1
|
Zhang SY, Xu QP, Shi LN, Li SW, Wang WH, Wang QQ, Lu LX, Xiao H, Wang JH, Li FY, Liang YM, Gong ST, Peng HR, Zhang Z, Tang H. Soluble CD4 effectively prevents excessive TLR activation of resident macrophages in the onset of sepsis. Signal Transduct Target Ther 2023; 8:236. [PMID: 37332010 DOI: 10.1038/s41392-023-01438-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 06/20/2023] Open
Abstract
T lymphopenia, occurring in the early phase of sepsis in response to systemic inflammation, is commonly associated with morbidity and mortality of septic infections. We have previously shown that a sufficient number of T cells is required to constrain Toll-like receptors (TLRs) mediated hyperinflammation. However, the underlying mechanisms remains unsolved. Herein, we unveil that CD4+ T cells engage with MHC II of macrophages to downregulate TLR pro-inflammatory signaling. We show further that the direct contact between CD4 molecule of CD4+ T cells or the ectodomain of CD4 (soluble CD4, sCD4), and MHC II of resident macrophages is necessary and sufficient to prevent TLR4 overactivation in LPS and cecal ligation puncture (CLP) sepsis. sCD4 serum concentrations increase after the onset of LPS sepsis, suggesting its compensatory inhibitive effects on hyperinflammation. sCD4 engagement enables the cytoplasmic domain of MHC II to recruit and activate STING and SHP2, which inhibits IRAK1/Erk and TRAF6/NF-κB activation required for TLR4 inflammation. Furthermore, sCD4 subverts pro-inflammatory plasma membrane anchorage of TLR4 by disruption of MHC II-TLR4 raft domains that promotes MHC II endocytosis. Finally, sCD4/MHCII reversal signaling specifically interferes with TLR4 but not TNFR hyperinflammation, and independent of the inhibitive signaling of CD40 ligand of CD4+ cells on macrophages. Therefore, a sufficient amount of soluble CD4 protein can prevent excessive inflammatory activation of macrophages via alternation of MHC II-TLR signaling complex, that might benefit for a new paradigm of preventive treatment of sepsis.
Collapse
Affiliation(s)
- Sheng-Yuan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiu-Ping Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Li-Na Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shih-Wen Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Wei-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Qing-Qing Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Liao-Xun Lu
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Jun-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Feng-Ying Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Yin-Ming Liang
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Si-Tang Gong
- The Joint Center of Translational Medicine, Guangzhou Women and Children's Medical Center and Institut Pasteur of Shanghai, Guangzhou, 510623, China
| | - Hao-Ran Peng
- Department of Microbiology, Naval Medical University, Shanghai, 200433, China.
| | - Zheng Zhang
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China.
| | - Hong Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Tohme M, Maisonneuve L, Achour K, Dussiot M, Maschalidi S, Manoury B. TLR7 trafficking and signaling in B cells is regulated by the MHCII-associated invariant chain. J Cell Sci 2020; 133:jcs.236711. [PMID: 32079661 DOI: 10.1242/jcs.236711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptor 7 (TLR7) is an endosomal receptor that recognizes single-stranded RNA from viruses. Its trafficking and activation is regulated by the endoplasmic reticulum (ER) chaperone UNC93B1 and lysosomal proteases. UNC93B1 also modulates major histocompatibility complex class II (MHCII) antigen presentation, and deficiency in MHCII protein diminishes TLR9 signaling. These results indicate a link between proteins that regulate both innate and adaptive responses. Here, we report that TLR7 resides in lysosomes and interacts with the MHCII-chaperone molecule, the invariant chain (Ii) or CD74, in B cells. In the absence of CD74, TLR7 displays both ER and lysosomal localization, leading to an increase in pro-inflammatory cytokine production. Furthermore, stimulation with TLR7 but not TLR9, is inefficient in boosting antigen presentation in Ii-deficient cells. In contrast, in B cells lacking TLR7 or mutated for UNC93B1, which are able to trigger TLR7 activation, antigen presentation is enhanced. This suggests that TLR7 signaling in B cells is controlled by the Ii chain.
Collapse
Affiliation(s)
- Mira Tohme
- Nkarta Therapeutics, South San Fransisco, CA 94080, USA
| | - Lucie Maisonneuve
- Institut Necker Enfant Malade, INSERM U1151-CNRS UMR 8253, 75015 Paris, France.,Université de Paris, Faculté de médecine, 75015 Paris, France
| | - Karim Achour
- Institut de recherche Servier, 3 rue de la république, 92150 Suresnes, France
| | - Michaël Dussiot
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Sophia Maschalidi
- VIB-UGent Center for Inflammation Research, UGent-VIB Research Building FSVM, Technologiepark 71, 9052 Ghent, Belgium
| | - Bénédicte Manoury
- Institut Necker Enfant Malade, INSERM U1151-CNRS UMR 8253, 75015 Paris, France .,Université de Paris, Faculté de médecine, 75015 Paris, France
| |
Collapse
|
3
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
4
|
CD9 Regulates Major Histocompatibility Complex Class II Trafficking in Monocyte-Derived Dendritic Cells. Mol Cell Biol 2017; 37:MCB.00202-17. [PMID: 28533221 DOI: 10.1128/mcb.00202-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
Antigen presentation by dendritic cells (DCs) stimulates naive CD4+ T cells, triggering T cell activation and the adaptive arm of the immune response. Newly synthesized major histocompatibility complex class II (MHC-II) molecules accumulate at MHC-II-enriched endosomal compartments and are transported to the plasma membrane of DCs after binding to antigenic peptides to enable antigen presentation. In DCs, MHC-II molecules are included in tetraspanin-enriched microdomains (TEMs). However, the role of tetraspanin CD9 in these processes remains largely undefined. Here, we show that CD9 regulates the T cell-stimulatory capacity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent bone marrow-derived DCs (BMDCs), without affecting antigen presentation by fms-like tyrosine kinase 3 ligand (Flt3L)-dependent BMDCs. CD9 knockout (KO) GM-CSF-dependent BMDCs, which resemble monocyte-derived DCs (MoDCs), induce lower levels of T cell activation than wild-type DCs, and this effect is related to a reduction in MHC-II surface expression in CD9-deficient MoDCs. Importantly, MHC-II targeting to the plasma membrane is largely impaired in immature CD9 KO MoDCs, in which MHC-II remains arrested in acidic intracellular compartments enriched in LAMP-1 (lysosome-associated membrane protein 1), and MHC-II internalization is also blocked. Moreover, CD9 participates in MHC-II trafficking in mature MoDCs, regulating its endocytosis and recycling. Our results demonstrate that the tetraspanin CD9 specifically regulates antigenic presentation in MoDCs through the regulation of MHC-II intracellular trafficking.
Collapse
|
5
|
Abstract
The innate immune system provides the first barrier against pathogens. Intracellular Toll-like receptors (TLR3, 7 and 9) localise in endosomes and sense nucleotides from viruses and bacteria. This recognition induces their conformational changes resulting in the production of proinflammatory cytokines and MHC class II (MHCII) antigenic presentation. In the absence of stimulation, TLRs are retained in the endoplasmic reticulum. Upon stimulation, they relocate to the endo-lysosomal compartment, allowing the recruitment of the adaptor molecules, MyD88 or TRIF. Increasing evidences describe a cross talk between proteins that regulate both innate and adaptive immune responses. For example, proteolytic enzymes which are required for breaking down exogenous antigen to generate suitable peptides for MHCII molecules are also essential to activate endosomal TLRs and MHCII molecules were recently described to regulate TLR signalling. But other proteins are possibly involved and regulated differentially between cell types. We have observed that intracellular TLR trafficking and signalling in B cells are different from dendritic cells and macrophages and involved the MHCII chaperone molecule, the invariant chain (Ii).
Collapse
|
6
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
7
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
8
|
Jahnke M, Trowsdale J, Kelly AP. Structural requirements for recognition of major histocompatibility complex class II by membrane-associated RING-CH (MARCH) protein E3 ligases. J Biol Chem 2012; 287:28779-89. [PMID: 22761441 PMCID: PMC3436574 DOI: 10.1074/jbc.m112.381541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/26/2012] [Indexed: 01/12/2023] Open
Abstract
MARCH E3 ligases play a key role in controlling MHC class II surface expression by regulated ubiquitination of a lysine residue in the β-chain. Little is known concerning how these enzymes target their specific substrates. Here we show that recognition of HLA-DR by MARCH proteins is complex. Several features associated with the transmembrane domain and bordering regions influence the overall efficiency of receptor internalization. A cluster of residues at the interface of the lipid bilayer and the cytosol plays the most important role in MARCH8 recognition of HLA-DRβ. Variation in this sequence also determines specificity of MARCH9 for HLA-DQ. Residues located in helical face four of HLA-DRβ together with a charged residue at the boundary with the stalk region also contribute significantly to recognition. Truncation analysis suggested that a dileucine-like motif in the DRβ cytoplasmic tail influences the efficiency of co-localization of HLA-DR with MARCH8. The DRβ-encoded acceptor lysine functioned optimally when placed in its natural location relative to the bilayer. In the DRα/DRβ dimer most other amino acids in the cytoplasmic tail could be substituted for alanine with minimal influence on function. Our data support a model whereby multiple features of HLA-DR are involved in substrate recognition by MARCH8. The single most important region is located at the interface between the transmembrane domain and the cytosol. Variation in sequence in this location between different class II isotypes controls efficiency of recognition by different MARCH E3 ligases.
Collapse
Affiliation(s)
- Martin Jahnke
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John Trowsdale
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Adrian P. Kelly
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
9
|
Jahnke M, Trowsdale J, Kelly AP. Ubiquitination of human leukocyte antigen (HLA)-DM by different membrane-associated RING-CH (MARCH) protein family E3 ligases targets different endocytic pathways. J Biol Chem 2012; 287:7256-64. [PMID: 22247549 PMCID: PMC3293585 DOI: 10.1074/jbc.m111.305961] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/12/2012] [Indexed: 01/24/2023] Open
Abstract
HLA-DM plays an essential role in the peptide loading of classical class II molecules and is present both at the cell surface and in late endosomal peptide-loading compartments. Trafficking of DM within antigen-presenting cells is complex and is, in part, controlled by a tyrosine-based targeting signal present in the cytoplasmic tail of DMβ. Here, we show that DM also undergoes post-translational modification through ubiquitination of a single lysine residue present in the cytoplasmic tail of the α chain, DMα. Ubiquitination of DM by MARCH1 and MARCH9 induced loss of DM molecules from the cell surface by a mechanism that cumulatively involved both direct attachment of ubiquitin chains to DMα and a functional tyrosine-based signal on DMβ. In contrast, MARCH8-induced loss of surface DM was entirely dependent upon the tyrosine signal on DMβ. In the absence of this tyrosine residue, levels of DM remained unchanged irrespective of whether DMα was ubiquitinated by MARCH8. The influence of MARCH8 was indirect and may have resulted from modification of components of the endocytic machinery by ubiquitination.
Collapse
Affiliation(s)
- Martin Jahnke
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John Trowsdale
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Adrian P. Kelly
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
10
|
Corcoran K, Jabbour M, Bhagwandin C, Deymier MJ, Theisen DL, Lybarger L. Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1). J Biol Chem 2011; 286:37168-80. [PMID: 21896490 DOI: 10.1074/jbc.m110.204040] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The activation of naïve T cells requires antigen presentation by dendritic cells (DCs), and the process of antigen presentation is regulated over the course of DC maturation. One key aspect of this regulation is the cell surface up-regulation upon DC maturation of peptide·MHC-II complexes and the costimulatory molecule CD86. It is now clear that these critical induction events involve changes in ubiquitin-dependent trafficking of MHC-II and CD86 by the E3 ligase membrane-associated RING-CH-1 (MARCH1). Although ubiquitin-dependent trafficking of MHC-II has been well characterized, much less is known regarding the post-transcriptional regulation of CD86 expression. Here, we examined the physical and functional interaction between CD86 and MARCH1. We observed that CD86 is rapidly endocytosed in the presence of MARCH1 followed by lysosome-dependent degradation. Furthermore, we found that the association between CD86 and MARCH1 was conferred primarily by the transmembrane domains of the respective proteins. In contrast to MHC-II, which has a single, conserved ubiquitin acceptor site in the cytosolic domain, we found that multiple lysine residues in the cytosolic tail of CD86 could support ubiquitination consistent with the relative lack of sequence conservation across species within the CD86 cytosolic domain. These findings suggest that MARCH1 recruits multiple substrates via transmembrane domain-mediated interactions to permit substrate ubiquitination in the face of diverse cytosolic domain sequences.
Collapse
Affiliation(s)
- Kathleen Corcoran
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
11
|
ten Broeke T, van Niel G, Wauben MHM, Wubbolts R, Stoorvogel W. Endosomally stored MHC class II does not contribute to antigen presentation by dendritic cells at inflammatory conditions. Traffic 2011; 12:1025-36. [PMID: 21518167 DOI: 10.1111/j.1600-0854.2011.01212.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Major histocompatibility complex (MHC) class II (MHCII) is constitutively expressed by immature dendritic cells (DC), but has a short half-life as a consequence of its transport to and degradation in lysosomes. For its transfer to lysosomes, MHCII is actively sorted to the intraluminal vesicles (ILV) of multivesicular bodies (MVB), a process driven by its ubiquitination. ILV have, besides their role as an intermediate compartment in lysosomal transfer, also been proposed to function as a site for MHCII antigen loading and temporal storage. In that scenario, DC would recruit antigen-loaded MHCII to the cell surface in response to a maturation stimulus by allowing ILV to fuse back with the MVB delimiting membrane. Other studies, however, explained the increase in cell surface expression during DC maturation by transient upregulation of MHCII synthesis and reduced sorting of newly synthesized MHCII to lysosomes. Here, we have characterized the relative contributions from the biosynthetic and endocytic pathways and found that the vast majority of antigen-loaded MHCII that is stably expressed at the plasma membrane by mature DC is synthesized after exposure to inflammatory stimuli. Pre-existing endosomal MHCII contributed only when it was not yet sorted to ILV at the moment of DC activation. Together with previous records, our current data are consistent with a model in which passage of MHCII through ILV is not required for antigen loading in maturing DC and in which sorting to ILV in immature DC provides a one-way ticket for lysosomal degradation.
Collapse
Affiliation(s)
- Toine ten Broeke
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Borghese F, Clanchy FIL. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin Ther Targets 2011; 15:237-51. [PMID: 21208136 DOI: 10.1517/14728222.2011.550879] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION CD74, also known as the invariant chain, participates in several key processes of the immune system, including antigen presentation, B-cell differentiation and inflammatory signaling. Despite being described more than 3 decades ago, new functions and novel interactions for this evolutionarily conserved molecule are still being unraveled. As a participant in several immunological processes and an indicator of disease in some conditions, it has potential as a therapeutic target. AREAS COVERED The relationship between the structure of CD74 variants and their physiological functions is detailed in this review. The function of CD74 in several cell lineages is examined with a focus on the interactions with cathepsins and, in an inflammatory milieu, the pro-inflammatory cytokine macrophage migratory inhibitory factor. The role of CD74 signaling in inflammatory and carcinogenic processes is outlined as is the use of CD74 as a therapeutic target (in cancer) and tool (as a vaccine). EXPERT OPINION CD74 has several roles within the cell and throughout the immune system. Most prominent amongst these are the complex relationships with MIF and cathepsins. Modulation of CD74 function shows promise for the effective amelioration of disease.
Collapse
Affiliation(s)
- Federica Borghese
- Sapienza University of Rome, Department of Clinical Medicine, Clinical Immunology Unit, Umberto I Policlinico di Roma, 155 Viale del Policlinico, Rome, IT 00161
| | | |
Collapse
|
13
|
Landsverk OJB, Barois N, Gregers TF, Bakke O. Invariant chain increases the half-life of MHC II by delaying endosomal maturation. Immunol Cell Biol 2010; 89:619-29. [PMID: 21116285 DOI: 10.1038/icb.2010.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mounting adaptive immune responses requires the cell surface expression of major histocompatibility class II molecules (MHC II) loaded with antigenic peptide. However, in the absence of antigenic stimuli, the surface population of MHC II is highly dynamic and exhibits a high turnover. Several studies have focused on the regulation of MHC II, and it is now recognized that ubiquitination is one key mechanism operating in the turnover of MHC II in B cells and dendritic cells. Here, we describe how the invariant chain (Ii) can prolong the half-life of MHC II through its action on the endocytic pathway. We find that in cells expressing intermediate-to-high levels of Ii, the half-life of MHC II is increased, with MHC II accumulating in slowly-maturing endosomes. The accumulation in endosomes is not due to retention of new MHC II directed from the endoplasmatic reticulum, as also mature, not Ii associated, MHC II is preserved. We suggest that this alternative endocytic pathway induced by Ii would serve to enhance the rate, quantity and diversity of MHC II antigen presentation by concentrating MHC II into specialized compartments and reducing the need for new MHC II synthesis upon antigen encounter.
Collapse
Affiliation(s)
- Ole J B Landsverk
- Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo and Rikshospitalet, Oslo University Hospital Norway, Oslo, Norway
| | | | | | | |
Collapse
|
14
|
ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling. Blood 2010; 116:3208-18. [PMID: 20634378 DOI: 10.1182/blood-2009-10-250415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming.
Collapse
|
15
|
Landsverk OJB, Bakke O, Gregers TF. MHC II and the endocytic pathway: regulation by invariant chain. Scand J Immunol 2009; 70:184-93. [PMID: 19703008 DOI: 10.1111/j.1365-3083.2009.02301.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8(+) T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self-associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.
Collapse
Affiliation(s)
- O J B Landsverk
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | | |
Collapse
|
16
|
Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proc Natl Acad Sci U S A 2009; 106:14052-7. [PMID: 19666567 DOI: 10.1073/pnas.0906735106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella typhimurium is a facultative pathogen capable of entering and replicating in both professional and non-professional antigen presenting cells. Control of infection requires MHC class II restricted CD4 T-helper cell responses. Here we show that Salmonella infection induced polyubiquitination of HLA-DR, a post-translational modification that led to removal of mature, peptide loaded, alphabeta dimers from the cell surface. Immature alphabetaIi complexes were unaffected. Surface expression of all class II isotypes, HLA-DP, -DQ, and -DR, was reduced in infected cells, but other cell-surface molecules that traffic through class II peptide loading compartments were unaffected. A Salmonella strain carrying a mutation in ssaV did not induce ubiquitination of class II, implicating Salmonella T3SS-2 effector proteins in the process. T3SS-2 effectors, with established or proposed roles in ubiquitination, were not required for class II down-regulation, suggesting that an additional T3SS-2 effector is involved in regulating MHC class II ubiquitination. Although recognized as a viral immune evasion strategy, here, we demonstrate that bacteria can control surface MHC expression through ubiquitination.
Collapse
|
17
|
Knorr R, Karacsonyi C, Lindner R. Endocytosis of MHC molecules by distinct membrane rafts. J Cell Sci 2009; 122:1584-94. [PMID: 19383725 DOI: 10.1242/jcs.039727] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In B-lymphocytes, endocytosis of MHC I and MHC II molecules is important for the cross-priming and presentation of labile antigens, respectively. Here, we report that MHC I and MHC II were internalized by separate endocytic carriers that lacked transferrin receptor. Cholera toxin B was co-internalized with MHC II, but not with MHC I, suggesting that the CLIC/GEEC pathway is involved in the uptake of MHC II. Endocytosis of MHC I and MHC II was inhibited by filipin, but only MHC II showed a strong preference for a membrane raft environment in a co-clustering analysis with G(M)1. By using a novel method for the extraction of detergent-resistant membranes (DRMs), we observed that MHC I and MHC II associate with two distinct types of DRMs. These differ in density, protein content, lipid composition, and ultrastructure. The results of cell surface biotinylation and subsequent DRM isolation show that precursors for both DRMs coexist in the plasma membrane. Moreover, clustering of MHC proteins at the cell surface resulted in shifts of the respective DRMs, revealing proximity-induced changes in the membrane environment. Our results suggest that the preference of MHC I and MHC II for distinct membrane rafts directs them to different cellular entry points.
Collapse
Affiliation(s)
- Ruth Knorr
- Department of Cell Biology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
18
|
Lapaque N, Jahnke M, Trowsdale J, Kelly AP. The HLA-DRalpha chain is modified by polyubiquitination. J Biol Chem 2008; 284:7007-16. [PMID: 19117940 PMCID: PMC2652342 DOI: 10.1074/jbc.m805736200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination plays a major role in regulating cell surface and intracellular localization of major histocompatibility complex class II molecules. Two E3 ligases, MARCH I and MARCH VIII, have been shown to polyubiquitinate lysine residue 225 in the cytoplasmic tail of I-Abeta and HLA-DRbeta. We show that lysine residue 219 in the cytoplasmic tail of DRalpha is also subject to polyubiquitination. Each chain of the HLA-DR heterodimer is independently recognized and ubiquitinated, but DRbeta is more extensively modified. In the cytoplasmic tail of DRbeta lysine, residue 225 is the only residue that is absolutely required for ubiquitination; all other residues can be deleted or substituted without loss of function. In contrast, although lysine 219 is absolutely required for modification of DRalpha, other features of the DRalpha tail act to limit the extent of ubiquitination.
Collapse
Affiliation(s)
- Nicolas Lapaque
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | | | |
Collapse
|
19
|
Robila V, Ostankovitch M, Altrich-VanLith ML, Theos AC, Drover S, Marks MS, Restifo N, Engelhard VH. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes and is influenced by melanosomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7843-52. [PMID: 19017974 PMCID: PMC2659719 DOI: 10.4049/jimmunol.181.11.7843] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many human solid tumors express MHC class II (MHC-II) molecules, and proteins normally localized to melanosomes give rise to MHC-II-restricted epitopes in melanoma. However, the pathways by which this response occurs have not been defined. We analyzed the processing of one such epitope, gp100(44-59), derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1(high)/MHC-II(+) late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp100(44-59) presentation. By depletion of the AP-2 adaptor protein using small interfering RNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp100(44-59) epitope production. The gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC-II molecules. The gp100(44-59) presentation is dramatically reduced, and processing occurs entirely in early endosomes or stage I melanosomes. This occurrence suggests that melanosomes are inefficient Ag-processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC-II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition.
Collapse
Affiliation(s)
- Valentina Robila
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Marina Ostankovitch
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Michelle L. Altrich-VanLith
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| | - Alexander C. Theos
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Sheila Drover
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NF Canada A1B3V6
| | - Michael S. Marks
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Nicholas Restifo
- National Cancer Institute, National Institutes of Health Bethesda, MD 20892
| | - Victor H. Engelhard
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville VA 22908
| |
Collapse
|
20
|
van Niel G, Wubbolts R, Stoorvogel W. Endosomal sorting of MHC class II determines antigen presentation by dendritic cells. Curr Opin Cell Biol 2008; 20:437-44. [PMID: 18582577 DOI: 10.1016/j.ceb.2008.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/21/2008] [Accepted: 05/29/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume van Niel
- Institut Curie, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 144, Paris 75248, France.
| | | | | |
Collapse
|
21
|
Walseng E, Bakke O, Roche PA. Major histocompatibility complex class II-peptide complexes internalize using a clathrin- and dynamin-independent endocytosis pathway. J Biol Chem 2008; 283:14717-27. [PMID: 18378669 DOI: 10.1074/jbc.m801070200] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules (MHC-II) function by binding antigenic peptides and displaying these peptides on the surface of antigen presenting cells (APCs) for recognition by peptide-MHC-II (pMHC-II)-specific CD4 T cells. It is known that cell surface MHC-II can internalize, exchange antigenic peptides in endosomes, and rapidly recycle back to the plasma membrane; however, the molecular machinery and trafficking pathways utilized by internalizing/recycling MHC-II have not been identified. We now demonstrate that unlike newly synthesized invariant chain-associated MHC-II, mature cell surface pMHC-II complexes internalize following clathrin-, AP-2-, and dynamin-independent endocytosis pathways. Immunofluorescence microscopy of MHC-II expressing HeLa-CIITA cells, human B cells, and human DCs revealed that pMHC enters Arf6(+)Rab35(+)EHD1(+) tubular endosomes following endocytosis. These data contrast the internalization pathways followed by newly synthesized and peptide-loaded MHC-II molecules and demonstrates that cell surface pMHC-II internalize and rapidly recycle from early endocytic compartments in tubular endosomes.
Collapse
Affiliation(s)
- Even Walseng
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Mimura Y, Mimura-Kimura Y, Doores K, Golgher D, Davis BG, Dwek RA, Rudd PM, Elliott T. Folding of an MHC class II-restricted tumor antigen controls its antigenicity via MHC-guided processing. Proc Natl Acad Sci U S A 2007; 104:5983-8. [PMID: 17389359 PMCID: PMC1851603 DOI: 10.1073/pnas.0701307104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Indexed: 11/18/2022] Open
Abstract
CD4(+) and CD8(+) T cell responses to endogenous retroviral envelope glycoprotein gp90 generate protective immunity to murine colon carcinoma CT26. A panel of I-A(d)-restricted T cell hybridomas recognize gp90 synthesized by CT26 cells but not by other gp90-expressing tumors. Here we report that antigenicity resides in an incompletely folded form of gp90 that is unique to CT26. In contrast to more compact forms of gp90 that are present in other tumors, this open conformer is captured by recycling I-A(d) on antigen-presenting cells and is processed intracellularly. Thus, gp90 acquires immunodominance via MHC-guided processing, and the generation of an MHC class II-restricted response can be controlled by the intracellular folding environment of antigen-expressing cells.
Collapse
Affiliation(s)
- Yusuke Mimura
- *Cancer Sciences Division, School of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX 1 3QU, United Kingdom; and
| | - Yuka Mimura-Kimura
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX 1 3QU, United Kingdom; and
| | - Katie Doores
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Denise Golgher
- *Cancer Sciences Division, School of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Benjamin G. Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Raymond A. Dwek
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX 1 3QU, United Kingdom; and
| | - Pauline M. Rudd
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX 1 3QU, United Kingdom; and
| | - Tim Elliott
- *Cancer Sciences Division, School of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
23
|
van Niel G, Wubbolts R, Ten Broeke T, Buschow SI, Ossendorp FA, Melief CJ, Raposo G, van Balkom BW, Stoorvogel W. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 2007; 25:885-94. [PMID: 17174123 DOI: 10.1016/j.immuni.2006.11.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022]
Abstract
Dendritic cells (DCs) initiate adaptive immune responses by activating T cells via cognate interactions between MHC-peptide complexes and T cell receptors. In immature DCs, MHC class II is predominantly stored in late endocytic compartments, where it has a short half-life because of degradation. In contrast, mature DCs recruit MHC class II to the plasma membrane. We here demonstrate that in immature DCs, the beta-chain of MHC class II was oligoubiquitinated after proteolytic processing of the associated invariant chain in endosomes and that this modification was required for efficient endocytosis and sorting into luminal vesicles of multivesicular bodies. Ubiquitination of MHC class II was suppressed in lipopolysaccharide-activated DCs. Mutated MHC class II lacking its ubiquitination site was expressed at the plasma membrane, irrespective of DC maturation. Together, these data provide a molecular basis for the regulation of MHC class II-mediated antigen presentation by DCs.
Collapse
Affiliation(s)
- Guillaume van Niel
- Faculty of Veterinary Medicine, Department of Biochemistry & Cell Biology, Utrecht University, P.O. Box 80.176, NL-3508 TD, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shin JS, Ebersold M, Pypaert M, Delamarre L, Hartley A, Mellman I. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 2006; 444:115-8. [PMID: 17051151 DOI: 10.1038/nature05261] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/18/2006] [Indexed: 11/08/2022]
Abstract
Dendritic cells have a unique function in the immune response owing to their ability to stimulate immunologically naive T lymphocytes. In response to microbial and inflammatory stimuli, dendritic cells enhance their capacity for antigen presentation by a process of terminal differentiation, termed maturation. The conversion of immature to mature dendritic cells is accompanied by a marked cellular reorganization, including the redistribution of major histocompatibility complex class II molecules (MHC II) from late endosomal and lysosomal compartments to the plasma membrane and the downregulation of some forms of endocytosis, which has been thought to slow the clearance of MHC II from the surface. The relative extent to which these or other mechanisms contribute to the regulation of surface MHC II remains unclear, however. Here we find that the MHC II beta-chain cytoplasmic tail is ubiquitinated in mouse immature dendritic cells. Although only partly required for the sequestration of MHC II in multivesicular bodies, this modification is essential for endocytosis. Notably, ubiquitination of MHC II ceased upon maturation, resulting in the accumulation of MHC II at the cell surface. Dendritic cells thus exhibit a unique ability to regulate MHC II surface expression by selectively controlling MHC II ubiquitination.
Collapse
Affiliation(s)
- Jeoung-Sook Shin
- Department of Cell Biology and Section of Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, PO Box 208002, New Haven, Connecticut 06520-8002, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lizée G, Basha G, Jefferies WA. Tails of wonder: endocytic-sorting motifs key for exogenous antigen presentation. Trends Immunol 2005; 26:141-9. [PMID: 15745856 DOI: 10.1016/j.it.2005.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen-presenting molecules, including MHC I, II and CD1, have central roles in the induction of T cell-mediated immunity against pathogens and tumors and also in the maintenance of tolerance towards self-antigens. The presentation of exogenously derived peptide and lipid antigens to specific T cells by professional antigen-presenting cells (pAPCs) is an essential part of both processes. Exogenous antigen loading takes place mostly within specialized endocytic and phagocytic compartments of pAPCs and targeting of antigen-presenting molecules to these intracellular compartments is mediated by highly conserved cytoplasmic sorting motifs. Recent data have revealed that the cytoplasmic tails of antigen-presenting molecules, by controlling the access of these molecules to exogenously derived antigens, have a crucially important and largely underappreciated role in the generation of tolerance and T-cell mediated immunity.
Collapse
Affiliation(s)
- Gregory Lizée
- Biomedical Research Centre, The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
26
|
Dissanayake SK, Tuera N, Ostrand-Rosenberg S. Presentation of Endogenously Synthesized MHC Class II-Restricted Epitopes by MHC Class II Cancer Vaccines Is Independent of Transporter Associated with Ag Processing and the Proteasome. THE JOURNAL OF IMMUNOLOGY 2005; 174:1811-9. [PMID: 15699107 DOI: 10.4049/jimmunol.174.4.1811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-based vaccines consisting of invariant chain-negative tumor cells transfected with syngeneic MHC class II (MHC II) and costimulatory molecule genes are prophylactic and therapeutic agents for the treatment of murine primary and metastatic cancers. Vaccine efficacy is due to direct presentation of endogenously synthesized, MHC II-restricted tumor peptides to CD4+ T cells. Because the vaccine cells lack invariant chain, we have hypothesized that, unlike professional APC, the peptide-binding groove of newly synthesized MHC II molecules may be accessible to peptides, allowing newly synthesized MHC II molecules to bind peptides that have been generated in the proteasome and transported into the endoplasmic reticulum via the TAP complex. To test this hypothesis, we have compared the Ag presentation activity of multiple clones of TAP-negative and TAP-positive tumor cells transfected with I-Ak genes and the model Ag hen egg white lysozyme targeted to the endoplasmic reticulum or cytoplasm. Absence of TAP does not diminish Ag presentation of three hen egg white lysozyme epitopes. Likewise, cells treated with proteasomal and autophagy inhibitors are as effective APC as untreated cells. In contrast, drugs that block endosome function significantly inhibit Ag presentation. Coculture experiments demonstrate that the vaccine cells do not release endogenously synthesized molecules that are subsequently endocytosed and processed in endosomal compartments. Collectively, these data indicate that vaccine cell presentation of MHC II-restricted endogenously synthesized epitopes occurs via a mechanism independent of the proteasome and TAP complex, and uses a pathway that overlaps with the classical endosomal pathway for presentation of exogenously synthesized molecules.
Collapse
Affiliation(s)
- Samudra K Dissanayake
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
27
|
Mimura Y, Golgher D, Mimura-Kimura Y, Dwek RA, Rudd PM, Elliott T. Immunogenicity of Calreticulin-Bound Murine Leukemia Virus Glycoprotein gp90. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 564:85-94. [PMID: 16400809 DOI: 10.1007/0-387-25515-x_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yusuke Mimura
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Sharma J, Bosnic AM, Piper JM, Zhong G. Human antibody responses to a Chlamydia-secreted protease factor. Infect Immun 2004; 72:7164-71. [PMID: 15557641 PMCID: PMC529132 DOI: 10.1128/iai.72.12.7164-7171.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified a chlamydia-secreted protein (designated chlamydial proteasome/protease-like activity factor, or CPAF) in the cytosol of chlamydia-infected cells. Although CPAF is known to degrade host transcription factors required for major histocompatibility complex antigen expression in cultured cells, it is not clear whether CPAF is produced and maintains similar functions in humans infected with chlamydial organisms. We now report that CPAF does not preexist in chlamydial organisms and that CPAF synthesis requires live organism replication in cultured cells. Mice inoculated with live, but not mice inoculated with dead, chlamydial organisms produced a strong antibody response to CPAF, correlating CPAF-specific antibody production with CPAF synthesis in animals. Sera from women diagnosed with Chlamydia trachomatis cervicitis displayed higher levels of antibodies to CPAF than to either chlamydial major outer membrane protein or heat shock protein 60, suggesting that CPAF is both produced and immunogenic during human chlamydial infection.
Collapse
Affiliation(s)
- Jyotika Sharma
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
30
|
Koonce CH, Bikoff EK. Dissecting MHC class II export, B cell maturation, and DM stability defects in invariant chain mutant mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:3271-80. [PMID: 15322189 DOI: 10.4049/jimmunol.173.5.3271] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invariant (Ii) chain loss causes defective class II export, B cell maturation, and reduced DM stability. In this study, we compare Ii chain and class II mutant mouse phenotypes to dissect these disturbances. The present results demonstrate that ER retention of alphabeta complexes, and not beta-chain aggregates, disrupts B cell development. In contrast, we fail to detect class II aggregates in Ii chain mutant thymi. Ii chain loss in NOD mice leads to defective class II export and formation of alphabeta aggregates, but in this background, downstream signals are misregulated and mature B cells develop normally. Finally, Ii chain mutant strains all display reduced levels of DM, but mice expressing either p31 or p41 alone, and class II single chain mutants, are indistinguishable from wild type. We conclude that Ii chain contributions as a DM chaperone are independent of its role during class II export. This Ii chain/DM partnership favors class II peptide loading via conventional pathway(s).
Collapse
Affiliation(s)
- Chad H Koonce
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
31
|
Sinnathamby G, Maric M, Cresswell P, Eisenlohr LC. Differential requirements for endosomal reduction in the presentation of two H2-E(d)-restricted epitopes from influenza hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2004; 172:6607-14. [PMID: 15153475 DOI: 10.4049/jimmunol.172.11.6607] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the role of reduction in the presentation of two H2-E(d)-restricted epitopes (site 1 epitope (S1) and site 3 epitope (S3)) occupying distinct domains of the influenza hemagglutinin major subunit that contains four intrachain disulfide bonds and is connected to the virion by one interchain bond. S3 is situated within the stalk region that unfolds in response to mild acidification, and loads onto recycling H2-E(d) in the early endosome, while S1, located in the structurally constrained globular domain, loads onto nascent H2-E(d) in the late endosome. Predicting dependence upon reduction for either epitope seemed plausible but the results from several approaches were clear: presentation of S1 but not S3 is reduction dependent. Surprisingly, IFN-gamma-inducible lysosomal thiol reductase (GILT), the only reductase thus far known to be involved in MHC class II-restricted processing, is not necessary for the generation of S1. However, GILT is necessary for presentation of either epitope when the virus is pretreated with a reducible cross-linker. The results suggest that unfolding of the Ag, perhaps a prerequisite for proteolytic processing in many cases, proceeds either spontaneously in the early endosome or via reduction in a later endosome. They further imply mechanisms for GILT-independent reduction in the late endosome, with GILT perhaps being reserved for more intractable Ags.
Collapse
Affiliation(s)
- Gomathinayagam Sinnathamby
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
32
|
Lawton AP, Kronenberg M. The Third Way: Progress on pathways of antigen processing and presentation by CD1. Immunol Cell Biol 2004; 82:295-306. [PMID: 15186261 DOI: 10.1111/j.0818-9641.2004.01258.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD1 proteins are a third family of antigen presenting molecules that bind bacterial and autologous lipid antigens for presentation to T cells. With the solution of the crystal structures of several complexes of CD1 molecules with lipids, a greater appreciation has been gained of the adaptability of CD1 in binding lipid antigens with diverse structural features. Biochemical studies of the interactions between the TCR and CD1-lipid complexes have revealed striking contrasts with TCR that bind to peptides presented by MHC-encoded class I and class II molecules. The sphingolipid activating proteins (SAP) have recently been found to facilitate the transfer of lipid antigens onto CD1 molecules. This helps to provide an explanation as to how the thermodynamic barrier, caused by loading hydrophobic lipid antigens in a hydrophilic environment, can be overcome. Mechanisms of CD1 endosomal trafficking are being delineated, including the means by which adaptor proteins induce the localization of some types of CD1 molecules to lysosomes, where they bind antigens. Unlike MHC class I and class II proteins, specialized molecules that function solely in chaperoning CD1 molecules, or in facilitating their antigen loading, have not been found. This suggests that the CD1 antigen presenting system, which diverged early in vertebrate evolution from MHC antigen presenting molecules, is a simpler system with a character closer to the primordial antigen presenting function.
Collapse
Affiliation(s)
- Anna P Lawton
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
33
|
Barabanova YA, Kang HK, Myoung J, Kang B, Bishop GA, Kim BS. Role of the major histocompatibility complex class II transmembrane region in antigen presentation and intracellular trafficking. Immunology 2004; 111:165-72. [PMID: 15027901 PMCID: PMC1782412 DOI: 10.1111/j.0019-2805.2003.01772.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While a sorting signal in the cytoplasmic tail of the major histocompatibility complex (MHC) class II molecules is known to influence their endocytic transport, potential effects of the transmembrane (TM) domain of the MHC class II molecules on endocytic transport remain unclear. We have examined the role of the TM domain by comparing antigen-presenting functions of the wildtype (WT) I-Ab and mutant (MT) I-Ab molecule substituted in the beta-chain TM with alpha chain TM. A20 cells transfected with WT I-Ab were able to present antigen (hen egg lysozyme) better to some hybridomas, while those transfected with MT I-Ab consistently outperformed WT for other hybridomas recognizing different epitopes. This difference in antigen processing and presentation is not caused by the differences in H-2M (DM) requirement or association with Ii. The time required for processing of specific epitopes appears to be different, suggesting sequential involvement of various endocytic compartments in the antigen processing. Although both WT and MT molecules were found in the early endocytic (transferrin receptor-rich) compartments, MT molecules accumulated in these compartments in higher quantities for longer time periods. Similarly, the MT molecule is retained for a longer time period than WT in late endocytic (LAMP-1 associated) compartments. Together, our data indicate an important role of the TM domain of the MHC class II molecules in the intracellular trafficking and, consequently, antigen processing and presentation.
Collapse
Affiliation(s)
- Yelena A Barabanova
- Department of Microbiology-Immunology, North-western University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
34
|
Pu Z, Lovitch SB, Bikoff EK, Unanue ER. T Cells Distinguish MHC-Peptide Complexes Formed in Separate Vesicles and Edited by H2-DM. Immunity 2004; 20:467-76. [PMID: 15084275 DOI: 10.1016/s1074-7613(04)00073-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/04/2004] [Accepted: 03/01/2004] [Indexed: 11/24/2022]
Abstract
The peptide spanning residues 48-61 of hen egg white lysozyme (HEL) presented by I-A(k) gives rise to two T cell populations, referred to as type A and B, that distinguish the complex generated intracellularly upon processing of HEL from that formed with exogenous peptide. Here, we ascribe this difference to recognition of distinct conformers of the complex and show that formation of the two complexes results from antigen processing in different intracellular compartments and is dependent upon H2-DM. While the type A complex preferentially formed in a lysosome-like late vesicle, the type B complex failed to form in this compartment; this distinction was abolished in antigen-presenting cells lacking DM. Experiments in vitro indicated that H2-DM acts directly on the complex to eliminate the type B conformation. We conclude that different antigen-processing pathways generate distinct MHC-peptide conformers, priming T cells with distinct specificity that may play unique roles in immunity.
Collapse
Affiliation(s)
- Zheng Pu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
35
|
Brooks K, Knight AM. Lowering the affinity between antigen and the B cell receptor can enhance antigen presentation. Eur J Immunol 2004; 34:837-843. [PMID: 14991613 DOI: 10.1002/eji.200324357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The B cell receptor (BCR) enables antigen-specific B cells to bind, internalize and target antigens for processing into small peptide fragments. These epitopes are then expressed on the plasma membrane in association with MHC class II molecules for recognition by CD4+ T cells. The affinity of the interaction between the BCR and antigen plays an important part in determining T cell epitope generation. In this report we provide evidence that the efficiency of antigen presentation by specific B cells does not need to be directly proportional to antigen/BCR affinity. We show that increased presentation can result from lowering the affinity of the antigen/BCR interaction. This finding suggests a novel mechanism by which B cells can recruit T cell help and obtain survival signals. Activation of these cells may have consequences for the generation of the B cell repertoire.
Collapse
Affiliation(s)
- Katie Brooks
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, GB
| | - Andrew M Knight
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, GB
| |
Collapse
|
36
|
Dolan BP, Phelan TP, Ilkovitch D, Qi L, Wade WF, Laufer TM, Ostrand-Rosenberg S. Invariant Chain and the MHC Class II Cytoplasmic Domains Regulate Localization of MHC Class II Molecules to Lipid Rafts in Tumor Cell-Based Vaccines. THE JOURNAL OF IMMUNOLOGY 2004; 172:907-14. [PMID: 14707062 DOI: 10.4049/jimmunol.172.2.907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigen Presentation/genetics
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/metabolism
- Cell Line, Tumor
- Cytoplasm/genetics
- Cytoplasm/immunology
- Cytoplasm/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Lymphoma, B-Cell/immunology
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Sarcoma/immunology
- Sequence Deletion
- Transfection
Collapse
Affiliation(s)
- Brian P Dolan
- Department of Biological Sciences, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Lovitch SB, Petzold SJ, Unanue ER. Cutting edge: H-2DM is responsible for the large differences in presentation among peptides selected by I-Ak during antigen processing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2183-6. [PMID: 12928360 DOI: 10.4049/jimmunol.171.5.2183] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We quantitated the amounts of peptides from hen egg-white lysozyme presented by I-A(k) molecules in APC lines. The large chemical gradient of presentation of the four hen egg-white lysozyme epitopes observed in cell lines expressing HLA-DM or H-2DM (referred to in this study as DM) was significantly diminished in the T2.A(k) line lacking DM. Differences in levels of presentation between wild-type and DM-deficient APC were observed for all four epitopes, but differences were most evident for the highest affinity epitope. As a result of these quantitative differences in display, presentation of all four epitopes to T cells was impaired in the line lacking DM. The binding affinity of the pool of naturally processed peptides from DM-expressing lines was higher than that from the DM-deficient line. Thus, using a direct biochemical approach in APC, we demonstrate that DM influences the selection of peptides bound to MHC class II by favoring high affinity peptides.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
38
|
Lich JD, Jayne JA, Zhou D, Elliott JF, Blum JS. Editing of an immunodominant epitope of glutamate decarboxylase by HLA-DM. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:853-9. [PMID: 12847254 DOI: 10.4049/jimmunol.171.2.853] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DM stabilizes peptide-receptive class II alphabeta dimers and facilitates the capture of high affinity peptides, thus influencing the peptide repertoire presented by class II molecules. Variations in DM levels may therefore have a profound effect on the antigenic focus of T cell-mediated immune responses. Specifically, DM expression may influence susceptibility and resistance to autoimmune diseases. In this study the role of DM in HLA-DR4-restricted presentation of an insulin-dependent diabetes mellitus autoantigen, glutamate decarboxylase (GAD), was tested. Presentation of immunodominant GAD epitope 273-285 was regulated by endogenous DM levels in human B lymphoblasts. T cell responses to exogenous GAD as well as an endogenous cytoplasmic form of this Ag were significantly diminished with increasing cellular expression of DM. Epitope editing by DM was observed only using Ag and not small synthetic peptides, suggesting that this process occurred within endosomes. Results with cytoplasmic GAD also indicated that peptides from this compartment intersect class II proteins in endocytic vesicles where DM editing was facilitated. Changes in DM levels within APC may therefore influence the presentation of autoantigens and the development of autoimmune disorders such as type I diabetes.
Collapse
Affiliation(s)
- John D Lich
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
39
|
Clark MR, Massenburg D, Zhang M, Siemasko K. Molecular mechanisms of B cell antigen receptor trafficking. Ann N Y Acad Sci 2003; 987:26-37. [PMID: 12727621 DOI: 10.1111/j.1749-6632.2003.tb06030.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
B lymphocytes are among the most efficient cells of the immune system in capturing, processing, and presenting MHC class II restricted peptides to T cells. Antigen capture is essentially restricted by the specificity of the clonotypic antigen receptor expressed on each B lymphocyte. However, receptor recognition is only one factor determining whether an antigen is processed and presented. The context of antigen encounter is crucial. In particular, polyvalent arrays of repetitive epitopes, indicative of infection, accelerate the delivery of antigen to specialized processing compartments, and up-regulate the surface expression of MHC class II and co-stimulatory molecules such as B7. Recent studies have demonstrated that receptor-mediated signaling and receptor-facilitated peptide presentation to T cells are intimately related. For example, rapid sorting of endocytosed receptor complexes through early endosomes requires the activation of the tyrosine Syk. This proximal kinase initiates all BCR-dependent signaling pathways. Subsequent entry into the antigen-processing compartment requires the tyrosine phosphorylation of the BCR constituent Igalpha and direct recruitment of the linker protein BLNK. Signals from the BCR also regulate the biophysical and biochemical properties of the targeted antigen-processing compartments. These observations indicate that the activation and recruitment of signaling molecules by the BCR orchestrate a complex series of cellular responses that favor the presentation of even rare or low-affinity antigens if encountered in contexts indicative of infection. The requirement for BCR signaling provides possible mechanisms by which cognate B:T cell interactions can be controlled by the milieu in which antigen engagement occurs.
Collapse
Affiliation(s)
- Marcus R Clark
- University of Chicago, Section of Rheumatology, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
40
|
Sinnathamby G, Eisenlohr LC. Presentation by recycling MHC class II molecules of an influenza hemagglutinin-derived epitope that is revealed in the early endosome by acidification. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3504-13. [PMID: 12646611 DOI: 10.4049/jimmunol.170.7.3504] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the roles of nascent and recycling MHC class II molecules (MHC II) in the presentation of two well-defined I-E(d)-restricted epitopes that are within distinct regions of the influenza virus hemagglutinin (HA) protein. The site 3 epitope (S3; residues 302-313) lies in the stalk region that unfolds in response to mild acidification, while the site 1 epitope (S1; residues 107-119) is situated in the stable globular domain. In a murine B lymphoma cell line and an I-E(d)-transfected fibroblast cell line, presentation from inactivated virus of S3 is inhibited by primaquine, a compound that prevents recycling of cell surface proteins, including MHC II, while S1 presentation is unaffected. In contrast, brefeldin A, an agent that inhibits exit of proteins from the endoplasmic reticulum, selectively inhibited S1 presentation without affecting S3 presentation, suggesting that S1 presentation requires nascent MHC II. The use of agents that perturb endosomal function revealed a requirement for acidification of internalized viral particles for presentation of both epitopes. Notably, all compounds tested had similar effects on presentation of the two epitopes derived from endogenously synthesized HA. Thus, recycling I-E(d) molecules appear to be crucial for capturing and presenting an epitope that is revealed in mild acidic conditions following the uptake of virions or the synthesis of Ag, while nascent I-E(d) molecules are required for presentation of a second epitope located in a structurally constrained region of the same polypeptide. Viral glycoproteins, such as HA, may have been a major impetus for the evolutionary establishment of this recycling pathway.
Collapse
Affiliation(s)
- Gomathinayagam Sinnathamby
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | |
Collapse
|
41
|
Abstract
Each of the human CD1 proteins takes a different route through secretory and endocytic compartments before finally arriving at the cell surface, where these proteins present glycolipid antigens to T cells. Recent studies have shown that adaptor-protein complexes and CD1-associated chaperones control not only CD1 trafficking, but also the development and activation of CD1-restricted T cells. This indicates that CD1 proteins, similar to MHC class I and II molecules, selectively acquire certain antigens in distinct cellular subcompartments. Here, we summarize evidence supporting the hypothesis that CD1 proteins use separate, but parallel, pathways to survey endosomal compartments differentially for lipid antigens.
Collapse
Affiliation(s)
- D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
42
|
Lunde E, Western KH, Rasmussen IB, Sandlie I, Bogen B. Efficient delivery of T cell epitopes to APC by use of MHC class II-specific Troybodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2154-62. [PMID: 11859101 DOI: 10.4049/jimmunol.168.5.2154] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A major objective in vaccine development is the design of reagents that give strong, specific T cell responses. We have constructed a series of rAb with specificity for MHC class II (I-E). Each has one of four different class II-restricted T cell epitopes genetically introduced into the first C domain of the H chain. These four epitopes are: 91-101 lambda2(315), which is presented by I-E(d); 110-120 hemagglutinin (I-E(d)); 323-339 OVA (I-A(d)); and 46-61 hen egg lysozyme (I-A(k)). We denote such APC-specific, epitope-containing Ab "Troybodies." When mixed with APC, all four class II-specific Troybodies were approximately 1,000 times more efficient at inducing specific T cell activation in vitro compared with nontargeting peptide Ab. Furthermore, they were 1,000-10,000 times more efficient than synthetic peptide or native protein. Conventional intracellular processing of the Troybodies was required to load the epitopes onto MHC class II. Different types of professional APC, such as purified B cells, dendritic cells, and macrophages, were equally efficient at processing and presenting the Troybodies. In vivo, class II-specific Troybodies were at least 100 times more efficient at targeting APC and activating TCR-transgenic T cells than were the nontargeting peptide Ab. Furthermore, they were 100-100,000 times more efficient than synthetic peptide or native protein. The study shows that class II-specific Troybodies can deliver a variety of T cell epitopes to professional APC for efficient presentation, in vitro as well as in vivo. Thus, Troybodies may be useful as tools in vaccine development.
Collapse
Affiliation(s)
- Elin Lunde
- Institute of Immunology, University of Oslo, National Hospital, P.O. Box 1050 Blindern, N-0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
43
|
Bertram EM, Hawley RG, Watts TH. Overexpression of rab7 enhances the kinetics of antigen processing and presentation with MHC class II molecules in B cells. Int Immunol 2002; 14:309-18. [PMID: 11867567 DOI: 10.1093/intimm/14.3.309] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
rab7 is an intracellular GTPase involved in early to late endosome fusion. By overexpressing rab7 in a B lymphoma we show that the rate of antigen presentation with MHC class II molecules is increased for four different peptide-MHC combinations, under conditions where levels of other components of the antigen-processing pathway remained constant. Resting B cells were shown to express significantly lower levels of rab7 when compared to adherent macrophages or to 'immature' or 'mature' dendritic cells. rab7 expression was up-regulated by stimulation of B cells with lipopolysaccharide or CD40 ligand. Other components of the endocytic pathway were also up-regulated in activated B cells, suggesting that B cell activation leads to a general enlargement of the endocytic compartment, correlating with the increased ability of activated B cells to process antigen. Taken together, our results suggest that rab7 levels regulate the rate of antigen presentation in B cells, and that rab7 and late endocytic compartments are important in MHC class II-restricted antigen presentation in B cells.
Collapse
Affiliation(s)
- Edward M Bertram
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
44
|
Abstract
Processing exogenous and endogenous proteins for presentation by major histocompatibility complex (MHC) molecules to T cells is the defining function of antigen-presenting cells (APC) as major regulatory cells in the acquired immune response. MHC class II-restricted antigen presentation to CD4 T cells is achieved by an essentially common pathway that is subject to variation with regard to the location and extent of degradation of protein antigens and the site of peptide binding to MHC class II molecules. These subtle variations reveal a surprising flexibility in the ways a diverse peptide repertoire is displayed on the APC surface. This diversity may have profound consequences for the induction of immunity to infection and tumours, as well as autoimmunity and tolerance.
Collapse
Affiliation(s)
- John H Robinson
- Department of Microbiology and Immunology, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | |
Collapse
|
45
|
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, Hamilton, Montana 59840, USA
| |
Collapse
|
46
|
Abstract
Newly synthesized major histocompatibility complex class II needs to be directed to late endocytic compartments to combine with peptide antigens. Efficient transport requires complexes of major histocompatibility complex class II and invariant chain (alphabetaIi). Since such complexes have been detected on the plasma membrane in human cells, this compartment was proposed as the primary destination for alphabetaIi exiting the trans-Golgi network. Here, I have used density gradient electrophoresis and selective biotinylation to investigate the trafficking route of alphabetaIi quantitatively. Density gradient electrophoresis analysis showed that alphabetaIi was transported from the trans-Golgi network to endosomes at approximately 1.7% min-1. Surface delivery of alphabetaIi was delayed relative to endosome transport by approximately 10 min and showed slower kinetics ( approximately 0.4% min-1), suggesting that alphabetaIi reached the plasma membrane only after arrival in endosomes. A biotinylation assay revealed that 20-40% of endosomal alphabetaIi was delivered to the plasma membrane at steady state, suggesting that surface alphabetaIi was entirely derived from endosomes. Surface alphabetaIi was rapidly re-internalized and either returned to the cell surface or accessed degradative compartments. Peptide loading commenced approximately 30 min after delivery to endosomes. Thus alphabetaIi directly traffics from trans-Golgi network to endosomes and enters an endosome-plasma membrane 'carousel' until transport to peptide-loading compartments ensues.
Collapse
Affiliation(s)
- Robert Lindner
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
47
|
Abstract
Antigen presenting cells (APCs) alert the immune system to attack by extracellular organisms; APCs achieve this via internalization, degradation, and display of antigenic fragments on the cell surface by MHC class II molecules. These class II molecules bind to an accessory protein, termed the invariant chain, that ensures proper folding of the molecules. Invariant-chain binding also directs class II molecules to lysosomes, which are probably the most important sites for antigen loading. Endosomes are intermediates in the transport of class-II-invariant chain complexes to antigen-processing compartments, whereas trafficking of class II-peptide complexes to the membrane (and beyond) is less-well understood. Unlike other APCs, dendritic cells alter their capacity to present peptides via MHC class II molecules during differentiation, revealing a complex level of regulated antigen-presentation by this APC subtype.
Collapse
Affiliation(s)
- Elizabeth M Hiltbold
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
48
|
Stumptner-Cuvelette P, Benaroch P. Multiple roles of the invariant chain in MHC class II function. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:1-13. [PMID: 11853874 DOI: 10.1016/s0167-4889(01)00166-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Bryant PW, Lennon-Duménil AM, Fiebiger E, Lagaudrière-Gesbert C, Ploegh HL. Proteolysis and antigen presentation by MHC class II molecules. Adv Immunol 2002; 80:71-114. [PMID: 12078484 PMCID: PMC7130937 DOI: 10.1016/s0065-2776(02)80013-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteolysis is the primary mechanism used by all cells not only to dispose of unwanted proteins but also to regulate protein function and maintain cellular homeostasis. Proteases that reside in the endocytic pathway are the principal actors of terminal protein degradation. The proteases contained in the endocytic pathway are classified into four major groups based on the active-site amino acid used by the enzyme to hydrolyze amide bonds of proteins: cysteine, aspartyl, serine, and metalloproteases. The presentation of peptide antigens by major histocompatibility complex (MHC) class II molecules is strictly dependent on the action of proteases. Class II molecules scour the endocytic pathway for antigenic peptides to bind and present at the cell surface for recognition by CD4+ T cells. The specialized cell types that support antigen presentation by class II molecules are commonly referred to as professional antigen presenting cells (APCs), which include bone marrow-derived B lymphocytes, dendritic cells (DCs), and macrophages. In addition, the expression of certain endocytic proteases is regulated either at the level of gene transcription or enzyme maturation and their activity is controlled by the presence of endogenous protease inhibitors.
Collapse
Affiliation(s)
- Paula Wolf Bryant
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
50
|
Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A. CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 2001; 15:897-908. [PMID: 11754812 DOI: 10.1016/s1074-7613(01)00240-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endosomal trafficking is an essential component of the CD1 pathway of lipid antigen presentation to T cells. We demonstrate that CD1d access to endosomal compartments is under dual regulation by an intrinsic tyrosine-based motif, which governs intense recycling between the plasma membrane and the endosome, and by the invariant chain, with which CD1d associates in the endoplasmic reticulum. Both pathways independently enhance antigen presentation to V(alpha)14(+) NKT cells, the main subset of CD1d-restricted T cells. These results reveal the complexity of CD1d trafficking and suggest that the invariant chain was a component of ancestral antigen presentation pathways prior to the evolution of MHC and CD1.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigen Presentation/physiology
- Antigens, CD1/chemistry
- Antigens, CD1/genetics
- Antigens, CD1/metabolism
- Antigens, CD1d
- Antigens, Differentiation, B-Lymphocyte/physiology
- Antigens, Surface/metabolism
- B-Lymphocytes/metabolism
- Biotinylation
- Cell Membrane/metabolism
- Cells, Cultured/metabolism
- Dendritic Cells/metabolism
- Endoplasmic Reticulum/metabolism
- Endosomes/metabolism
- Evolution, Molecular
- Fibroblasts/metabolism
- Glycosylation
- Histocompatibility Antigens Class II/physiology
- Hybridomas/metabolism
- Kinetics
- Lymphoma, B-Cell/pathology
- Lysosomes/metabolism
- Mice
- Microscopy, Fluorescence
- Protein Binding
- Protein Processing, Post-Translational
- Protein Transport
- Recombinant Fusion Proteins/metabolism
- Subcellular Fractions/metabolism
- Transfection
- Tumor Cells, Cultured/metabolism
- Tyrosine/chemistry
Collapse
Affiliation(s)
- J Jayawardena-Wolf
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|