resulting in diverse symptoms and outcomes. It is characterized by antibody production to a variety of self-antigens, but it is specifically associated with those against anti-dsDNA. Anti-dsDNA antibodies are present before the onset of clinical disease and are associated with severe manifestations of lupus such as glomerulonephritis. Their levels fluctuate with changes in disease activity and, in combination with the levels of complement proteins C3 and C4, are strong indicators of disease flare and treatment response in patients with lupus. The decreased complement levels that are noted during flares of lupus activity are believed to be secondary to increased autoantibody production and immune complex formation that results in tissue damage; however, recent data suggest that complement activation can also drive development of these pathogenic autoantibodies. This review will explore the various roles of complement in the development and pathogenesis of anti-dsDNA antibodies.
Collapse
Affiliation(s)
- Brendan M Giles
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
22
|
Radic M, Marion TN. Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity. Semin Immunopathol 2013; 35:465-80. [DOI: 10.1007/s00281-013-0376-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
|
23
|
Nucleosomes contribute to increase mesangial cell chemokine expression during the development of lupus nephritis. Cytokine 2013; 62:244-52. [PMID: 23561928 DOI: 10.1016/j.cyto.2013.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 01/27/2023]
Abstract
Nucleosomes represent a set of major autoantigens in the induction of systemic lupus erythematosus (SLE), and appear to be essential for the development of lupus nephritis. Deposition of nucleosome-containing immune complexes within the mesangial matrix and activation of mesangial cells may be important in the progression of lupus nephritis from a "sleeping" minimal change disease state to a full blown disease state. This study investigated the renal cytokine profile both in vivo during the development of the disease in (NZBxNZW)F1 (B/W) mice, and in vitro in primary B/W mesangial cells stimulated with nucleosomes, nucleosome-IgG complexes, and anti-dsDNA mAb respectively. Nucleosomes alone stimulated primary mesangial cells in a dose dependent manner. Of the chemokines produced by activated mesangial cells, CCL2, CCL7, CCL20, CXCL1, CXCL2 and CXCL5 were highly up-regulated compared to unstimulated cells. These chemokines were also increased in vivo in anti-dsDNA antibody positive and nephritic B/W kidneys, and was accompanied by infiltration of neutrophils, macrophages, T and B cells. This study provides a link between nucleosome-containing immune complexes, activation of mesangial cells, infiltration of effector cells and the development of lupus nephritis. Nucleosomes are pro-inflammatory and trigger innate immune responses, and thus are not only passive targets for autoantibodies but may play an active role in lupus pathogenesis. The removal or increased enzymatic destruction of nucleosomes, and/or the inhibition of mesangial cell activation may be possible treatment strategies in lupus nephritis.
Collapse
|
24
|
Sweet RA, Cullen JL, Shlomchik MJ. Rheumatoid factor B cell memory leads to rapid, switched antibody-forming cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:1974-81. [PMID: 23365079 DOI: 10.4049/jimmunol.1202816] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B cells are critical in the initiation and maintenance of lupus. Autoreactive B cells clonally expand, isotype switch, and mutate--properties associated with memory B cells (MBCs), which are typically generated via germinal centers. The development and functions of autoreactive MBCs in lupus are poorly understood. Moreover, mounting evidence implicates the extrafollicular (EF) response in the generation of switched and mutated autoantibodies that are driven by BCR and TLR corecognition, raising the question of whether MBCs are generated in this context. In this study, we investigated autoreactive MBC generation associated with this type of response. We transferred B cells from AM14 site-directed BCR transgenic mice into nontransgenic normal recipients and elicited an EF response with anti-chromatin Ab, as in prior studies. By following the fate of the stimulated cells at late time points, we found that AM14 B cells persisted at increased frequency for up to 7 wk. Furthermore, these cells had divided in response to Ag but were subsequently quiescent, with a subset expressing the memory marker CD73. These cells engendered rapid, isotype-switched secondary plasmablast responses upon restimulation. Both memory and rapid secondary responses required T cell help to develop, emphasizing the need for T-B collaboration for long-term self-reactivity. Thus, using this model system, we show that the EF response generated persistent and functional MBCs that share some, but not all, of the characteristics of traditional MBCs. Such cells could play a role in chronic or flaring autoimmune disease.
Collapse
Affiliation(s)
- Rebecca A Sweet
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
25
|
Schroeder K, Herrmann M, Winkler TH. The role of somatic hypermutation in the generation of pathogenic antibodies in SLE. Autoimmunity 2013. [DOI: 10.3109/08916934.2012.748751] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Eilat D, Wabl M. B cell tolerance and positive selection in lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:503-9. [PMID: 22773662 DOI: 10.4049/jimmunol.1200848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is considered a prototype of systemic autoimmune diseases; however, despite considerable advances in recent years in the understanding of basic mechanisms in immunology, little progress has been made in elucidating the etiology and pathogenesis of this disease. This even holds for inbred mice, such as the lupus-prone New Zealand Black/New Zealand White F(1) mice, which are all genetically programmed to develop lupus at a predetermined age. This frustrating state of affairs calls for a fundamental change in our scientific thinking and the opening of new directions in lupus research. In this study, we suggest that intrinsic B cell tolerance mechanisms are not grossly impaired in lupus-prone mice, but that an unusually strong positive selection event recruits a small number of autoreactive B cells to the germinal centers. This event could be facilitated by nucleic acid-protein complexes that are created by somatic changes in the susceptible animal.
Collapse
Affiliation(s)
- Dan Eilat
- Department of Medicine, Hadassah University Hospital, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|
27
|
Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int 2012; 82:184-92. [PMID: 22297676 PMCID: PMC3343188 DOI: 10.1038/ki.2011.484] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The strongest serological correlate for lupus nephritis is antibody to double-stranded DNA although the mechanism by which anti-DNA antibodies initiate lupus nephritis is unresolved. Most recent reports indicate that anti-DNA must bind chromatin in the glomerular basement membrane or mesangial matrix to form glomerular deposits. Here we determined whether direct binding of anti-DNA antibody to glomerular basement membrane is critical to initiate glomerular binding of anti-DNA in experimental lupus nephritis. Mice were co-injected with IgG monoclonal antibodies or hybridomas with similar specificity for DNA and chromatin but different IgG subclass and different relative affinity for basement membrane. Only anti-DNA antibodies that bound basement membrane bound to glomeruli, activated complement, and induced proteinuria whether injected alone or co-injected with a non-basement membrane-binding anti-DNA antibody. Basement membrane-binding anti-DNA antibodies co-localized with heparan sulfate proteoglycan in glomerular basement membrane and mesangial matrix but not with chromatin. Thus, direct binding of anti-DNA antibody to antigens in the glomerular basement membrane or mesangial matrix may be critical to initiate glomerular inflammation. This may accelerate and exacerbate glomerular immune complex formation in human and murine lupus nephritis.
Collapse
|
28
|
Hedberg A, Fismen S, Fenton KA, Fenton C, Osterud B, Mortensen ES, Rekvig OP. Heparin exerts a dual effect on murine lupus nephritis by enhancing enzymatic chromatin degradation and preventing chromatin binding in glomerular membranes. ACTA ACUST UNITED AC 2011; 63:1065-75. [PMID: 21190297 DOI: 10.1002/art.30211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Association of nucleosome-IgG immune complexes with glomerular basement membranes (GBMs) is an important event in the development of lupus nephritis. Preventing this binding and/or increasing nuclease sensitivity of nucleosomes may be viable strategies for the prevention of the disease. Theoretically, heparin may alter nucleosomal structure and increase sensitivity to proteinases and nucleases, and may also inhibit binding of nucleosomes and nucleosome-IgG complexes to basement membrane structures. The aim of this study was to investigate whether and eventually how heparin prevents murine lupus nephritis. METHODS Surface plasmon resonance was used to analyze if heparin inhibits binding of nucleosomes to laminin and collagen. The effect of heparin on nuclease- and proteinase-mediated degradation of nucleosomes was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel electrophoresis. In vitro results were compared with analyses in vivo in heparin-treated (NZB × NZW)F(1) mice. Anti-double-stranded DNA antibody production, deposition of nucleosome-IgG complexes in GBMs, and development of proteinuria were monitored, and circulating chromatin fragments were quantified using quantitative polymerase chain reaction. RESULTS In vitro studies demonstrated that heparin increased enzymatic degradation of nucleosomes and almost completely inhibited binding of nucleosomes to laminin and collagen. (NZB × NZW)F(1) mice treated with heparin demonstrated delayed or no antibody production and higher variation of circulating chromatin levels compared with untreated control mice. This effect was accompanied by highly reduced nucleosome-IgG complexes in GBMs and delayed development of nephritis. CONCLUSION Increasing the degradation of nucleosomes, reducing their immunogenicity, and preventing binding of nucleosome-IgG complexes in glomeruli together provide an alternative basis for the treatment of lupus nephritis.
Collapse
|
29
|
Almqvist N, Winkler TH, Mårtensson IL. Autoantibodies: Focus on anti-DNA antibodies. SELF NONSELF 2011; 2:11-18. [PMID: 21776330 DOI: 10.4161/self.2.1.15087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/19/2022]
Abstract
Ever since the days of Ehrlich and the birth of humoral immunity, self-reactivity or 'horror autotoxicus' as referred to by Paul Ehrlich, has been of great concern. For instance, in patients with the autoimmune disease systemic lupus erythematosus (SLE), anti-nuclear and anti-DNA antibodies have been recognized for many years. Despite this, the exact mechanism as to how the immune system fails to protect the individual and allows these autoantibodies to develop in this and other systemic autoimmune diseases remains uncertain. So how can we explain their presence? Evidence suggests that B cells expressing autoreactive antibodies do not normally arise but rather undergo negative selection as they develop. In light of this, it might seem contradictory that not all autoreactive B cell clones are eliminated, although this may not even be the intention since autoantibodies are also found in healthy individuals and may even protect from autoimmunity. Here, we will discuss autoantibodies, in particular those recognizing DNA, with regard to their reactivity and their potentially pathogenic or protective properties.
Collapse
Affiliation(s)
- Nina Almqvist
- Department of Rheumatology and Inflammation Research; the Sahlgrenska Academy; University of Gothenburg; Gothenburg, Sweden
| | | | | |
Collapse
|
30
|
Fenton KA, Tømmerås B, Marion TN, Rekvig OP. Pure anti-dsDNA mAbs need chromatin structures to promote glomerular mesangial deposits in BALB/c mice. Autoimmunity 2010; 43:179-88. [PMID: 19835488 DOI: 10.3109/08916930903305633] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The glomerular targets for nephritogenic antibodies have been identified as membrane-associated chromatin fragments. The processes responsible for their deposition are poorly understood. To determine early events in antibody-mediated nephritis, we injected highly pure anti-dsDNA mAbs into BALB/c mice. Mice receiving one dose of anti-dsDNA mAbs were sacrificed 6 or 24 h later. No direct binding of mAbs to glomerular membranes or to the mesangial matrix was observed by immune electron microscopy. In contrast, repeated injections of the same antibodies over 4 weeks resulted in deposition of electron dense structures predominantly in the mesangial matrix. These structures contained mAbs and chromatin fragments as determined by co-localization immune electron microscopy. Biotinylated anti-dsDNA mAbs, injected into nephritic (NZB x NZW)F1 or MRL(lpr/lpr) mice were detected in newly formed electron dense structures within glomerular capillary membranes. There were no correlation between mAb affinity for DNA, as determined by surface plasmon resonance analyses, and ability to bind chromatin fragments in vivo. No direct binding of mAbs to inherent membrane antigens was observed. Quantification of DNA in sera before and after one single injection of antibodies revealed increased DNA levels at 6 h after injection of anti-dsDNA mAb, and lower levels after 24 h. Repeated injections of anti-dsDNA caused an increase in circulating DNA. These results indicate that availability of chromatin fragments, presumable in circulation, is important for glomerular mesangial matrix deposition of anti-dsDNA antibody-containing immune complexes in context of lupus nephritis.
Collapse
|
31
|
Hedberg A, Fismen S, Fenton KA, Mortensen ES, Rekvig OP. Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is associated with increased local matrix metalloprotease activities. Exp Dermatol 2009; 19:e265-74. [DOI: 10.1111/j.1600-0625.2010.01064.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Chang S, Yang L, Moon YM, Cho YG, Min SY, Kim TJ, Kim YJ, Patrick W, Kim HY, Mohan C. Anti-nuclear antibody reactivity in lupus may be partly hard-wired into the primary B-cell repertoire. Mol Immunol 2009; 46:3420-6. [PMID: 19699528 PMCID: PMC2757519 DOI: 10.1016/j.molimm.2009.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/08/2009] [Accepted: 07/13/2009] [Indexed: 12/17/2022]
Abstract
When monoclonal ANAs and non-ANAs generated from a genetically simplified mouse model of lupus, B6.Sle1, were recently compared, the ANAs exhibited three sequence motifs in their immunoglobulin heavy chains, including increased cationicity in CDR3 ("motif A"), reduced anionicity in CDR2 ("motif B") and increased aspartate at H50 ("motif C"). The present study was designed to elucidate the extent to which these ANA-associated sequence motifs might be hard-wired into the primary B-cell repertoire in lupus. The immunoglobulin heavy chain sequence of total splenic B-cells, follicular B-cells and marginal zone B-cells from B6.Sle1 congenic mice and C57BL/6 controls were amplified by single-cell PCR and compared. Analysis of the primary immunoglobulin heavy chain repertoire indicated that the first two sequence motifs "A" and "B" were already encoded in the naïve repertoire of B6.Sle1(z) mice, whereas the third motif "C" was introduced in part by somatic mutation. Site-directed mutagenesis confirmed that non-anionic CDR2 and cationic CDR3 residues in the immunoglobulin heavy chain facilitated nuclear antigen binding in concert, whereas aspartate at H50 strongly vetoed DNA-binding, while preserving nucleosome reactivity. Hence, anti-nuclear antibodies appear to arise as a consequence of two distinct processes-genetically programmed selection of specific CDR charge motifs into the primary immunoglobulin repertoire, with secondary contribution from somatic mutation. Polymorphisms in the lupus susceptibility gene Ly108 that impair central B-cell tolerance may be mechanistically responsible for these early repertoire differences in lupus.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Animals
- Antibodies, Antinuclear/genetics
- Antibodies, Antinuclear/immunology
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Nuclear/genetics
- Antigens, Nuclear/immunology
- B-Lymphocytes/immunology
- Disease Models, Animal
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Mice
- Polymorphism, Genetic/genetics
- Polymorphism, Genetic/immunology
Collapse
Affiliation(s)
- Sooghee Chang
- Departments of Internal Medicine & Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Liu Yang
- Departments of Internal Medicine & Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390
| | - Young Mee Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Young Gyu Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - So Youn Min
- Departments of Internal Medicine & Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Tae Joo Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Young Joo Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | | | - Ho-Youn Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Chandra Mohan
- Departments of Internal Medicine & Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390
| |
Collapse
|
33
|
Liang Z, Chang S, Youn MS, Mohan C. Molecular hallmarks of anti-chromatin antibodies associated with the lupus susceptibility locus, Sle1. Mol Immunol 2009; 46:2671-81. [PMID: 19556006 PMCID: PMC2886130 DOI: 10.1016/j.molimm.2008.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/24/2008] [Accepted: 12/30/2008] [Indexed: 02/03/2023]
Abstract
Anti-nuclear antibodies constitute the hallmark of lupus. The NZM2410-derived Sle1 lupus susceptibility interval on murine chromosome 1 breaches tolerance, leading to the emergence of anti-nuclear autoantibodies targeting nucleosomes. However, little is known about the molecular structure of the anti-nucleosome autoantibodies from this genetically simplified mouse model of lupus. In this study, the immunoglobulin heavy chain and light chain sequences of 50 anti-nuclear monoclonal antibodies derived from five B6.Sle1(z) mice were compared to non-nuclear antibody controls. Compared to two different sets of non-nuclear antibodies, anti-nucleosome antibodies derived from B6.Sle1(z) congenic mice exhibited a high degree of clonal expansion and three distinct sequence motifs in their heavy chains - cationic CDR3 stretches, non-anionic CDR2 regions, and an increased frequency of aspartate residues at H50, which together increased the likelihood of an antibody being chromatin-reactive by approximately 4-fold.
Collapse
Affiliation(s)
- Zhiyan Liang
- Departments of Internal Medicine & Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390
| | - Sooghee Chang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Min So Youn
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Chandra Mohan
- Departments of Internal Medicine & Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390
| |
Collapse
|
34
|
Abstract
The specific modification of autoantigens and their redistribution into blebs at the surface of apoptotic cells contribute to the induction of autoimmune responses. Blebs containing fragments of the apoptotic nucleus separate from the remainder of the cell to form membrane-bound sub-cellular particles (SCPs), otherwise known as apoptotic bodies. To determine whether apoptotic bodies containing nuclear antigens represent a defined subset of SCPs, we examined the heterogeneity of particles generated by Jurkat cells following synchronization of the cell cycle by serum withdrawal and inhibition of topoisomerase I by camptothecin. Particles were purified by filtration, incubated in the presence of antinucleosome or anti-cardiolipin autoantibodies, annexin V, and Sytox Orange and analyzed by flow cytometry and confocal microscopy. We demonstrate that nuclear autoantigens are associated with one clearly defined subset of SCPs that can be distinguished from other products of late apoptosis. Our experiments represent an important step towards characterizing the heterogeneity of SCPs that are generated in late apoptosis and identifying their contributions to tolerance and autoimmunity.
Collapse
Affiliation(s)
- Amy M Cline
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
35
|
Song YC, Sun GH, Lee TP, Huang JC, Yu CL, Chen CH, Tang SJ, Sun KH. Arginines in the CDR of anti-dsDNA autoantibodies facilitate cell internalizationviaelectrostatic interactions. Eur J Immunol 2008; 38:3178-90. [DOI: 10.1002/eji.200838678] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
|
37
|
Stoll ML, Price KD, Silvin CJ, Jiang F, Gavalchin J. Immunization with peptides derived from the idiotypic region of lupus-associated autoantibodies delays the development of lupus nephritis in the (SWR×NZB)F1 murine model. J Autoimmun 2007; 29:30-7. [PMID: 17459659 DOI: 10.1016/j.jaut.2007.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 11/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease affecting 40-50/100,000 Americans. Although most of the research on pathogenic antibodies focuses on antigenic specificity, there is increasing evidence that specific immunoglobulin idiotypes may mediate lupus nephritis independent of autoantigen specificity. In previous work, our laboratory characterized a set of nephritogenic monoclonal antibodies with substantial idiotypic cross-reactivity, produced by the spontaneous SLE model (SWR x NZB)F(1) (SNF(1)), termed Id(LN)F(1). Peptides derived from one of these antibodies, Id540, was previously shown to stimulate pathogenic T-cells from prenephritic SNF(1) mice, similar to what has been seen for pathogenic A6.1 antibody produced by the (NZB x NZW)F(1) model. In this study, we immunized pre-nephritic SNF(1) mice with p62-73, a peptide derived from the variable region of Id540 and, in separate experiments, with p58-69, a peptide derived from the variable region of A6.1. In both cases, immunization resulted in increased survival and delayed nephritis; however, while both peptides affected levels of anti-DNA antibodies, immunization with p62-73 only affected levels of Id(LN)F(1) antibodies. These findings confirm the roles of pathogenic idiotypes in the pathogenesis of lupus nephritis and suggest that therapies that target specific idiotypes might be a potential tool in the management of SLE.
Collapse
Affiliation(s)
- Matthew L Stoll
- Department of Microbiology and Immunology, SUNY HSC, Syracuse, NY, USA
| | | | | | | | | |
Collapse
|
38
|
Neeli I, Richardson MM, Khan SN, Nicolo D, Monestier M, Radic MZ. Divergent members of a single autoreactive B cell clone retain specificity for apoptotic blebs. Mol Immunol 2006; 44:1914-21. [PMID: 17084454 PMCID: PMC1812796 DOI: 10.1016/j.molimm.2006.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 09/29/2006] [Indexed: 11/21/2022]
Abstract
Specificity for double-stranded DNA can arise due to somatic mutations within one of the branches of an autoreactive B cell clone. However, it is not known whether a different autospecificity predates anti-dsDNA and whether separate offshoots of an expanding B cell clone retain or evolve alternative specificities. We compared 3H9, an anti-dsDNA IgG, to 4H8 and 1A11, antibodies produced by hybridomas representing an alternative branch of the 3H9 B cell clone. All three IgG bound chromatin in ELISA and apoptotic cells in confocal microscopy, yet only 3H9 bound dsDNA, as measured by plasmon resonance. Moreover, we demonstrate that despite the unique specificity of 3H9 for dsDNA, all three clone members exhibited indistinguishable binding to chromatin. The binding to chromatin and apoptotic cells was unaffected by N-linked glycosylation in L chain CDR1, a modification that results from a replacement of serine 26 with asparagine in 4H8 and 1A11. These data provide the first evidence that specificity for nucleosome epitopes on apoptotic cells provides the initial positive stimulus for somatic variants that comprise a B cell clone, including those that subsequently acquire specificity for dsDNA. Conversely, selection of autoreactive B cells for binding to apoptotic cells leads to clonal expansion, antibody diversification, and the development of linked sets of anti-nuclear autoantibodies.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/chemistry
- Antibodies, Antinuclear/genetics
- Antibodies, Antinuclear/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibody Specificity/genetics
- Antibody Specificity/immunology
- Apoptosis/immunology
- B-Lymphocytes/chemistry
- B-Lymphocytes/immunology
- Binding Sites, Antibody/genetics
- Binding Sites, Antibody/immunology
- Clone Cells/chemistry
- Clone Cells/immunology
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/immunology
- Hybridomas/chemistry
- Hybridomas/immunology
- Mice
- Mice, Inbred MRL lpr
Collapse
Affiliation(s)
- Indira Neeli
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | - Mekel M. Richardson
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | - Salar N. Khan
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | - Danielle Nicolo
- Department of Microbiology and Immunology, Temple University, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc Monestier
- Department of Microbiology and Immunology, Temple University, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | - Marko Z. Radic
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
- * Corresponding author. Tel: 1 901 448-8219; fax: 1 901 4488462; E-mail address:
| |
Collapse
|
39
|
Chen C, Li H, Tian Q, Beardall M, Xu Y, Casanova N, Weigert M. Selection of anti-double-stranded DNA B cells in autoimmune MRL-lpr/lpr mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:5183-90. [PMID: 16621982 DOI: 10.4049/jimmunol.176.9.5183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abs to DNA and nucleoproteins are expressed in systemic autoimmune diseases, whereas B cells producing such Abs are edited, deleted, or inactivated in healthy individuals. Why autoimmune individuals fail to regulate is not well understood. In this study, we investigate the sources of anti-dsDNA B cells in autoimmune transgenic MRL-lpr/lpr mice. These mice are particularly susceptible to lupus because they carry a site-directed transgene, H76R that codes for an anti-DNA H chain. Over 90% of the B cells are eliminated in the bone marrow of these mice, and the few surviving B cells are associated with one of two Vkappa editors, Vkappa38c and Vkappa21D. Thus, it appears that negative selection by deletion and editing are intact in MRL-lpr/lpr mice. However, a population of splenic B cells in the H76R MRL-lpr/lpr mice produces IgG anti-nuclear Abs, and these mice have severe autoimmune organ damage. These IgG Abs are not associated with editors but instead use a unique Vkappa gene, Vkappa23. The H76R/Vkappa23 combination has a relatively high affinity for dsDNA and an anti-nuclear Ab pattern characteristic of lupus. Therefore, this Vkappa gene may confer a selective advantage to anti-DNA Abs in diseased mice.
Collapse
Affiliation(s)
- Ching Chen
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Akagawa M, Ito S, Toyoda K, Ishii Y, Tatsuda E, Shibata T, Yamaguchi S, Kawai Y, Ishino K, Kishi Y, Adachi T, Tsubata T, Takasaki Y, Hattori N, Matsuda T, Uchida K. Bispecific abs against modified protein and DNA with oxidized lipids. Proc Natl Acad Sci U S A 2006; 103:6160-5. [PMID: 16603628 PMCID: PMC1458848 DOI: 10.1073/pnas.0600865103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
4-Hydroxy-2-nonenal (HNE), a racemic mixture of 4R- and 4S-enantiomers, is a major product of lipid peroxidation and is believed to be largely responsible for the cytopathological effects observed during oxidative stress. HNE reacts with histidine to form a stable HNE-histidine Michael addition-type adduct possessing three chiral centers in the cyclic hemiacetal structure. We have previously raised the mAbs, anti-R mAb 310 and anti-S mAb S412, that enantioselectively recognized the R-HNE-histidine and R-HNE-histidine adducts, respectively, and demonstrated the presence of both epitopes in vivo. In the present study, to further investigate the anti-HNE immune response, we analyzed the variable genes and primary structure of these Abs and found that the sequence of R310 was highly homologous to anti-DNA autoantibodies, the hallmark of systemic lupus erythematosus. An x-ray crystallographic analysis of the R310 Fab fragment showed that the R-HNE-histidine adduct binds to a hydrophobic pocket in the antigen-binding site. Despite the structural identity to the anti-DNA autoantibodies, however, R310 showed only a slight crossreactivity with the native double-stranded DNA, whereas the Ab immunoreactivity was dramatically enhanced by the treatment of the DNA with 4-oxo-2-nonenal (ONE), an analog of HNE. Moreover, the 7-(2-oxo-heptyl)-substituted 1,N2-etheno-type ONE-2'-deoxynucleoside adducts were identified as alternative epitopes of R310. Molecular mimicry between the R-HNE-histidine configurational isomers and the ONE-DNA base adducts is proposed for the dual crossreactivity.
Collapse
MESH Headings
- Aldehydes/immunology
- Aldehydes/pharmacology
- Amino Acid Sequence
- Animals
- Antibodies, Antinuclear/chemistry
- Antibodies, Antinuclear/genetics
- Antibodies, Antinuclear/immunology
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Autoantibodies/chemistry
- Autoantibodies/genetics
- Autoantibodies/immunology
- Cross Reactions
- Crystallography, X-Ray
- DNA/chemistry
- DNA/drug effects
- DNA/immunology
- DNA Adducts/immunology
- Deoxyribonucleosides/chemistry
- Deoxyribonucleosides/immunology
- Epitopes/chemistry
- Epitopes/immunology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/immunology
- Lipid Peroxidation
- Lipids/immunology
- Lupus Erythematosus, Systemic/immunology
- Mice
- Molecular Mimicry/immunology
- Molecular Sequence Data
- Oxidation-Reduction
- Proteins/chemistry
- Proteins/immunology
Collapse
Affiliation(s)
- Mitsugu Akagawa
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sohei Ito
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kazuyo Toyoda
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Ishii
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Emi Tatsuda
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoru Yamaguchi
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshichika Kawai
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kousuke Ishino
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yusuke Kishi
- Laboratory of Immunology, School of Biomedical Science, and
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Laboratory of Immunology, School of Biomedical Science, and
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo 102-8666, Japan; and
| | - Takeshi Tsubata
- Laboratory of Immunology, School of Biomedical Science, and
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo 102-8666, Japan; and
| | | | - Nobutaka Hattori
- Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Tsukasa Matsuda
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Koji Uchida
- *Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Cassady-Cain RL, Kaushik AK. Increased negative selection impairs neonatal B cell repertoire but does not directly lead to generation of disease-associated IgM auto-antibodies. Int Immunol 2006; 18:661-9. [PMID: 16569683 DOI: 10.1093/intimm/dxl003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine if increased negative B cell selection, due to lowered signaling threshold of responsiveness to a ligand as a result of SHP-1 deficiency, during ontogeny leads to the origin of disease-associated IgM auto-antibodies (AAbs), 47 V(H)J558+ VDJCmu rearrangements from SHP-1-deficient viable motheaten (me(v)/me(v)) and 24 J558+ VDJCmu rearrangements from normal me(v)/+ neonatal (<24 h post-birth) B cells were examined for their structural properties. None of the J558+ VDJCmu rearrangements from autoimmune-prone me(v)/me(v) had the characteristic CDR3H size restriction or arginine residues noted in disease-associated IgM AAbs. However, the MVAR2/10 genes are expressed at a high frequency in me(v)/me(v) (31.9%) as compared with me(v)/+ (16.7%), and pM11 gene expression is exclusively (14.9%) noted in me(v)/me(v) B cells. Clearly, there is a trend toward higher expression of pM11 genes (P-value < or = 0.09) in autoimmune-prone me(v)/me(v) strain. The CDR2H region of J558+ VDJCmu recombinations from me(v)/me(v) has increased hotspot triplets predisposing to mutations as compared with me(v)/+ (P-value < or = 0.01) mice. A higher DFL D-gene expression is noted in J558+ VDJCmu rearrangements from me(v)/me(v) (P-value < or = 0.1) in contrast to me(v)/+. The sophisticated logistic regression and odds ratio analysis of V-, D- and J-gene expressions in neonatal B cells from me(v)/me(v) and me(v)/+ mice demonstrates differential composition of the germ line IgM repertoire as a result of SHP-1 deficiency. These observations suggest that increased negative B cell selection during ontogeny impairs the developing IgM antibody repertoire but does not directly lead to generation of disease-associated IgM AAbs.
Collapse
Affiliation(s)
- Robin L Cassady-Cain
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
42
|
Moe GR, Dave A, Granoff DM. Molecular analysis of anti-N-propionyl Neisseria meningitidis group B polysaccharide monoclonal antibodies. Mol Immunol 2006; 43:1424-31. [PMID: 16140379 PMCID: PMC2245894 DOI: 10.1016/j.molimm.2005.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Indexed: 11/24/2022]
Abstract
The capsular polysaccharide of Neisseria meningitidis group B (MBPS) is a polymer of alpha (2-->8) N-acetyl neuraminic acid, which is chemically identical to polysialic acid (PSA) expressed in human tissues. Antibodies from mice immunized with a MBPS-protein conjugate vaccine in which N-acetyl groups have been replaced by propionyl groups (N-Pr MBPS) can be bactericidal and show minimal or no cross-reactivity with human PSA. To investigate the molecular basis for antigen recognition, we cloned and sequenced the variable region (V) genes of five bactericidal anti-N-Pr MBPS murine mAbs and produced computer models of the combining sites. The results were compared to those reported in the literature for two autoreactive anti-MBPS. The V region genes of the anti-N-Pr MBPS mAbs and the anti-MBPS autoreactive mAbs are derived from a limited set of germline V, J, and D genes. However, the anti-N-Pr MBPS mAbs are more mutated than the anti-MBPS mAbs and the former use V-D-J editing that introduces arginine in H-CDR3. Models of the respective combining sites indicate that the anti-MBPS or anti-N-Pr MBPS mAbs that react with host PSA have relatively wide and shallow grooves with a high overall positive charge, consistent with recognition of extended helical polysaccharide structures recognized by the autoreactive mAbs. In contrast, anti-N-Pr MBPS mAbs that do not react with host PSA contain pockets and deep clefts that are consistent with recognition of discrete structural features of individual residues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/chemistry
- Antibodies, Bacterial/genetics
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antigens, Bacterial/chemistry
- Autoantibodies/chemistry
- Autoantibodies/genetics
- Cloning, Molecular
- Crystallography, X-Ray
- Humans
- Immunoglobulin Variable Region/genetics
- Meningococcal Vaccines/immunology
- Mice
- Models, Molecular
- Molecular Sequence Data
- Neisseria meningitidis, Serogroup B/immunology
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Protein Conformation
- Sequence Homology, Amino Acid
- Sialic Acids/chemistry
- Sialic Acids/immunology
Collapse
Affiliation(s)
- Gregory R Moe
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
43
|
Luger D, Dayan M, Zinger H, Liu JP, Mozes E. A peptide based on the complementarity determining region 1 of a human monoclonal autoantibody ameliorates spontaneous and induced lupus manifestations in correlation with cytokine immunomodulation. J Clin Immunol 2005; 24:579-90. [PMID: 15622442 DOI: 10.1007/s10875-004-6245-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A peptide based on the sequence of the complementarity determining region (CDR) 1 of a human monoclonal anti-DNA autoantibody that bears the 16/6 idiotype (16/6Id) was synthesized as a potential candidate for the treatment of SLE patients. The peptide, designated hCDR1, did not induce experimental SLE upon active immunization of mice. The ability of the peptide to treat an already established lupus that was either induced in BALB/c mice or developed spontaneously in (NZB x NZW)F1 mice was tested. Ten weekly injections of hCDR1 (200, 50 microg/mouse) given subcutaneously mitigated disease manifestations (e.g., leukopenia, proteinuria and kidney damage) and resulted in a prominent reduction in the dsDNA specific antibody titers. Furthermore, treatment with hCDR1 resulted in reduced secretion and expression of the "pathogenic" cytokines [i.e., INFgamma, IL-1beta, TNFalpha (in the induced model) and IL-10], whereas the immunosuppressive cytokine TGFbeta was up-regulated. Thus, the significant ameliorating effects of hCDR1 are manifested at least partially via the immunomodulation of the cytokine profile. These results suggest that hCDR1 is a potential candidate for a novel treatment of SLE patients.
Collapse
Affiliation(s)
- Dror Luger
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
44
|
Qiao B, Wu J, Chu YW, Wang Y, Wang DP, Wu HS, Xiong SD. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford) 2005; 44:1108-14. [PMID: 15840592 DOI: 10.1093/rheumatology/keh656] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is the prototype of autoimmune disease and the mechanisms underlying the disease have not yet been elucidated. Thus, animal models of SLE would facilitate investigation of pathogenetic mechanisms involved in the development of the disease. This study characterizes a murine model of SLE-like syndrome induced by syngeneic activated lymphocyte-derived DNA (referred to as ALD DNA). METHODS Normal BALB/c mice were immunized subcutaneously with highly purified ALD DNA. Anti-double-stranded DNA (anti-dsDNA) antibodies were determined by enzyme-linked immunosorbent assay. Other SLE-associated autoantibodies were examined by indirect immunofluorescence and anti-ENA (extractable nuclear antigen) profile assay. Pathological changes were analysed by light microscopy and electron microscopy. Kidney cryostat sections were viewed by immunofluorescence for the presence of glomerular IgG and C3 deposits. Proteinuria was measured by Coomassie brilliant blue assay. RESULTS High levels of anti-dsDNA antibodies and other autoantibodies frequently appearing in SLE were detectable in the sera of ALD DNA-immunized mice. Glomerulonephritis and glomerular deposition of IgG plus C3 were observed in the kidney sections. Moreover, proteinuria was seen in the immunized mice. CONCLUSIONS SLE-like syndrome can be induced by ALD DNA in normal mice. This induced model may be useful for elucidating the mechanisms involved in autoimmunity to DNA and the development of SLE.
Collapse
Affiliation(s)
- B Qiao
- Department of Immunology, Shanghai Medical College of Fudan University, P.R. China
| | | | | | | | | | | | | |
Collapse
|
45
|
Wakui M, Kim J, Butfiloski EJ, Morel L, Sobel ES. Genetic dissection of lupus pathogenesis: Sle3/5 impacts IgH CDR3 sequences, somatic mutations, and receptor editing. THE JOURNAL OF IMMUNOLOGY 2005; 173:7368-76. [PMID: 15585861 DOI: 10.4049/jimmunol.173.12.7368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sle3/5 is a lupus susceptibility locus identified on mouse chromosome 7 of the New Zealand Black/New Zealand White (NZB/NZW)-derived NZM2410 strain. Based on previous observations, this locus appears to contribute to lupus pathogenesis through its impact on diversification of immune responses. To understand how Sle3/5 affects somatic diversification of humoral responses, we analyzed IgH rearrangements preferentially encoding hapten-reactive IgG1 repertoires after immunization and assessed peripheral IgH VDJ recombination activities in C57BL/6 (B6) mice congenic for Sle3/5 (B6.Sle3/5). In addition to altered somatic V(H) mutation profiles, sequences from B6.Sle3/5 mice exhibited atypical IgH CDR3 structures characteristic of autoreactive B cells and consistent with peripheral B cells bearing putatively edited receptors. Significant expression of Rag genes and circular V(H)D gene excision products were detected in splenic mature B cells of B6.Sle3/5 but not B6 mice, showing that peripheral IgH rearrangements occurred beyond allelic exclusion. Taken together, on the nonautoimmune background, Sle3/5 affected V(H)DJ(H) junctional diversity and V(H) mutational diversity and led to recombinational activation of allelically excluded IgH genes in the periphery. Such impact on somatic IgH diversification may contribute to the development of autoreactive B cell repertoires. This is the first report to present evidence for significant association of a lupus susceptibility locus, which has been mapped to a chromosomal region in which no Ig genes have been identified, with somatic IgH sequence diversity and peripheral H chain receptor editing or revision without relying upon Ig transgene strategies.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Base Sequence
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Complementarity Determining Regions/biosynthesis
- Complementarity Determining Regions/genetics
- DNA, Circular/isolation & purification
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Profiling
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, RAG-1
- Genetic Markers
- Genetic Predisposition to Disease
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Somatic Hypermutation, Immunoglobulin
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Masatoshi Wakui
- Department of Medicine and Division of Rheumatology and Clinical Immunology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
46
|
Herkel J, Kam N, Erez N, Mimran A, Heifetz A, Eisenstein M, Rotter V, Cohen IR. Monoclonal antibody to a DNA-binding domain of p53 mimics charge structure of DNA: anti-idiotypes to the anti-p53 antibody are anti-DNA. Eur J Immunol 2005; 34:3623-32. [PMID: 15495163 DOI: 10.1002/eji.200425371] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Antibodies to DNA are important markers of various autoimmune diseases and can be pathogenic; however, their generation is not understood. We previously reported that anti-DNA antibodies could be induced in mice by idiotypic immunization to PAb-421, an antibody to a DNA-binding domain of p53. We now report that two monoclonal antibodies of moderate affinity (K(D) asymptotically equal to 10(-7)), raised from PAb-421-immunized mice, specifically recognized both PAb-421 and DNA. These antibodies feature multiple arginine residues in the antigen-binding site, a unique characteristic of disease-associated anti-DNA antibodies; nevertheless, these anti-DNA antibodies show specific complementarity to PAb-421 by competing with p53 for PAb-421 binding and recognize defined oligonucleotides with a specificity similar to that of p53. To study the structural basis for the cross-recognition of PAb-421 and DNA by the anti-DNA antibodies, we constructed computer models (fine-tuned by protein-protein docking) of PAb-421 and one of the monoclonal anti-DNA antibodies. The modeled structures manifested structural complementarity. Most notably, the modeled structure of PAb-421 resembled the structure of DNA by the positions of negatively charged groups and aromatic side chains. Thus, a protein molecule may mimic the structure of DNA and the elusive generation of anti-DNA antibodies could be explained by idiotypic immunity to a DNA-binding protein, like p53.
Collapse
Affiliation(s)
- Johannes Herkel
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang JQ, Okumura C, McCarty T, Shin MS, Mukhopadhyay P, Hori M, Torrey TA, Naghashfar Z, Zhou JX, Lee CH, Roopenian DC, Morse HC, Davidson WF. Evidence for selective transformation of autoreactive immature plasma cells in mice deficient in Fasl. ACTA ACUST UNITED AC 2005; 200:1467-78. [PMID: 15583018 PMCID: PMC2211944 DOI: 10.1084/jem.20041575] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Germline mutations in Fas and Fasl induce nonmalignant T cell hyperplasia and systemic autoimmunity and also greatly increase the risk of B cell neoplasms. B lymphomas occurring in Fasl mutant (gld) mice usually are immunoglobulin (Ig) isotype switched, secrete Ig, and are plasmacytoid in appearance but lack Myc translocations characteristic of other plasma cell (PC) neoplasms. Here, we explore the relationship between B cell autoreactivity and transformation and use gene expression profiling to further classify gld plasmacytoid lymphomas (PLs) and to identify genes of potential importance in transformation. We found that the majority of PLs derive from antigen-experienced autoreactive B cells producing antinuclear antibody or rheumatoid factor and exhibit the skewed Ig V gene repertoire and Ig gene rearrangement patterns associated with these specificities. Gene expression profiling revealed that both primary and transplanted PLs share a transcriptional profile that places them at an early stage in PC differentiation and distinguishes them from other B cell neoplasms. In addition, genes were identified whose altered expression might be relevant in lymphomagenesis. Our findings provide a strong case for targeted transformation of autoreactive B cells in gld mice and establish a valuable model for understanding the relationship between systemic autoimmunity and B cell neoplasia.
Collapse
Affiliation(s)
- Jian Qiao Zhang
- Department of Immunology, Holland Laboratory, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liang Z, Xie C, Chen C, Kreska D, Hsu K, Li L, Zhou XJ, Mohan C. Pathogenic profiles and molecular signatures of antinuclear autoantibodies rescued from NZM2410 lupus mice. ACTA ACUST UNITED AC 2004; 199:381-98. [PMID: 14757744 PMCID: PMC2211797 DOI: 10.1084/jem.20030132] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Two outstanding questions concerning antinuclear antibodies (ANAs) in lupus involve their pathogenic potential and their molecular signatures. To address these questions, a panel of 56 antinuclear and 47 nonnuclear binding monoclonal antibodies was rescued from four seropositive NZM2410 lupus mice. The monoclonals varied in their reactivity to nucleosomes, ssDNA, dsDNA, and glomerular substrate. A large fraction of the antibodies demonstrated apparent polyreactivity (to DNA, histones, and glomerular antigens) due to bound, DNase-1 sensitive nuclear antigenic bridges. Although nephrophilic immunoglobulin (Ig) M and IgG antibodies were the most pathogenic, the dsDNA-binding antibodies were modestly so; in contrast, antinucleosome antibodies were clearly not pathogenic. Compared with the nonnuclear antigen-binding monoclonal antibodies rescued from the same mice, ANAs exhibited increased utilization of VH5/7183 genes and highly cationic heavy chain (HC) CDR3 regions. Most intriguingly, the CDR3 regions of the ANAs exhibited alternating arginine/lysine peaks at H96, H98, and H100, with neutral troughs at H95, H97, and H99. To summarize, glomerular-binding anti-dsDNA antibodies appear to be the most pathogenic variety of lupus autoantibodies. The presence of an alternating charge pattern in their HC CDR3 regions appears to be a prominent hallmark of ANAs.
Collapse
Affiliation(s)
- Zhiyan Liang
- Simmons Arthritis Research Center, University of Texas Southwestern Medical School, Dallas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Radic M, Marion T, Monestier M. Nucleosomes are exposed at the cell surface in apoptosis. THE JOURNAL OF IMMUNOLOGY 2004; 172:6692-700. [PMID: 15153485 DOI: 10.4049/jimmunol.172.11.6692] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Apoptotic cells are considered the source of DNA, histones, and nucleoprotein complexes that drive the production of autoantibodies in systemic lupus erythematosus. However, the role of apoptotic cells in the activation of the immune system is not clear. To explore interactions that may initiate or sustain the production of anti-nuclear autoantibodies, we characterized the binding of a large panel of monoclonal autoantibodies to apoptotic cells. Autoantibodies to DNA, individual core histones, histone-DNA complexes, or the native nucleosome core particle revealed a consistent and specific binding pattern in confocal microscopy. Immunoreactive epitopes were detected in the cytoplasm and accumulated along the surface of the fragmenting nucleus in a caspase-dependent manner. Ag-Ab complexes on nuclear fragments that had emerged from the plasma membrane were accessible to anti-isotype-reactive microparticles. Moreover, autoantibodies specific for the nucleosome core or its molecular components selectively precipitated a complex of core histones and DNA from the cytosol at 4 h after induction of apoptosis. These observations identify distinct steps in the release of nucleosomes from the nucleus and their exposure at the cell surface. Furthermore, the results indicate a direct role for nucleosomes in the execution of apoptosis, clearance of apoptotic cells, and regulation of anti-nuclear autoantibody production.
Collapse
Affiliation(s)
- Marko Radic
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
50
|
Steeves MA, Marion TN. Tolerance to DNA in (NZB x NZW)F1 mice that inherit an anti-DNA V(H) as a conventional micro H chain transgene but not as a V(H) knock-in transgene. THE JOURNAL OF IMMUNOLOGY 2004; 172:6568-77. [PMID: 15153471 DOI: 10.4049/jimmunol.172.11.6568] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lupus-prone (NZB x NZW)F(1) (BWF(1)) mice were made transgenic (Tg) for an anti-DNA Ab inherited either as a conventional V(H)3H9- micro H chain Tg (3H9- micro ) with or without a conventional V(kappa)8-kappa Tg, or a V(H)3H9 V(H) knock-in Tg allele (3H9R) with or without a V(kappa)4 V(kappa) knock-in Tg allele (V(kappa)4R). V(H)3H9 yields an anti-DNA Ab with most L chains including an anti-ssDNA with the V(kappa)8 Tg and an anti-dsDNA with the V(kappa)4 Tg. BWF(1) mice that inherited the conventional 3H9- micro had normal serum IgM, little to none of which was encoded by 3H9- micro, and only a small percentage of those mice had serum anti-DNA, none of which was transgene encoded. B cells expressing the conventional 3H9- micro Tg were anergic. BWF(1) mice that inherited the knock-in 3H9R Tg allele also had normal serum IgM, one-half of which was encoded by 3H9R, and produced anti-DNA encoded by the Tg allele. Most B cells expressing the knock-in 3H9R Tg also had an anergic phenotype. The results indicate that autoimmune-prone BWF(1) mice initially develop effective B cell tolerance to DNA through anergy, and anergy was sustained in 3H9- micro Tg peripheral B cells but not in 3H9R Tg B cells. B cells expressing the 3H9R knock-in Tg allele were able to achieve an activation threshold that B cells expressing the 3H9- micro conventional Tg could not. The maintenance of B cell tolerance to DNA in autoimmune-prone BWF(1) mice appears to differ from both normal mice and autoimmune-prone MRL(lpr/lpr) mice.
Collapse
Affiliation(s)
- Meredith A Steeves
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|