1
|
Wang Z, Guan R, Gan W, Yang Z, Sun B, Wu J, Zhang D, Sun G, Gao X, Huang J, Liu G, Zhou C, Zhou J, Fan J, Yi Y, Hu B, Qiu S. Effective Antiviral Therapy Improves Immunosuppressive Activities in the Immune Microenvironment of Hepatocellular Carcinoma by Alleviating Inflammation and Fibrosis. Cancer Med 2024; 13:e70459. [PMID: 39659057 PMCID: PMC11632120 DOI: 10.1002/cam4.70459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND AND AIMS The immune microenvironment (IME) plays a crucial role in the progression of hepatocellular carcinoma (HCC). In HCC, the IME is often compromised by hepatitis B virus (HBV) infection, chronic inflammation, and fibrosis. Both antiviral therapy (AVT) and the alleviation of inflammation and fibrosis (AIF) have been shown to improve prognosis. However, the relationship among the IME of HCC, AVT, and AIF remains unclear. METHODS A total of 140 and 110 primary HBV-related HCC patients were enrolled as training and validation sets, respectively, to establish a HCC-immune microenvironment score (H-IME score). Immunohistochemistry was performed to assess the number of granzyme B+ (GrB+) and Foxp3+ cells, as well as the expression of CTLA-4, PD-1, LAG3, TIGIT, TIM3, and VISTA. Another cohort consisting of 114 recurrent HBV-related HCC patients with paired primary and recurrent tissues was used to study the relationship among the IME of HCC, AVT, and AIF. RESULTS The H-IME score, including GrB, Foxp3, CTLA-4, PD-1, LAG3, and TIGIT, was established to evaluate the IME. A higher H-IME score indicates stronger immunosuppressive activities. Both AVT and AIF were found to inhibit immunosuppressive activities in the IME. Compared to primary tumors, the H-IME scores of recurrent tumors in the effective AVT group (e-AVT, classified by HBV DNA) with AIF decreased, while the scores increased in the non-AVT group without AIF. CONCLUSIONS The IME of HCC is closely related to AVT and AIF. e-AVT can enhance anti-tumor activities in the IME by alleviating inflammation and fibrosis.
Collapse
Affiliation(s)
- Zhu‐tao Wang
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ruo‐yu Guan
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Gan
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhang‐fu Yang
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bao‐ye Sun
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jing‐fang Wu
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Dai Zhang
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Guo‐qiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xu‐kang Gao
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jin‐long Huang
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shuang‐Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer Institute and Biomedical Research Center, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Ramos S, Hartenian E, Broz P. Programmed cell death: NINJ1 and mechanisms of plasma membrane rupture. Trends Biochem Sci 2024; 49:717-728. [PMID: 38906725 DOI: 10.1016/j.tibs.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
Lytic cell death culminates in cell swelling and plasma membrane rupture (PMR). The cellular contents released, including proteins, metabolites, and nucleic acids, can act as danger signals and induce inflammation. During regulated cell death (RCD), lysis is actively initiated and can be preceded by an initial loss of membrane integrity caused by pore-forming proteins, allowing small molecules and cytokines to exit the cell. A recent seminal discovery showed that ninjurin1 (NINJ1) is the common executioner of PMR downstream of RCD, resulting in the release of large proinflammatory molecules and representing a novel target of cell death-associated lysis. We summarize recent developments in understanding membrane integrity and rupture of the plasma membrane with a focus on NINJ1.
Collapse
Affiliation(s)
- Saray Ramos
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Ella Hartenian
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Li T, Smith M, Abdussamad M, Katz G, Catalfamo M. A flow-cytometry-based assay to assess granule exocytosis and GZB delivery by human CD8 T cells and NK cells. STAR Protoc 2023; 4:101939. [PMID: 36527713 PMCID: PMC9792553 DOI: 10.1016/j.xpro.2022.101939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
CD8 T and NK cells mediate killing by delivery of perforin and granzyme B (GZB) stored in lysosome-like granules. We present a flow-cytometry-based protocol combined with a redirected killing assay to evaluate granule exocytosis and the cytotoxic potential of human CD8 T cells and NK cells. We describe the assessment of the delivered GZB inside the target cells. We then detail the detection of lysosome membrane protein CD107a exposed on the cell surface of the effector cells upon degranulation. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).1.
Collapse
Affiliation(s)
- Tong Li
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Mindy Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Maryam Abdussamad
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Grace Katz
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology. Georgetown University School of Medicine, Washington, DC 20007, USA.
| |
Collapse
|
4
|
Pașatu‑Cornea AM, Ciciu E, Tuță LA. Perforin: An intriguing protein in allograft rejection immunology (Review). Exp Ther Med 2022; 24:519. [DOI: 10.3892/etm.2022.11446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Elena Ciciu
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| | - Liliana-Ana Tuță
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| |
Collapse
|
5
|
Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, Saibil HR. The pore conformation of lymphocyte perforin. SCIENCE ADVANCES 2022; 8:eabk3147. [PMID: 35148176 PMCID: PMC8836823 DOI: 10.1126/sciadv.abk3147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
Perforin is a pore-forming protein that facilitates rapid killing of pathogen-infected or cancerous cells by the immune system. Perforin is released from cytotoxic lymphocytes, together with proapoptotic granzymes, to bind to a target cell membrane where it oligomerizes and forms pores. The pores allow granzyme entry, which rapidly triggers the apoptotic death of the target cell. Here, we present a 4-Å resolution cryo-electron microscopy structure of the perforin pore, revealing previously unidentified inter- and intramolecular interactions stabilizing the assembly. During pore formation, the helix-turn-helix motif moves away from the bend in the central β sheet to form an intermolecular contact. Cryo-electron tomography shows that prepores form on the membrane surface with minimal conformational changes. Our findings suggest the sequence of conformational changes underlying oligomerization and membrane insertion, and explain how several pathogenic mutations affect function.
Collapse
Affiliation(s)
- Marina E. Ivanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Fermi Ave, Harwell, Didcot OX11 0QX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joseph A. Trapani
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Ilia Voskoboinik
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| |
Collapse
|
6
|
Affiliation(s)
- Mehwish Saba Aslam
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Liudi Yuan
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Turner CT, Hiroyasu S, Granville DJ. Granzyme B as a therapeutic target for wound healing. Expert Opin Ther Targets 2019; 23:745-754. [PMID: 31461387 DOI: 10.1080/14728222.2019.1661380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Granzyme B is a serine protease traditionally understood as having a role in immune-mediated cytotoxicity. Over the past decade, this dogma has been challenged, with a new appreciation that granzyme B can exert alternative extracellular roles detrimental to wound closure and remodeling. Granzyme B is elevated in response to tissue injury, chronic inflammation and/or autoimmune skin diseases, resulting in impaired wound healing. Areas covered: This review provides a historical background of granzyme B and a description of how it is regulated. Details are provided on the role of granzyme B in apoptosis as well as newly identified extracellular roles, focusing on those affecting wound healing, including on inflammation, dermal-epidermal junction separation, re-epithelialization, scarring and fibrosis, and autoimmunity. Finally, the use of pharmacological granzyme B inhibitors as potential therapeutic options for wound treatment is discussed. Expert opinion: Endogenous extracellular granzyme B inhibitors have not been identified in human bio-fluids, thus in chronic wound environments granzyme B appears to remain uncontrolled and unregulated. In response, targeted granzyme B inhibitors have been developed for therapeutic applications in wounds. Animal studies trialing inhibitors of granzyme B show improved healing outcomes, and may therefore provide a novel therapeutic approach for wound treatment.
Collapse
Affiliation(s)
- Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| |
Collapse
|
8
|
Targeted human cytolytic fusion proteins at the cutting edge: harnessing the apoptosis-inducing properties of human enzymes for the selective elimination of tumor cells. Oncotarget 2019; 10:897-915. [PMID: 30783518 PMCID: PMC6368230 DOI: 10.18632/oncotarget.26618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Patient-specific targeted therapy represents the holy grail of anti-cancer therapeutics, allowing potent tumor depletion without detrimental off-target toxicities. Disease-specific monoclonal antibodies have been employed to bind to oncogenic cell-surface receptors, representing the earliest form of immunotherapy. Targeted drug delivery was first achieved by means of antibody-drug conjugates, which exploit the differential expression of tumor-associated antigens as a guiding mechanism for the specific delivery of chemically-conjugated chemotherapeutic agents to diseased target cells. Biotechnological advances have expanded the repertoire of immunology-based tumor-targeting strategies, also paving the way for the next intuitive step in targeted drug delivery: the construction of recombinant protein drugs consisting of an antibody-based targeting domain genetically fused with a cytotoxic peptide, known as an immunotoxin. However, the most potent protein toxins have typically been derived from bacterial or plant virulence factors and commonly feature both off-target toxicity and immunogenicity in human patients. Further refinement of immunotoxin technology thus led to the replacement of monoclonal antibodies with humanized antibody derivatives, including the substitution of non-human toxic peptides with human cytolytic proteins. Preclinically tested human cytolytic fusion proteins (hCFPs) have proven promising as non-immunogenic combinatory anti-cancer agents, however they still require further enhancement to achieve convincing candidacy as a single-mode therapeutic. To date, a portfolio of highly potent human toxins has been established; ranging from microtubule-associated protein tau (MAP tau), RNases, granzyme B (GrB) and death-associated protein kinase (DAPk). In this review, we discuss the most recent findings on the use of these apoptosis-inducing hCFPs for the treatment of various cancers.
Collapse
|
9
|
Granzyme B Is an Essential Mediator in CD8 + T Cell Killing of Theileria parva-Infected Cells. Infect Immun 2018; 87:IAI.00386-18. [PMID: 30323022 DOI: 10.1128/iai.00386-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/14/2018] [Indexed: 11/20/2022] Open
Abstract
There is established evidence that cytotoxic CD8+ T cells are important mediators of immunity against the bovine intracellular protozoan parasite Theileria parva However, the mechanism by which the specific CD8+ T cells kill parasitized cells is not understood. Although the predominant pathway used by human and murine CD8+ T cells to kill pathogen-infected cells is granule exocytosis, involving the release of perforin and granzyme B, there is to date a lack of published information on the biological activities of bovine granzyme B. The present study set out to define the functional activities of bovine granzyme B and determine its role in mediating the killing of T. parva-parasitized cells. DNA constructs encoding functional and nonfunctional forms of bovine granzyme B were produced, and the proteins expressed in Cos-7 cells were used to establish an enzymatic assay to detect and quantify the expression of functional granzyme B protein. Using this assay, the levels of killing of different T. parva-specific CD8+ T cell clones were found to be significantly correlated with the levels of granzyme B protein but not the levels of mRNA transcript expression. Experiments using inhibitors specific for perforin and granzyme B confirmed that CD8+ T cell killing of parasitized cells is dependent on granule exocytosis and, specifically, granzyme B. Further studies showed that the granzyme B-mediated death of parasitized cells is independent of caspases and that granzyme B activates the proapoptotic molecule Bid.
Collapse
|
10
|
Shim JK, Kennedy RH, Weatherly LM, Abovian AV, Hashmi HN, Rajaei A, Gosse JA. Searching for tryptase in the RBL-2H3 mast cell model: Preparation for comparative mast cell toxicology studies with zebrafish. J Appl Toxicol 2018; 39:473-484. [PMID: 30374992 DOI: 10.1002/jat.3738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 01/17/2023]
Abstract
Mast cells comprise a physiologically and toxicologically important cell type that is ubiquitous among species and tissues. Mast cells undergo degranulation, in which characteristic intracellular granules fuse with the plasma membrane and release many bioactive substances, such as enzymes β-hexosaminidase and tryptase. Activity of mast cells in the toxicology model organism, zebrafish, has been monitored via tryptase release and cleavage of substrate N-α-benzoyl-dl-Arg-p-nitroanilide (BAPNA). An extensively used in vitro mast cell model for studying toxicant mechanisms is the RBL-2H3 cell line. However, instead of tryptase, granule contents such as β-hexosaminidase have usually been employed as RBL-2H3 degranulation markers. To align RBL-2H3 cell toxicological studies to in vivo mast cell studies using zebrafish, we aimed to develop an RBL-2H3 tryptase assay. Unexpectedly, we discovered that tryptase release from RBL-2H3 cells is not detectable, using BAPNA substrate, despite optimized assay that can detect as little as 1 ng tryptase. Additional studies performed with another substrate, tosyl-Gly-Pro-Lys-pNA, and with an enzyme-linked immunosorbent assay, revealed a lack of tryptase protein released from stimulated RBL-2H3 cells. Furthermore, none of the eight rat tryptase genes (Tpsb2, Tpsab1, Tpsg1, Prss34, Gzmk, Gzma, Prss29, Prss41) is expressed in RBL-2H3 cells, even though all are found in RBL-2H3 genomic DNA and even though β-hexosaminidase mRNA is constitutively expressed. Therefore, mast cell researchers should utilize β-hexosaminidase or another reliable marker for RBL-2H3 degranulation studies, not tryptase. Comparative toxicity testing in RBL-2H3 cells in vitro and in zebrafish mast cells in vivo will require use of a degranulation reporter different from tryptase.
Collapse
Affiliation(s)
- Juyoung K Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Rachel H Kennedy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Lisa M Weatherly
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Andrew V Abovian
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Hina N Hashmi
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Atefeh Rajaei
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
11
|
Spicer JA, Miller CK, O'Connor PD, Jose J, Huttunen KM, Jaiswal JK, Denny WA, Akhlaghi H, Browne KA, Trapani JA. Substituted arylsulphonamides as inhibitors of perforin-mediated lysis. Eur J Med Chem 2017; 137:139-155. [PMID: 28582670 PMCID: PMC5500991 DOI: 10.1016/j.ejmech.2017.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
The structure-activity relationships for a series of arylsulphonamide-based inhibitors of the pore-forming protein perforin have been explored. Perforin is a key component of the human immune response, however inappropriate activity has also been implicated in certain auto-immune and therapy-induced conditions such as allograft rejection and graft versus host disease. Since perforin is expressed exclusively by cells of the immune system, inhibition of this protein would be a highly selective strategy for the immunosuppressive treatment of these disorders. Compounds from this series were demonstrated to be potent inhibitors of the lytic action of both isolated recombinant perforin and perforin secreted by natural killer cells in vitro. Several potent and soluble examples were assessed for in vivo pharmacokinetic properties and found to be suitable for progression to an in vivo model of transplant rejection.
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand.
| | - Christian K Miller
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - Kristiina M Huttunen
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jagdish K Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - Hedieh Akhlaghi
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| | - Kylie A Browne
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052 Australia
| |
Collapse
|
12
|
|
13
|
Xue M, Jackson CJ. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes. VITAMINS AND HORMONES 2014; 95:323-63. [PMID: 24559924 DOI: 10.1016/b978-0-12-800174-5.00013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
14
|
Ewen CL, Kane KP, Bleackley RC. Granzyme H induces cell death primarily via a Bcl-2-sensitive mitochondrial cell death pathway that does not require direct Bid activation. Mol Immunol 2013; 54:309-18. [DOI: 10.1016/j.molimm.2012.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 02/02/2023]
|
15
|
The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:278652. [PMID: 23243437 PMCID: PMC3518257 DOI: 10.1155/2012/278652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022]
Abstract
Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism.
Collapse
|
16
|
Dunstone MA, Tweten RK. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 2012; 22:342-9. [PMID: 22658510 DOI: 10.1016/j.sbi.2012.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
The bacterial cholesterol dependent cytolysins (CDCs) and membrane attack complex/perforin-like proteins (MACPF) represent two major branches of a large, exceptionally diverged superfamily. Most characterized CDC/MACPF proteins form large pores that function in immunity, venoms, and pathogenesis. Extensive structural, biochemical and biophysical studies have started to address some of the questions surrounding how the soluble, monomeric form of these remarkable molecules recognize diverse targets and assemble into oligomeric membrane embedded pores. This review explores mechanistic similarities and differences in how CDCs and MACPF proteins form pores.
Collapse
Affiliation(s)
- Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
17
|
Abstract
Granzymes (Grs) were discovered just over a quarter century ago. They are produced by cytotoxic T cells and natural killer cells and are released upon interaction with target cells. Intensive biochemical, genetic, and biological studies have been performed in order to study their roles in immunity and inflammation. This review summarizes research on the family of Grs.
Collapse
|
18
|
Yang YM, Feng AL, Zhou CJ, Liang XH, Mao HT, Deng BP, Yan S, Sun JT, Du LT, Liu J, Wang QJ, Neckenig MR, Yang QF, Qu X. Aberrant expression of chemokine receptor CCR4 in human gastric cancer contributes to tumor-induced immunosuppression. Cancer Sci 2011; 102:1264-71. [PMID: 21443538 DOI: 10.1111/j.1349-7006.2011.01934.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chemokine receptor CCR4 is preferentially expressed on certain immune cells and some hematological tumor cells, which play pivotal roles in suppression of host immune response. However, the reasons for the upmodulation of CCR4 and its immune functions in solid tumors remain unclear. Herein, we aimed to determine the expression profiles of CCR4 in gastric cancer cells and its role in regulating antitumor immunity. CCR4 expression was assessed in 63 cases of gastric carcinomas by immunohistochemistry. We found cancer cells in lymphocyte-rich carcinomas more frequently showed moderate to strong positive staining for CCR4 than those in conventional carcinomas (P = 0.041), and also found a positive relationship between expression of CCR4 and tumor necrosis factor-α (P = 0.012). Stimulation of gastric cell lines with various cytokines showed that tumor necrosis factor-α uniquely upmodulated CCR4 expression through activation of nuclear factor-κB. Additional coculture experiments showed the forced expression of CCR4 in SGC-7901 cells caused a significant reduction of γ-interferon and elevation of interleukin-10 secretion in the supernatants from cocultured SGC-7901 cells and PBMCs. In addition, granzyme A production in cancer cell-cocultured CD56(+) natural killer cells was significantly downregulated. Inhibition of the overexpressed CCR4 in cancer cells by an inhibitor of CCR4, compound 39, proved to partly restore the antitumor immunity in respect of the inverse changes in those factors. Our studies suggest that the aberrant expression of CCR4 in human gastric cancer could contribute to tumor-induced immunosuppression. Conceivably, downmodulation of CCR4 expression could be a promising immunotherapy for human gastric cancer.
Collapse
Affiliation(s)
- Yong-Mei Yang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang Y, Ye J, Yang X, Jiang R, Chen H, Cao S. Japanese encephalitis virus infection induces changes of mRNA profile of mouse spleen and brain. Virol J 2011; 8:80. [PMID: 21345237 PMCID: PMC3056812 DOI: 10.1186/1743-422x-8-80] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/24/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus, leading to an acute encephalitis and damage to the central nervous system (CNS). The mechanism of JEV pathogenesis is still unclear. DNA microarray analyses have been recently employed to detect changes in host gene expression, which is helpful to reveal molecular pathways that govern viral pathogenesis. In order to globally identify candidate host genes associated with JEV pathogenesis, a systematic mRNA profiling was performed in spleens and brains of JEV-infected mice. RESULTS The results of microarray analysis showed that 437 genes in spleen and 1119 genes in brain were differentially expressed in response to JEV infection, with obviously upregulated genes like pro-inflammatory chemokines and cytokines, apoptosis-related proteases and IFN inducible transcription factors. And the significant pathways of differentially expressed genes are involved in cytokine-cytokine receptor interaction, natural killer cell mediated cytotoxicity, antigen processing and presentation, MAPK signaling, and toll-like receptor signaling, etc. The differential expression of these genes suggests a strong antiviral response of host but may also contribute to the pathogenesis of JEV resulting in encephalitis. Quantitative RT-PCR (RT-qPCR) assay of some selected genes further confirmed the results of microarray assay. CONCLUSIONS Data obtained from mRNA microarray suggests that JEV infection causes significant changes of mRNA expression profiles in mouse spleen and brain. Most of differentially expression genes are associated with antiviral response of host, which may provide important information for investigation of JEV pathogenesis and therapeutic method.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaohong Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Rong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
20
|
Saito Y, Kondo H, Hojo Y. Granzyme B as a novel factor involved in cardiovascular diseases. J Cardiol 2010; 57:141-7. [PMID: 21168312 DOI: 10.1016/j.jjcc.2010.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/05/2010] [Accepted: 10/13/2010] [Indexed: 01/25/2023]
Abstract
Apoptosis plays an important role in cardiovascular diseases such as atherosclerosis, ischemic heart disease, and congestive heart failure. Previous studies have demonstrated that oxidative stress, physiological stress, and inflammatory cytokines such as tumor necrosis factor and Fas ligand are involved in apoptosis of cardiovascular system. We demonstrate that another apoptosis-related pathway, i.e. granzyme B/perforin system is involved in cardiovascular diseases. Expression of granzyme B, a member of serine protease family is increased in acute coronary syndrome, coronary artery disease with end-stage renal disease, and subacute stage of acute myocardial infarction. Although granzyme B is extensively researched in immunological disorders, the role of granzyme B/perforin system was not clear in the cardiovascular field. In addition, little is known regarding the inhibition of granzyme B system in the clinical situation. In this review we demonstrate recent findings of granzyme B in cardiovascular diseases and possible therapeutic applications of inhibiting the granzyme B/perforin system.
Collapse
Affiliation(s)
- Yuji Saito
- Department of Cardiology, Catholic Health System, Buffalo, NY, USA
| | | | | |
Collapse
|
21
|
Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev 2010; 235:35-54. [PMID: 20536554 DOI: 10.1111/j.0105-2896.2010.00896.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The secretory granule-mediated cell death pathway is the key mechanism for elimination of virus-infected and transformed target cells by cytotoxic lymphocytes. The formation of the immunological synapse between an effector and a target cell leads to exocytic trafficking of the secretory granules and the release of their contents, which include pro-apoptotic serine proteases, granzymes, and pore-forming perforin into the synapse. There, perforin polymerizes and forms a transmembrane pore that allows the delivery of granzymes into the cytosol, where they initiate various apoptotic death pathways. Unlike relatively redundant individual granzymes, functional perforin is absolutely essential for cytotoxic lymphocyte function and immune regulation in the host. Nevertheless, perforin is still the least studied and understood cytotoxic molecule in the immune system. In this review, we discuss the current state of affairs in the perforin field: the protein's structure and function as well as its role in immune-mediated diseases.
Collapse
Affiliation(s)
- Ilia Voskoboinik
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Vic. 8006, Australia
| | | | | | | | | |
Collapse
|
22
|
Abstract
Granzyme A (GzmA) is the most abundant serine protease in killer cell cytotoxic granules. GzmA activates a novel programed cell death pathway that begins in the mitochondrion, where cleavage of NDUFS3 in electron transport complex I disrupts mitochondrial metabolism and generates reactive oxygen species (ROS). ROS drives the endoplasmic reticulum-associated SET complex into the nucleus, where it activates single-stranded DNA damage. GzmA also targets other important nuclear proteins for degradation, including histones, the lamins that maintain the nuclear envelope, and several key DNA damage repair proteins (Ku70, PARP-1). Cells that are resistant to the caspases or GzmB by overexpressing bcl-2 family anti-apoptotic proteins or caspase or GzmB protease inhibitors are sensitive to GzmA. By activating multiple cell death pathways, killer cells provide better protection against a variety of intracellular pathogens and tumors. GzmA also has proinflammatory activity; it activates pro-interleukin-1beta and may also have other proinflammatory effects that remain to be elucidated.
Collapse
Affiliation(s)
- Judy Lieberman
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ. Functional dissection of the granzyme family: cell death and inflammation. Immunol Rev 2010; 235:73-92. [DOI: 10.1111/j.0105-2896.2010.00907.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Zhou F. Expression of Multiple Granzymes by Cytotoxic T Lymphocyte Implies that They Activate Diverse Apoptotic Pathways in Target Cells. Int Rev Immunol 2010; 29:38-55. [DOI: 10.3109/08830180903247889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Abstract
Cytotoxic lymphocytes (CLs) are the killer cells that destroy intracellular pathogen-infected and transformed cells, predominantly through the cytotoxic granule-mediated death pathway. Soluble cytotoxic granule components, including pore-forming perforin and pro-apoptotic serine proteases, granzymes, synergize to induce unscheduled apoptosis of the target cell. A complete loss of CL function results in an aggressive immunoregulatory disorder, familial hemophagocytic lymphohistiocytosis, whereas a partial loss of function seems to be a factor strongly predisposing to hematological malignancies. This review discusses the pathological manifestations of CL deficiencies due to impaired perforin function and describes novel aspects of perforin biology.
Collapse
|
26
|
Ngan DA, Vickerman SV, Granville DJ, Man SFP, Sin DD. The possible role of granzyme B in the pathogenesis of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2009; 3:113-29. [PMID: 19638369 DOI: 10.1177/1753465809341965] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent inflammatory lung condition characterized by airways disease and emphysema, and the precise mechanism of pathogenesis is poorly understood. The consistent features of COPD include protease-antiprotease imbalance, inflammation and accelerated aging caused by apoptosis or senescence. One family of molecules involved in all of these processes is the granzymes, serine proteases with the best-known member being granzyme B (GzmB). The majority of GzmB is released unidirectionally towards target cells, but GzmB can also be released nonspecifically and escape into the extracellular environment. GzmB is capable of cleaving extracellular matrix (ECM) proteins in vitro, and the accumulation of GzmB in the extracellular milieu during chronic inflammation in COPD could contribute to ECM degradation and remodelling and, consequently, the emphysematous phenotype in the lung. Preliminary studies suggest that increased GzmB expression is associated with increased COPD severity, and this may represent a promising new target for drug and biomarker discovery in COPD. In this paper, we review the potential pathogenic contributions of GzmB to the pathogenesis of COPD.
Collapse
Affiliation(s)
- David A Ngan
- James Hogg Research Laboratories, Providence Heart + Lung Institute at St. Paul's Hospital and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
27
|
Moffat JM, Gebhardt T, Doherty PC, Turner SJ, Mintern JD. Granzyme A expression reveals distinct cytolytic CTL subsets following influenza A virus infection. Eur J Immunol 2009; 39:1203-10. [PMID: 19404988 DOI: 10.1002/eji.200839183] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CTL mediate anti-viral immunity via targeted exocytosis of cytolytic granules containing perforin and members of the granzyme (grz) serine protease family. Here, we provide the first analysis of grzA protein expression by murine anti-viral CTL. During the progression of influenza A virus infection, CTL expressed two divergent cytolytic phenotypes: grzA(-)B(+) and grzA(+)B(+). CTL lacked grzA expression during the initial rounds of antigen-driven division. High levels of grzA were expressed by influenza-specific CTL early post infection (day 6), particularly in tissues associated with the infected respiratory tract (bronchoalveolar lavage, lung). Following resolution of influenza infection, a small population of memory CTL expressed grzA. Interestingly, individual influenza A virus-derived epitope-specific CTL expressed different levels of grzA. The grzA expression hierarchy was determined to be K(b)PB1(703)=D(b)F2(62)=K(b)NS2(114)>D(b)NP(366)=D(b)PA(224) and inversely correlated with CTL magnitude. Therefore following influenza infection, a CTL cytolytic hierarchy was established relating to the different profiles of antigen expression and relative immunodominance. Analysis of CTL grzA expression during influenza virus immunity has enabled a more detailed insight into the cytolytic mechanisms of virus elimination.
Collapse
Affiliation(s)
- Jessica M Moffat
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
28
|
Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJP, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 2009; 30:684-95. [PMID: 19446473 DOI: 10.1016/j.immuni.2009.03.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/24/2008] [Accepted: 03/06/2009] [Indexed: 01/30/2023]
Abstract
Perforin, a pore-forming protein secreted by cytotoxic lymphocytes, is indispensable for destroying virus-infected cells and for maintaining immune homeostasis. Perforin polymerizes into transmembrane channels that inflict osmotic stress and facilitate target cell uptake of proapoptotic granzymes. Despite this, the mechanism through which perforin monomers self-associate remains unknown. Our current study establishes the molecular basis for perforin oligomerization and pore assembly. We show that after calcium-dependent membrane binding, direct ionic attraction between the opposite faces of adjacent perforin monomers was necessary for pore formation. By using mutagenesis, we identified the opposing charges on residues Arg213 (positive) and Glu343 (negative) to be critical for intermolecular interaction. Specifically, disrupting this interaction had no effect on perforin synthesis, folding, or trafficking in the killer cell, but caused a marked kinetic defect of oligomerization at the target cell membrane, severely disrupting lysis and granzyme B-induced apoptosis. Our study provides important insights into perforin's mechanism of action.
Collapse
Affiliation(s)
- Katherine Baran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuhla A, Eipel C, Abshagen K, Siebert N, Menger MD, Vollmar B. Role of the perforin/granzyme cell death pathway in D-Gal/LPS-induced inflammatory liver injury. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1069-76. [PMID: 19264954 DOI: 10.1152/ajpgi.90689.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytotoxic T lymphocytes and their granule components, such as perforin and granzyme, play an important role in the defense of hepatic infections caused by different pathogens. Moreover, it has been shown in vitro that hepatocytes can initiate cell death via a perforin-dependent mechanism. Although it is well known that hepatocellular apoptosis in D-galactosamine/lipopolysaccharide (D-Gal/LPS)-associated liver failure is mediated by TNF-alpha-dependent Fas/FasL cytotoxicity, there is no information on the role of perforin-mediated mechanisms in vivo. Therefore, we studied whether the cytolytic perforin/granzyme pathway contributes to the D-Gal/LPS-associated hepatotoxicity. Perforin knockout (Pko) mice showed significantly higher hepatic TNF-alpha and IL-6 mRNA expression as well as plasma TNF-alpha and IL-6 concentrations within the first hour upon D-Gal/LPS challenge compared with perforin wild-type (Pwt) mice. At 6 h upon D-Gal/LPS challenge, Pko mice further presented with higher transaminase release and onconecrotic tissue damage, whereas hepatocellular apoptosis and caspase-3 cleavage remained unaffected by the perforin deficiency. Pretreatment with a recombinant human TNF-alpha receptor fusion protein attenuated necrotic and apoptotic tissue damage and reduced plasma transaminase activities as well as cytokine release, thereby preventing acute liver failure in Pko mice as effectively as in Pwt mice. These data do not only confirm the significance of TNF-alpha as distal mediator of hepatic injury in this model but simultaneously reveal a contribution of a perforin-dependent immunoregulation, limiting the D-Gal/LPS-induced overwhelming cytokine release and onconecrotic tissue injury.
Collapse
Affiliation(s)
- Angela Kuhla
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Getachew Y, Stout-Delgado H, Miller BC, Thiele DL. Granzyme C supports efficient CTL-mediated killing late in primary alloimmune responses. THE JOURNAL OF IMMUNOLOGY 2008; 181:7810-7. [PMID: 19017970 DOI: 10.4049/jimmunol.181.11.7810] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well established that granzymes A and B play a role in CTL killing of target cells by the perforin-dependent granule exocytosis pathway. The functions of multiple additional granzymes expressed in CTL are less well defined. In the present studies, CTL generated from mice deficient in dipeptidyl peptidase 1 (DPP1) were used to investigate the contribution of granzyme C to CTL killing of allogeneic target cells. DPP1 is required for activation of granzymes A and B by proteolytic removal of their N-terminal dipeptide prodomains while a significant portion of granzyme C is processed normally in the absence of DPP1. Cytotoxicity of DPP1(-/-) CTL generated in early (5-day) MLC in vitro and in peritoneal exudate cells 5 days after initial allogeneic sensitization in vivo was significantly impaired compared with wild-type CTL. Following 3 days of restimulation with fresh allogeneic stimulators however, cytotoxicity of these DPP1(-/-) effector cells was comparable to that of wild-type CTL. Killing mediated by DPP1(-/-) CTL following restimulation was rapid, perforin dependent, Fas independent and associated with early mitochondrial injury, phosphatidyl serine externalization, and DNA degradation, implicating a granzyme-dependent apoptotic pathway. The increased cytotoxicity of DPP1(-/-) CTL following restimulation coincided with increased expression of granzyme C. Moreover, small interfering RNA inhibition of granzyme C expression during restimulation significantly decreased cytotoxicity of DPP1(-/-) but not wild-type CTL. These results indicate that during late primary alloimmune responses, granzyme C can support CTL-mediated killing by the granule exocytosis pathway in the absence of functional granzymes A or B.
Collapse
Affiliation(s)
- Yonas Getachew
- Department of Internal Medicine, Division of Digestive and Liver Diseases, niversity of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
31
|
Trapani JA, Bird PI. A renaissance in understanding the multiple and diverse functions of granzymes? Immunity 2008; 29:665-7. [PMID: 19006688 DOI: 10.1016/j.immuni.2008.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Immunity, Metkar et al. (2008) present evidence that granzyme A plays a role in inflammatory signaling and that contrary to previous studies, it is incapable of inducing target cell death. The work challenges us to reconsider the broader biological roles of all the granzymes.
Collapse
Affiliation(s)
- Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Victoria 3002, Australia.
| | | |
Collapse
|
32
|
Chattopadhyay PK, Betts MR, Price DA, Gostick E, Horton H, Roederer M, De Rosa SC. The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J Leukoc Biol 2008; 85:88-97. [PMID: 18820174 DOI: 10.1189/jlb.0208107] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytolytic enzymes (CEs) are critical mediators of anti-viral and -tumor immunity; however, as a number of molecules belong to this enzyme family, our understanding of CEs remains limited. Specifically, it remains unclear what combinations of granzymes and perforin (Perf) are expressed by various immune cells and how CE content relates to cellular differentiation. Using polychromatic flow cytometry, we simultaneously measured expression of the most common human CEs [granzyme A (gA), granzyme B (gB), and Perf] alongside markers of alphabeta and gammadelta T cell maturation (CD45RO, CCR7, CD27, CD57). Additionally, we measured CE content in NK cell subsets (defined by their expression of CD16 and CD56). We found that among a wide variety of immune cells, CE content was linked to cellular maturity. Moreover, common expression patterns were shared across cell types, such that gB+ cells always contained gA, and Perf+ cells were primarily gA+ gB+. Most importantly, CD57 expression correlated strongly with simultaneous expression of gA, gB, and Perf. Thus, the use of CD57 provides a means to easily isolate viable cells with high cytolytic potential, without the need for lethal fixation/permeabilization techniques.
Collapse
Affiliation(s)
- Pratip K Chattopadhyay
- ImmunoTechnology Section, Laboratory of Immunology, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kun Z, Haiyun Z, Meng W, Li Ning, Li Yousheng, Li Jieshou. Dietary ω-3 Polyunsaturated Fatty Acids Can Inhibit Expression of Granzyme B, Perforin, and Cation-Independent Mannose 6-Phosphate/Insulin-Like Growth Factor Receptor in Rat Model of Small Bowel Transplant Chronic Rejection. JPEN J Parenter Enteral Nutr 2008; 32:12-17. [PMID: 28059003 DOI: 10.1177/014860710803200112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zhao Kun
- From the Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhang Haiyun
- From the Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wang Meng
- From the Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Li Ning
- From the Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Li Yousheng
- From the Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Li Jieshou
- From the Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
|
35
|
Pipkin ME, Lieberman J. Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 2007; 19:301-8. [PMID: 17433871 PMCID: PMC11484871 DOI: 10.1016/j.coi.2007.04.011] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/04/2007] [Indexed: 11/29/2022]
Abstract
Killer lymphocytes release perforin and granzymes from cytotoxic granules into the immunological synapse to destroy target cells as a critical mechanism in the defense against viruses and cancer. Perforin, a Ca(2+)-dependent pore-forming protein that multimerizes in membranes, delivers granzymes into the target cell cytosol. The original model for perforin (acting by forming a cell membrane channel through which granzymes pass) does not fit the experimental data. Recently, an alternative model has been proposed that involves active target cell collaboration with perforin to deliver granzymes and direct the target cell to an apoptotic, rather than necrotic, death.
Collapse
Affiliation(s)
- Matthew E Pipkin
- CBR Institute for Biomedical Research, Harvard Medical School, Boston MA 02115, USA
| | | |
Collapse
|
36
|
Nakajima H, Sakaguchi K, Fujiwara I, Mizuta M, Tsuruga M, Magae J, Mizuta N. Apoptosis and inactivation of the PI3-kinase pathway by tetrocarcin A in breast cancers. Biochem Biophys Res Commun 2007; 356:260-5. [PMID: 17350598 DOI: 10.1016/j.bbrc.2007.02.136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Accepted: 02/22/2007] [Indexed: 11/16/2022]
Abstract
A survival kinase, Akt, is a downstream factor in the phosphatidylinositide-3'-kinase-dependent pathway, which mediates many biological responses including glucose uptake, protein synthesis and the regulation of proliferation and apoptosis, which is assumed to contribute to acquisition of malignant properties of human cancers. Here we find that an anti-tumor antibiotic, tetrocarcin A, directly induces apoptosis of human breast cancer cells. The apoptosis is accompanied by the activation of a proteolytic cascade of caspases including caspase-3 and -9, and concomitantly decreases phosphorylation of Akt, PDK1, and PTEN, a tumor suppressor that regulates the activity of Akt through the dephosphorylation of polyphosphoinositides. Tetrocarcin A affected neither expression of Akt, PDK1, or PTEN, nor did it affect the expression of Bcl family members including Bcl-2, Bcl-X(L), and Bax. These results suggest that tetrocarcin A could be a potent chemotherapeutic agent for human breast cancer targeting the phosphatidylinositide-3'-kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Hiroo Nakajima
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kawaramachi, Hirokoji, Kamikyo-ku, Kyoto 602-0841, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2007; 6:940-52. [PMID: 17124515 DOI: 10.1038/nri1983] [Citation(s) in RCA: 445] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The granule exocytosis pathway of cytotoxic lymphocytes is crucial for immune surveillance and homeostasis. The trafficking of granule components, including the membrane-disruptive protein perforin, to the immunological synapse leads to the delivery of granule proteases (granzymes) into the target cell and its destruction through apoptosis. Several independent molecular abnormalities associated with defects of either granule trafficking or perforin function can cause cytotoxic lymphocyte dysfunction. In humans, inherited perforin mutations result in severe immune dysregulation that manifests as familial haemophagocytic lymphohistiocytosis. This Review describes recent progress in defining the structure, function, biochemistry and cell biology of perforin.
Collapse
Affiliation(s)
- Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
38
|
Sipione S, Simmen KC, Lord SJ, Motyka B, Ewen C, Shostak I, Rayat GR, Dufour JM, Korbutt GS, Rajotte RV, Bleackley RC. Identification of a Novel Human Granzyme B Inhibitor Secreted by Cultured Sertoli Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:5051-8. [PMID: 17015688 DOI: 10.4049/jimmunol.177.8.5051] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sertoli cells have long since been recognized for their ability to suppress the immune system and protect themselves as well as other cell types from harmful immune reaction. However, the exact mechanism or product produced by Sertoli cells that affords this immunoprotection has never been fully elucidated. We examined the effect of mouse Sertoli cell-conditioned medium on human granzyme B-mediated killing and found that there was an inhibitory effect. We subsequently found that a factor secreted by Sertoli cells inhibited killing through the inhibition of granzyme B enzymatic activity. SDS-PAGE analysis revealed that this factor formed an SDS-insoluble complex with granzyme B. Immunoprecipitation and mass spectroscopic analysis of the complex identified a proteinase inhibitor, serpina3n, as a novel inhibitor of human granzyme B. We cloned serpina3n cDNA, expressed it in Jurkat cells, and confirmed its inhibitory action on granzyme B activity. Our studies have led to the discovery of a new inhibitor of granzyme B and have uncovered a new mechanism used by Sertoli cells for immunoprotection.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nakazaki Y, Hase H, Inoue H, Beppu Y, Meng XK, Sakaguchi G, Kurita R, Asano S, Nakamura Y, Tani K. Serial Analysis of Gene Expression in Progressing and Regressing Mouse Tumors Implicates the Involvement of RANTES and TARC in Antitumor Immune Responses. Mol Ther 2006; 14:599-606. [PMID: 16807117 DOI: 10.1016/j.ymthe.2006.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 11/17/2022] Open
Abstract
Previously we demonstrated that gene transduction of the granulocyte-macrophage colony stimulating-factor (GM-CSF) gene into mouse tumor cells eliminated tumorigenicity in vivo. The rejection process of the subcutaneous tumor was as follows: transient tumor growth peaked around 10 days after tumor injection, then the tumors were rejected within a week. In this paper, we analyzed the gene expression of the transiently established tumor masses by the serial analysis of gene expression method to identify molecules associated with the antitumor effect. We then screened those genes that were differentially expressed between the parental and the GM-CSF-transduced tumors and identified a group of genes that are suggested to have a relationship with tumor rejection, including a cytokine receptor, adhesion molecules, chemokines, cytotoxicity-related molecules, and others. Focusing on the chemokine genes TARC and RANTES, which were preferentially expressed in the GM-CSF-transduced tumors, their forced expression on mouse tumor cells showed moderate suppression of tumor formation. Transduction of GM-CSF in combination with either the TARC or the RANTES gene into tumor cells profoundly inhibited tumor establishment. Histological findings suggested the significant contribution of CD4+ T cells to tumor regression in both TARC/GM-CSF- and RANTES/GM-CSF-transduced tumor cells, in excess of that seen with GM-CSF transduction alone.
Collapse
Affiliation(s)
- Yukoh Nakazaki
- Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University Hospital, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Augustin MT, Kokkonen J, Karttunen TJ. Duodenal cytotoxic lymphocytes in cow's milk protein sensitive enteropathy and coeliac disease. Scand J Gastroenterol 2005; 40:1398-406. [PMID: 16293554 DOI: 10.1080/00365520510023765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Pathogenetic mechanisms of cow's milk protein-sensitive enteropathy (CMSE) are poorly defined, but elevated serum granzyme levels and an increase in duodenal intraepithelial lymphocytes (IELs) expressing TIA-1 suggest the involvement of abnormal lymphocyte cytotoxicity. To evaluate cytotoxicity in CMSE we analysed the expression of cytotoxic granule components in duodenal IELs. For comparison, we studied subjects with coeliac disease (CD), in which lymphocyte cytotoxicity is pathogenically important. MATERIAL AND METHODS Fifty-four children were examined by endoscopy for gastrointestinal complaints. Twenty-one subjects had a final diagnosis of CMSE, 15 children had untreated CD and 18 controls showed no definite gastrointestinal disease. Mucosal samples furnished from the bulb and descending duodenum were stained for CD3, perforin, granzymes A and B and TIA-1. RESULTS In both CMSE and CD, increase of mid-duodenal TIA-1, perforin and granzyme A expressing IELs was seen, the counts in CD being much higher, and increased expression was also seen in the bulb. Granzyme B expression was increased only in CD. In CMSE, no evidence of villous atrophy was seen. CONCLUSIONS Increase in duodenal IELs expressing cytotoxic granules is a characteristic feature in CMSE, although to a lesser degree than in CD. Cytotoxicity is suggested to be involved in the pathogenesis of intestinal dysfunction in CMSE, but based on the absence of villous abnormalities may not be mainly targeted to enterocytes. The mechanisms leading to the accumulation of these cells in CMSE need further investigation.
Collapse
|
41
|
A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood 2005; 105:4700-6. [PMID: 15755897 DOI: 10.1182/blood-2004-12-4935] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractUp to 60% of cases of the autosomal recessive immunodeficiency hemophagocytic lymphohistiocytosis (HLH) are associated with mutations in the perforin (PRF1) gene. In this study, we expressed wild-type and mutated perforin in rat basophil leukemia cells to study the effect on lytic function of the substitutions A91V and N252S (commonly considered to be neutral polymorphisms) and 22 perforin missense substitutions first identified in HLH patients. Surprisingly, we found that A91V perforin was expressed at reduced levels compared with wild-type perforin, resulting in partial loss of lytic capacity. In contrast, expression and function of N252S-substituted perforin were normal. Most HLH-associated mutations resulted in protein degradation (probably due to misfolding) and complete loss of perforin activity, the exception being R232H, which retained approximately 30% wild-type activity. Several other mutated proteins (H222Q, C73R, F157V, and D313V) had no detectable lytic activity but were expressed at normal levels, suggesting that their functional defect might map downstream at the level of the target cell membrane. One further perforin substitution identified in an HLH patient (V183G) was normally expressed and displayed normal lysis. This report represents the first systematic functional analysis of HLH-associated missense mutations and the 2 most common perforin polymorphisms. (Blood. 2005;105:4700-4706)
Collapse
|
42
|
Li Y, Che M, Bhagat S, Ellis KL, Kucuk O, Doerge DR, Abrams J, Cher ML, Sarkar FH. Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genistein. Neoplasia 2005; 6:354-63. [PMID: 15256057 PMCID: PMC1502110 DOI: 10.1593/neo.03478] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer frequently metastasizes to the bone, and the treatment outcome for metastatic prostate cancer has been disappointing so far. Dietary genistein, derived primarily from soy product, has been proposed to be partly responsible for the low rate of prostate cancer in Asians. Our previous studies have shown that genistein elicits pleiotropic effects on prostate cancer cells, but there are no studies documenting comprehensive gene expression profiles and antitumor effects of dietary genistein on human prostate cancer grown in human bone environment. In this study, we investigated the effects of genistein on PC3 prostate cancer cells and experimental PC3 bone tumors created by injecting PC3 cells into human bone fragments previously implanted in severe combined immunodeficient (SCID) mice (SCID human model). We found that genistein significantly inhibited PC3 bone tumor growth using both prevention and intervention strategies. By using microarray and real-time polymerase chain reaction technology, we found that genistein regulated the expression of multiple genes involved in the control of cell growth, apoptosis, and metastasis both in vitro and in vivo. For example, the expression of various metalloproteinases (MMPs) in PC3 bone tumors was inhibited by genistein treatment, whereas osteoprotegerin was upregulated. MMP immunostaining and transfection experiments also demonstrated that MMP-9 expression was inhibited in PC3 cells in vitro and PC3 bone tumors in vivo after genistein treatment. These results, particularly the in vivo results, demonstrate that dietary genistein may inhibit prostate cancer bone metastasis by regulating metastasis-related genes. Genistein may thus be a promising agent for the prevention and/or treatment of prostate cancer.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mingxin Che
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sunita Bhagat
- Department of Urology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kerrie-Lynn Ellis
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Omer Kucuk
- Department of Internal Medicine, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniel R. Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AK, USA
| | - Judith Abrams
- Department of Internal Medicine, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael L. Cher
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Urology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
43
|
Abstract
Perforin is critical for cytotoxicity mediated by granules present in natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Perforin-deficient mice have impaired cytotoxicity by NK cells and CTLs, resulting in failure to control infections with certain viruses or bacteria. Infection of perforin-deficient mice with lymphocytic choriomeningitis virus results in haemophagocytic lymphohistiocytosis and elevated levels of pro-inflammatory cytokines. Mutations throughout the perforin gene have been identified in patients with familial haemophagocytic lymphohistiocytosis (FHL) type 2. These patients present with fever, hepatosplenomegaly, pancytopenia, have marked elevations of T-helper type 1 and type 2 cytokines, and have impaired NK cell and CTL cytotoxicity. A number of infectious pathogens have been implicated as triggering the onset of disease. Identification of mutations in perforin as the cause of FHL should allow prenatal diagnosis of the disorder. While stem cell transplantation is curative, gene therapy might be effective in the future.
Collapse
Affiliation(s)
- Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
44
|
Pardo J, Bosque A, Brehm R, Wallich R, Naval J, Müllbacher A, Anel A, Simon MM. Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. ACTA ACUST UNITED AC 2004; 167:457-68. [PMID: 15534000 PMCID: PMC2172484 DOI: 10.1083/jcb.200406115] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purified cytolytic T lymphocyte (CTL) proteases granzyme (gzm)A and gzmB with sublytic dose of perforin (perf) initiate distinct proapoptotic pathways. Their physiological relevance in CTL-mediated target cell apoptosis is elusive. Using ex vivo virus-immune CD8(+) T cells from mice deficient in perf, gzmA and/or gzmB, and the Fas-resistant EL4.F15 tumor target cell, we show that (a) CTL from gzmA(-/-) or gzmB(-/-) mice similarly induced early proapoptotic features, such as phosphatidyl serine (PS) exposure on plasma membrane, Delta Psi(m) loss, and reactive oxygen radical generation, though with distinct kinetics; (b) CTL from gzmA(-/-) but not from gzmB(-/-) mice activate caspase 3 and 9; (c) PS exposure induced by CTL from gzmA(-/-) or gzmB(-/-) mice is prevented, respectively, by caspase inhibitors or by reactive oxygen scavengers without interfering with target cell death; and (d) all gzm-induced apoptotic features analyzed depend critically on perf. Thus, perf is the principal regulator in CTL-mediated and gzm-facilitated intracellular processes. The ability of gzmA and gzmB to induce multiple independent cell death pathways may be the hosts response to circumvent evasion strategies of pathogens and tumors.
Collapse
Affiliation(s)
- Julián Pardo
- Departmento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Voskoboinik I, Thia MC, De Bono A, Browne K, Cretney E, Jackson JT, Darcy PK, Jane SM, Smyth MJ, Trapani JA. The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene. ACTA ACUST UNITED AC 2004; 200:811-6. [PMID: 15365097 PMCID: PMC2211966 DOI: 10.1084/jem.20040776] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
About 30% of cases of the autosomal recessive immunodeficiency disorder hemophagocytic lymphohistiocytosis are believed to be caused by inactivating mutations of the perforin gene. We expressed perforin in rat basophil leukemia cells to define the basis of perforin dysfunction associated with two mutations, R225W and G429E, inherited by a compound heterozygote patient. Whereas RBL cells expressing wild-type perforin (67 kD) efficiently killed Jurkat target cells to which they were conjugated, the substitution to tryptophan at position 225 resulted in expression of a truncated ( approximately 45 kD) form of the protein, complete loss of cytotoxicity, and failure to traffic to rat basophil leukemia secretory granules. By contrast, G429E perforin was correctly processed, stored, and released, but the rat basophil leukemia cells possessed reduced cytotoxicity. The defective function of G429E perforin mapped downstream of exocytosis and was due to its reduced ability to bind lipid membranes in a calcium-dependent manner. This study elucidates the cellular basis for perforin dysfunctions in hemophagocytic lymphohistiocytosis and provides the means for studying structure-function relationships for lymphocyte perforin.
Collapse
Affiliation(s)
- Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St., 8006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Müllbacher A, Blanden RV. T-cell-mediated control of poxvirus infection in mice. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:39-55. [PMID: 15171606 DOI: 10.1007/978-3-540-74264-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- A Müllbacher
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
47
|
Kelly JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, Smyth MJ. Granzyme M Mediates a Novel Form of Perforin-dependent Cell Death. J Biol Chem 2004; 279:22236-42. [PMID: 15028722 DOI: 10.1074/jbc.m401670200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell death is mediated by cytotoxic lymphocytes through various granule serine proteases released with perforin. The unique protease activity, restricted expression, and distinct gene locus of granzyme M suggested this enzyme might have a novel biological function or trigger a novel form of cell death. Herein, we demonstrate that in the presence of perforin, the protease activity of granzyme M rapidly and effectively induces target cell death. In contrast to granzyme B, cell death induced by granzyme M does not feature obvious DNA fragmentation, occurs independently of caspases, caspase activation, and perturbation of mitochondria and is not inhibited by overexpression of Bcl-2. These data raise the likelihood that granzyme M represents a third major and specialized perforin-dependent cell death pathway that plays a significant role in death mediated by NK cells.
Collapse
Affiliation(s)
- Janice M Kelly
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, 8006 Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Kokura S, Yoshida N, Ueda M, Imamoto E, Ishikawa T, Takagi T, Naito Y, Okanoue T, Yoshikawa T. Hyperthermia enhances tumor necrosis factor alpha-induced apoptosis of a human gastric cancer cell line. Cancer Lett 2004; 201:89-96. [PMID: 14580690 DOI: 10.1016/s0304-3835(03)00463-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the effects of hyperthermia on the apoptosis induced by tumor necrosis factor alpha (TNF-alpha). Confluent monolayers of human gastric cancer cell line MKN45 were either treated or untreated with hyperthermia for 1 h. The cells were subsequently stimulated with TNF-alpha. A 24-h incubation with TNF-alpha did not affect cell viabilities; however, pretreatment with hyperthermia significantly enhanced the level of apoptosis induced by TNF-alpha. Pretreating MKN45 cells with hyperthermia (42.0 degrees C) significantly inhibited the TNF-alpha-induced increase in the binding activity of NF-kappaB to DNA. This study suggests that hyperthermia can inhibit the TNF-alpha-induced NF-kappaB activation and that hyperthermia renders human gastric cancer cells susceptible to the TNF-alpha-induced apoptosis, possibly via inhibition of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Satoshi Kokura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Pierre A Henkart
- National Institutes of Health, Bethesda, Maryland 20892-1360, USA
| | | |
Collapse
|
50
|
Abstract
Granzyme A, a serine protease in the cytotoxic granules of natural killer cells and cytotoxic T lymphocytes, induces caspase-independent cell death when introduced into target cells by perforin. Granzyme A induces single-stranded DNA damage as well as rapid loss of cell membrane integrity and mitochondrial transmembrane potential through unknown mechanisms. Granzyme A destroys the nuclear envelope by targeting lamins and opens up DNA for degradation by targeting histones. A special target of the granzyme A cell death pathway is an endoplasmic reticulum-associated complex, called the SET complex, which contains three granzyme A substrates, the nucleosome assembly protein SET, the DNA bending protein HMG-2, and the base excision repair endonuclease Ape1. The SET complex also contains the tumor suppressor protein pp32 and the granzyme A-activated DNase NM23-H1, which is inhibited by SET. Granzyme A cleavage of SET releases the inhibition and unleashes NM23-H1. Cleavage of Ape1 by granzyme A interferes with the ability of the target cell to repair itself. The novel cell death pathway initiated by granzyme A provides a parallel pathway for apoptosis, important in destroying targets that overexpress bcl-2 or are otherwise invulnerable to the caspases.
Collapse
Affiliation(s)
- Judy Lieberman
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, 800 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|