1
|
Spencer CT, Dragovic SM, Conant SB, Gray JJ, Zheng M, Samir P, Niu X, Moutaftsi M, Van Kaer L, Sette A, Link AJ, Joyce S. Sculpting MHC class II-restricted self and non-self peptidome by the class I Ag-processing machinery and its impact on Th-cell responses. Eur J Immunol 2013; 43:1162-72. [PMID: 23386199 DOI: 10.1002/eji.201243087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023]
Abstract
It is generally assumed that the MHC class I antigen (Ag)-processing (CAP) machinery - which supplies peptides for presentation by class I molecules - plays no role in class II-restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)-cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4(+) T-cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II-associated self peptides suggesting that the CAP machinery impacts class II-restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4(+) T-cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4(+) T-cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II-restricted peptidome, impacting the CD4(+) T-cell repertoire, and ultimately altering Th-cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II-restricted epitopes that would otherwise be capable of eliciting functional Th-cell responses.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Serrano-Martín MM, Moreno-Pérez D, García-Martín FJ, Jurado-Ortiz A. Déficit de expresión de moléculas de clase II del complejo mayor de histocompatibilidad. An Pediatr (Barc) 2007; 66:305-8. [PMID: 17349258 DOI: 10.1157/13099694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Major histocompatibility complex class II deficiency is an autosomal recessive primary combined immunodeficiency. The prevalence of this deficiency is highest in Mediterranean areas, especially north Africa. Early diagnosis is essential due to high mortality in the first 2 years of life and the possibility of bone marrow transplantation. We report four cases of major histocompatibility complex class II deficiency and describe their epidemiologic and clinical characteristics, diagnostic tests, treatment and outcome.
Collapse
Affiliation(s)
- M M Serrano-Martín
- Unidad de Infectología e Inmunodeficiencias, Departamento de Pediatría, Hospital Materno-Infantil Carlos Haya, Málaga, España.
| | | | | | | |
Collapse
|
3
|
Abstract
The type II bare lymphocyte syndrome (BLS) or major histocompatibility complex class II (MHCII) deficiency is a severe combined immunodeficiency (SCID) that is characterized by the absence of constitutive and inducible expression of MHCII determinants on immune cells. Four complementation groups of BLS have been defined, and they result from mutations in DNA-bound activators and the coactivator for MHCII transcription. Recently, all complementation groups of BLS patients have been accounted for. Studies of the syndrome and specific mutations reveal important lessons for the genetics of the immune response.
Collapse
Affiliation(s)
- Nada Nekrep
- Institute of Biochemistry, Medical Faculty of the University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
4
|
Boss JM, Jensen PE. Transcriptional regulation of the MHC class II antigen presentation pathway. Curr Opin Immunol 2003; 15:105-11. [PMID: 12495741 DOI: 10.1016/s0952-7915(02)00015-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
5
|
Coiras MT, Alvarez-Barrientos AM, Díaz G, Arroyo J, Sánchez-Pérez M. Evidence for discoordinate regulation of the HLA-DPB1 gene. TISSUE ANTIGENS 2002; 60:505-14. [PMID: 12542744 DOI: 10.1034/j.1399-0039.2002.600606.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Characterization of cell lines derived from patients with type II bare lymphocyte syndrome, a pathological state in which the constitutive and inducible expression of HLA class II antigens is lacking, has permitted the identification of several trans-acting factors involved in the coordinated regulation of HLA class II genes. Although an increasing body of evidence has pointed to the existence of a discoordinate regulation of HLA class II loci, the mechanisms underlying such regulation are essentially unknown. In the present study, 45.EM2, a mutant lymphoblastoid cell line with a new pattern of HLA discoordinate expression is characterized. 45.EM2 expresses HLA-DR and -DQ but fails to express HLA-DP. The absence of HLA-DP expression in 45.EM2 is the result of a transcriptional defect, leading to a lack of DPB1 mRNA. By contrast, DPA1 transcription in this LCL is not impaired. The characteristics of 45.EM2 described here suggest the existence of a specific trans-acting factor involved in the control of DPB1 gene expression.
Collapse
Affiliation(s)
- M T Coiras
- Departmento de Microbiología II, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Nekrep N, Jabrane-Ferrat N, Wolf HM, Eibl MM, Geyer M, Peterlin BM. Mutation in a winged-helix DNA-binding motif causes atypical bare lymphocyte syndrome. Nat Immunol 2002; 3:1075-81. [PMID: 12368908 DOI: 10.1038/ni840] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 08/26/2002] [Indexed: 11/08/2022]
Abstract
Bare lymphocyte syndrome (BLS) is an autosomal recessive severe-combined immunodeficiency that can result from mutations in four different transcription factors that regulate the expression of major histocompatibility complex (MHC) class II genes. We have identified here the defective gene that is responsible for the phenotype of the putative fifth BLS complementation group. The mutation was found in the regulatory factor that binds X-box 5 (RFX5) and was mapped to one of the arginines in a DNA-binding surface of this protein. Its wild-type counterpart restored binding of the RFX complex to DNA, transcription of all MHC class II genes and the appearance of these determinants on the surface of BLS cells.
Collapse
Affiliation(s)
- Nada Nekrep
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
7
|
Shao L, Sperber K. Impaired regulation of HLA-DR expression in human immunodeficiency virus-infected monocytes. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:739-46. [PMID: 12093667 PMCID: PMC120040 DOI: 10.1128/cdli.9.4.739-746.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ling Shao
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
8
|
Abstract
The presentation of peptides to T cells by MHC class II molecules is of critical importance in specific recognition by the immune system. Expression of class II molecules is exquisitely controlled at the transcriptional level. A large set of proteins interact with the promoters of class II genes. The most important of these is CIITA, a master controller that orchestrates expression but does not bind directly to the promoter. The transcriptosome complex formed at class II promoters is a model for induction of gene expression.
Collapse
Affiliation(s)
- Jenny Pan-Yun Ting
- Department of Microbiology and Immunology and The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
9
|
Villard J, Masternak K, Lisowska-Grospierre B, Fischer A, Reith W. MHC class II deficiency: a disease of gene regulation. Medicine (Baltimore) 2001; 80:405-18. [PMID: 11704716 DOI: 10.1097/00005792-200111000-00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- J Villard
- Immunology and Transplant Unit, Division of Immunology and Allergology, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Wolf HM, Thon V, Gulle H, Lechleitner S, Eibl MM, Petzelbauer P. Residual expression of functional MHC class II molecules in twin brothers with MHC class II deficiency is cell type specific. Br J Haematol 2001; 115:460-71. [PMID: 11703350 DOI: 10.1046/j.1365-2141.2001.03105.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined major histocompatibility complex (MHC) class II expression in B cells, peripheral blood monocytes, activated T cells, epidermal Langerhans cells, monocyte-derived dendritic cells, dermal microvascular endothelial cells (DMEC) and fibroblasts of twin brothers with MHC class II deficiency. Although residual human leucocyte antigen (HLA)-DR expression was found on a subpopulation of epidermal Langerhans cells and a subset of peripheral blood monocyte-derived dendritic cells, the patients' B cells, monocytes and activated T cells were HLA-DR negative. After treatment with interferon-gamma (IFN-gamma), the patients' DMEC expressed HLA-DR but not -DP and -DQ at the protein and mRNA level, whereas IFN-gamma failed to induce HLA-DR expression on dermal fibroblasts. The patients' monocyte-derived dendritic cells were capable of processing and presenting tetanus toxoid to autologous T cells, and patient-derived DMEC induced the proliferation of allogeneic CD4(+) T cells in an MHC class II-restricted fashion, indicating that the observed residual MHC class II surface expression was functional. The findings reported show that the defect encountered in these patients is not necessarily expressed to the same extent in different cell lineages, which is relevant for the understanding of the patients' phenotype and also illustrates that only small amounts of MHC class II are needed to mount a functional cellular immune response in vivo.
Collapse
Affiliation(s)
- H M Wolf
- Immunology Outpatient Clinic, University Hospital, University of Vienna Medical School, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
11
|
Rakoff-Nahoum S, Chen H, Kraus T, George I, Oei E, Tyorkin M, Salik E, Beuria P, Sperber K. Regulation of class II expression in monocytic cells after HIV-1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2331-42. [PMID: 11490022 DOI: 10.4049/jimmunol.167.4.2331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human macrophage hybridoma cells were used to study HLA-DR expression after HIV-1 infection. HLA-DR surface expression was lost 2 wk after infection that was associated with decreased mRNA transcription. Transfecting HLA-DR-alpha and HLA-DR-beta cDNA driven by a nonphysiological CMV promoter restored expression, suggesting that regulatory DNA-binding proteins may be affected by HIV-1 infection. There was no protein binding to conserved class II DNA elements (W/Z/S box, X-1 and X-2 boxes, and Y box) in a HIV-1-infected human macrophage hybridoma cell line, 43(HIV), and in primary monocytes that lost HLA-DR expression after HIV-1(BaL) infection. PCR analysis of the HIV-1-infected cells that lost HLA-DR expression revealed mRNA for W/Z/S (RFX-5), X-1 (RFX-5), X-2 (hX-2BP), and one Y box DNA-binding protein (NF-YB), and CIITA, a non-DNA-binding protein necessary for class II transcription. There was no mRNA for the Y box-binding protein, NF-YA. However, HLA-DR expression could be restored by transfection with NF-YA driven by a CMV promoter, although HLA-DR failed to localize in either the late endosomes, lysosomes, or acidic compartments. This was associated with a loss of class II-associated invariant chain peptide and leupeptin-induced protein in the 43(HIV) cells. To address this further, non-HIV-1-infected 43 cells were infected with vaccinia virus containing HIV-1 gag, nef, pol, and env proteins. HLA-DR failed to localize in neither the late endosomes, lysosomes, or acidic compartments in the vaccinia-infected cells containing HIV-1 env protein. HIV-1 appears to have multiple effects on class II expression in monocytic cells that may contribute to the immune defects seen in HIV-1-infected patients.
Collapse
Affiliation(s)
- S Rakoff-Nahoum
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The bare lymphocyte syndrome (BLS) is a hereditary immunodeficiency resulting from the absence of major histocompatibility complex class II (MHCII) expression. Considering the central role of MHCII molecules in the development and activation of CD4(+) T cells, it is not surprising that the immune system of the patients is severely impaired. BLS is the prototype of a "disease of gene regulation." The affected genes encode RFXANK, RFX5, RFXAP, and CIITA, four regulatory factors that are highly specific and essential for MHCII genes. The first three are subunits of RFX, a trimeric complex that binds to all MHCII promoters. CIITA is a non-DNA-binding coactivator that functions as the master control factor for MHCII expression. The study of RFX and CIITA has made major contributions to our comprehension of the molecular mechanisms controlling MHCII genes and has made this system into a textbook model for the regulation of gene expression.
Collapse
Affiliation(s)
- W Reith
- Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, 1 rue Michel-Servet, Geneva 4, 1211 Switzerland.
| | | |
Collapse
|
13
|
Kanazawa S, Peterlin BM. Combinations of dominant-negative class II transactivator, p300 or CDK9 proteins block the expression of MHC II genes. Int Immunol 2001; 13:951-8. [PMID: 11431425 DOI: 10.1093/intimm/13.7.951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The class II transactivator (CIITA) regulates not only the transcription of HLA-DR, -DQ, -DP, but also invariant chain, DMA and DMB genes. A hybrid mutant CIITA protein, which contained residues from positions 302 to 1130 in CIITA fused to the enhanced green fluorescent protein (EdCIITA), inhibited the function of the wild-type protein. EdCIITA extinguished the inducible and constitutive expression of MHC II genes in epithelial cells treated with IFN-gamma and B lymphoblastoid cells respectively. Also, it blocked T cell activation by superantigen. This inhibition correlated with the localization of EdCIITA but not CIITA in the cytoplasm of cells. However, when EdCIITA was co-expressed with a dominant-negative form of the nucleoporin Nup214/CAN, it also accumulated in the nucleus. These data suggest that EdCIITA not only competes with the wild-type protein for the binding to MHC II promoters but sequesters a critical co-factor of CIITA in the cytoplasm. CIITA also recruits the histone acetyltransferase cAMP responsive element binding protein (CREB) binding protein and positive transcription elongation factor b (p-TEFb) for the transcription of MHC II genes. Dominant-negative p300 (DNp300) or CDK9 (DNCDK9) proteins inhibited the function of CIITA and of the DRA promoter. Thus, combinations of EdCIITA and DNp300 and/or DNCDK9 proteins extinguished the transcription of MHC II genes. They might become useful for future genetic therapeutic approaches in organ transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- S Kanazawa
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0703, USA
| | | |
Collapse
|
14
|
Lennon-Duménil AM, Barbouche MR, Vedrenne J, Prod'Homme T, Béjaoui M, Ghariani S, Charron D, Fellous M, Dellagi K, Alcaïde-Loridan C. Uncoordinated HLA-D gene expression in a RFXANK-defective patient with MHC class II deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5681-7. [PMID: 11313409 DOI: 10.4049/jimmunol.166.9.5681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe the analysis of a patient, JER, presenting classical immunological features of MHC class II deficiency. Unexpectedly, some HLA transcripts (HLA-DRA, HLA-DQA, and HLA-DMA) were found to be expressed in the JER cell line at nearly wild-type levels, while HLA-DPA and the HLA-D beta-chain transcripts were not detected. Gene reporter experiments confirmed the differential transcriptional activities driven by the HLA-D promoters in the JER cells. A defect in RFXANK was first suggested by genetic complementation analyses, then assessed with the demonstration of a homozygous mutation affecting a splice donor site downstream exon 4 of RFXANK. Because the severe deletion of the resulting protein cannot account for the expression of certain HLA-D genes, minor alternative transcripts of the RFXANK gene were analyzed. We thereby showed the existence of a transcript lacking exon 4, encoding a 28-aa-deleted protein that retains a transcriptional activity. Altogether, we characterize a new type of mutation in the RFXANK gene in a MHC class II-defective patient leading to an uncoordinated expression of the HLA-D genes, and propose that this phenotype is ensured by severely limited amounts of an active, although truncated RFXANK protein.
Collapse
Affiliation(s)
- A M Lennon-Duménil
- Institut National de la Santé et de la Recherche Médicale Unité 276, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
HIV infects CD4(+) macrophages and lymphocytes. Before the development of AIDS, HIV weakens the immune system in part by blocking antigen processing and presentation via major histocompatibility complex (MHC) molecules. In this report, we discuss how HIV escapes the immune surveillance by MHC II molecules.
Collapse
Affiliation(s)
- S Kanazawa
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0703, USA
| | | |
Collapse
|
16
|
Nekrep N, Jabrane-Ferrat N, Peterlin BM. Mutations in the bare lymphocyte syndrome define critical steps in the assembly of the regulatory factor X complex. Mol Cell Biol 2000; 20:4455-61. [PMID: 10825209 PMCID: PMC85813 DOI: 10.1128/mcb.20.12.4455-4461.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory factor X (RFX) complex, which contains RFXANK(B), RFXAP, and RFX5, binds to X and S boxes in major histocompatibility complex class II (MHC II) promoters. In the bare lymphocyte syndrome (BLS), which is a human severe combined immunodeficiency, MHC II promoters are neither occupied nor transcribed. Thus, the absence of any one subunit prevents the formation of the RFX complex. Nevertheless, except for a weak binding between RFX5 and RFXAP, no other interactions between RFX proteins have been described. In this study, we demonstrate that RFXANK(B) binds to RFXAP to form a scaffold for the assembly of the RFX complex, which then binds to DNA. Moreover, mutant RFXANK(B) and RFXAP proteins from complementation groups B and D of BLS, respectively, cannot support this interaction. Our data elucidate an intriguing medical situation, where a genetic disease targets two different surfaces that are required for the nucleation of a multisubunit DNA-protein complex.
Collapse
Affiliation(s)
- N Nekrep
- Howard Hughes Medical Institute, Departments of Medicine, Microbiology and Immunology, University of California, San Francisco 94143-0703, USA
| | | | | |
Collapse
|
17
|
Kanazawa S, Okamoto T, Peterlin BM. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 2000; 12:61-70. [PMID: 10661406 DOI: 10.1016/s1074-7613(00)80159-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIDS and the bare lymphocyte syndrome (BLS) are severe combined immunodeficiencies. BLS results from mutations in genes that regulate the expression of class II major histocompatibility (MHC II) determinants. One of these is the class II transactivator (CIITA). HIV and its transcriptional transactivator (Tat) also block the expression of MHC II genes. By binding to the same surface in the cyclin T1, which together with CDK9 forms the positive transcription elongation factor b (P-TEFb) complex, Tat inhibits CIITA. CIITA can also activate transcription when tethered artificially to RNA. Moreover, a dominant-negative CDK9 protein inhibits the activity of MHC II promoters. Thus, CIITA is a novel cellular coactivator that binds to P-TEFb for the expression of its target genes.
Collapse
Affiliation(s)
- S Kanazawa
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
18
|
Alcaïde-Loridan C, Lennon AM, Bono MR, Barbouche R, Dellagi K, Fellous M. Differential expression of MHC class II isotype chains. Microbes Infect 1999; 1:929-34. [PMID: 10614011 DOI: 10.1016/s1286-4579(99)00224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Alcaïde-Loridan
- Unité d'immunogénétique humaine, Inserm U396, Institut Biomédical des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Peijnenburg A, Van Eggermond MJCA, Gobin SJP, Van den Berg R, Godthelp BC, Vossen JMJJ, Van den Elsen PJ. Discoordinate Expression of Invariant Chain and MHC Class II Genes in Class II Transactivator-Transfected Fibroblasts Defective for RFX5. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific transcription factors. In the present study, we show that fibroblasts derived from a recently identified bare lymphocyte syndrome patient, SSI, were mutated for RFX5, one of the DNA-binding components of the RFX complex. Despite the lack of functional RFX5 and resulting MHC class II-deficient phenotype, transfection of exogenous class II transactivator (CIITA) in these fibroblasts can overcome this defect, resulting in the expression of HLA-DR, but not of DP, DQ, and invariant chain. The lack of invariant chain expression correlated with lack of CIITA-mediated transactivation of the invariant chain promoter in transient transfection assays in SSI fibroblast cells. Consequently, these CIITA transfectants lacked Ag-presenting functions.
Collapse
|
20
|
Cressman DE, Chin KC, Taxman DJ, Ting JP. A defect in the nuclear translocation of CIITA causes a form of type II bare lymphocyte syndrome. Immunity 1999; 10:163-71. [PMID: 10072069 DOI: 10.1016/s1074-7613(00)80017-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The severe immunodeficiency type II bare lymphocyte syndrome (BLS) lacks class II MHC gene transcription. One defect from a complementation group A type II BLS patient is a 24 aa deletion in the MHC class II transactivator (CIITA). We show here that the molecular defect present in this protein is a failure of CIITA to undergo nuclear translocation. This defect was mapped to a position-dependent, novel nuclear localization sequence that cannot be functionally replaced by a classical NLS. Fusion of this 5 aa motif to an unrelated protein leads to nuclear translocation. Furthermore, this motif is not critical for transactivation function. This is a description of a genetic disease resulting from a novel defect in the subcellular localization of a transcriptional coactivator.
Collapse
Affiliation(s)
- D E Cressman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295, USA
| | | | | | | |
Collapse
|
21
|
Gene Therapy for Severe Combined Immunodeficiencies. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Eibl MM, Wolf HM. Biologic consequences of defective major histocompatibility complex class II presentation. Curr Top Microbiol Immunol 1998; 232:217-40. [PMID: 9557400 DOI: 10.1007/978-3-642-72045-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M M Eibl
- Institute of Immunology, University of Vienna, Austria
| | | |
Collapse
|
23
|
Clausen BE, Waldburger JM, Schwenk F, Barras E, Mach B, Rajewsky K, Förster I, Reith W. Residual MHC class II expression on mature dendritic cells and activated B cells in RFX5-deficient mice. Immunity 1998; 8:143-55. [PMID: 9491996 DOI: 10.1016/s1074-7613(00)80467-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with major histocompatibility complex class II (MHC-II) deficiency are known to carry mutations in either the RFX complex or the trans-activator CIITA. While the pivotal role of CIITA for MHC-II gene transcription is supported by the essential absence of MHC-II molecules in CIITA-deficient mice, we demonstrate here that RFX5-/- mice retain expression of MHC-II in thymic medulla, mature dendritic cells, and activated B cells. Nevertheless, RFX5-/- mice develop a severe immunodeficiency due to the lack of MHC-II in thymic cortex, failure of positive selection of CD4+ T cells, and absence of MHC-II on resting B cells and resident or IFNgamma-activated macrophages. This differential requirement for CIITA and RFX5 in subsets of antigen-presenting cells may be specific for the mouse; it may, however, also exist in humans without having been noticed so far.
Collapse
Affiliation(s)
- B E Clausen
- Institute for Genetics, University of Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hauber I, Wolf HM, Samstag A, Pein B, Kreil TR, Gulle H, Fischer MB, Eibl MM. Inhibition of IL-10 protein synthesis induces major histocompatibility complex class II gene expression in class II-deficient patients. Cell Immunol 1997; 180:95-103. [PMID: 9341739 DOI: 10.1006/cimm.1997.1170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major histocompatibility complex (MHC) class II deficiency is an inherited autosomal recessive combined immunodeficiency, characterized by a lack of constitutive expression of the human leukocyte antigen (HLA) class II genes. The patients investigated in this study are histoidentical twin brothers with a new phenotype in MHC class II deficiency. Examination of HLA-D locus genes in their fractionated peripheral mononuclear cells (MNCs) revealed an unusual and uncoordinated mRNA pattern. Here we analyzed the distribution of pro- and anti-inflammatory cytokines expressed in these patients' adherent and nonadherent MNCs. We show that gene expression of IL-1 alpha, IL-1 beta, IL-6, granulocyte-colony-stimulating factor, and IL-10 was induced in both cell fractions, whereas increased mRNA levels of interferon-gamma and the inducible nitric oxide synthase were exclusively detected in the patients' nonadherent MNCs. As IL-10 is known to be able to downregulate transcription of MHC class II and expression of IL-10 in the patients' MNCs was increased, we investigated the regulatory function of this cytokine. Interestingly, inhibition of IL-10 protein synthesis with IL-10-specific antisense oligonucleotide DNA (IL-10-AS-ODN) induced HLA-D locus genes in these MHC class II-deficient patients. Exposure of the nonadherent cell fraction to IL-10-AS-ODN resulted in a profound induction of a previously absent DR beta 1 and DP alpha gene expression. HLA-DQ beta mRNA levels, however, were increased in both the adherent and the nonadherent MNC population. Albeit expression of HLA-D locus genes was inducible via inhibition of IL-10 translation, surface expression of HLA class II antigens on the patients' MNCs was essentially negative. The data presented support the concept of a coordinated network of pro- and anti-inflammatory cytokine regulation and this network obviously has a significant role in the cell-type-specific regulation of MHC class II expression.
Collapse
Affiliation(s)
- I Hauber
- Institute of Clinical and Molecular Virology, University Erlangen Nürnberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Scholl T, Mahanta SK, Strominger JL. Specific complex formation between the type II bare lymphocyte syndrome-associated transactivators CIITA and RFX5. Proc Natl Acad Sci U S A 1997; 94:6330-4. [PMID: 9177217 PMCID: PMC21049 DOI: 10.1073/pnas.94.12.6330] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two of the genes defective in the five complementation groups identified in the class II-negative bare lymphocyte syndrome or corresponding laboratory mutants have been cloned. One gene encodes a protein, RFX5, that is a member of the RFX family of DNA binding proteins. The other, CIITA, encodes a large protein with a defined acidic transcriptional activation domain; this protein does not interact with DNA. Expression plasmids encoding regions of RFX5 fused to the GAL4 DNA binding domain activated transcription from a reporter construct containing GAL4 sites in a cotransfection assay in the Raji human B cell line. However, these plasmids produced transcriptional activity in HeLa cells only in conjunction with interferon gamma stimulation, a condition in which expression of both CIITA and class II major histocompatibility complex surface proteins are induced. Furthermore, these plasmids were not active in RJ2.2.5, an in vitro mutagenized derivative of Raji in which both copies of CIITA are defective. Transcriptional activation by the RFX5 fusion protein could be restored in RJ2.2.5 by cotransfection with a CIITA expression plasmid. Finally, a direct interaction between RFX5 and CIITA was detected with the yeast two-hybrid and far-Western blot assays. Thus, RFX5 can activate transcription only in cooperation with CIITA. RFX5 and CIITA associate to form a complex capable of activating transcription from class II major histocompatibility complex promoters. In this complex, promoter specificity is determined by the DNA binding domain of RFX5 and the general transcription apparatus is recruited by the acidic activation domain of CIITA.
Collapse
Affiliation(s)
- T Scholl
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
26
|
Abstract
Genetic and biochemical analyses have identified multiple DNA-binding and non-DNA-binding proteins that functionally regulate MHC class II genes. These include RFX, X2BP, NF-Y, CIITA, OCT-2 and Bob1. One of the essential non-DNA-binding proteins, CIITA, appears to function as a limiting molecular switch that is responsible for the control of class II expression and the regulation of expression by interferon-gamma.
Collapse
Affiliation(s)
- J M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, 3131 Rollins Research Center, Atlanta, GA 30322, USA.
| |
Collapse
|