1
|
Sundebo Meldgaard T, Viborg N, Suarez Hernandez S, Vazquez Albacete D, Tamhane T, Reker Hadrup S. Validation of novel conditional ligands and large-scale detection of antigen-specific T cells for H-2D d and H-2K d. Sci Rep 2024; 14:12292. [PMID: 38811654 PMCID: PMC11136991 DOI: 10.1038/s41598-024-62938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
The UV-mediated peptide exchange has enabled the generation of multiple different MHC multimer specificities in parallel, surpassing tedious individual refolding of MHC molecules with peptide ligands. Murine models are acknowledged as an effective tool for preclinical research to advance our understanding of immunological mechanisms, with the potential translatability of key learnings from mouse models to the clinic. The common inbred mouse strain BALB/c is frequently used in immunological research. However, for the BALB/c histocompatibility (H)-2 alleles availability of conditional ligand has been limited. To overcome this challenge, we design and experimentally validate conditional ligands restricted to murine MHC class I alleles H2Dd and H2Kd. In addition, we demonstrate the ability of the three H2d molecules and two additional C57BL/6 H2b molecules folded in-house with conditional ligands to generate fluorescently labeled peptide-H2 tetramers that allow staining of antigen-specific CD8+ T cells in splenocyte samples. Finally, we generate large peptide-H-2 multimer libraries with a DNA-barcode labeling system for high-throughput interrogation of CD8+ T cell specificity in murine splenocyte samples. Consequently, the described techniques will contribute to our understanding of the antigen-specific CD8+ T cell repertoire in murine preclinical models of various diseases.
Collapse
Affiliation(s)
- Trine Sundebo Meldgaard
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk, Copenhagen, Denmark
| | - Nadia Viborg
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Evaxion Biotech, Hørsholm, Denmark
| | - Sara Suarez Hernandez
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- RIVM National Institute for Public Health and the Environment, Utrecht, The Netherlands
| | - Dario Vazquez Albacete
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novonesis, Copenhagen, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Ternette N, Adamopoulou E, Purcell AW. How mass spectrometric interrogation of MHC class I ligandomes has advanced our understanding of immune responses to viruses. Semin Immunol 2023; 68:101780. [PMID: 37276649 DOI: 10.1016/j.smim.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK.
| | - Eleni Adamopoulou
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Jiang S, Wu S, Zhao G, He Y, Guo X, Zhang Z, Hou J, Ding Y, Cheng A, Wang B. Identification of a promiscuous conserved CTL epitope within the SARS-CoV-2 spike protein. Emerg Microbes Infect 2022; 11:730-740. [PMID: 35171086 PMCID: PMC8890520 DOI: 10.1080/22221751.2022.2043727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The COVID-19 disease caused by infection with SARS-CoV-2 and its variants is devastating to the global public health and economy. To date, over a hundred COVID-19 vaccines are known to be under development, and the few that have been approved to fight the disease are using the spike protein as the primary target antigen. Although virus-neutralizing epitopes are mainly located within the RBD of the spike protein, the presence of T cell epitopes, particularly the CTL epitopes that are likely to be needed for killing infected cells, has received comparatively little attention. This study predicted several potential T cell epitopes with web-based analytic tools and narrowed them down from several potential MHC-I and MHC-II epitopes by ELIspot and cytolytic assays to a conserved MHC-I epitope. The epitope is highly conserved in current viral variants and compatible with a presentation by most HLA alleles worldwide. In conclusion, we identified a CTL epitope suitable for evaluating the CD8+ T cell-mediated cellular response and potentially for addition into future COVID-19 vaccine candidates to maximize CTL responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Sheng Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College(SHMC), Fudan University.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuting Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College(SHMC), Fudan University
| | - Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Yue He
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | | | - Zhiyu Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Jiawang Hou
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Yuan Ding
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Alex Cheng
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College(SHMC), Fudan University.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| |
Collapse
|
4
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare System and the Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicola Ternette
- Centre for Cellular and Molecular PhysiologyNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Frey BF, Jiang J, Sui Y, Boyd LF, Yu B, Tatsuno G, Billeskov R, Solaymani-Mohammadi S, Berman PW, Margulies DH, Berzofsky JA. Effects of Cross-Presentation, Antigen Processing, and Peptide Binding in HIV Evasion of T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 200:1853-1864. [PMID: 29374075 DOI: 10.4049/jimmunol.1701523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022]
Abstract
Unlike cytosolic processing and presentation of viral Ags by virus-infected cells, Ags first expressed in infected nonprofessional APCs, such as CD4+ T cells in the case of HIV, are taken up by dendritic cells and cross-presented. This generally requires entry through the endocytic pathway, where endosomal proteases have first access for processing. Thus, understanding virus escape during cross-presentation requires an understanding of resistance to endosomal proteases, such as cathepsin S (CatS). We have modified HIV-1MN gp120 by mutating a key CatS cleavage site (Thr322Thr323) in the V3 loop of the immunodominant epitope IGPGRAFYTT to IGPGRAFYVV to prevent digestion. We found this mutation to facilitate cross-presentation and provide evidence from MHC binding and X-ray crystallographic structural studies that this results from preservation of the epitope rather than an increased epitope affinity for the MHC class I molecule. In contrast, when the protein is expressed by a vaccinia virus in the cytosol, the wild-type protein is immunogenic without this mutation. These proof-of-concept results show that a virus like HIV, infecting predominantly nonprofessional presenting cells, can escape T cell recognition by incorporating a CatS cleavage site that leads to destruction of an immunodominant epitope when the Ag undergoes endosomal cross-presentation.
Collapse
Affiliation(s)
- Blake F Frey
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Bin Yu
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Gwen Tatsuno
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rolf Billeskov
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shahram Solaymani-Mohammadi
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Phillip W Berman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Jiang J, Natarajan K, Boyd LF, Morozov GI, Mage MG, Margulies DH. Crystal structure of a TAPBPR-MHC I complex reveals the mechanism of peptide editing in antigen presentation. Science 2017; 358:1064-1068. [PMID: 29025991 PMCID: PMC6320693 DOI: 10.1126/science.aao5154] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Central to CD8+ T cell-mediated immunity is the recognition of peptide-major histocompatibility complex class I (p-MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein-related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giora I Morozov
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Michael G Mage
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Malm M, Tamminen K, Vesikari T, Blazevic V. Type-specific and cross-reactive antibodies and T cell responses in norovirus VLP immunized mice are targeted both to conserved and variable domains of capsid VP1 protein. Mol Immunol 2016; 78:27-37. [PMID: 27573255 DOI: 10.1016/j.molimm.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 12/21/2022]
Abstract
Norovirus (NoV)-specific antibodies, which block binding of the virus-like particles (VLPs) to the cell receptors are conformation dependent and directed towards the most exposed domain of the NoV capsid VP1 protein, the P2 domain. Limited data are available on the antibodies directed to other domains of the VP1, and even less on the NoV VP1-specific T cell epitopes. In here, BALB/c mice were immunized with six VLPs derived from NoV GII.4-1999, GII.4-2009 (New Orleans), GII.4-2012 (Sydney), GII.12, GI.1, and G1.3. Serum immunoglobulin G binding antibodies, histo-blood group antigen blocking antibodies and T cell responses using type-specific and heterologous NoV VLPs, P-dimers and 76 overlapping synthetic peptides, spanning the entire 539 amino acid sequence of GII.4 VP1, were determined. The results showed that at least half of the total antibody content is directed towards conserved S domain of the VP1. Only a small fraction (<1%) of the VP1 binding antibodies were blocking/neutralizing. With the use of matrix peptide pools and individual peptides, seven CD4+ and CD8+ T cell restricted epitopes were mapped, two located in S domain, four in P2 domain and one in P1 domain of NoV VP1. The epitopes were GII.4 strain-specific but also common GII.4 genotype-specific T cell epitopes were identified. More importantly, the results suggest a 9-amino acids long sequence (318PAPLGTPDF326) in P2 domain of VP1 as a universal NoV genogroup II-specific CD8+ T cell epitope. Distribution of the T cell epitopes alongside the capsid VP1 indicates the need of the complete protein for high immunogenicity.
Collapse
Affiliation(s)
- Maria Malm
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| | - Kirsi Tamminen
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| | - Vesna Blazevic
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| |
Collapse
|
8
|
Holtappels R, Lemmermann NAW, Thomas D, Renzaho A, Reddehase MJ. Identification of an atypical CD8 T cell epitope encoded by murine cytomegalovirus ORF-M54 gaining dominance after deletion of the immunodominant antiviral CD8 T cell specificities. Med Microbiol Immunol 2015; 204:317-26. [PMID: 25805564 DOI: 10.1007/s00430-015-0404-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
Control of murine cytomegalovirus (mCMV) infection is mediated primarily by CD8 T cells, with four specificities dominating in BALB/c mice. Functional deletion of the respective immunodominant epitopes (IDEs) in mutant virus Δ4IDE revealed a still efficient control of infection. In a murine model of hematopoietic cell transplantation and infection with Δ4IDE, an mCMV-specific open reading frame (ORF) library screening assay indicated a strong CD8 T cell reactivity against the ORF-M54 product, the highly conserved and essential mCMV homolog of human CMV DNA polymerase UL54, which is a known inducer of in vivo protection against mCMV by DNA immunization. Applying bioinformatic algorithms for CD8 T cell epitope prediction, the top-scoring peptides were used to stimulate ex vivo-isolated CD8 T cells and to generate cytolytic T cell lines; yet, this approach failed to identify M54 epitope(s). As an alternative, a peptide library consisting of 549 10-mers with an offset of two amino acids (aa), covering the complete aa-sequence of the M54 protein, was synthesized and used for the stimulation. A region of 12 aa proved to encompass an epitope. An 'alanine walk' over this antigenic 12-mer and all possible 11-, 10- and 9-mers derived thereof revealed aa-residues critical for antigenicity, and terminal truncations identified the H-2D(d) presented 8-mer M5483-90 as the optimal epitope. An increased frequency of the corresponding CD8 T cells in the absence of the 4 IDEs indicated immunodomination by the IDE-specific CD8 T cells as a mechanism by which the generation of M54-specific CD8 T cells is inhibited after infection with wild-type mCMV.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany,
| | | | | | | | | |
Collapse
|
9
|
Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 2014; 22:1263-1273. [PMID: 25126960 DOI: 10.1016/j.str.2014.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022]
Abstract
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beat Vogeli
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Uchtenhagen H, Abualrous ET, Stahl E, Allerbring EB, Sluijter M, Zacharias M, Sandalova T, van Hall T, Springer S, Nygren PÅ, Achour A. Proline substitution independently enhances H-2D(b) complex stabilization and TCR recognition of melanoma-associated peptides. Eur J Immunol 2013; 43:3051-60. [PMID: 23939911 DOI: 10.1002/eji.201343456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/08/2013] [Accepted: 08/08/2013] [Indexed: 11/08/2022]
Abstract
The immunogenicity of H-2D(b) (D(b)) restricted epitopes can be significantly increased by substituting peptide position 3 to a proline (p3P). The p3P modification enhances MHC stability without altering the conformation of the modified epitope allowing for T-cell cross-reactivity with the native peptide. The present study reveals how specific interactions between p3P and the highly conserved MHC heavy chain residue Y159 increase the stability of D(b) in complex with an optimized version of the melanoma-associated epitope gp10025-33 . Furthermore, the p3P modification directly increased the affinity of the D(b)/gp10025-33 -specific T-cell receptor (TCR) pMel. Surprisingly, the enhanced TCR binding was independent from the observed increased stability of the optimized D(b)/gp10025-33 complex and from the interactions formed between p3P and Y159, indicating a direct effect of the p3P modification on TCR recognition.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Science for Life Laboratory, Center for Infectious Medicine (CIM), Department of Medicine, Karolinska Insitutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Koch CP, Perna AM, Pillong M, Todoroff NK, Wrede P, Folkers G, Hiss JA, Schneider G. Scrutinizing MHC-I binding peptides and their limits of variation. PLoS Comput Biol 2013; 9:e1003088. [PMID: 23754940 PMCID: PMC3674988 DOI: 10.1371/journal.pcbi.1003088] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/23/2013] [Indexed: 12/20/2022] Open
Abstract
Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2Kb is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2Kb in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012). Future success in vaccine development will critically depend on identifying potent epitopes with reduced side effects. Among such candidate molecules, immunogenic peptides binding to major histocompatibility protein I (MHC-I) represent a preferred class of biomolecules for vaccine design. Computational models assist in the selection of the best candidate peptides by providing a mathematical rationale for antigen recognition by MHC-I. Here we present a machine-learning model that was trained on recognizing features of known MHC-I binding and non-binding peptide sequences with sustained accuracy. We were able to biochemically validate the computational predictions in a direct binding assay measuring complex formation between synthesized candidate peptides and MHC-I. Strong correspondence between the predictions and the experimentally determined binding potential corroborate the machine-learning model as viable for future antigen design. Thus, our study provides a concept for rapidly finding innovative MHC-I binding peptides with limited experimental effort.
Collapse
Affiliation(s)
- Christian P. Koch
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Anna M. Perna
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Max Pillong
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Nickolay K. Todoroff
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Paul Wrede
- Charite-Universitätsmedizin Berlin, Molekularbiologie und Bioinformatik, Berlin, Germany
| | - Gerd Folkers
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Jan A. Hiss
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Gisbert Schneider
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Sette A, Sidney J, Southwood S, Moore C, Berry J, Dow C, Bradley K, Hoof I, Lewis MG, Hildebrand WH, McMurtrey CP, Wilson NA, Watkins DI, Mothé BR. A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules. Immunogenetics 2012; 64:421-34. [PMID: 22322672 PMCID: PMC3349854 DOI: 10.1007/s00251-011-0598-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/25/2011] [Indexed: 02/07/2023]
Abstract
The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the Dd mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These “G2” alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the “G2” alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.
Collapse
Affiliation(s)
- Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Honda M, Wang R, Kong WP, Kanekiyo M, Akahata W, Xu L, Matsuo K, Natarajan K, Robinson H, Asher TE, Price DA, Douek DC, Margulies DH, Nabel GJ. Different vaccine vectors delivering the same antigen elicit CD8+ T cell responses with distinct clonotype and epitope specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2425-34. [PMID: 19620307 PMCID: PMC2858449 DOI: 10.4049/jimmunol.0900581] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8(+) cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8(+) T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D(d) better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8(+) T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.
Collapse
Affiliation(s)
- Mitsuo Honda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wataru Akahata
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ling Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kazuhiro Matsuo
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Tedi E. Asher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David A. Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- Department of Medical Biochemistry and Immunology, Cardiff University Medical School, Cardiff, United Kingdom
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Escobar H, Crockett DK, Reyes-Vargas E, Baena A, Rockwood AL, Jensen PE, Delgado JC. Large Scale Mass Spectrometric Profiling of Peptides Eluted from HLA Molecules Reveals N-Terminal-Extended Peptide Motifs. THE JOURNAL OF IMMUNOLOGY 2008; 181:4874-82. [DOI: 10.4049/jimmunol.181.7.4874] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Schuler MM, Nastke MD, Stevanovikć S. SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 2008; 409:75-93. [PMID: 18449993 DOI: 10.1007/978-1-60327-118-9_5] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reverse immunology has been used for about 12 years in order to identify T-cell epitopes from pathogens or tumor-associated antigens. In this chapter, we discuss the advantages and pitfalls of T-cell epitope prediction compared to classical experimental procedures such as epitope mapping and cloning experiments. We introduce our three established programs, SYFPEITHI, PAProc, and SNEP, which are freely accessible at no cost in the World Wide Web for the prediction of either HLA-peptide binding or proteasomal processing of antigens. We demonstrate the performance of our epitope prediction programs with several examples and in comparison to other epitope prediction programs available. We also reflect the actual possibilities and limitations of such computer-aided work.
Collapse
Affiliation(s)
- Mathias M Schuler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany
| | | | | |
Collapse
|
16
|
Nakagawa Y, Kikuchi H, Takahashi H. Molecular analysis of TCR and peptide/MHC interaction using P18-I10-derived peptides with a single D-amino acid substitution. Biophys J 2007; 92:2570-82. [PMID: 17208967 PMCID: PMC1864817 DOI: 10.1529/biophysj.106.095208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the structural analysis of T-cell receptor (TCR) and peptide/MHC interaction, a series of peptides with a single amino acid substitution by a corresponding D-amino acid, having the same weight, size, and charge, within P18-I10 (aa318-327: RGPGRAFVTI), an immunodominant epitope of HIV-1 IIIB envelope glycoprotein, restricted by the H-2Dd class I MHC molecule, has been synthesized. Using those peptides, we have observed that the replacement at positions 324F, 325V, 326T, and 327I with each corresponding D-amino acid induced marked reduction of the potency to sensitize targets for P18-I10-specific murine CD8+ cytotoxic T lymphocytes (CTLs), LINE-IIIB, recognition. To analyze further the role of amino acid at position 325, the most critical site for determining epitope specificity, we have developed a CTL line [LINE-IIIB(325D)] and its offspring clones specific for the epitope I-10(325v) having a D-valine (v) at position 325. Taking advantage of two distinct sets of CD8+ CTLs restricted by the same Dd, three-dimensional structural analysis on TCR and peptide/MHC complexes by molecular modeling was performed, which indicates that the critical amino acids within the TCRs for interacting with 325V or 325v appear to belong to the complementarity-determining region 1 but not to the complementarity-determining region 3 of Vbeta chain.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Binding Sites
- Computer Simulation
- Female
- Fibroblasts/chemistry
- Fibroblasts/metabolism
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/metabolism
- HIV Envelope Protein gp120/ultrastructure
- HLA Antigens/chemistry
- HLA Antigens/metabolism
- HLA Antigens/ultrastructure
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Chemical
- Models, Molecular
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/ultrastructure
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/ultrastructure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Yohko Nakagawa
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | |
Collapse
|
17
|
Wang Y, Rubtsov A, Heiser R, White J, Crawford F, Marrack P, Kappler JW. Using a baculovirus display library to identify MHC class I mimotopes. Proc Natl Acad Sci U S A 2005; 102:2476-81. [PMID: 15699351 PMCID: PMC548325 DOI: 10.1073/pnas.0409798102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a baculovirus-based display system for identifying antigen mimotopes for MHC class I-specific T cells. The mouse MHC class I molecule, Dd, was displayed on baculovirus-infected insect cells with a library of 9- and 10-mer peptides tethered via a flexible linker to the N terminus of beta2 microglobulin. As a test case, the library was screened by flow cytometry by using a multimeric fluorescent alphabetaTCR from a mouse T cell specific for Dd plus an unknown self peptide. A mimotope was identified that, when bound to Dd, stimulated the T cell to secret IL-2. The sequence of the mimotope was used to identify a self peptide present in a mouse protein, Spin. The Spin peptide, when complexed with Dd, also activated the T cell. This technique should be generally useful in identifying and manipulating MHC class I peptide mimotopes and epitopes.
Collapse
Affiliation(s)
- Yibing Wang
- Howard Hughes Medical Institute, Integrated Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki M, Aoshi T, Nagata T, Koide Y. Identification of murine H2-Dd- and H2-Ab-restricted T-cell epitopes on a novel protective antigen, MPT51, of Mycobacterium tuberculosis. Infect Immun 2004; 72:3829-37. [PMID: 15213124 PMCID: PMC427431 DOI: 10.1128/iai.72.7.3829-3837.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both CD4(+) type 1 helper T (Th1) cells and CD8(+) cytotoxic T lymphocytes (CTL) play pivotal roles in protection against Mycobacterium tuberculosis infection. Here, we identified Th1 and CTL epitopes on a novel protective antigen, MPT51, in BALB/c and C57BL/6 mice. Mice were immunized with plasmid DNA encoding MPT51 by using a gene gun, and gamma interferon (IFN-gamma) production from the immune spleen cells was analyzed in response to a synthetic overlapping peptide library covering the mature MPT51 sequence. In BALB/c mice, only one peptide, p21-40, appeared to stimulate the immune splenocytes to produce IFN-gamma. Flow cytometric analysis with intracellular IFN-gamma and the T-cell phenotype revealed that the p21-40 peptide contains an immunodominant CD8(+) T-cell epitope. Further analysis with a computer-assisted algorithm permitted identification of a T-cell epitope, p24-32. In addition, a major histocompatibility complex class I stabilization assay with TAP2-deficient RMA-S cells transfected with K(d), D(d), or L(d) indicated that the epitope is presented by D(d). Finally, we proved that the p24-32/D(d) complex is recognized by IFN-gamma-producing CTL. In C57BL/6 mice, we observed H2-A(b)-restricted dominant and subdominant Th1 epitopes by using T-cell subset depletion analysis and three-color flow cytometry. The data obtained are useful for analyzing the role of MPT51-specific T cells in protective immunity and for designing a vaccine against M. tuberculosis infection.
Collapse
Affiliation(s)
- Mina Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192, Japan
| | | | | | | |
Collapse
|
19
|
Vázquez-Blomquist D, Iglesias E, González-Horta EE, Duarte CA. The HIV-1 chimeric protein CR3 expressed by poxviral vectors induces a diverse CD8+ T cell response in mice and is antigenic for PBMCs from HIV+ patients. Vaccine 2003; 22:145-55. [PMID: 14615141 DOI: 10.1016/j.vaccine.2003.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant avipoxvirus vectors are attractive for vaccination against human immunodeficiency virus type 1 (HIV-1), where induction of a cytotoxic CD8(+) T cell (CTL) response seems to be an important component of protective immunity. We expressed the chimeric protein CR3, composed by CTL epitopes rich regions from, RT, Gag and Nef and conserved Th cell epitopes from gp120, gp41 and Vpr of HIV-1 in a fowlpox virus (FWPV) vector (FPCR3), and used this vector to induce HIV-specific CTL responses in mice. Mice immunised twice intraperitoneally with FPCR3, developed a CD8(+) T cell response measured as production of IFN-gamma by splenocytes in response to stimulation with P815 cells infected with recombinant vaccinia viruses (rVV) expressing CR3, Gag and Nef. The number of IFN-gamma secreting cells was markedly higher when a P815 cell line constitutively expressing CR3 was used as target cells for Enzyme-linked-immunospot (ELISPOT). CR3 epitopes were also specifically recognised by human PBMCs from three HIV(+) patients with different haplotypes. These results confirm the potential of FWPV vectors expressing these novel HIV-1 chimeric proteins to induce a simultaneous CD8(+) T cell response against conserved viral targets and early expressed regulatory proteins.
Collapse
Affiliation(s)
- Dania Vázquez-Blomquist
- Departamento de SIDA, División de Vacunas, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, Cubanacan, Playa, 10600, Ciudad Habana, Cuba
| | | | | | | |
Collapse
|
20
|
Samino Y, Lopez D, Guil S, de León P, Del Val M. An endogenous HIV envelope-derived peptide without the terminal NH3+ group anchor is physiologically presented by major histocompatibility complex class I molecules. J Biol Chem 2003; 279:1151-60. [PMID: 14583622 DOI: 10.1074/jbc.m305343200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) recognize viral peptidic antigens presented by major histocompatibility complex (MHC) class I molecules on the surface of infected cells. The CTL response is critical in clearance and prevention of HIV infection. Yet, there are no descriptions of physiological peptides derived from the viral envelope protein. In the few reports on endogenous MHC class I viral peptidic ligands from HIV internal proteins, definitive positive identification by mass spectrometry is lacking. The HIV-1 envelope glycoprotein gp160 induces a strong specific CTL response restricted by several human and murine MHC class I molecules, including H-2Dd. Previous analyses showed that this response can be optimally mimicked with the synthetic decameric peptide 318RGPGRAFVTI327. We aim to identify the endogenous natural peptides mediating the response to this epitope. Our data indicate the presence of, at least, two peptidic species of different length and sharing the same antigenic core, which are associated with the Dd presenting molecule in infected cells. One species is at least, probably, the optimal decapeptide. The second species, identified by mass spectrometry for the first time in HIV, is, unexpectedly, a nonamer, which lacks the correctly positioned N-terminal group to bind to Dd. And yet, it is present in similar amounts and, notably, is equally antigenic. Thus, the physiological set of HIV-derived MHC class I ligands is richer and different than expected from studies with synthetic peptides. This may help raise the plasticity and thus the effectiveness of the immune response against the viral infection. These data have implications for HIV vaccine development.
Collapse
Affiliation(s)
- Yolanda Samino
- Centro Nacional de Microbiología. Instituto de Salud Carlos III, E-28220 Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L, Gerhard W. Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 2003; 21:2616-26. [PMID: 12744898 DOI: 10.1016/s0264-410x(03)00040-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matix protein 2 (M2) is a transmembrane protein of influenza type A virus. It contains a 23 aa long ectodomain (M2e) that is highly conserved amongst human influenza type A viruses. M2e-specific antibodies have been shown to restrict virus growth in vitro and in vivo and thus have the potential of providing cross-reactive resistance to influenza type A virus infection. We attempted to induce M2e-specific protection with synthetic multiple antigen peptide (MAP) constructs that contained covalently linked M2e- and Th-determinant peptides. Mice, vaccinated twice by the intranasal (i.n.) route with adjuvanted M2e-MAPs exhibited significant resistance to virus replication in all sites of the respiratory tract. Compared to mice primed by two consecutive heterosubtypic infections, resistance was of similar strength in nasal and tracheal tissue but lower in pulmonary tissue. Importantly, the protection in M2e-MAP- and infection-immunized mice appeared to be mediated by distinct immune mechanisms. This suggests that stronger protection may be achievable by combining both protective activities.
Collapse
Affiliation(s)
- Krystyna Mozdzanowska
- Immunology Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Boscardin SB, Kinoshita SS, Fujimura AE, Rodrigues MM. Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection. Infect Immun 2003; 71:2744-57. [PMID: 12704149 PMCID: PMC153249 DOI: 10.1128/iai.71.5.2744-2757.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunization of mice with plasmids containing Trypanosoma cruzi genes induced specific antibodies, CD4(+) Th1 and CD8(+) Tc1 cells, and protective immunity against infection. In most cases, plasmids used for DNA vaccination contained genes encoding antigens expressed by trypomastigotes, the nonreplicative forms of the parasite. In this study, we explored the possibility of using genes expressed by amastigotes, the form of the parasite which replicates inside host cells, for experimental DNA vaccination. For that purpose, we selected a gene related to the amastigote surface protein 2 (ASP-2), an antigen recognized by antibodies and T cells from infected mice and humans, for our study. Using primers specific for the asp-2 gene, four distinct groups of genes were amplified from cDNA from amastigotes of the Y strain of T. cruzi. At the nucleotide level, they shared 82.3 to 89.9% identity with the previously described asp-2 gene. A gene named clone 9 presented the highest degree of identity with the asp-2 gene and was selected for immunological studies. Polyclonal antisera raised against the C terminus of the recombinant protein expressed by the clone 9 gene reacted with an antigen of approximately 83 kDa expressed in amastigotes of T. cruzi. Immunization of BALB/c mice with eukaryotic expression plasmids containing the clone 9 gene elicited specific antibodies and CD4(+) T-cell-dependent gamma interferon secretion. Upon challenge with trypomastigotes, mice immunized with plasmids harboring the clone 9 gene displayed reduced parasitemia and survived lethal infection. We concluded that amastigote cDNA is an interesting source of antigens that can be used for immunological studies, as well as for vaccine development.
Collapse
Affiliation(s)
- Silvia B Boscardin
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil 04023-062
| | | | | | | |
Collapse
|
23
|
Vázquez Blomquist D, Green P, Laidlaw SM, Skinner MA, Borrow P, Duarte CA. Induction of a strong HIV-specific CD8+ T cell response in mice using a fowlpox virus vector expressing an HIV-1 multi-CTL-epitope polypeptide. Viral Immunol 2003; 15:337-56. [PMID: 12081016 DOI: 10.1089/08828240260066260] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant avipoxvirus vectors are attractive candidates for use in vaccination strategies for infections such as human immunodeficiency virus type 1 (HIV-1), where induction of a CD8+ T cell response is thought to be an important component of protective immunity. Here, we report the expression of a multiepitope polypeptide (TAB9) composed of the central 15 amino acids of the V3 loop from six different isolates of HIV-1 in a fowlpox virus (FWPV) vector, and the use of this vector (FPTAB9LZ) to induce strong HIV-specific CD8+ T cell responses in mice. In animals immunized twice intravenously with FPTAB9LZ, almost 2% of the CD8+ T cells in the spleen were shown to produce IFN-gamma in response to stimulation with HIV-1 peptides 1 week after the second immunization. The most dominant response was to the HIV-1 IIIB peptide. A strong HIV-specific response was also induced by intraperitoneal immunization of mice with FPTAB9LZ, whilst subcutaneous immunization elicited a weaker response. Intraperitoneal immunization with FPTAB9LZ was also shown to provide protection against challenge with a recombinant vaccinia virus expressing antigens, including those in TAB9. These results confirm the potential of FWPV vectors for use in HIV vaccination strategies.
Collapse
|
24
|
Arribillaga L, de Cerio ALD, Sarobe P, Casares N, Gorraiz M, Vales A, Bruna-Romero O, Borrás-Cuesta F, Paranhos-Baccala G, Prieto J, Ruiz J, Lasarte JJ. Vaccination with an adenoviral vector encoding hepatitis C virus (HCV) NS3 protein protects against infection with HCV-recombinant vaccinia virus. Vaccine 2002; 21:202-10. [PMID: 12450695 DOI: 10.1016/s0264-410x(02)00456-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular immune response plays an important role in the clearance of hepatitis C virus (HCV). Thus, development of efficient ways to induce anti-viral cellular immune responses is an important step toward prevention and/or treatment of HCV infection. With this aim, we have constructed a replication-deficient recombinant adenovirus expressing HCV NS3 protein (RAdNS3). The efficacy of RAdNS3 was tested in vivo by measuring the protection against infection with a recombinant vaccinia virus expressing HCV-polyprotein (vHCV1-3011). Immunisation with 10(9)pfu of RAdNS3 induced anti-NS3 humoral, T helper and T cytotoxic responses. We identified eight epitopes recognised by IFN-gamma producing cells, five of them exhibiting lytic activity. Moreover, we show that RAdNS3 immunised mice were protected against challenge with vHCV1-3011 and that this protection was mediated by CD8(+) cells. In conclusion, our results suggest that adenoviral vectors encoding NS3 might be useful for the induction of prophylactic and/or therapeutic anti-HCV immunity.
Collapse
Affiliation(s)
- Laura Arribillaga
- Department of Internal Medicine, Centro de Investigaciones Médicas Aplicadas (CIMA), University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Waldenström M, Achour A, Michaelsson J, Rölle A, Kärre K. The role of an exposed loop in the alpha2 domain in the mouse MHC class I H-2Dd molecule for recognition by the monoclonal antibody 34-5-8S and the NK-cell receptor Ly49A. Scand J Immunol 2002; 55:129-39. [PMID: 11896929 DOI: 10.1046/j.1365-3083.2002.01027.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells express major histocompatibility complex (MHC) class I-specific inhibitory receptors. The region mediating the protective effect of the MHC class I molecule H-2Dd (Dd), recognized by the inhibitory receptor Ly49A, has been mapped to the alpha1/alpha2 domains. Here we have focused on an exposed loop in the N-terminal part of the alpha2 domain, which constitutes a major structural motif that differs between Dd (strong binding to Ly49A) and Db (weak binding to Ly49A at best). We mutated the residues 103, 104 and 107 in Dd to the corresponding amino acids in Db. The Dd mutant molecule retained the ability to be stabilized by a Dd-binding peptide. However, the mutation totally abolished the recognition by the conformational dependent monoclonal antibody (MoAb) 34-5-8S, known to inhibit the interaction between Dd and Ly49A. In addition, there was a marked impairment of the binding to Ly49A as evaluated by the ability of tetramers of the Dd mutant molecule to bind to Ly49A-transfected reporter cells and spleen cells. These results demonstrate that the introduced changes at positions 103, 104 and 107 directly or indirectly affect the epitopes for the MoAb 34-5-8S and the Ly49A receptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Antigens, Ly
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Macromolecular Substances
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Mutagenesis, Site-Directed
- NK Cell Lectin-Like Receptor Subfamily A
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Rats
- Receptors, NK Cell Lectin-Like
- Transfection
Collapse
Affiliation(s)
- M Waldenström
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Wang J, Whitman MC, Natarajan K, Tormo J, Mariuzza RA, Margulies DH. Binding of the natural killer cell inhibitory receptor Ly49A to its major histocompatibility complex class I ligand. Crucial contacts include both H-2Dd AND beta 2-microglobulin. J Biol Chem 2002; 277:1433-42. [PMID: 11696552 DOI: 10.1074/jbc.m110316200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ly49A, an inhibitory C-type lectin-like mouse natural killer cell receptor, functions through interaction with the major histocompatibility complex class I molecule, H-2D(d). The x-ray crystal structure of the Ly49A.H-2D(d) complex revealed that homodimeric Ly49A interacts at two distinct sites of H-2D(d): Site 1, spanning one side of the alpha1 and alpha2 helices, and Site 2, involving the alpha1, alpha2, alpha3, and beta(2)m domains. Mutants of Ly49A, H-2D(d), and beta(2)-microglobulin at intermolecular contacts and the Ly49A dimer interface were examined for binding affinity and kinetics. Although mutations at Site 1 had little affect, several at Site 2 and at the dimer interface hampered the Ly49A.H-2D(d) interaction, with no effect on gross structure or T cell receptor interaction. The region surrounding the most critical residues (in H-2D(d), Asp(122); in Ly49A, Asp(229), Ser(236), Thr(238), Arg(239), and Asp(241); and in beta(2)-microglobulin, Gln(29) and Lys(58)) of the Ly49A.H-2D(d) interface at Site 2 includes a network of water molecules, suggesting a molecular basis for allelic specificity in natural killer cell recognition.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/metabolism
- Antigens, Ly
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Binding Sites
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dimerization
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Killer Cells, Natural/physiology
- Lectins, C-Type
- Ligands
- Major Histocompatibility Complex/physiology
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- NK Cell Lectin-Like Receptor Subfamily A
- Protein Binding
- Protein Structure, Quaternary
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Surface Plasmon Resonance
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/metabolism
Collapse
Affiliation(s)
- Jian Wang
- Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schirle M, Weinschenk T, Stevanović S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J Immunol Methods 2001; 257:1-16. [PMID: 11687234 DOI: 10.1016/s0022-1759(01)00459-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The identification of T cell epitopes from immunologically relevant antigens remains a critical step in the development of vaccines and methods for monitoring of T cell responses. This review presents an overview of strategies that employ computer algorithms for the selection of candidate peptides from defined proteins and subsequent verification of their in vivo relevance by experimental approaches. Several computer algorithms are currently being used for epitope prediction of various major histocompatibility complex (MHC) class I and II molecules, based either on the analysis of natural MHC ligands or on the binding properties of synthetic peptides. Moreover, the analysis of proteasomal digests of peptides and whole proteins has led to the development of algorithms for the prediction of proteasomal cleavages. In order to verify the generation of the predicted peptides during antigen processing in vivo as well as their immunogenic potential, several experimental approaches have been pursued in the recent past. Mass spectrometry-based bioanalytical approaches have been used specifically to detect predicted peptides among isolated natural ligands. Other strategies employ various methods for the stimulation of primary T cell responses against the predicted peptides and subsequent testing of the recognition pattern towards target cells that express the antigen.
Collapse
Affiliation(s)
- M Schirle
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, D-72076, Tübingen, Germany
| | | | | |
Collapse
|
28
|
Turner MJ, Abdul-Alim CS, Willis RA, Fisher TL, Lord EM, Frelinger JG. T-cell antigen discovery (T-CAD) assay: a novel technique for identifying T cell epitopes. J Immunol Methods 2001; 256:107-19. [PMID: 11516759 DOI: 10.1016/s0022-1759(01)00436-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The identification of T cell epitopes is a critical step in evaluating and monitoring T cell mediated immune responses. Here, we describe a novel technique for simultaneously identifying class I and class II MHC restricted epitopes using a one-step protein purification system. This method uses Ni/chelate coated magnetic beads and magnetic separation to isolate poly-histidine tagged recombinant antigen from bacterial lysates. These beads, once coated with antigen, are also used to deliver antigen to APC where it is processed and presented to T cells. A colorimetric assay and ovalbumin specific, lacZ inducible, T cell hybridomas were used to validate the system. Further, using PSA specific hybrids, generated from T cells isolated from PSA secreting tumors, both class I and class II MHC restricted epitopes of PSA were identified. Additional characterization has shown that these peptides contribute significantly to the overall PSA specific response in vivo, and may represent the dominant epitopes of PSA.
Collapse
Affiliation(s)
- M J Turner
- Department of Microbiology and Immunology and the Cancer Center, University of Rochester Medical Center, Box 704, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chung DH, Belyakov IM, Derby MA, Wang J, Boyd LF, Berzofsky JA, Margulies DH. Competitive inhibition in vivo and skewing of the T cell repertoire of antigen-specific CTL priming by an anti-peptide-MHC monoclonal antibody. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:699-707. [PMID: 11441073 DOI: 10.4049/jimmunol.167.2.699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently described a mAb, KP15, directed against the MHC-I/peptide molecular complex consisting of H-2D(d) and a decamer peptide corresponding to residues 311-320 of the HIV IIIB envelope glycoprotein gp160. When administered at the time of primary immunization with a vaccinia virus vector encoding gp160, the mAb blocks the subsequent appearance of CD8(+) CTL with specificity for the immunodominant Ag, P18-I10, presented by H-2D(d). This inhibition is specific for this particular peptide Ag; another H-2D(d)-restricted gp160 encoded epitope from a different HIV strain is not affected, and an H-2L(d)-restricted epitope encoded by the viral vector is also not affected. Using functional assays and specific immunofluorescent staining with multivalent, labeled H-2D(d)/P18-I10 complexes (tetramers), we have enumerated the effects of blocking of priming on the subsequent appearance, avidity, and TCR Vbeta usage of Ag-specific CTL. Ab blocking skews the proportion of high avidity cells emerging from immunization. Surprisingly, Vbeta7-bearing Ag-specific TCR are predominantly inhibited, while TCR of several other families studied are not affected. The ability of a specific MHC/peptide mAb to inhibit and divert the CD8(+) T cell response holds implications for vaccine design and approaches to modulate the immune response in autoimmunity.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Blocking/metabolism
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/metabolism
- Binding, Competitive/immunology
- Cytotoxicity, Immunologic/immunology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- HIV Antigens/immunology
- HIV Antigens/metabolism
- HIV Envelope Protein gp160/immunology
- HIV Envelope Protein gp160/metabolism
- Histocompatibility Antigen H-2D
- Humans
- Injections, Intraperitoneal
- Injections, Intravenous
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred BALB C
- Oligopeptides/antagonists & inhibitors
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Stem Cells/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- D H Chung
- Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Polakova K, Plaksin D, Chung DH, Belyakov IM, Berzofsky JA, Margulies DH. Antibodies directed against the MHC-I molecule H-2Dd complexed with an antigenic peptide: similarities to a T cell receptor with the same specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5703-12. [PMID: 11067928 DOI: 10.4049/jimmunol.165.10.5703] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alphabeta TCRs, which use an Ab-like structure to form a combining site, recognize molecular complexes consisting of peptides bound to MHC class I (MHC-I) or class II (MHC-II) molecules. To explore the similarities and differences between Ab and T cell recognition of similar structures, we have isolated two mAbs, KP14 and KP15, that specifically bind H-2D(d) complexed with an HIV envelope gp160-derived peptide, P18-I10. These Abs are MHC and peptide specific. Fine specificity of mAb binding was analyzed using a panel of synthetic peptides, revealing similarities between the mAb and a cloned TCR with the same specificity. These two mAbs used the same V(H) and J(H) gene segments, but different D, Vkappa, and Jkappa genes. Administered in vivo, mAb KP15 blocked the induction of CTL specific for recombinant vaccinia virus-encoded gp160, indicating its ability to bind endogenously generated MHC/peptide complexes. Analysis of the fine specificity of these mAbs in the context of their encoded amino acid sequences and the known three-dimensional structure of the H-2D(d)/P18-I10 complex suggests that they bind in an orientation similar to that of the TCR. Thus, the plasticity of the B cell receptor repertoire and the structural similarities among BCR and TCR allow Abs to effectively mimic alphabeta TCRs. Such mAbs may be useful in the therapeutic modulation of immune responses against infectious agents or harmful self Ags as well as in tracing steps in Ag processing.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Antibody Specificity
- Base Sequence
- Binding Sites, Antibody
- Binding, Competitive/immunology
- Cytotoxicity, Immunologic/immunology
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Humans
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/metabolism
- Immunosuppressive Agents/pharmacology
- Injections, Intraperitoneal
- Jurkat Cells
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Molecular Sequence Data
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Surface Plasmon Resonance
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K Polakova
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases and Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
31
|
Toh H, Savoie CJ, Kamikawaji N, Muta S, Sasazuki T, Kuhara S. Changes at the floor of the peptide-binding groove induce a strong preference for proline at position 3 of the bound peptide: molecular dynamics simulations of HLA-A*0217. Biopolymers 2000; 54:318-27. [PMID: 10935972 DOI: 10.1002/1097-0282(20001015)54:5<318::aid-bip30>3.0.co;2-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report on molecular dynamics simulations of major histocompatibility complex (MHC)-peptide complexes. Class I MHC molecules play an important role in cellular immunity by presenting antigenic peptides to cytotoxic T cells. Pockets in the peptide-binding groove of MHC molecules accommodate anchor side chains of the bound peptide. Amino acid substitutions in MHC affect differences in the peptide-anchor motifs. HLA-A*0217, human MHC class I molecule, differs from HLA-A*0201 only by three amino acid residues substitutions (positions 95, 97, and 99) at the floor of the peptide-binding groove. A*0217 showed a strong preference for Pro at position 3 (p3) and accepted Phe at p9 of its peptide ligands, but these preferences have not been found in other HLA-A2 ligands. To reveal the structural mechanism of these observations, the A*0217-peptide complexes were simulated by 1000 ps molecular dynamics at 300 K with explicit solvent molecules and compared with those of the A*0201-peptide complexes. We examined the distances between the anchor side chain of the bound peptide and the pocket, and the rms fluctuations of the bound peptides and the HLA molecules. On the basis of the results from our simulations, we propose that Pro at p3 serves as an optimum residue to lock the dominant anchor residue (p9) tightly into pocket F and to hold the peptide in the binding groove, rather than a secondary anchor residue fitting optimally the complementary pocket. We also found that Phe at p9 is used to occupy the space created by replacements of three amino acid residues at the floor within the groove. These findings would provide a novel understanding in the peptide-binding motifs of class I MHC molecules.
Collapse
Affiliation(s)
- H Toh
- Graduate School of Genetic Resources Technology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Schueler-Furman O, Altuvia Y, Sette A, Margalit H. Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci 2000; 9:1838-46. [PMID: 11045629 PMCID: PMC2144704 DOI: 10.1110/ps.9.9.1838] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Specific binding of antigenic peptides to major histocompatibility complex (MHC) class I molecules is a prerequisite for their recognition by cytotoxic T-cells. Prediction of MHC-binding peptides must therefore be incorporated in any predictive algorithm attempting to identify immunodominant T-cell epitopes, based on the amino acid sequence of the protein antigen. Development of predictive algorithms based on experimental binding data requires experimental testing of a very large number of peptides. A complementary approach relies on the structural conservation observed in crystallographically solved peptide-MHC complexes. By this approach, the peptide structure in the MHC groove is used as a template upon which peptide candidates are threaded, and their compatibility to bind is evaluated by statistical pairwise potentials. Our original algorithm based on this approach used the pairwise potential table of Miyazawa and Jernigan (Miyazawa S, Jernigan RL, 1996, J Mol Biol 256:623-644) and succeeded to correctly identify good binders only for MHC molecules with hydrophobic binding pockets, probably because of the high emphasis of hydrophobic interactions in this table. A recently developed pairwise potential table by Betancourt and Thirumalai (Betancourt MR, Thirumalai D, 1999, Protein Sci 8:361-369) that is based on the Miyazawa and Jernigan table describes the hydrophilic interactions more appropriately. In this paper, we demonstrate how the use of this table, together with a new definition of MHC contact residues by which only residues that contribute exclusively to sequence specific binding are included, allows the development of an improved algorithm that can be applied to a wide range of MHC class I alleles.
Collapse
Affiliation(s)
- O Schueler-Furman
- Department of Molecular Genetics and Biotechnology, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
33
|
Nakamura MC, Hayashi S, Niemi EC, Ryan JC, Seaman WE. Activating Ly-49D and inhibitory Ly-49A natural killer cell receptors demonstrate distinct requirements for interaction with H2-D(d). J Exp Med 2000; 192:447-54. [PMID: 10934233 PMCID: PMC2193226 DOI: 10.1084/jem.192.3.447] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1999] [Accepted: 05/10/2000] [Indexed: 12/03/2022] Open
Abstract
The activating Ly-49D receptor and the inhibitory Ly-49A receptor mediate opposing effects on natural killer (NK) cell cytotoxicity after interaction with the same major histocompatibility complex ligand, H2-D(d). To compare Ly-49D and Ly-49A interactions with H2-D(d), we created mutations in H2-D(d) and examined the functional ability of these mutants to activate lysis through Ly-49D or to inhibit lysis through Ly-49A. Specific single amino acid changes in either the H2-D(d) alpha(1) helix or the alpha(2) helix abrogated Ly-49D-mediated cytotoxicity, but these changes had no significant effect on Ly-49A-dependent inhibition. Each of three alpha(2) domain mutations in the floor of the peptide binding groove reduced functional recognition by either Ly-49D or Ly-49A, but all three were required to fully abrogate inhibition by Ly-49A. Our studies indicate that Ly-49D/H2-D(d) interactions require distinct determinants compared with Ly-49A/H2-D(d) interactions. These differences have important implications for the integration of activating and inhibitory signals in NK cells.
Collapse
Affiliation(s)
- M C Nakamura
- Department of Medicine, University of California, San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|
34
|
Zappacosta F, Tabaczewski P, Parker KC, Coligan JE, Stroynowski I. The murine liver-specific nonclassical MHC class I molecule Q10 binds a classical peptide repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1906-15. [PMID: 10657640 DOI: 10.4049/jimmunol.164.4.1906] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The biological properties of the nonclassical class I MHC molecules secreted into blood and tissue fluids are not currently understood. To address this issue, we studied the murine Q10 molecule, one of the most abundant, soluble class Ib molecules. Mass spectrometry analyses of hybrid Q10 polypeptides revealed that alpha1alpha2 domains of Q10 associate with 8-9 long peptides similar to the classical class I MHC ligands. Several of the sequenced peptides matched intracellularly synthesized murine proteins. This finding and the observation that the Q10 hybrid assembly is TAP2-dependent supports the notion that Q10 groove is loaded by the classical class I Ag presentation pathway. Peptides eluted from Q10 displayed a binding motif typical of H-2K, D, and L ligands. They carried conserved residues at P2 (Gly), P6 (Leu), and Pomega (Phe/Leu). The role of these residues as anchors/auxiliary anchors was confirmed by Ala substitution experiments. The Q10 peptide repertoire was heterogeneous, with 75% of the groove occupied by a multitude of diverse peptides; however, 25% of the molecules bound a single peptide identical to a region of a TCR V beta-chain. Since this peptide did not display enhanced binding affinity for Q10 nor does its origin and sequence suggest that it is functionally significant, we propose that the nonclassical class I groove of Q10 resembles H-2K, D, and L grooves more than the highly specialized clefts of nonclassical class I Ags such as Qa-1, HLA-E, and M3.
Collapse
Affiliation(s)
- F Zappacosta
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
35
|
Dzuris JL, Sidney J, Appella E, Chesnut RW, Watkins DI, Sette A. Conserved MHC class I peptide binding motif between humans and rhesus macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:283-91. [PMID: 10605022 DOI: 10.4049/jimmunol.164.1.283] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the onset of the HIV pandemic, the use of nonhuman primate models of infection has increasingly become important. An excellent model to study HIV infection and immunological responses, in particular cell-mediated immune responses, is SIV infection of rhesus macaques. CTL epitopes have been mapped using SIV-infected rhesus macaques, but, to date, a peptide binding motif has been described for only one rhesus class I MHC molecule, Mamu-A*01. Herein, we have established peptide-live cell binding assays for four rhesus MHC class I molecules: Mamu-A*11, -B*03, -B*04, and -B*17. Using such assays, peptide binding motifs have been established for all four of these rhesus MHC class I molecules. With respect to the nature and spacing of crucial anchor positions, the motifs defined for Mamu-B*04 and -B*17 present unique features not previously observed for other primate species. The motifs identified for Mamu-A*11 and -B*03 are very similar to the peptide binding motifs previously described for human HLA-B*44 and -B*27, respectively. Accordingly, naturally processed peptides derived from HLA-B*44 and HLA-B*27 specifically bind Mamu-A*11 and Mamu-B*03, respectively, indicating that conserved MHC class I binding capabilities exist between rhesus macaques and humans. The definition of four rhesus MHC class I-specific motifs expands our ability to accurately detect and quantitate immune responses to MHC class I-restricted epitopes in rhesus macaques and to rationally design peptide epitope-based model vaccine constructs destined for use in nonhuman primates.
Collapse
|
36
|
White J, Crawford F, Fremont D, Marrack P, Kappler J. Soluble Class I MHC with β2-Microglobulin Covalently Linked Peptides: Specific Binding to a T Cell Hybridoma. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Soluble forms of the mouse MHC class I molecule, Dd, were produced in which the peptide binding groove was uniformly occupied by peptides attached via a covalent flexible peptide linker to the N terminus of the associated β2-microglobulin. The MHC heavy chain and β2-microglobulin were firmly associated, and the molecules displayed an Ab epitope requiring proper occupancy of the peptide binding groove. Soluble Dd containing a covalent version of a well-characterized Dd-binding peptide from HIV stimulated a T cell hybridoma specific for this combination. Furthermore, a tetravalent version of this molecule bound specifically with apparent high avidity to this hybridoma.
Collapse
Affiliation(s)
- Janice White
- *Division of Basic Immunology, Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206
| | - Frances Crawford
- *Division of Basic Immunology, Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206
| | - Daved Fremont
- †Department of Pathology, Center for Immunology, Washington University School of Medicine, St Louis, MO 63110; and
| | - Philippa Marrack
- *Division of Basic Immunology, Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206
- ‡Departments of Immunology and of Biochemistry, Biophysics and Genetics, and
| | - John Kappler
- *Division of Basic Immunology, Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206
- §Departments of Immunology, Pharmacology and Medicine, University of Colorado Health Science Center, Denver, CO 80262
| |
Collapse
|
37
|
Zatechka DS, Hegde NR, Hariharan K, Srikumaran S. Identification of murine cytotoxic T-lymphocyte epitopes of bovine herpesvirus 1. Vaccine 1999; 17:686-94. [PMID: 10067674 DOI: 10.1016/s0264-410x(98)00251-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present endogenously derived viral peptides to CD8+ cytotoxic T-lymphocytes (CTLs). The objective of this study was to identify the H-2Dd- and H-2Kd-restricted CTL epitopes of bovine herpesvirus 1 (BHV-1), based on the allele-specific peptide motifs (ASPMs) of the above class I molecules. Nine sequences conforming to the H-2Dd and H-2Kd ASPMs were identified on BHV-1 proteins, and the respective peptides were synthesized. Five of these peptides exhibited moderate to strong binding to the Dd molecule. CTLs generated by BALB/c mice immunized with BHV-1 proteins emulsified in a suitable adjuvant effectively lysed peptide-pulsed syngeneic targets, indicating that these epitopes were generated in vivo. Mice immunized with these peptides emulsified in a suitable adjuvant also developed anti-BHV-1 CTLs. These CTLs identified three veritable CTL epitopes among the "potential epitopes" synthesized based on the ASPMs. The elucidation of the CTL epitopes of BHV-1 should aid in the development of efficacious vaccines against this virus.
Collapse
Affiliation(s)
- D S Zatechka
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583-0905, USA
| | | | | | | |
Collapse
|
38
|
Suh WK, Derby MA, Cohen-Doyle MF, Schoenhals GJ, Früh K, Berzofsky JA, Williams DB. Interaction of Murine MHC Class I Molecules with Tapasin and TAP Enhances Peptide Loading and Involves the Heavy Chain α3 Domain. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In human cells the association of MHC class I molecules with TAP is thought to be mediated by a third protein termed tapasin. We now show that tapasin is present in murine TAP-class I complexes as well. Furthermore, we demonstrate that a mutant H-2Dd molecule that does not interact with TAP due to a Glu to Lys mutation at residue 222 of the H chain (Dd(E222K)) also fails to bind to tapasin. This finding supports the view that tapasin bridges the association between class I and TAP and implicates residue 222 as a site of contact with tapasin. The inability of Dd(E222K) to interact with tapasin and TAP results in impaired peptide loading within the endoplasmic reticulum. However, significant acquisition of peptides can still be detected as assessed by the decay kinetics of cell surface Dd(E222K) molecules and by the finding that prolonged viral infection accumulates sufficient target structures to stimulate T cells at 50% the level observed with wild-type Dd. Thus, although interaction with tapasin and TAP enhances peptide loading, it is not essential. Finally, a cohort of Dd(E222K) molecules decays more rapidly on the cell surface compared with wild-type Dd molecules but much more slowly than peptide-deficient molecules. This suggests that some of the peptides obtained in the absence of an interaction with tapasin and TAP are suboptimal, suggesting a peptide-editing function for tapasin/TAP in addition to their role in enhancing peptide loading.
Collapse
Affiliation(s)
- Woong-Kyung Suh
- *Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael A. Derby
- †Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | | | | | - Klaus Früh
- ‡R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121
| | - Jay A. Berzofsky
- †Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - David B. Williams
- *Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Li H, Natarajan K, Malchiodi EL, Margulies DH, Mariuzza RA. Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. J Mol Biol 1998; 283:179-91. [PMID: 9761682 DOI: 10.1006/jmbi.1998.2091] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of the mouse major histocompatibility complex (MHC) class I molecule H-2Dd with an immunodominant peptide, designated P18-I10 (RGPGRAFVTI), from human immunodeficiency virus envelope glycoprotein 120 was determined at 3.2 A resolution. A novel orientation of the alpha3 domain of Dd relative to the alpha1/alpha2 domains results in significantly fewer contacts between alpha3 and beta2-microglobulin compared with other MHC class I proteins. Four out of ten peptide residues (P2 Gly, P3 Pro, P5 Arg and P10 Ile) are nearly completely buried in the Dd binding groove. This is consistent with previous findings that Dd exploits a four-residue binding motif comprising a glycine at P2, a proline at P3, a positively charged residue at P5, and a C-terminal hydrophobic residue at P9 or P10. The side-chain of P5 Arg is directed toward the floor of the predominantly hydrophobic binding groove where it forms two salt bridges and one hydrogen bond with Dd residue Asp77. The selection of glycine at P2 appears to be due to a narrowing of the B pocket, relative to that of other class I molecules, caused by Arg66 whose side-chain folds down into the binding cleft. Residue P3 Pro of P18-I10 occupies part of pocket D, which in Dd is partially split by a prominent hydrophobic ridge in the floor of the binding groove formed by Trp97 and Trp114. Residues P6 through P9 form a solvent-exposed bulge, with P7 Phe protruding the most from the binding groove and thereby probably constituting a major site of interaction with T cell receptors. A comparison of H-2Dd/P18-I10 with other MHC class I/peptide complexes of known structure provides insights into the possible basis for the specificity of the natural killer cell receptor Ly-49A for several related class I molecules.
Collapse
Affiliation(s)
- H Li
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | | | | | | | | |
Collapse
|
40
|
Belyakov IM, Wyatt LS, Ahlers JD, Earl P, Pendleton CD, Kelsall BL, Strober W, Moss B, Berzofsky JA. Induction of a mucosal cytotoxic T-lymphocyte response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing human immunodeficiency virus 89.6 envelope protein. J Virol 1998; 72:8264-72. [PMID: 9733870 PMCID: PMC110185 DOI: 10.1128/jvi.72.10.8264-8272.1998] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To improve the safety of recombinant vaccinia virus vaccines, modified vaccinia virus Ankara (MVA) has been employed, because it has a replication defect in most mammalian cells. Here we apply MVA to human immunodeficiency virus type 1 (HIV-1) vaccine development by incorporating the envelope protein gp160 of HIV-1 primary isolate strain 89.6 (MVA 89.6) and use it to induce mucosal cytotoxic-T-lymphocyte (CTL) immunity. In initial studies to define a dominant CTL epitope for HIV-1 89.6 gp160, we mapped the epitope to a sequence, IGPGRAFYAR (from the V3 loop), homologous to that recognized by HIV MN loop-specific CTL and showed that HIV-1 MN-specific CTLs cross-reactively recognize the corresponding epitope from strain 89.6 presented by H-2Dd. Having defined the CTL specificity, we immunized BALB/c mice intrarectally with recombinant MVA 89.6. A single mucosal immunization with MVA 89.6 was able to elicit long-lasting antigen-specific mucosal (Peyer's patch and lamina propria) and systemic (spleen) CTL responses as effective as or more effective than those of a replication-competent vaccinia virus expressing 89.6 gp160. Immunization with MVA 89.6 led to (i) the loading of antigen-presenting cells in vivo, as measured by the ex vivo active presentation of the P18-89.6 peptide to an antigen-specific CTL line, and (ii) the significant production of the proinflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) in the mucosal sites. These results indicate that nonreplicating recombinant MVA may be at least as effective for mucosal immunization as replicating recombinant vaccinia virus.
Collapse
Affiliation(s)
- I M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Waldenström M, Sundbäck J, Olsson-Alheim MY, Achour A, Kärre K. Impaired MHC class I (H-2Dd)-mediated protection against Ly-49A+ NK cells after amino acid substitutions in the antigen binding cleft. Eur J Immunol 1998; 28:2872-81. [PMID: 9754574 DOI: 10.1002/(sici)1521-4141(199809)28:09<2872::aid-immu2872>3.0.co;2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The MHC class I molecule H-2Dd (Dd) acts as a ligand for the inhibitory NK cell receptor Ly-49A. We have constructed altered Dd molecules by site-directed mutagenesis, replacing residues with the corresponding amino acids from the Db molecule, which fails to inhibit via Ly-49A. Mutations at positions 73 and 156 (DdS73WD156Y) impaired the protective effect of the Dd molecule, as evaluated by testing lymphoma cells transfected with the mutant gene for sensitivity to killing by Ly-49A+ NK cells in vitro and rejection by NK cells in vivo. The altered residues form a hydrophobic ridge across the floor of the antigen binding cleft. A mutation in the alpha helix of the alpha2 domain, facing the solvent and without direct contact with the peptide (DdA150S) had no effect. Dd recognition by Ly-49A+ NK cells is considered to be peptide dependent, but not peptide specific. Our results indicate that alterations of residues buried in the antigen binding cleft can induce changes in peptide binding patterns and/or conformational changes in the Dd molecule that make the trimolecular complex less permissive for inhibition of Ly-49A+ NK cells.
Collapse
Affiliation(s)
- M Waldenström
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Bergmann-Leitner ES, Kantor JA, Shupert WL, Schlom J, Abrams SI. Identification of a human CD8+ T lymphocyte neo-epitope created by a ras codon 12 mutation which is restricted by the HLA-A2 allele. Cell Immunol 1998; 187:103-16. [PMID: 9732698 DOI: 10.1006/cimm.1998.1325] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Point mutations in the ras proto-oncogenes, notably at codon 12, are found in high frequency of human malignancies and, thus, may be appropriate targets for the induction of tumor-specific T cell responses in cancer immunotherapy. In this study, we examined the mutant ras protein sequence reflecting the substitution of Gly to Val at position 12 as a putative point-mutated determinant for potential induction of an HLA-A2-reactive, CD8+ cytotoxic T lymphocyte (CTL) response. We identified the ras 4-12(Val12) sequence as a minimal 9-mer peptide, which displayed specific binding to HLA-A2 by T2 bioassays. Peptide binding to HLA-A2 on T2 cells was weak and required coincubation with exogenous beta(2)-microglobulin to facilitate and enhance complex formation. In contrast, the wild-type ras 4-12(Gly12) peptide failed to bind to HLA-A2 even in the presence of beta(2)-microglobulin, consistent with the hypothesis that the point mutation creates a C-terminus anchor residue. A CD8+ CTL line against the ras 4-12(Val12) peptide was derived in vitro from a normal HLA-A2+ donor using a model culture system consisting of T2 cells as antigen presenting cells pulsed with exogenous mutant ras peptide and beta(2)-microglobulin plus cytokines (interleukin-2 and 12). Functional characterization of CD8+ CTL line revealed (1) peptide-specific and HLA-A2-restricted cytotoxicity against a panel of peptide-pulsed targets; (2) no specific lysis using the normal ras peptide sequence; (3) half-maximal lysis with exogenous peptide of approximately 0.3 microM; (4) lysis of HLA-A2+ B cell lines infected with a recombinant vaccinia virus construct encoding the point-mutated human K-ras gene; and (5) specific lysis of the HLA-A2+ SW480 colon carcinoma cell line expressing the naturally occurring K-ras Val12 mutation. Maximal lysis of SW480 cells occurred following interferon (IFN)-gamma pretreatment, which correlated with enhanced HLA-A2 and ICAM-1 (CD54) expression. Specificity of lysis was revealed by the absence of lysis against a HLA-A2+ melanoma cell line (+/- IFN-gamma), which lacked the mutant Val12 mutation, and the inability of an irrelevant CD8+ CTL line to lyse SW480 (+/- IFN-gamma) unless the appropriate exogenous peptide was added. These findings demonstrated that tumor cells may endogenously process and express mutant ras epitopes, such as the 4-12(Val12) sequence, albeit in limiting amounts that may be potentiated by IFN-gamma treatment. These data support the biological relevance of this sequence and, thus, may have important implications for the generation of ras oncogene-specific CTL responses in clinical situations.
Collapse
Affiliation(s)
- E S Bergmann-Leitner
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1750, USA
| | | | | | | | | |
Collapse
|
43
|
Achour A, Persson K, Harris RA, Sundbäck J, Sentman CL, Lindqvist Y, Schneider G, Kärre K. The crystal structure of H-2Dd MHC class I complexed with the HIV-1-derived peptide P18-I10 at 2.4 A resolution: implications for T cell and NK cell recognition. Immunity 1998; 9:199-208. [PMID: 9729040 DOI: 10.1016/s1074-7613(00)80602-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of H-2Dd complexed with the HIV-derived peptide P18-I10 (RGPGRAFVTI) has been determined by X-ray crystallography at 2.4 A resolution. This MHC class I molecule has an unusual binding motif with four anchor residues in the peptide (G2, P3, R/K/H5, and I/L/F9 or 10). The cleft architecture of H-2Dd includes a deep narrow passage accomodating the N-terminal part of the peptide, explaining the obligatory G2P3 anchor motif. Toward the C-terminal half of the peptide, p5R to p8V form a type I' reverse turn; residues p6A to p9T, and in particular p7F, are readily exposed. The structure is discussed in relation to functional data available for T cell and natural killer cell recognition of the H-2Dd molecule.
Collapse
Affiliation(s)
- A Achour
- Microbiology and Tumor Biology Center, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sundbäck J, Nakamura MC, Waldenström M, Niemi EC, Seaman WE, Ryan JC, Kärre K. The α2 Domain of H-2Dd Restricts the Allelic Specificity of the Murine NK Cell Inhibitory Receptor Ly-49A. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.12.5971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Mouse NK lymphocytes express Ly-49 receptors, which inhibit cytotoxicity upon ligation by specific MHC I molecules on targets. Different members of the lectin-like mouse Ly-49 receptor family recognize distinct subsets of murine H-2 molecules, but the molecular basis for the allelic specificity of Ly-49 has not been defined. We analyzed inhibition of natural killing by chimeric MHC I molecules in which the α1, α2, or α3 domains of the Ly-49A-binding allele H-2Dd were exchanged for the corresponding domains of the nonbinding allele H-2Db. Using the Ly-49A-transfected rat NK cell line, RNK-mLy-49A.9, we demonstrated that the H-2Dd α2 domain alone accounts for allelic specificity in protection of rat YB2/0 targets in vitro. We also showed that the H-2Dd α2 domain is sufficient to account for the allele-specific in vivo protection of H-2b mouse RBL-5 tumors from NK cell-mediated rejection in D8 mice. Thus, in striking contrast to the α1 specificity of Ig-like killer inhibitory receptors for human HLA, the lectin-like mouse Ly-49A receptor is predominantly restricted by the H-2Dd α2 domain in vitro and in vivo.
Collapse
Affiliation(s)
- Jonas Sundbäck
- *Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden; Departments of
| | - Mary C. Nakamura
- ‡Medicine, University of California, San Francisco, CA 94143; and Veterans Administration Medical Center, San Francisco, CA 94121
| | - Margareta Waldenström
- *Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden; Departments of
| | - Eréne C. Niemi
- ‡Medicine, University of California, San Francisco, CA 94143; and Veterans Administration Medical Center, San Francisco, CA 94121
| | - William E. Seaman
- †Microbiology and Immunology and
- ‡Medicine, University of California, San Francisco, CA 94143; and Veterans Administration Medical Center, San Francisco, CA 94121
| | - James C. Ryan
- ‡Medicine, University of California, San Francisco, CA 94143; and Veterans Administration Medical Center, San Francisco, CA 94121
| | - Klas Kärre
- *Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden; Departments of
| |
Collapse
|
45
|
Jelonek MT, Classon BJ, Hudson PJ, Margulies DH. Direct Binding of the MHC Class I Molecule H-2Ld to CD8: Interaction with the Amino Terminus of a Mature Cell Surface Protein. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
MHC class I molecules (MHC-I) display peptides from the intracellular pool at the cell surface for recognition by T lymphocytes bearing αβ TCR. Although the activation of T cells is controlled by the interaction of the TCR with MHC/peptide complexes, the degree and extent of the activation is influenced by the binding in parallel of the CD8 coreceptor with MHC-I. In the course of quantitative evaluation of the binding of purified MHC-I to engineered CD8, we observed that peptide-deficient H-2Ld (MHC-I) molecules bound with moderate affinity (Kd = 7.96 × 10−7 M), but in the presence of H-2Ld-binding peptides, no interaction was observed. Examination of the amino terminal sequences of CD8α and β chains suggested that H-2Ld might bind these protein termini via its peptide binding cleft. Using both competition and real-time direct assays based on surface plasmon resonance, we detected binding of empty H-2Ld to synthetic peptides representing these termini. These results suggest that some MHC molecules are capable of binding the amino termini of intact cell surface proteins through their binding groove and provide alternative explanations for the observed binding of MHC molecules to a variety of cell surface receptors and coreceptors.
Collapse
Affiliation(s)
- Marie T. Jelonek
- *Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Brendan J. Classon
- †The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia; and
| | - Peter J. Hudson
- ‡CSIRO Molecular Science, CRC for Diagnostic Technologies, Victoria, Australia
| | - David H. Margulies
- *Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
46
|
Lukacher AE, Wilson CS. Resistance to Polyoma Virus-Induced Tumors Correlates with CTL Recognition of an Immunodominant H-2Dk-Restricted Epitope in the Middle T Protein. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.4.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The natural mouse pathogen polyoma virus is highly oncogenic in H-2k mice carrying the endogenous superantigen encoded by the mouse mammary tumor provirus Mtv-7. This superantigen results in deletion of Vβ6 TCR-expressing polyoma-specific CD8+ CTL, which appear to be critical effectors against polyoma tumorigenesis. Here we have isolated cloned lines of CD8+ T cells from resistant (i.e., Mtv-7−) H-2k mice that specifically lyse syngeneic polyoma virus-infected cells and polyoma tumor cells. Nearly all these CTL clones express Vβ6 and are restricted in their recognition of virus-infected cells by H-2Dk. Screening a panel of synthetic peptides predicted to bind to Dk, for which no consensus peptide binding motif is known, we identified a peptide corresponding to a nine-amino acid sequence in the carboxyl-terminus of the middle T (MT) protein (amino acids 389–397) that was recognized by all the Vβ6+CD8+ CTL clones. The inability of MT389–397-reactive CTL to recognize cells infected with a mutant polyoma virus encoding a MT truncated just proximal to this sequence indicates that MT389-397 is a naturally processed peptide. The frequencies of precursor CTL specific for polyoma virus and MT389–397 peptide were similar, indicating that MT389–397 is the immunodominant epitope in H-2k mice. In addition, polyoma-infected resistant mice possess a 10- to 20-fold higher MT389-397-specific precursor CTL frequency than susceptible mice. This highly focused CTL response to polyoma virus provides a valuable animal model to investigate the in vivo activity of CTL against virus-induced neoplasia.
Collapse
Affiliation(s)
- Aron E. Lukacher
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | | |
Collapse
|
47
|
Matsumoto N, Ribaudo RK, Abastado JP, Margulies DH, Yokoyama WM. The lectin-like NK cell receptor Ly-49A recognizes a carbohydrate-independent epitope on its MHC class I ligand. Immunity 1998; 8:245-54. [PMID: 9492005 DOI: 10.1016/s1074-7613(00)80476-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mouse NK inhibitory Ly-49A receptor specifically interacts with a peptide-induced conformational determinant on its MHC class I ligand, H-2Dd. In addition, it binds the polysaccharide fucoidan, consistent with its C-type lectin homology and the hypothesis that Ly-49A interacts with carbohydrates on Dd. Herein, however, we demonstrate that Ly-49A recognizes Dd mutants lacking N-glycosylation. Fucoidan competes for binding with anti-Ly-49A antibodies that inhibit Ly-49A-Dd interaction, and blocks apparent Ly-49A binding to unglycosylated Dd. We confirm that Ly-49A recognizes the alpha1 and amino-terminal alpha2 domains of Dd by analysis of recombinant H-2Kd-H-2Dd molecules. These studies indicate that Ly-49A recognizes carbohydrate-independent epitope(s) on Dd and suggest that Ly-49A has two distinct ligands, carbohydrate and MHC class I.
Collapse
MESH Headings
- Animals
- Antigens, Ly
- Binding, Competitive
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Cytotoxicity Tests, Immunologic
- Epitopes
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Glycosylation
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Natural/immunology
- Lectins/immunology
- Lectins/metabolism
- Lectins, C-Type
- Ligands
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Models, Molecular
- Mutation
- Polysaccharides/metabolism
- Protein Binding
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
Collapse
Affiliation(s)
- N Matsumoto
- Howard Hughes Medical Institute, Rheumatology Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
48
|
van der Most RG, Concepcion RJ, Oseroff C, Alexander J, Southwood S, Sidney J, Chesnut RW, Ahmed R, Sette A. Uncovering subdominant cytotoxic T-lymphocyte responses in lymphocytic choriomeningitis virus-infected BALB/c mice. J Virol 1997; 71:5110-4. [PMID: 9188577 PMCID: PMC191745 DOI: 10.1128/jvi.71.7.5110-5114.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytotoxic T-lymphocyte response against lymphocytic choriomeningitis virus (LCMV) in BALB/c mice is predominantly directed against a single, Ld-restricted epitope in the viral nucleoprotein (residues 118 to 126). To investigate whether any Kd/Dd-restricted responses were activated but did not expand during the primary response, we used a BALB/c mutant, BALB/c-H-2dm2, which does not express the Ld molecule. Splenocytes from LCMV-infected BALB/c mice were transferred into irradiated BALB/c-H-2dm2 mice and rechallenged with LCMV. Thus, they were exposed to an antigenic stimulus without the involvement of the immunodominant Ld-restricted epitope. In this adoptive transfer model, the donor splenocytes protected the recipient mice against chronic LCMV infection by mounting a potent Kd- and/or Dd-restricted secondary antiviral response. Analysis of a panel of Kd binding LCMV peptides revealed that residues 283 to 291 from the viral glycoprotein (GP(283-291)) comprise a major new epitope in the adoptive transfer model. Because the donor splenocytes were first activated during the primary infection in BALB/c mice, the GP(283-291) epitope is a subdominant epitope in BALB/c mice that becomes dominant after rechallenge in BALB/c-H-2dm2 mice. This study makes two points. First, it shows that subdominant CTL responses can be protective, and second, it provides a general experimental approach for uncovering subdominant CTL responses in vivo. This strategy can be used to identify subdominant T-cell responses in other systems.
Collapse
Affiliation(s)
- R G van der Most
- Department of Microbiology and Immunology, University of California at Los Angeles School of Medicine, 90024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
|