1
|
Yabas M, Hoyne GF. Immunological Phenotyping of Mice with a Point Mutation in Cdk4. Biomedicines 2023; 11:2847. [PMID: 37893220 PMCID: PMC10603874 DOI: 10.3390/biomedicines11102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play a crucial role in regulation of the mammalian cell cycle. CDK4 and CDK6 control the G1/S restriction checkpoint through their ability to associate with cyclin D proteins in response to growth factor signals. CDK4 deficiency in mice gives rise to a range of endocrine-specific phenotypes including diabetes, infertility, dwarfism, and atrophy of the anterior pituitary. Although CDK6 deficiency can cause thymic atrophy due to a block in the double-negative (DN) to double-positive (DP) stage of T cell development, there are no overt defects in immune cell development reported for CDK4-deficient mice. Here, we examined the impact of a novel N-ethyl-N-nitrosourea-induced point mutation in the gene encoding CDK4 on immune cell development. Mutant mice (Cdk4wnch/wnch) showed normal development and differentiation of major immune cell subsets in the thymus and spleen. Moreover, T cells from Cdk4wnch/wnch mice exhibited normal cytokine production in response to in vitro stimulation. However, analysis of the mixed bone marrow chimeras revealed that Cdk4wnch/wnch-derived T cell subsets and NK cells are at a competitive disadvantage compared to Cdk4+/+-derived cells in the thymus and periphery of recipients. These results suggest a possible role for the CDK4wnch mutation in the development of some immune cells, which only becomes apparent when the Cdk4wnch/wnch mutant cells are in direct competition with wild-type immune cells in the mixed bone marrow chimera.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
- Department of Immunology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya 44210, Türkiye
| | - Gerard F. Hoyne
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
- School of Health Sciences and Physiotherapy, Faculty of Medicine, Nursing, Midwifery and Health Sciences, University of Notre Dame Australia, Fremantle, WA 6959, Australia
- Institute for Respiratory Health, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
2
|
Pae J, Ersching J, Castro TBR, Schips M, Mesin L, Allon SJ, Ordovas-Montanes J, Mlynarczyk C, Melnick A, Efeyan A, Shalek AK, Meyer-Hermann M, Victora GD. Cyclin D3 drives inertial cell cycling in dark zone germinal center B cells. J Exp Med 2020; 218:211603. [PMID: 33332554 PMCID: PMC7754672 DOI: 10.1084/jem.20201699] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma–associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.
Collapse
Affiliation(s)
- Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Marta Schips
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Samuel J Allon
- Institute for Medical Engineering and Science, Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Jose Ordovas-Montanes
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA.,Program in Immunology Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| | - Coraline Mlynarczyk
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Alejo Efeyan
- Spanish National Cancer Research Center, Madrid, Spain
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Program in Immunology Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
3
|
Zhu Z, Shukla A, Ramezani-Rad P, Apgar JR, Rickert RC. The AKT isoforms 1 and 2 drive B cell fate decisions during the germinal center response. Life Sci Alliance 2019; 2:e201900506. [PMID: 31767615 PMCID: PMC6878223 DOI: 10.26508/lsa.201900506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The PI3K pathway is integral for the germinal center (GC) response. However, the contribution of protein kinase B (AKT) as a PI3K effector in GC B cells remains unknown. Here, we show that mice lacking the AKT1 and AKT2 isoforms in B cells failed to form GCs, which undermined affinity maturation and antibody production in response to immunization. Upon B-cell receptor stimulation, AKT1/2-deficient B cells showed poor survival, reduced proliferation, and impaired mitochondrial and metabolic fitness, which collectively halted GC development. By comparison, Foxo1 T24A mutant, which cannot be inactivated by AKT1/2 phosphorylation and is sequestered in the nucleus, significantly enhanced antibody class switch recombination via induction of activation-induced cytidine deaminase (AID) expression. By contrast, repression of FOXO1 activity by AKT1/2 promoted IRF4-driven plasma cell differentiation. Last, we show that T-cell help via CD40, but not enforced expression of Bcl2, rescued the defective GC response in AKT1/2-deficient animals by restoring proliferative expansion and energy production. Overall, our study provides mechanistic insights into the key role of AKT and downstream pathways on B cell fate decisions during the GC response.
Collapse
Affiliation(s)
- Zilu Zhu
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ashima Shukla
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Parham Ramezani-Rad
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John R Apgar
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
4
|
Jiang Y, Li C, Wu Q, An P, Huang L, Wang J, Chen C, Chen X, Zhang F, Ma L, Liu S, He H, Xie S, Sun Y, Liu H, Zhan Y, Tao Y, Liu Z, Sun X, Hu Y, Wang Q, Ye D, Zhang J, Zou S, Wang Y, Wei G, Liu Y, Shi Y, Eugene Chin Y, Hao Y, Wang F, Zhang X. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun 2019; 10:2935. [PMID: 31270335 PMCID: PMC6610088 DOI: 10.1038/s41467-019-11002-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Trace elements play important roles in human health, but little is known about their functions in humoral immunity. Here, we show an important role for iron in inducing cyclin E and B cell proliferation. We find that iron-deficient individuals exhibit a significantly reduced antibody response to the measles vaccine when compared to iron-normal controls. Mice with iron deficiency also exhibit attenuated T-dependent or T-independent antigen-specific antibody responses. We show that iron is essential for B cell proliferation; both iron deficiency and α-ketoglutarate inhibition could suppress cyclin E1 induction and S phase entry of B cells upon activation. Finally, we demonstrate that three demethylases, KDM2B, KDM3B and KDM4C, are responsible for histone 3 lysine 9 (H3K9) demethylation at the cyclin E1 promoter, cyclin E1 induction and B cell proliferation. Thus, our data reveal a crucial role of H3K9 demethylation in B cell proliferation, and the importance of iron in humoral immunity.
Collapse
Affiliation(s)
- Yuhang Jiang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Cuifeng Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qian Wu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Peng An
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Laiquan Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, 241000, Wuhu, China
| | - Jia Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital Fudan University, 200032, Shanghai, China
| | - Xi Chen
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fan Zhang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Li Ma
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Sanhong Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Hanqing He
- Zhejiang Provincial Center for Disease Control and Prevention, 310051, Hangzhou, China
| | - Shuyun Xie
- Zhejiang Provincial Center for Disease Control and Prevention, 310051, Hangzhou, China
| | - Yangbai Sun
- Zhejiang Provincial Center for Disease Control and Prevention, 310051, Hangzhou, China
| | - Hanshao Liu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yu Zhan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yu Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhi Liu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaohua Sun
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yiming Hu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Deji Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shanhua Zou
- Department of Hematology, Zhongshan Hospital Fudan University, 200032, Shanghai, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Gang Wei
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yongzhong Liu
- Shanghai Cancer Institute, Shanghai Jiao-Tong University School of Medicine, 200240, Shanghai, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Y Eugene Chin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 200011, Shanghai, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China.
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, 450001, Zhengzhou, China.
| | - Xiaoren Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 510000, Guangzhou, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
5
|
Repository corticotropin injection reverses critical elements of the TLR9/B cell receptor activation response in human B cells in vitro. Clin Immunol 2019; 201:70-78. [DOI: 10.1016/j.clim.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
|
6
|
Liu Z, Fu J, Xiao S, Wang D. Structural characterization of ginseng cyclopeptides and detection of capability to induce apoptosis in gastrointestinal cancer cells. RSC Adv 2019; 9:29847-29855. [PMID: 35531506 PMCID: PMC9071964 DOI: 10.1039/c9ra03965a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal tumors are the most frequently diagnosed malignancy and the second highest contributor to cancer mortality. Cyclopeptides are rarely isolated from ginseng because they are often present at low concentrations in a complex matrix. In the current study, seven novel ginseng cyclopeptides (GCPs) were isolated and their anti-tumor potency was explored. Anti-proliferative test results show that the (GCP-1)∼[cyclo-(L-Trp-L-Glu-L-Phe-L-Thr)] peptide display the best anti-proliferative activity in gastric cancer SGC-7901 cells in vitro, with an IC50 value of 37.8 ± 3.13 μM. Flow cytometry analysis shows that GCP-1 (7.56–189 μM) clearly induce early apoptosis and mitochondrial membrane potential collapse, and block the cells at the G0/G1 phase. A further study revealed that GCP-1 induces apoptosis by activating the caspases, suppressing the thioredoxin (Trx) system and subsequently activating a number of Trx-dependent pathways, including those involving apoptotic signal-regulating kinase 1 (ASK1) and mitogen-activated protein kinases (MAPKs). The cyclopeptides in ginseng are an important resource for the research and development of anti-neoplastic drugs. Gastrointestinal tumors are the most frequently diagnosed malignancy and the second highest contributor to cancer mortality.![]()
Collapse
Affiliation(s)
- Zhuo Liu
- Sino Japanese Friendship Hospital of Jilin University
- Changchun 130033
- China
| | - Junhao Fu
- Sino Japanese Friendship Hospital of Jilin University
- Changchun 130033
- China
| | - Shengwei Xiao
- Shenzhen Hospital of Southern Medical University
- Shenzhen
- China
| | | |
Collapse
|
7
|
Haseeb M, Anwar MA, Choi S. Molecular Interactions Between Innate and Adaptive Immune Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. Front Immunol 2018; 9:2720. [PMID: 30542344 PMCID: PMC6277854 DOI: 10.3389/fimmu.2018.02720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Innate immunity constitutes the first line of host defense against various anomalies in humans, and it also guides the adaptive immune response. The function of innate immune components and adaptive immune components are interlinked in hematological malignancies including chronic lymphocytic leukemia (CLL), and molecular interactions between innate and adaptive immune components are crucial for the development, progression and the therapeutic outcome of CLL. In this leukemia, genetic mutations in B cells and B cell receptors (BCR) are key driving factors along with evasion of cytotoxic T lymphocytes and promotion of regulatory T cells. Similarly, the release of various cytokines from CLL cells triggers the protumor phenotype in macrophages that further edges the CLL cells. Moreover, under the influence of various cytokines, dendritic cells are unable to mature and trigger T cell mediated antitumor response. The phenotypes of these cells are ultimately controlled by respective signaling pathways, the most notables are BCR, Wnt, Notch, and NF-κB, and their activation affects the cytokine profile that controls the pathogenesis of CLL, and challenge its treatment. There are several novel substances for CLL under clinical development, including kinase inhibitors, antibodies, and immune-modulators that offer new hopes. DC-based vaccines and CAR T cell therapy are promising tools; however, further studies are required to precisely dissect the molecular interactions among various molecular entities. In this review, we systematically discuss the involvement, common targets and therapeutic interventions of various cells for the better understanding and therapy of CLL.
Collapse
Affiliation(s)
- Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
8
|
Wang X, Wang J, Yu Y, Ma T, Chen P, Zhou B, Tao R. Decitabine inhibits T cell proliferation via a novel TET2-dependent mechanism and exerts potent protective effect in mouse auto- and allo-immunity models. Oncotarget 2017; 8:56802-56815. [PMID: 28915632 PMCID: PMC5593603 DOI: 10.18632/oncotarget.18063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by the dysregulated immune response including innate and adaptive immune responses. Increasing evidence has proven the importance of epigenetic modification in the progression of MS. Recent studies revealed that low-dose decitabine (Dec, 5-Aza-2'-deoxycytidine), which incorporates into replicating DNA and inhibits DNA methylation, could prevent experimental autoimmune encephalomyelitis (EAE) development by increasing the number of regulatory T cells (Tregs). Here, we showed that higher-dose decitabine relative to previous studies could also distinctly protect mice from EAE and allogeneic cardiac transplantation. Mechanistic studies revealed decitabine suppressed innate responses in EAE mice through inhibiting the activation of microglia and monocyte-derived macrophages that contributed to reduce the severity of EAE. Furthermore, differentiation of naïve CD4+ T cells into Th1 and Th17 cells was significantly suppressed by decitabine in vivo and in vitro. Though in vitro studies showed decitabine could induce Treg differentiation, there was no obvious change in the percentage of Tregs in Dec-treated EAE mice. Most importantly, we found that T cell proliferation was potently inhibited in vivo and in vitro by higher-dose decitabine through increased gene expression of the DNA dioxygenase TET2 which facilitated the expression of several cell cycle inhibitors. Collectively, our study provides novel mechanistic insights of using the epigenetic modifying agents in the management of both allo- and auto-immune responses.
Collapse
Affiliation(s)
- Xue Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jun Wang
- Department of Thoracic Surgery, Hangzhou Municipal Hospital of Traditional Chinese Medicine, Hangzhou, PR China
| | - Yong Yu
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Tonghui Ma
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
| | - Ping Chen
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
- Department of Obstetrics & Gynecology, Shaoxing Second Municipal Hospital, Shaoxing, PR China
| | - Bing Zhou
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
| | - Ran Tao
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
- Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
| |
Collapse
|
9
|
Lee P, Zhu Z, Hachmann J, Nojima T, Kitamura D, Salvesen G, Rickert RC. Differing Requirements for MALT1 Function in Peripheral B Cell Survival and Differentiation. THE JOURNAL OF IMMUNOLOGY 2016; 198:1066-1080. [PMID: 28031341 DOI: 10.4049/jimmunol.1502518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
During a T cell-dependent immune response, formation of the germinal center (GC) is essential for the generation of high-affinity plasma cells and memory B cells. The canonical NF-κB pathway has been implicated in the initiation of GC reaction, and defects in this pathway have been linked to immune deficiencies. The paracaspase MALT1 plays an important role in regulating NF-κB activation upon triggering of Ag receptors. Although previous studies have reported that MALT1 deficiency abrogates the GC response, the relative contribution of B cells and T cells to the defective phenotype remains unclear. We used chimeric mouse models to demonstrate that MALT1 function is required in B cells for GC formation. This role is restricted to BCR signaling where MALT1 is critical for B cell proliferation and survival. Moreover, the proapoptotic signal transmitted in the absence of MALT1 is dominant to the prosurvival effects of T cell-derived stimuli. In addition to GC B cell differentiation, MALT1 is required for plasma cell differentiation, but not mitogenic responses. Lastly, we show that ectopic expression of Bcl-2 can partially rescue the GC phenotype in MALT1-deficient animals by prolonging the lifespan of BCR-activated B cells, but plasma cell differentiation and Ab production remain defective. Thus, our data uncover previously unappreciated aspects of MALT1 function in B cells and highlight its importance in humoral immunity.
Collapse
Affiliation(s)
- Peishan Lee
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037.,Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92037
| | - Zilu Zhu
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Janna Hachmann
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Takuya Nojima
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Guy Salvesen
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037;
| |
Collapse
|
10
|
Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 2016; 14:100-113. [DOI: 10.1038/nrclinonc.2016.122] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Fowler T, Garruss AS, Ghosh A, De S, Becker KG, Wood WH, Weirauch MT, Smale ST, Aronow B, Sen R, Roy AL. Divergence of transcriptional landscape occurs early in B cell activation. Epigenetics Chromatin 2015; 8:20. [PMID: 25987903 PMCID: PMC4434543 DOI: 10.1186/s13072-015-0012-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/01/2015] [Indexed: 12/15/2022] Open
Abstract
Background Signaling via B cell receptor (BCR) and Toll-like receptors (TLRs) results in activation of B cells with distinct physiological outcomes, but transcriptional regulatory mechanisms that drive activation and distinguish these pathways remain unknown. Results Two hours after ligand exposure RNA-seq, ChIP-seq and computational methods reveal that BCR- or TLR-mediated activation of primary resting B cells proceeds via a large set of shared and a smaller subset of distinct signal-selective transcriptional responses. BCR stimulation resulted in increased global recruitment of RNA Pol II to promoters that appear to transit slowly to downstream regions. Conversely, lipopolysaccharide (LPS) stimulation involved an enhanced RNA Pol II transition from initiating to elongating mode accompanied by greater H3K4me3 activation markings compared to BCR stimulation. These rapidly diverging transcriptomic landscapes also show distinct repressing (H3K27me3) histone signatures, mutually exclusive transcription factor binding in promoters, and unique miRNA profiles. Conclusions Upon examination of genome-wide transcription and regulatory elements, we conclude that the B cell commitment to different activation states occurs much earlier than previously thought and involves a multi-faceted receptor-specific transcriptional landscape. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0012-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trent Fowler
- Department of Developmental, Chemical and Molecular Biology, Sackler School of Biomedical Science, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111 USA
| | - Alexander S Garruss
- Wyss Institute for Biologically Inspired Engineering, Harvard University and Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Amalendu Ghosh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Supriyo De
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224 USA ; Gene Expression Unit, Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224 USA
| | - Kevin G Becker
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224 USA ; Gene Expression Unit, Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224 USA
| | - William H Wood
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224 USA ; Gene Expression Unit, Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224 USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095 USA
| | - Bruce Aronow
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Ananda L Roy
- Department of Developmental, Chemical and Molecular Biology, Sackler School of Biomedical Science, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
12
|
Herishanu Y, Katz BZ, Lipsky A, Wiestner A. Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 2013; 27:173-206. [PMID: 23561469 DOI: 10.1016/j.hoc.2013.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature monoclonal B cells in peripheral blood, bone marrow, spleen, and lymph nodes. The trafficking, survival, and proliferation of CLL cells is tightly regulated by the surrounding tissue microenvironment and is mediated by antigenic stimulation, close interaction with various accessory cells and exposure to different cytokines, chemokines, and extracellular matrix components. In the last decade there have been major advances in the understanding of the reciprocal interactions between CLL cells and the various microenvironmental compartments. This article discusses the role of the microenvironment in the context of efforts to develop novel therapeutics that target the biology of CLL.
Collapse
Affiliation(s)
- Yair Herishanu
- Hematology Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | | | | | | |
Collapse
|
13
|
A defect of the INK4-Cdk4 checkpoint and Myc collaborate in blastoid mantle cell lymphoma-like lymphoma formation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1688-701. [PMID: 22326754 DOI: 10.1016/j.ajpath.2012.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/02/2011] [Accepted: 01/03/2012] [Indexed: 12/30/2022]
Abstract
Mantle cell lymphoma (MCL) is a B-cell malignancy characterized by a monoclonal proliferation of lymphocytes with the co-expression of CD5 and CD43, but not of CD23. Typical MCL is associated with overexpression of cyclin D1, and blastoid MCL variants are associated with Myc (alias c-myc) translocations. In this study, we developed a murine model of MCL-like lymphoma by crossing Cdk4(R24C) mice with Myc-3'RR transgenic mice. The Cdk4(R24C) mouse is a knockin strain that expresses a Cdk4 protein that is resistant to inhibition by p16(INK4a) as well as other INK4 family members. Ablation of INK4 control on Cdk4 does not affect lymphomagenesis, B-cell maturation, and functions in Cdk4(R24C) mice. Additionally, B cells were normal in numbers, cell cycle activity, mitogen responsiveness, and Ig synthesis in response to activation. By contrast, breeding Cdk4(R24C) mice with Myc-3'RR transgenic mice prone to develop aggressive Burkitt lymphoma-like lymphoma (CD19(+)IgM(+)IgD(+) cells) leads to the development of clonal blastoid MCL-like lymphoma (CD19(+)IgM(+)CD5(+)CD43(+)CD23(-) cells) in Myc/Cdk4(R24C) mice. Western blot analysis revealed high amounts of Cdk4/cyclin D1 complexes as the main hallmark of these lymphomas. These results indicate that although silent in nonmalignant B cells, a defect in the INK4-Cdk4 checkpoint can participate in lymphomagenesis in conjunction with additional alterations of cell cycle control, a situation that might be reminiscent of the development of human blastoid MCL.
Collapse
|
14
|
Circulating human B lymphocytes are deficient in nucleotide excision repair and accumulate mutations upon proliferation. Blood 2011; 117:6277-86. [DOI: 10.1182/blood-2010-12-326637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Faithful repair of DNA lesions is a crucial task that dividing cells must actively perform to maintain genome integrity. Strikingly, nucleotide excision repair (NER), the most versatile DNA repair system, is specifically down-regulated in terminally differentiated cells. This prompted us to examine whether NER attenuation might be a common feature of all G0-arrested cells, and in particular of those that retain the capacity to reenter cell cycle and might thus convert unrepaired DNA lesions into mutations, a prerequisite for malignant transformation. Here we report that quiescent primary human B lymphocytes down-regulate NER at the global genome level while maintaining proficient repair of constitutively expressed genes. Quiescent B cells exposed to an environment that causes both DNA damage and proliferation accumulate point mutations in silent and inducible genes crucial for cell replication and differentiation, such as BCL6 and Cyclin D2. Similar to differentiated cells, NER attenuation in quiescent cells is associated with incomplete phosphorylation of the ubiquitin activating enzyme Ube1, which is required for proficient NER. Our data establish a mechanistic link between NER attenuation during quiescence and cell mutagenesis and also support the concept that oncogenic events targeting cell cycle- or activation-induced genes might initiate genomic instability and lymphomagenesis.
Collapse
|
15
|
Cato MH, Chintalapati SK, Yau IW, Omori SA, Rickert RC. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol Cell Biol 2011; 31:127-37. [PMID: 20956554 PMCID: PMC3019862 DOI: 10.1128/mcb.00650-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023] Open
Abstract
The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.
Collapse
Affiliation(s)
- Matthew H. Cato
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Suresh K. Chintalapati
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Irene W. Yau
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Sidne A. Omori
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Robert C. Rickert
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
16
|
Gladkikh A, Potashnikova D, Korneva E, Khudoleeva O, Vorobjev I. Cyclin D1 expression in B-cell lymphomas. Exp Hematol 2010; 38:1047-57. [PMID: 20727381 DOI: 10.1016/j.exphem.2010.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/31/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Cyclin D1, an important component of cell cycle machinery and a protein with known oncogenic potential, is downregulated in normal mature B lymphocytes. Its expression detected in a number of malignancies, including B-cell lymphomas, may be important for oncogenesis. MATERIALS AND METHODS In our work, we determined the level of cyclin D1 expression in various B-cell lymphomas (i.e., mantle cell lymphoma, B-cell chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and compared it with normal B cells. For cyclin D1 level evaluation, the real-time quantitative polymerase chain reaction data was normalized. We tested five reference genes for stability on our sample set and using the three most stable ones (YWHAZ, ubiquitin c, and HPRT) obtained rather small intra-group variance for cyclin D1 expression in most lymphomas. This allowed their statistically significant ranking according to cyclin D1 expression level. RESULTS Median values of normalized cyclin D1 expression determined by real-time quantitative polymerase chain reaction were 1.32 for mantle cell lymphoma, 0.02 for B-cell chronic lymphocytic leukemia, 0.009 for diffuse large B-cell lymphoma, 0.004 for marginal zone lymphoma, 0.002 for follicular lymphoma compared with 0.0003 for reactive lymphoid tissue, and 0.00004 for sorted B cells of healthy donors. CONCLUSIONS Our data demonstrate that mantle cell lymphoma, a lymphoma with t(11;14)(q13;q32) translocation, has the level of cyclin D1 increased by four orders of magnitude, while other B-cell lymphomas without t(11;14)(q13;q32) translocation still have the level of cyclin D1 significantly elevated above that of normal lymphocytes (2 orders for B-cell chronic lymphocytic leukemia and an order for other lymphomas) and suggests more than one method of its upregulation in malignant B cells.
Collapse
MESH Headings
- Aged
- B-Lymphocytes/metabolism
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Humans
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Immunohistochemistry
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/metabolism
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/metabolism
- Middle Aged
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/metabolism
- Spleen/pathology
Collapse
Affiliation(s)
- Aleena Gladkikh
- Laboratory of Functional Morphology of Hematoblastoses, National Research Center for Hematology, Moscow, Russia.
| | | | | | | | | |
Collapse
|
17
|
Zhang H, Hou YJ, Han SY, Zhang EC, Huebner K, Zhang J. Mammalian nitrilase 1 homologue Nit1 is a negative regulator in T cells. Int Immunol 2009; 21:691-703. [PMID: 19395373 DOI: 10.1093/intimm/dxp038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian Nit1 protein is homologous to plant and bacterial nitrilases. In flies and worms, Nit1 is fused to the 5' end of Fhit, suggesting that Nit1 may functionally interact with the Fhit pathway. Fhit has been shown to play a role of a tumor suppressor. Somatic loss of Fhit in human tissues is associated with a wide variety of cancers. Deletion of Fhit results in a predisposition to induced and spontaneous tumors in mice. It has been suggested that Nit1 collaborates with Fhit in tumor suppression. Similar to mice lacking Fhit, Nit1-deficient mice are more sensitive to carcinogen-induced tumors. It was previously shown that ectopic expression of Nit1 or Fhit led to caspase activation and apoptosis, and that both proteins may play a role in DNA damage-induced apoptosis. In this study, we analyzed the physiological function of Nit1 in T cells using Nit1-knockout mice. Nit1-deficient T cells can undergo apoptosis induced by DNA damage due to irradiation and chemical treatment. However, apoptosis induced by Fas or Ca(++) signals appeared to be compromised. Additionally, Nit1 deficiency resulted in T cell hyperproliferative responses induced by TCR stimulation. The expressions of T cell activation markers were elevated in Nit1(-/-) T cells. There was a spontaneous cell cycle entry and enhanced cell cycle progression in Nit1(-/-) T cells. These data indicate that Nit1 is a novel negative regulator in primary T cells.
Collapse
Affiliation(s)
- Haibing Zhang
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
18
|
Roy V, Bonventi G, Cai Y, Macleod R, Wither JE. Immune mechanisms leading to abnormal B cell selection and activation in New Zealand Black mice. Eur J Immunol 2007; 37:2645-56. [PMID: 17668901 DOI: 10.1002/eji.200737334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polyclonal B cell activation is a hallmark of the immune dysregulation in New Zealand Black (NZB) mice. We have previously shown that the splenic B cell activation is associated with increased CD80 expression. Here we show that abnormal expansions of CD80-expressing GC, CD5(+), marginal zone (MZ) precursor and MZ B cells produce this increase. To investigate the role of BCR engagement in the generation and activation of these populations, a non-self-reactive Ig Tg was introduced onto the NZB background. NZB Ig-Tg mice lacked Tg CD5(+) and peanut agglutinin(+) B cells, confirming the role of endogenous Ag in their selection. Although the increased proportion of MZ B cells was retained in NZB Ig-Tg mice, CD80 expression on these cells was reduced as compared to non-Tg NZB mice, suggesting a role for BCR engagement with endogenous Ag in their activation. Examination of CD40L-knockout NZB mice showed no difference in the abnormal activation or selection of the B cell populations, with the exception of GC cells, as compared to wild-type NZB mice. Thus, polyclonal B cell activation in NZB mice does not require CD40 engagement, but results, in part, from dysregulated BCR-specific mechanisms.
Collapse
Affiliation(s)
- Valerie Roy
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
19
|
Hillion S, Garaud S, Devauchelle V, Bordron A, Berthou C, Youinou P, Jamin C. Interleukin-6 is responsible for aberrant B-cell receptor-mediated regulation of RAG expression in systemic lupus erythematosus. Immunology 2007; 122:371-80. [PMID: 17608810 PMCID: PMC2266017 DOI: 10.1111/j.1365-2567.2007.02649.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Defective regulation of secondary immunoglobulin V(D)J gene rearrangement promotes the production of autoantibodies in systemic lupus erythematosus (SLE). It remains unclear, however, whether the regulation of the recombination-activating genes RAG1 and RAG2 is effective in SLE. RAG1 and RAG2 messenger RNA expression was analysed before and after in vitro activation of sorted CD19(+) CD5(-) B cells with anti-immunoglobulin M antibodies, in 20 SLE patients and 17 healthy controls. The expression of CDK2 and p27(Kip1) regulators of the RAG2 protein, were examined. The levels of interleukin-6 (IL-6) and its influence on RAG regulation were also evaluated in vitro. SLE patients had increased frequency of RAG-positive B cells. B-cell receptor (BCR) engagement induced a shift in the frequency of kappa- and lambda-positive cells, associated with a persistence of RAG messenger RNA and the maintenance of RAG2 protein within the nucleus. While expression of the RAG2-negative regulator CDK2 was normal, the positive regulator p27(Kip1) was up-regulated and enhanced by BCR engagement. This effect was the result of the aberrant production of IL-6 by SLE B cells. Furthermore, IL-6 receptor blockade led to a reduction in p27(Kip1) expression, and allowed the translocation of RAG2 from the nucleus to the cytoplasm. Our study indicates that aberrant production of IL-6 contributes to the inability of SLE B cells to terminate RAG protein production. Therefore, we hypothesize that because of constitutive IL-6 signalling in association with BCR engagement, SLE B cells would become prone to secondary immunoglobulin gene rearrangements and autoantibody production.
Collapse
Affiliation(s)
- Sophie Hillion
- EA Immunologie et Pathologie, Brest University Medical School, Brest, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Kinugasa Y, Hieda M, Hori M, Higashiyama S. The carboxyl-terminal fragment of pro-HB-EGF reverses Bcl6-mediated gene repression. J Biol Chem 2007; 282:14797-806. [PMID: 17392284 DOI: 10.1074/jbc.m611036200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a member of the EGF family, is synthesized as a type I transmembrane precursor (pro-HB-EGF). Ectodomain shedding of pro-HB-EGF yields an amino-terminal soluble ligand of EGF receptor (HB-EGF) and a carboxyl-terminal fragment (HB-EGF-CTF) consisting of the transmembrane and cytoplasmic domains. We previously showed that the HB-EGF-CTF translocates from the plasma membrane to the nucleus and plays a role as a signaling molecule. Immunoprecipitation showed that HB-EGF-CTF can associate with Bcl6, a transcriptional repressor in mammalian cells. A glutathione S-transferase pulldown assay revealed that HB-EGF-CTF interacted efficiently with zinc fingers 4-6 of Bcl6. A luciferase reporter assay showed that the nuclear translocation of HB-EGF-CTF following shedding reversed transcriptional repression of cyclin D2 by Bcl6. Additionally, the level of cyclin D2 protein increased and Bcl6 interaction with the cyclin D2 promoter decreased in parallel with the shedding of pro-HB-EGF at all endogenous levels. These findings suggest that HB-EGF-CTF is a potent regulator of gene expression via its interaction with the transcriptional repressor Bcl6.
Collapse
Affiliation(s)
- Yumi Kinugasa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, To-on, Ehime 791-0295, Japan
| | | | | | | |
Collapse
|
21
|
Deglesne PA, Chevallier N, Letestu R, Baran-Marszak F, Beitar T, Salanoubat C, Sanhes L, Nataf J, Roger C, Varin-Blank N, Ajchenbaum-Cymbalista F. Survival response to B-cell receptor ligation is restricted to progressive chronic lymphocytic leukemia cells irrespective of Zap70 expression. Cancer Res 2006; 66:7158-66. [PMID: 16849562 DOI: 10.1158/0008-5472.can-06-0085] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite very similar gene expression profiles, the clinical course of B-cell chronic lymphocytic leukemia (B-CLL) is heterogeneous. Immunoglobulin VH (IgVH) mutational status and expression of B-cell receptor (BCR) signaling mediators have been associated with disease progression. However, the consequences of BCR engagement on cell survival and evolution of the disease remain unclear. We show here that B-CLL cell survival is dependent on the threshold of BCR stimulation induced by immobilized antibody, in contrast to soluble anti-mu F(ab)'2 antibody, which leads to apoptosis. Measurement of metabolic activity and apoptotic response discriminated two subgroups. "Nonresponders" showed low metabolic activity and unmodified apoptotic response upon BCR stimulation. In contrast, "responders" exhibited increased metabolic activity and inhibition of spontaneous apoptosis. This survival advantage was associated to a BCR-dependent activation profile leading to induction of cyclin D2/cyclin-dependent kinase 4 (cdk4) expression and G1 cell cycle progression. The ability to respond to BCR ligation correlated with an unfavorable clinical course and allowed to define an additional group of patients among IgVH-mutated cases exhibiting a risk of progression. Remarkably, we show that Zap70 expression was neither mandatory nor sufficient to generate downstream survival signals and cyclin D2/cdk4 up-regulation. In conclusion, BCR engagement has a significant effect on B-CLL cell survival, activation, and G1 progression. Furthermore, our results provide new insights in the physiopathology of progressive IgVH-mutated cases.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/immunology
- Cell Survival/physiology
- Cyclin D2
- Cyclin-Dependent Kinase 4/metabolism
- Cyclins/metabolism
- Disease Progression
- G1 Phase/physiology
- Humans
- Immunoglobulin Fragments/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
Collapse
Affiliation(s)
- Pierre-Antoine Deglesne
- Unite Propre de Recherche de l'Enseignement Superieur EA-3406, Hopital Avicenne Université Paris 13 Bobigny, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hwang WYK, Gullo CA, Shen J, Poh CK, Tham SC, Cow G, Au M, Chan EWE, Teoh G. Decoupling of normal CD40/interleukin-4 immunoglobulin heavy chain switch signal leads to genomic instability in SGH-MM5 and RPMI 8226 multiple myeloma cell lines. Leukemia 2006; 20:715-23. [PMID: 16453006 DOI: 10.1038/sj.leu.2404099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The processes mediating genomic instability and clonal evolution are obscure in multiple myeloma (MM). Acquisition of new chromosomal translocations into the switch region of the immunoglobulin heavy chain (IgH) gene (chromosome 14q32) in MM, often heralds transformation to more aggressive disease. Since the combined effects of CD40 plus interleukin-4 (IL-4) mediate IgH isotype class switch recombination (CSR), and this process involves DNA double strand break repair (DSBR), we hypothesized that CD40 and/or IL-4 activation of MM cells could induce abnormal DNA DSBR and lead to genomic instability and clonal evolution. In this study, we show that MM cell lines that are optimally triggered via CD40 and/or IL-4 demonstrate abnormal decoupling of IL-4 signal transduction from CD40. Specifically, CD40 alone was sufficient to trigger maximal growth of tumor cells. We further demonstrate that CD40 triggering induced both DNA DSBs as well as newly acquired karyotypic abnormalities in MM cell lines. Importantly, these observations were accompanied by induction of activation induced cytidine deaminase expression, but not gross apoptosis. These data support the role of abnormal CD40 signal transduction in mediating genomic instability, suggesting a role for the CD40 pathway and intermediates in myelomagenesis and clonal evolution in vivo.
Collapse
Affiliation(s)
- W Y K Hwang
- Multiple Myeloma Research Laboratory (MMRL), Singapore Health Services (SingHealth) Research Facilities, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mataraza JM, Tumang JR, Gumina MR, Gurdak SM, Rothstein TL, Chiles TC. Disruption of cyclin D3 blocks proliferation of normal B-1a cells, but loss of cyclin D3 is compensated by cyclin D2 in cyclin D3-deficient mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:787-95. [PMID: 16818732 DOI: 10.4049/jimmunol.177.2.787] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peritoneal B-1a cells differ from splenic B-2 cells in the molecular mechanisms that control G(0)-S progression. In contrast to B-2 cells, cyclin D2 is up-regulated in a rapid and transient manner in phorbol ester (PMA)-stimulated B-1a cells, whereas cyclin D3 does not accumulate until late G(1) phase. This nonoverlapping expression of cyclins D2 and D3 suggests distinct functions for these proteins in B-1a cells. To investigate the contribution of cyclin D3 in the proliferation of B-1a cells, we transduced p16(INK4a) peptidyl mimetics (TAT-p16) into B-1a cells before cyclin D3 induction to specifically block cyclin D3-cyclin-dependent kinase 4/6 assembly. TAT-p16 inhibited DNA synthesis in B-1a cells stimulated by PMA, CD40L, or LPS as well as endogenous pRb phosphorylation by cyclin D-cyclin-dependent kinase 4/6. Unexpectedly, however, cyclin D3-deficient B-1a cells proliferated in a manner similar to wild-type B-1a cells following PMA or LPS stimulation. This was due, at least in part, to the compensatory sustained accumulation of cyclin D2 throughout G(0)-S progression. Taken together, experiments in which cyclin D3 was inhibited in real time demonstrate the key role this cyclin plays in normal B-1a cell mitogenesis, whereas experiments with cyclin D3-deficient B-1a cells show that cyclin D2 can compensate for cyclin D3 loss in mutant mice.
Collapse
|
24
|
Goulvestre C, Chéreau C, Nicco C, Mouthon L, Weill B, Batteux F. A mimic of p21WAF1/CIP1 ameliorates murine lupus. THE JOURNAL OF IMMUNOLOGY 2006; 175:6959-67. [PMID: 16272356 DOI: 10.4049/jimmunol.175.10.6959] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by the production of high levels of affinity-matured IgG autoantibodies to dsDNA and, possibly, visceral involvement. Pathogenic autoantibodies result from the activation and proliferation of autoreactive T and B lymphocytes stimulated by epitopes borne by nucleosomal histones. To inhibit the proliferation of autoreactive cells and abrogate the development of SLE, a novel tool, cell cycle inhibiting peptide therapy, was used. Thus, a peptidyl mimic of p21WAF1/CIP1 that inhibits the interaction between cyclin-dependent kinase 4 and type D cyclins abrogated the in vitro proliferative response of T cells to histones and T-independent and T-dependent proliferative responses of B cells. The WAF1/CIP1 mimic also abrogated the in vitro production of total and anti-dsDNA IgG Abs by B cells. Similarly, the p21WAF1/CIP1 construct inhibited the ex vivo T and B cell proliferative responses to histones and decreased the numbers of activated/memory B and T spleen cells. The alterations in the balance of spleen cell subsets resulted from proapoptotic effects of the p21WAF1/CIP1)construct on activated splenocytes. Finally, in vivo, four i.v. injections of the p21WAF1/CIP1 mimic were sufficient to inhibit the progression of the lupus-like syndrome in (NZB x NZW)F1 mice. The levels of anti-dsDNA IgG autoantibodies and the incidence and severity of renal involvement were lower in treated mice than in nontreated mice. Those observations open new avenues for the treatment of SLE and prompt us to evaluate the potential interest of peptidic therapy in human SLE.
Collapse
Affiliation(s)
- Claire Goulvestre
- Laboratoire d'Immunologie, Faculté de Médecine René Descartes et Hôpital Cochin, Université Paris 5, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Multiple myeloma, the second most common haematopoietic cancer, represents a collection of plasma-cell neoplasms that invariably become fatal when self-renewing myeloma cells begin unrestrained proliferation. Myeloma cells are arrested as intermediates in plasma-cell differentiation as a consequence of transformation. Unlike normal plasma cells, myeloma cells retain the self-renewing potential. Although impaired apoptosis accounts for the accumulation of myeloma cells in the bone marrow during the plateau phase of the disease, cell-cycle deregulation underlies unrestrained proliferation of self-renewing myeloma cells in aggressive myelomas and during relapse. The mechanism that governs deregulated cell-cycle re-entry and progression in multiple myeloma is unknown, and the relationship between myeloma cells and their normal counterparts is undefined. Plasma-cell differentiation is a complex multi-step process. This chapter will address recent advances in the mechanism of normal plasma-cell differentiation and our current understanding of the relationship between plasma-cell differentiation and myeloma pathogenesis.
Collapse
Affiliation(s)
- S Chen-Kiang
- Department of Pathology and Laboratory Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
26
|
Mongini PKA, Inman JK, Han H, Kalled SL, Fattah RJ, McCormick S. Innate immunity and human B cell clonal expansion: effects on the recirculating B2 subpopulation. THE JOURNAL OF IMMUNOLOGY 2005; 175:6143-54. [PMID: 16237111 DOI: 10.4049/jimmunol.175.9.6143] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foci of autoantigen-specific B lymphocytes in nonlymphoid tissues have been associated with development of autoimmune disease. To better understand the genesis of such ectopic lymphoid tissue, this study investigated whether several B cell-tropic innate immune system molecules, known to be elevated in response to inflammatory stimuli, can cooperate in fostering the T cell-independent clonal expansion of mature human B2 cells under conditions of limiting BCR engagement. Notable synergy was observed between BCR coligation with the C3dg-binding CD21/CD19 costimulatory complex, B cell-activating factor belonging to the TNF family (BAFF), and IL-4 in generating B cell progeny with sustained CD86 and DR expression. The synergy was observed over a wide range of BCR:ligand affinities and involved: 1) cooperative effects at promoting early cell cycle progression and viability; 2) BCR:CD21 coligation-promoted increases in BAFF receptors that were highly regulated by IL-4; 3) reciprocal effects of IL-4 and BAFF at dampening daughter cell apoptosis typical of stimulation by BCR:CD21 and either cytokine alone; and 4) BAFF-sustained expression of antiapoptotic Mcl-1 within replicating lymphoblasts. The results suggest that significant clonal proliferation of recirculating B2 cells occurs upon limited binding to C3dg-coated Ag in an inflammatory in vivo milieu containing both BAFF and IL-4. When rare autoantigen-presenting B cells undergo such expansions, both B cell and T cell autoimmunity may be promoted.
Collapse
Affiliation(s)
- Patricia K A Mongini
- Department of Rheumatology, Hospital for Joint Diseases, New York University Medical Center, NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Wolfraim LA, Letterio JJ. Cutting edge: p27Kip1 deficiency reduces the requirement for CD28-mediated costimulation in naive CD8+ but not CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 174:2481-4. [PMID: 15728451 DOI: 10.4049/jimmunol.174.5.2481] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell cycle re-entry of quiescent T cells is dependent upon cyclin-dependent kinase 2. Inhibition of cyclin-dependent kinase 2 by p27(Kip1) is believed to be the principal constraint on S-phase entry in T cells. We report that deficiency for p27(Kip1) has a more pronounced effect on the expansion of murine naive CD8(+) T cells and that this disparity is due to a reduced requirement for CD28-mediated costimulation in CD8(+) but not CD4(+) T cells lacking p27(Kip1). These data highlight a previously unappreciated difference in the way CD28 signaling is coupled to the core cell cycle machinery in these two T cell subsets.
Collapse
Affiliation(s)
- Lawrence A Wolfraim
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
28
|
Nagai H, Takei T, Tohyama C, Kubo M, Abe R, Nohara K. Search for the target genes involved in the suppression of antibody production by TCDD in C57BL/6 mice. Int Immunopharmacol 2005; 5:331-43. [PMID: 15652763 DOI: 10.1016/j.intimp.2004.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/04/2004] [Accepted: 10/07/2004] [Indexed: 11/28/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses antibody production through activation of a transcription factor, the aryl hydrocarbon receptor (AhR). To explore the genes that are involved in the suppression of antibody production by TCDD, we investigated TCDD-induced changes in gene expression in the CD4 T cells and B cells of C57BL/6 mice immunized with ovalbumin (OVA) plus alum as an adjuvant. Changes in gene expression were analyzed with Affymetrix oligonucleotide microarrays. The results showed that OVA-immunization alone up-regulated expression levels of many genes in the CD4 T cells as early as 3 h after immunization, with 55 up-regulated and 5 down-regulated. At 24 h, 42 genes were found to be up-regulated and 30 down-regulated. Fewer genes were affected in the B cells than in the CD4 T cells. In contrast to the up-regulation of genes induced by immunization in the CD4 T cells, administration of TCDD to mice 3 h prior to the immunization mainly caused down-regulation of genes in the CD4 T cells when compared with immunization alone, with 1 being up-regulated and 4 down-regulated at 3 h after immunization and 3 up-regulated and 34 down-regulated at 24 h. In particular, at 3 and 24 h, TCDD suppressed expression of three and seven genes, respectively, that were up-regulated by immunization. Another characteristic of the TCDD-induced changes in gene expression was the suppression of many genes encoding proteins that are involved in GTP-binding protein-linked signaling in CD4 T cells. These results suggest that the inhibition of immunization-induced gene expression and modulation of G-protein-linked signaling in CD4 T cells are responsible for the TCDD-induced suppression of antibody production.
Collapse
Affiliation(s)
- Haruko Nagai
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Huang X, Di Liberto M, Cunningham AF, Kang L, Cheng S, Ely S, Liou HC, Maclennan ICM, Chen-Kiang S. Homeostatic cell-cycle control by BLyS: Induction of cell-cycle entry but not G1/S transition in opposition to p18INK4c and p27Kip1. Proc Natl Acad Sci U S A 2004; 101:17789-94. [PMID: 15591344 PMCID: PMC535425 DOI: 10.1073/pnas.0406111101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cycle entry is critical for homeostatic control in physiologic response of higher organisms but is not well understood. The antibody response begins with induction of naive mature B cells, which are naturally arrested in G(0)/G(1) phase of the cell cycle, to enter the cell cycle in response to antigen and cytokine. BLyS (BAFF), a cytokine essential for mature B cell development and survival, is thought to act mainly by attenuation of apoptosis. Here, we show that BLyS alone induces cell-cycle entry and early G(1) cell-cycle progression, but not S-phase entry, in opposition to the cyclin-dependent kinase inhibitors p18(INK4c). Independent of its survival function, BLyS enhances the synthesis of cyclin D2, in part through activation of NF-kappaB, as well as CDK4 and retinoblastoma protein phosphorylation. By convergent activation of the same cell-cycle regulators in opposition to p18(INK4c), B cell receptor signaling induces cell-cycle entry and G(1) progression in synergy with BLyS, but also DNA replication. The failure of BLyS to induce S-phase cell-cycle entry lies in its inability to increase cyclin E and reduce p27(Kip1) expression. Antagonistic cell-cycle regulation by BLyS and p18(INK4c) is functionally linked to apoptotic control and conserved from B cell activation in vitro to antibody response in vivo, further indicating a physiologic role in homeostasis.
Collapse
Affiliation(s)
- Xiangao Huang
- Department of Pathology and Graduate Program in Immunology and Microbial Pathogenesis, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Smithwick LA, Quensen JF, Smith A, Kurtz DT, London L, Morris PJ. The inhibition of LPS-induced splenocyte proliferation by ortho-substituted and microbially dechlorinated polychlorinated biphenyls is associated with a decreased expression of cyclin D2. Toxicology 2004; 204:61-74. [PMID: 15369849 DOI: 10.1016/j.tox.2004.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
Immunological effects of polychlorinated biphenyls (PCBs) have been demonstrated in our laboratories with the peferential inhibition of lipopolysaccharide (LPS)-induced splenocyte proliferation by ortho-substituted PCB congeners. An investigation of the mechanism behind this immunotoxicity revealed an interruption in the progression of murine lymphocytes from G0/G1 into S phase by Aroclor 1242 and the di-ortho-substituted congener, 2,2'-chlorobiphenyl (CB), whereas, a non-ortho-substituted congener, 4,4'-CB, did not affect cell cycle progression. This interruption of cell cycle progression by 2,2'-CB and Aroclor 1242 was associated with a decreased expression of the cell cycle regulatory protein, cyclin D2, while expression was not affected by exposure to the non-ortho-substituted 4,4'-CB. These results suggest the preferential inhibition of LPS-induced splenocyte proliferation by ortho-substituted congeners is a result of a decreased expression of cyclin D2, which leads to an interruption in cell cycle progression. In addition, PCB mixtures with an increased percentage of chlorines in the ortho position following an environmentally occurring degradation process inhibited LPS-induced proliferation, interrupted cell cycle progression, and decreased cyclin D2 expression. This study provides evidence for a mechanism of action of the immunological effects of ortho-substituted individual congeners as well as environmentally relevant mixtures enriched in congeners with this substitution pattern.
Collapse
Affiliation(s)
- L Ashley Smithwick
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Charleston, SC 29412, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chiles TC. Regulation and Function of Cyclin D2 in B Lymphocyte Subsets. THE JOURNAL OF IMMUNOLOGY 2004; 173:2901-7. [PMID: 15322145 DOI: 10.4049/jimmunol.173.5.2901] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs produced by B lymphocytes play an essential role in humoral immunity against pathogens. This response is dependent upon the extent of genome replication, which in turn allows clonal expansion of Ag-specific B cell precursors. Thus, there is considerable interest in understanding how naive B cells commit to genome replication following Ag challenge. The BCR is a key regulator of B cell growth responses in the bone marrow and the periphery. The importance of identifying BCR-coupled signaling networks and their cell cycle targets is underscored by the recognition that aberrant cell cycle control can lead to lymphoproliferative disorders or lymphoid malignancies. This review focuses on recent progress toward understanding the function of cyclin D2 in cell cycle control, and in the development of murine B lymphocytes.
Collapse
Affiliation(s)
- Thomas C Chiles
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
32
|
Hussain S, Salojin KV, Delovitch TL. Hyperresponsiveness, resistance to B-cell receptor-dependent activation-induced cell death, and accumulation of hyperactivated B-cells in islets is associated with the onset of insulitis but not type 1 diabetes. Diabetes 2004; 53:2003-11. [PMID: 15277379 DOI: 10.2337/diabetes.53.8.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cells proliferate after B-cell receptor (BCR) stimulation and are deleted by activation-induced cell death (AICD) during negative selection. We report that B-cells from type 1 diabetes-susceptible NOD and type 1 diabetes-resistant but insulitis-prone congenic NOD.B6Idd4B and NOR mice, relative to B-cells from nonautoimmune disease-prone C57BL/6 and BALB/c mice, display a hyperproliferative response to BCR stimulation and lower activation threshold in the absence or presence of interleukin 4 (IL-4). This hyperproliferation is associated with an increased proportion of NOD and NOR B-cells that enter into the S phase of the cell cycle and undergo cell division. The relative resistance to BCR-induced AICD of B-cells from NOD, NOR, and NOD.B6Idd4B mice, all of which develop insulitis, correlates with the presence of a higher percentage of hyperactivated B-cells in the spleen and islets of these mice than in nonautoimmune disease-prone C57BL/6 and BALB/c mice. The NOD islet-infiltrated activated B-cells are more responsive to further stimulation by IL-4 than activated spleen B-cells. Our results suggest that resistance to AICD and accumulation of hyperactivated B-cells in islets is associated with the onset of an inflammatory insulitis, but not type 1 diabetes.
Collapse
Affiliation(s)
- Shabbir Hussain
- Autoimmunity/Diabetes Group, Robarts Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
33
|
Cheung WC, Kim JS, Linden M, Peng L, Van Ness B, Polakiewicz RD, Janz S. Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause plasma cell neoplasms in mice. J Clin Invest 2004; 113:1763-73. [PMID: 15199411 PMCID: PMC420503 DOI: 10.1172/jci20369] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 04/14/2004] [Indexed: 01/10/2023] Open
Abstract
Deregulated expression of both Myc and Bcl-X(L) are consistent features of human plasma cell neoplasms (PCNs). To investigate whether targeted expression of Myc and Bcl-X(L) in mouse plasma cells might lead to an improved model of human PCN, we generated Myc transgenics by inserting a single-copy histidine-tagged mouse Myc gene, Myc(His), into the mouse Ig heavy-chain Calpha locus. We also generated Bcl-X(L) transgenic mice that contain a multicopy Flag-tagged mouse Bcl-x(Flag) transgene driven by the mouse Ig kappa light-chain 3' enhancer. Single-transgenic Bcl-X(L) mice remained tumor free by 380 days of age, whereas single-transgenic Myc mice developed B cell tumors infrequently (4 of 43, 9.3%). In contrast, double-transgenic Myc/Bcl-X(L) mice developed plasma cell tumors with short onset (135 days on average) and full penetrance (100% tumor incidence). These tumors produced monoclonal Ig, infiltrated the bone marrow, and contained elevated amounts of Myc(His) and Bcl-X(L)(Flag) proteins compared with the plasma cells that accumulated in large numbers in young tumor-free Myc/Bcl-X(L) mice. Our findings demonstrate that the enforced expression of Myc and Bcl-X(L) by Ig enhancers with peak activity in plasma cells generates a mouse model of human PCN that recapitulates some features of human multiple myeloma.
Collapse
|
34
|
Grill B, Wilson GM, Zhang KX, Wang B, Doyonnas R, Quadroni M, Schrader JW. Activation/division of lymphocytes results in increased levels of cytoplasmic activation/proliferation-associated protein-1: prototype of a new family of proteins. THE JOURNAL OF IMMUNOLOGY 2004; 172:2389-400. [PMID: 14764709 DOI: 10.4049/jimmunol.172.4.2389] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.
Collapse
Affiliation(s)
- Brock Grill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Cheung WC, Kim JS, Linden M, Peng L, Van Ness B, Polakiewicz RD, Janz S. Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. J Clin Invest 2004. [DOI: 10.1172/jci200420369] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Piatelli MJ, Wardle C, Blois J, Doughty C, Schram BR, Rothstein TL, Chiles TC. Phosphatidylinositol 3-Kinase-Dependent Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase 1/2 and NF-κB Signaling Pathways Are Required for B Cell Antigen Receptor-Mediated Cyclin D2 Induction in Mature B Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:2753-62. [PMID: 14978074 DOI: 10.4049/jimmunol.172.5.2753] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphatidylinositol 3-kinase (PI-3K) has been linked to promitogenic responses in splenic B cells following B cell Ag receptor (BCR) cross-linking; however identification of the signaling intermediates that link PI-3K activity to the cell cycle remains incomplete. We show that cyclin D2 induction is blocked by the PI-3K inhibitors wortmannin and LY294002, which coincides with impaired BCR-mediated mitogen-activated protein/extracellular signal-related kinase kinase (MEK)1/2 and p42/44ERK phosphorylation on activation residues. Cyclin D2 induction is virtually absent in B lymphocytes from mice deficient in the class I(A) PI-3K p85alpha regulatory subunit. In contrast to studies with PI-3K inhibitors, which inhibit all classes of PI-3Ks, the p85alpha regulatory subunit is not required for BCR-induced MEK1/2 and p42/44ERK phosphorylation, suggesting the contribution of another PI-3K family members in MEK1/2 and p42/44ERK activation. However, p85alpha(-/-) splenic B cells are defective in BCR-induced IkappaB kinase beta and IkappaBalpha phosphorylation. We demonstrate that NF-kappaB signaling is required for cyclin D2 induction via the BCR in normal B cells, implicating a possible link with the defective IkappaB kinase beta and IkappaBalpha phosphorylation in p85alpha(-/-) splenic B cells and their ability to induce cyclin D2. These results indicate that MEK1/2-p42/44ERK and NF-kappaB pathways link PI-3K activity to Ag receptor-mediated cyclin D2 induction in splenic B cells.
Collapse
Affiliation(s)
- Michael J Piatelli
- Department of Microbiology, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hirai H, Adachi T, Tsubata T. Involvement of cell cycle progression in survival signaling through CD40 in the B-lymphocyte line WEHI-231. Cell Death Differ 2003; 11:261-9. [PMID: 14647241 DOI: 10.1038/sj.cdd.4401357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The CD40 molecule transmits a signal that abrogates apoptosis induced by ligation of the antigen receptor (BCR) in both primary B cells and B-cell lines such as WEHI-231. Expression of Bcl-xL and A1, antiapoptotic members of the Bcl-2 family, is enhanced by CD40 ligation, and is suggested to mediate CD40-induced B-cell survival. CD40 ligation also promotes cell cycle progression by increasing the levels of cyclin-dependent kinases (CDKs) required for cell cycle progression, and reducing expression of the CDK inhibitor p27(kip1). Here we demonstrate that cell cycle inhibition by retrovirus-mediated p27(kip1) expression does not modulate the levels of Bcl-xL or A1, but significantly reduces the survival of BCR-ligated WEHI-231 cells by CD40 ligation. This indicates that cell cycle progression is crucial for CD40-mediated survival of B cells.
Collapse
Affiliation(s)
- H Hirai
- Laboratory of Immunology, School of Biomedical Science, and Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|
38
|
Piatelli MJ, Tanguay D, Rothstein TL, Chiles TC. Cell cycle control mechanisms in B-1 and B-2 lymphoid subsets. Immunol Res 2003; 27:31-52. [PMID: 12637767 DOI: 10.1385/ir:27:1:31] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An effective humoral response requires that a given B lymphocyte population express a repertoire of receptors capable of recognizing a distinct array of antigens, while at the same time disregarding self-antigens. Mature B cells interacting with antigen via their B cell antigen receptors (BCRs) enter G(1) phase of the cell cycle and, depending on the strength of the signal, can commit to S phase entry. Input from co-receptors, which may function to either enhance or inhibit BCR signals, also influence the decision to proliferate. We review herein recent advances in the biochemistry of G(1)-cyclin holoenzymes that function to integrate BCR-coupled signaling pathways to the phosphorylation (and inactivation) of the retinoblastoma gene product (pRb) in splenic B lymphocytes (B-2 cells). We also highlight differences in the control of G(1)-to-S phase progression between B-2 cells and peritoneal CD5+ B cells (B-1 cells).
Collapse
|
39
|
Abstract
Cell-cycle control is a major determinant of homeostasis during B-cell development, differentiation, and tumorigenesis. The generation of an antibody response requires activation and expansion of antigen-specific B cells and terminal differentiation of these cells into plasma cells. Plasma cells arrest in the G1 phase of the cell cycle, but the mechanism that underlies timely cell-cycle entry and exit in the humoral immune response is not known. The mammalian cell-cycle is regulated primarily at the G1 to S transition by the balance between positive regulators, the cyclin-dependent kinases (CDK) together with cyclins, and negative regulators, the CDK inhibitors. One such inhibitor, p18INK4c, has been shown to be required for cell-cycle termination and final differentiation of non-secreting plasmacytoid cells to antibody-secreting plasma cells. This finding provides the first direct evidence for cell-cycle control of B-cell immunity. It also raises important questions regarding cell-cycle control of cellular differentiation, apoptosis, and earlier steps of B-cell terminal differentiation. This article discusses the biochemical mechanism of cell-cycle control in the context of antibody response and plasma cell differentiation along with the role of cell-cycle dysregulation in the pathogenesis of multiple myeloma, the plasma cell cancer.
Collapse
Affiliation(s)
- Selina Chen-Kiang
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
40
|
Kim U, Siegel R, Ren X, Gunther CS, Gaasterland T, Roeder RG. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses. Proc Natl Acad Sci U S A 2003; 100:8868-73. [PMID: 12857960 PMCID: PMC166405 DOI: 10.1073/pnas.1033108100] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.
Collapse
Affiliation(s)
- Unkyu Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
41
|
Lin Z, Lim S, Lim MS. Growth regulation by p27Kip1 is abrogated by multiple mechanisms in aggressive malignant lymphomas. Br J Haematol 2003; 121:739-48. [PMID: 12780788 DOI: 10.1046/j.1365-2141.2003.04354.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cyclin-dependent kinase inhibitor p27Kip1 is a key regulator of the G1/S transition, and an inverse relationship between p27Kip1 protein expression and proliferation index has been reported in malignant lymphomas. However, a subset of aggressive B-cell lymphomas demonstrates high p27Kip1 expression despite a high proliferation index. The aim of this study was to determine potential mechanisms by which lymphoma cells abrogate the growth inhibitory effect of high p27Kip1. The effect of transforming growth factor-beta (TGF-beta) and serum stimulation on p27Kip1 expression and cyclin E/cdk2 activity was investigated in four lymphoma cell lines, Jurkat, CEM-6, OCI-Ly1 and Nalm-6. Reactive lymphocytes responded to growth inhibitory TGF-beta by inducing p27Kip1 expression, with subsequent accumulation of cells in G0/G1. In contrast, TGF-beta did not alter the level of p27Kip1 in Jurkat, CEM-6 and OCI-Ly1 cells with no change in cyclin E/cdk2-kinase activity. Serum stimulation also did not result in a significant change in p27Kip1 expression. Western blot analysis of subcellular fractions demonstrated cytoplasmic p27Kip1, corroborated by immunocytochemistry in a subset of the lymphoma cells. Sequestration of p27Kip1 by cyclin D3 was observed in the nuclear and cytoplasmic fractions of Nalm-6, OCI-Ly-1 and NCEB cells. These results indicate that multiple mechanisms contribute to the abrogation of growth regulation by unscheduled high p27Kip1 protein expression including deficient response to TGF-beta and serum, sequestration by cyclin D3 and cytoplasmic displacement.
Collapse
Affiliation(s)
- Zhaosheng Lin
- Department of Anatomic Pathology, Sunnybrook and Women's College Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
42
|
Suzuki H, Matsuda S, Terauchi Y, Fujiwara M, Ohteki T, Asano T, Behrens TW, Kouro T, Takatsu K, Kadowaki T, Koyasu S. PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nat Immunol 2003; 4:280-6. [PMID: 12563258 DOI: 10.1038/ni890] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Accepted: 01/02/2003] [Indexed: 12/13/2022]
Abstract
Phosphoinositide-3 kinase (PI3K) is thought to activate the tyrosine kinase Btk. However, through analysis of PI3K-/- and Btk-/- mice, B cell antigen receptor (BCR)-induced activation of Btk in mouse B cells was found to be unaffected by PI3K inhibitors or by a lack of PI3K. Consistent with this observation, PI3K-/- Btk-/- double-deficient mice had more severe defects than either single-mutant mouse. NF-kappaB activation along with Bcl-xL and cyclin D2 induction were severely blocked in both PI3K-/- and Btk-/- single-deficient B cells. Transgenic expression of Bcl-xL restored the development and BCR-induced proliferation of B cells in PI3K-/- mice. Our results indicate that PI3K and Btk have unique roles in proximal BCR signaling and that they have a common target further downstream in the activation of NF-kappaB.
Collapse
Affiliation(s)
- Harumi Suzuki
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 2003; 23:359-69. [PMID: 12482987 PMCID: PMC140666 DOI: 10.1128/mcb.23.1.359-369.2003] [Citation(s) in RCA: 410] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 08/09/2002] [Accepted: 09/30/2002] [Indexed: 11/20/2022] Open
Abstract
A classical cellular response to hypoxia is a cessation of growth. Hypoxia-induced growth arrest differs in different cell types but is likely an essential aspect of the response to wounding and injury. An important component of the hypoxic response is the activation of the hypoxia-inducible factor 1 (HIF-1) transcription factor. Although this transcription factor is essential for adaptation to low oxygen levels, the mechanisms through which it influences cell cycle arrest, including the degree to which it cooperates with the tumor suppressor protein p53, remain poorly understood. To determine broadly relevant aspects of HIF-1 function in primary cell growth arrest, we examined two different primary differentiated cell types which contained a deletable allele of the oxygen-sensitive component of HIF-1, the HIF-1alpha gene product. The two cell types were murine embryonic fibroblasts and splenic B lymphocytes; to determine how the function of HIF-1alpha influenced p53, we also created double-knockout (HIF-1alpha null, p53 null) strains and cells. In both cell types, loss of HIF-1alpha abolished hypoxia-induced growth arrest and did this in a p53-independent fashion. Surprisingly, in all cases, cells lacking both p53 and HIF-1alpha genes have completely lost the ability to alter the cell cycle in response to hypoxia. In addition, we have found that the loss of HIF-1alpha causes an increased progression into S phase during hypoxia, rather than a growth arrest. We show that hypoxia causes a HIF-1alpha-dependent increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27; we also find that hypophosphorylation of retinoblastoma protein in hypoxia is HIF-1alpha dependent. These data demonstrate that the transcription factor HIF-1 is a major regulator of cell cycle arrest in primary cells during hypoxia.
Collapse
Affiliation(s)
- Nobuhito Goda
- Molecular Biology Section, Division of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
44
|
Tourigny MR, Ursini-Siegel J, Lee H, Toellner KM, Cunningham AF, Franklin DS, Ely S, Chen M, Qin XF, Xiong Y, MacLennan ICM, Chen-Kiang S. CDK inhibitor p18(INK4c) is required for the generation of functional plasma cells. Immunity 2002; 17:179-89. [PMID: 12196289 DOI: 10.1016/s1074-7613(02)00364-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B cell terminal differentiation is associated with the onset of high-level antibody secretion and cell cycle arrest. Here the cyclin-dependent kinase (CDK) inhibitor p18(INK4c) is shown to be required within B cells for both terminating cell proliferation and differentiation of functional plasma cells. In its absence, B cells hyperproliferate in germinal centers and extrafollicular foci in response to T-dependent antigens but serum antibody titers are severely reduced, despite unimpaired germinal center formation, class switch recombination, variable region-directed hypermutation, and differentiation to antibody-containing plasmacytoid cells. The novel link between cell cycle control and plasma cell differentiation may, at least in part, relate to p18(INK4c) inhibition of CDK6. Cell cycle arrest mediated by p18(INK4C) is therefore requisite for the generation of functional plasma cells.
Collapse
Affiliation(s)
- Michelle R Tourigny
- Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Piatelli MJ, Doughty C, Chiles TC. Requirement for a hsp90 chaperone-dependent MEK1/2-ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J Biol Chem 2002; 277:12144-50. [PMID: 11823472 DOI: 10.1074/jbc.m200102200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A requirement for cyclin D2 in G(1)-to-S phase progression has been definitively established in mature B cells stimulated via the B cell antigen receptor (BCR). However, the identity of constituents of the BCR signaling cascade that leads to cyclin D2 accumulation remains incomplete. We report that inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-1/2 blocked BCR-induced activation of extracellular signal-regulated kinase (ERK). Inhibition of the MEK1/2-ERK pathway was sufficient to abrogate BCR-induced cyclin D2 expression at the mRNA and protein levels. Disruption of endogenous heat shock protein 90 (hsp90) function with geldanamycin abrogated BCR-induced cyclin D2 expression and proliferation. Geldanamycin effects were attributed to a selective depletion of cellular Raf-1 that interrupted BCR-coupled activation of MEK1/2 and ERK. By contrast, signaling through the phosphatidylinositol 3-kinase and protein kinase C pathways was not affected, suggesting that disruption of hsp90 function did not cause a general impairment of BCR signaling. These results suggest that the MEK1/2-ERK pathway is essential for BCR signaling to cyclin D2 accumulation in ex vivo splenic B lymphocytes. Furthermore, these findings imply that hsp90 function is required for BCR signaling through the Raf-1-MEK1/2-ERK pathway but not through the phosphatidylinositol 3-kinase- or protein kinase C-dependent pathways.
Collapse
Affiliation(s)
- Michael J Piatelli
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
46
|
Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J, Peschel C. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 2002; 16:327-34. [PMID: 11896535 DOI: 10.1038/sj.leu.2402389] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Accepted: 10/03/2001] [Indexed: 11/09/2022]
Abstract
B-CLL cells are arrested in G0/early G1 phase of the cell cycle and are characterized by a marked hyporesponsiveness towards a variety of polyclonal B cell activators. We have previously demonstrated that costimulation with CpG-ODN and IL-2 can overcome this proliferative defect. Cyclin D3 is the principal D-type cyclin which mediates G1 progression in normal B cells, but in B-CLL cells both cyclin D2 and cyclin D3, were strongly upregulated upon stimulation. Both cyclins were associated with cdk4 but not with cdk6, which is the catalytic partner of D-type cyclins in normal B cells. Moreover, immune complexes consisting of cyclin D2 and cdk4 or cyclin D3 and cdk4 were both functional and phosphorylated the RB protein in vitro. The cell cycle inhibitor p27 plays a pivotal role in cell cycle progression of B lymphocytes and has been shown to be overexpressed in B-CLL cells. P27 was rapidly downregulated in B-CLL cells even when stimulated with a non-CpG-ODN or IL-2 alone, while only moderate regulation could be observed in normal B cells. Taken together, our findings demonstrate that regulation of early cell cycle progression differs between B-CLL cells and normal B cells. These findings do not only contribute to the understanding of B-CLL pathophysiology, but might ultimately lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- T Decker
- Third Department of Medicine, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Fruman DA, Ferl GZ, An SS, Donahue AC, Satterthwaite AB, Witte ON. Phosphoinositide 3-kinase and Bruton's tyrosine kinase regulate overlapping sets of genes in B lymphocytes. Proc Natl Acad Sci U S A 2002; 99:359-64. [PMID: 11756681 PMCID: PMC117565 DOI: 10.1073/pnas.012605099] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) acts downstream of phosphoinositide 3-kinase (PI3K) in a pathway required for B cell receptor (BCR)-dependent proliferation. We used DNA microarrays to determine what fraction of genes this pathway influences and to investigate whether PI3K and Btk mediate distinct gene regulation events. As complete loss-of-function mutations in PI3K and Btk alter B cell subpopulations and may cause compensatory changes in gene expression, we used B cells with partial loss of function in either PI3K or Btk. Only about 5% of the BCR-dependent gene expression changes were significantly affected by reduced PI3K or Btk. The results indicate that PI3K and Btk share target genes, and that PI3K influences additional genes independently of Btk. These data are consistent with PI3K acting through Btk and other effectors to regulate expression of a critical subset of BCR target genes that determine effective entry into the cell cycle.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Glassford J, Holman M, Banerji L, Clayton E, Klaus GG, Turner M, Lam EW. Vav is required for cyclin D2 induction and proliferation of mouse B lymphocytes activated via the antigen Receptor. J Biol Chem 2001; 276:41040-8. [PMID: 11546804 DOI: 10.1074/jbc.m105305200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
B lymphocytes from mice null for the Rho-family guanine-nucleotide exchange factor, Vav, are defective in their ability to proliferate in response to BCR cross-linking, but are able to proliferate normally in response to LPS. In addition, they have a depletion of CD5(+) (B1) lymphocytes and defective IgG class switching. This phenotype is reminiscent of that observed in mice null for the cell cycle regulatory protein, cyclin D2. We demonstrate here that the inability of vav(-/-) B cells to proliferate in response to BCR ligation is due to an inability to induce cyclin D2. In addition, we show that the proliferative defect of these cells occurs after the cells have entered early G1 phase. Analyses of potential down-stream signaling intermediates revealed differential activation of the stress-activated MAP kinases in the absence of Vav, normal activation of the ERK, MAPK, and phosphatidylinositol 3-kinase pathways, and defective intracellular calcium mobilization. We further demonstrate that intracellular calcium homeostasis is required for cyclin D2 induction, implicating a possible link with the defective calcium response of vav(-/-) B cells and their inability to induce cyclin D2.
Collapse
Affiliation(s)
- J Glassford
- Ludwig Institute for Cancer Research and Section of Virology and Cell Biology, Imperial College School of Medicine at St Mary's, Norfolk Place, London W2 1PG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Kovalev GI, Franklin DS, Coffield VM, Xiong Y, Su L. An important role of CDK inhibitor p18(INK4c) in modulating antigen receptor-mediated T cell proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3285-92. [PMID: 11544316 PMCID: PMC4435948 DOI: 10.4049/jimmunol.167.6.3285] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The inhibitors of cyclin-dependent kinase (CDK) 4 (INK4) bind CDK4/6 to prevent their association with D-cyclins and G(1) cell cycle initiation and progression. We report here that among the seven CDK inhibitors, p18(INK4c) played an important role in modulating TCR-mediated T cell proliferation. Loss of p18(INK4c) in T cells led to hyperproliferation in response to CD3 stimulation. p18(INK4c)-null mice developed lymphoproliferative disorder and T cell lymphomas. Expression of IL-2, IL-2R-alpha, and the major G(1) cell cycle regulatory proteins was not altered in p18-null T cells. Both FK506 and rapamycin efficiently inhibited proliferation of p18-null T cells. In activated T cells, p18(INK4c) remained constant, and preferentially associated with and inhibited CDK6 but not CDK4. We propose that p18(INK4c) sets an inhibitory threshold in T cells and one function of CD28 costimulation is to counteract the p18(INK4c) inhibitory activity on CDK6-cyclin D complexes. The p18(INK4c) protein may provide a novel target to modulate T cell immunity.
Collapse
Affiliation(s)
- Grigoriy I. Kovalev
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - David S. Franklin
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - V. McNeil Coffield
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Address correspondence and reprint requests to Dr. Lishan Su, Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599.
| |
Collapse
|
50
|
Wu HJ, Venkataraman C, Estus S, Dong C, Davis RJ, Flavell RA, Bondada S. Positive signaling through CD72 induces mitogen-activated protein kinase activation and synergizes with B cell receptor signals to induce X-linked immunodeficiency B cell proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1263-73. [PMID: 11466342 DOI: 10.4049/jimmunol.167.3.1263] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD72 is a 45-kDa B cell transmembrane glycoprotein that has been shown to be important for B cell activation. However, whether CD72 ligation induces B cell activation by delivering positive signals or sequestering negative signals away from B cell receptor (BCR) signals remains unclear. Here, by comparing the late signaling events associated with the mitogen-activated protein kinase pathway, we identified many similarities and some differences between CD72 and BCR signaling. Thus, CD72 and BCR activated the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinase. Both CD72- and BCR-mediated ERK and JNK activation required protein kinase C activity, which was equally important for CD72- and BCR-induced B cell proliferation. However, CD72 induced stronger JNK activation compared with BCR. Surprisingly, the JNK activation induced by both BCR and CD72 is Btk independent. Although both CD72 and BCR induced Btk-dependent ERK activation, CD72-mediated proliferation is more resistant to blocking of ERK activity than that of BCR, as shown by the proliferation response of B cells treated with PD98059 and dibutyryl cAMP, agents that inhibit ERK activity. Most importantly, CD72 signaling compensated for defective BCR signaling in X-linked immunodeficiency B cells and partially restored the proliferation response of X-linked immunodeficiency B cells to anti-IgM ligation. These results suggest that CD72 signals B cells by inducing BCR-independent positive signaling pathways.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- B-Lymphocytes/immunology
- Cells, Cultured
- Cyclic AMP/biosynthesis
- Cyclic AMP/physiology
- Drug Synergism
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- Enzyme Induction/genetics
- Enzyme Induction/immunology
- Female
- JNK Mitogen-Activated Protein Kinases
- Lymphocyte Activation/genetics
- MAP Kinase Kinase 1
- MAP Kinase Kinase 2
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Mice, Inbred DBA
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinase Kinases/physiology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/deficiency
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Protein Kinase C/physiology
- Protein Serine-Threonine Kinases/physiology
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Severe Combined Immunodeficiency/pathology
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- H J Wu
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|