1
|
Ruiz-Cantero MC, Entrena JM, Artacho-Cordón A, Huerta MÁ, Portillo-Salido E, Nieto FR, Baeyens JM, Costigan M, González-Cano R, Cobos EJ. Sigma-1 Receptors Control Neuropathic Pain and Peripheral Neuroinflammation After Nerve Injury in Female Mice: A Transcriptomic Study. J Neuroimmune Pharmacol 2024; 19:46. [PMID: 39162886 DOI: 10.1007/s11481-024-10144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The mechanisms for neuropathic pain amelioration by sigma-1 receptor inhibition are not fully understood. We studied genome-wide transcriptomic changes (RNAseq) in the dorsal root ganglia (DRG) from wild-type and sigma-1 receptor knockout mice prior to and following Spared Nerve Injury (SNI). In wildtype mice, most of the transcriptomic changes following SNI are related to the immune function or neurotransmission. Immune function transcripts contain cytokines and markers for immune cells, including macrophages/monocytes and CD4 + T cells. Many of these immune transcripts were attenuated by sigma-1 knockout in response to SNI. Consistent with this we found, using flow cytometry, that sigma-1 knockout mice showed a reduction in macrophage/monocyte recruitment as well as an absence of CD4 + T cell recruitment in the DRG after nerve injury. Sigma-1 knockout mice showed a reduction of neuropathic (mechanical and cold) allodynia and spontaneous pain-like responses (licking of the injured paw) which accompany the decreased peripheral neuroinflammatory response after nerve injury. Treatment with maraviroc (a CCR5 antagonist which preferentially inhibits CD4 + T cells in the periphery) of neuropathic wild-type mice only partially replicated the sigma-1 knockout phenotype, as it did not alter cold allodynia but attenuated spontaneous pain-like responses and mechanical hypersensitivity. Therefore, modulation of peripheral CD4 + T cell activity might contribute to the amelioration of spontaneous pain and neuropathic tactile allodynia seen in the sigma-1 receptor knockout mice, but not to the effect on cold allodynia. We conclude that sigma-1 receptor inhibition decreases DRG neuroinflammation which might partially explain its anti-neuropathic effect.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - José M Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, Parque Tecnológico de Ciencias de la Salud, University of Granada, Armilla, Granada, 18100, Spain
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Enrique Portillo-Salido
- Faculty of Health Sciences, International University of La Rioja (UNIR), Logroño, La Rioja, 26004, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Michael Costigan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anaesthesia, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain.
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain.
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain.
- Teófilo Hernando Institute for Drug Discovery, Madrid, 28029, Spain.
| |
Collapse
|
2
|
Yang Y, Liu L, Tucker HO. The malignant transformation potential of the oncogene STYK1/NOK at early lymphocyte development in transgenic mice. Biochem Biophys Rep 2024; 38:101709. [PMID: 38638675 PMCID: PMC11024497 DOI: 10.1016/j.bbrep.2024.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
B-cell Chronic Lymphocytic Leukemia (B-CLL) is a malignancy caused by the clonal expansion of mature B lymphocytes bearing a CD5+CD19+ (B1) phenotype. However, the origin of B-CLL remains controversial. We showed previously that STYK1/NOK transgenic mice develop a CLL-like disease. Using this model system in this study, we attempt to define the stage of CLL initiation. Here, we show that the phenotype of STYK1/NOK-induced B-CLL is heterogeneous. The expanded B1 lymphocyte pool was detected within peripheral lymphoid organs and was frequently associated with the expansions of memory B cells. Despite this immunophenotypic heterogeneity, suppression of B cell development at an early stage consistently occurred within the bone marrow (BM) of STYK1/NOK-tg mice. Overall, we suggest that enforced expression of STYK1/NOK in transgenic mice might significantly predispose BM hematopoietic stem cells (HSCs) towards the development of B-CLL.
Collapse
Affiliation(s)
- Yin Yang
- Department of Pathogen Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Li Liu
- Department of Pathogen Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Haley O. Tucker
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Liu D, Xu C, Liu Y, Ouyang W, Lin S, Xu A, Zhang Y, Xie Y, Huang Q, Zhao W, Chen Z, Wang L, Chen S, Huang J, Wu ZB, Sun X. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front Med 2023; 17:458-475. [PMID: 36928550 DOI: 10.1007/s11684-022-0968-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 03/18/2023]
Abstract
The Ly-6 and uPAR (LU) domain-containing proteins represent a large family of cell-surface markers. In particular, mouse Ly-6A/Sca-1 is a widely used marker for various stem cells; however, its human ortholog is missing. In this study, based on a systematic survey and comparative genomic study of mouse and human LU domain-containing proteins, we identified a previously unannotated human gene encoding the candidate ortholog of mouse Ly-6A/Sca-1. This gene, hereby named LY6A, reversely overlaps with a lncRNA gene in the majority of exonic sequences. We found that LY6A is aberrantly expressed in pituitary tumors, but not in normal pituitary tissues, and may contribute to tumorigenesis. Similar to mouse Ly-6A/Sca-1, human LY6A is also upregulated by interferon, suggesting a conserved transcriptional regulatory mechanism between humans and mice. We cloned the full-length LY6A cDNA, whose encoded protein sequence, domain architecture, and exon-intron structures are all well conserved with mouse Ly-6A/Sca-1. Ectopic expression of the LY6A protein in cells demonstrates that it acts the same as mouse Ly-6A/Sca-1 in their processing and glycosylphosphatidylinositol anchoring to the cell membrane. Collectively, these studies unveil a novel human gene encoding a candidate biomarker and provide an interesting model gene for studying gene regulatory and evolutionary mechanisms.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aining Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Biomedical Big Data Center, First Affiliated Hospital, Zhejiang University School of Medicine, and Cancer Center, Zhejiang University, Hangzhou, 310000, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Rathbun LA, Magliocco AM, Bamezai AK. Human LY6 gene family: potential tumor-associated antigens and biomarkers of prognosis in uterine corpus endometrial carcinoma. Oncotarget 2023; 14:426-437. [PMID: 37141412 PMCID: PMC10159366 DOI: 10.18632/oncotarget.28409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The human Lymphocyte antigen-6 (LY6) gene family has recently gained interest for its possible role in tumor progression. We have carried out in silico analyses of all known LY6 gene expression and amplification in different cancers using TNMplot and cBioportal. We also have analyzed patient survival by Kaplan-Meier plotter after mining the TCGA database. We report that upregulated expression of many LY6 genes is associated with poor survival in uterine corpus endometrial carcinoma (UCEC) cancer patients. Importantly, the expression of several LY6 genes is elevated in UCEC when compared to the expression in normal uterine tissue. For example, LY6K expression is 8.25× higher in UCEC compared to normal uterine tissue, and this high expression is associated with poor survival with a hazard ratio of 2.42 (p-value = 0.0032). Therefore, some LY6 gene products may serve as tumor-associated antigens in UCEC, biomarkers for UCEC detection, and possibly targets for directing UCEC patient therapy. Further analysis of tumor-specific expression of LY6 gene family members and LY6-triggered signaling pathways is needed to uncover the function of LY6 proteins and their ability to endow tumor survival and poor prognosis in UCEC patients.
Collapse
Affiliation(s)
- Luke A Rathbun
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Anil K Bamezai
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
5
|
Patel AG, Moxham S, Bamezai AK. Ly-6A-Induced Growth Inhibition and Cell Death in a Transformed CD4 + T Cell Line: Role of Tumor Necrosis Factor-α. Arch Immunol Ther Exp (Warsz) 2023; 71:4. [PMID: 36725744 DOI: 10.1007/s00005-023-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023]
Abstract
Ly-6A, a member of the Ly-6/uPAR supergene family of proteins, is a cell adhesion and cell signaling protein. Signaling through Ly-6A activates the cell-intrinsic apoptotic cell death pathway in CD4+ T cell lines, as indicated by the release of cytochrome C, and activation of caspases 9 and 3. In addition, Ly-6A induces cytokine production and growth inhibition. The mechanism underlying the distinct cellular responses that are triggered by engaging Ly-6A protein has remained unknown. To examine the relatedness of these distinct responses, we have quantified the production of pro-apoptotic, growth inhibitory and tumor suppressive cytokines, such as TNF-α, TGF-β and a related protein GDF-10, in response to Ly-6A signaling. Anti-Ly-6A monoclonal antibody-induced activation of YH16.33 CD4+ T cell line generated low levels of TGF-β and GDF-10 but elevated levels of TNF-α. Blocking the biological activity of TNF-α resulted in reduced Ly-6A-induced apoptosis in T cells. The Ly-6A-induced response in the T cell line was distinct, as signaling through the antigen receptor complex did not cause growth inhibition and apoptosis despite high levels of TGF-β and GDF-10 that were detected in these cultures. Additionally, in response to antigen receptor complex signaling, lower amount of TNF-α was detected. These results indicate the contribution of TNF-α in the observed Ly-6A-induced growth inhibition and apoptosis and provide a mechanistic explanation for the biologically distinct responses observed in CD4+ T cells after engaging Ly-6A protein. Additionally, the findings reported here will aid in the understanding of inhibitory signaling initiated by Ly-6A protein, especially in the context of its potential immune checkpoint inhibitory role in T cells.
Collapse
Affiliation(s)
- Akshay G Patel
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sarah Moxham
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Anil K Bamezai
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
6
|
Bamezai AK, Miwa JM. Editorial: Biology of Ly-6 Supergene Family in Health and Disease. Front Cell Dev Biol 2022; 10:949379. [PMID: 35813207 PMCID: PMC9260681 DOI: 10.3389/fcell.2022.949379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
|
7
|
Akter S, Chauhan KS, Dunlap MD, Choreño-Parra JA, Lu L, Esaulova E, Zúñiga J, Artyomov MN, Kaushal D, Khader SA. Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Rep 2022; 39:110983. [PMID: 35732116 PMCID: PMC9616001 DOI: 10.1016/j.celrep.2022.110983] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects 25% of the world's population and causes tuberculosis (TB), which is a leading cause of death globally. A clear understanding of the dynamics of immune response at the cellular level is crucial to design better strategies to control TB. We use the single-cell RNA sequencing approach on lung lymphocytes derived from healthy and Mtb-infected mice. Our results show the enrichment of the type I IFN signature among the lymphoid cell clusters, as well as heat shock responses in natural killer (NK) cells from Mtb-infected mice lungs. We identify Ly6A as a lymphoid cell activation marker and validate its upregulation in activated lymphoid cells following infection. The cross-analysis of the type I IFN signature in human TB-infected peripheral blood samples further validates our results. These findings contribute toward understanding and characterizing the transcriptional parameters at a single-cell depth in a highly relevant and reproducible mouse model of TB.
Collapse
Affiliation(s)
- Sadia Akter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,These authors contributed equally
| | - Kuldeep S. Chauhan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,These authors contributed equally
| | - Micah D. Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José Alberto Choreño-Parra
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City 14080, Mexico,Laboratorio de Inmunoquímica I, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Lan Lu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joaquin Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City 14080, Mexico,Laboratorio de Inmunoquímica I, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact,Correspondence: (D.K.), (S.A.K.) https://doi.org/10.1016/j.celrep.2022.110983
| |
Collapse
|
8
|
Jatho A, Zieseniss A, Brechtel-Curth K, Guo J, Böker KO, Salinas G, Wenger RH, Katschinski DM. The HIFα-Stabilizing Drug Roxadustat Increases the Number of Renal Epo-Producing Sca-1 + Cells. Cells 2022; 11:cells11040753. [PMID: 35203399 PMCID: PMC8869801 DOI: 10.3390/cells11040753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Inhibition of the prolyl-4-hydroxylase domain (PHD) enzymes, leading to the stabilization of hypoxia-inducible factor (HIF) α as well as to the stimulation of erythropoietin (Epo) synthesis, is the functional mechanism of the new anti-anemia drug roxadustat. Little is known about the effects of roxadustat on the Epo-producing cell pool. To gain further insights into the function of PHD inhibitors, we characterized the abundance of mesenchymal stem cell (MSC)-like cells after roxadustat treatment of mice. The number of Sca-1+ mesenchymal cells following roxadustat treatment increased exclusively in the kidneys. Isolated Sca-1+ cells demonstrated typical features of MSC-like cells, including adherence to tissue culture plates, trilineage differentiation potential, and expression of MSC markers. Kidney-derived Sca-1+ MSC-like cells were cultured for up to 21 days. Within the first few days in culture, cells stabilized HIF-1α and HIF-2α and temporarily increased Epo production upon incubation in hypoxia. In summary, we have identified a Sca-1+ MSC-like cell population that is involved in renal Epo production and might contribute to the strong anti-anemic effect of the PHD inhibitor roxadustat.
Collapse
Affiliation(s)
- Aline Jatho
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
- Correspondence: (A.J.); (D.M.K.)
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Katja Brechtel-Curth
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Jia Guo
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Kai Oliver Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Goettingen, Germany;
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany;
| | - Roland H. Wenger
- National Centre of Competence in Research “Kidney.CH”, 8057 Zurich, Switzerland;
- Institute of Physiology, University of Zürich, 8057 Zurich, Switzerland
| | - Dörthe M. Katschinski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
- Correspondence: (A.J.); (D.M.K.)
| |
Collapse
|
9
|
Du X, Gu H, Sun Y, Hu Y. Ly-6D of Japanese flounder (Paralichthys olivaceus) functions as a complement regulator and promotes host clearance of pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104104. [PMID: 33891970 DOI: 10.1016/j.dci.2021.104104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The Lymphocyte antigen-6 (Ly-6) superfamily has been considered to play an important role in the innate immunity of mammals. The functions of Ly-6 proteins are diverse since their low sequence homology. Currently, the function of Ly-6D, a member of Ly-6 family proteins, is completely unknown in teleost. In the present study, we identified and characterized a Ly-6D homologue (named PoLy-6D) from the teleost fish Paralichthys olivaceus and examined its immune function. PoLy-6D possesses a hydrophobic signal peptide, a LU domain including a conserved "LXCXXC" motif in N-terminus and a "CCXXXXCN" motif in C-terminus. Under normal physiological condition, PoLy-6D expression distributes in all the examined tissues, the highest three tissues are successively spleen, head kidney, and blood. When infected by extracellular and intracellular bacterial pathogens and viral pathogen, PoLy-6D expression was induced and the patterns vary with different types of microbial pathogens infection and different immune tissues. In vitro experiment showed recombinant PoLy-6D (rPoLy-6D) inhibited the lysis of rabbit red blood cells by serum and selectively improved bacterial survival in serum. After serum were treated by antibody of rPoLy-6D, bacteriostatic effect of serum was obviously enhanced. These results indicate the importance of PoLy-6D as a complement regulator. rPoLy-6D possessed the binding activity to multiple bacteria but did not exhibit antimicrobial activities. The interaction between rPoLy-6D and bacteria suggests that PoLy-6D is involved in host clearance of pathogens probably by serving as a receptor for pathogens. Overexpression of PoLy-6D in vivo promoted the host defense against invading E. piscicida. These findings add new insights into the regulation mechanism of the complement system in teleost and emphasize the importance of Ly-6D products for the control of pathogen infection.
Collapse
Affiliation(s)
- Xiangyu Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China.
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
10
|
Ferrell KC, Stewart EL, Counoupas C, Ashhurst TM, Britton WJ, Petrovsky N, Triccas JA. Intrapulmonary vaccination with delta-inulin adjuvant stimulates non-polarised chemotactic signalling and diverse cellular interaction. Mucosal Immunol 2021; 14:762-773. [PMID: 33542494 PMCID: PMC7859722 DOI: 10.1038/s41385-021-00379-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 02/04/2023]
Abstract
There is an urgent need for novel vaccination strategies to combat respiratory pathogens. Mucosal vaccine delivery is an attractive option as it directly targets the site of infection; however, preclinical development has been hindered by a lack of suitable mucosal adjuvants and a limited understanding of their immune effects in the lung environment. Herein, we define the early immune events following the intrapulmonary delivery of a vaccine incorporating the adjuvant delta-inulin. Analysis of the early inflammatory response showed vaccine-induced innate cell recruitment to lungs and local lymph nodes (LN) was transient and non-polarised, correlating with an increase in pulmonary chemotactic factors. Use of fluorescently labelled adjuvant revealed widespread tissue dissemination of adjuvant particles, coupled with broad cellular uptake and transit to the lung-draining LN by a range of innate immune cells. Mass cytometric analysis revealed extensive phenotypic changes in innate and adaptive cell subsets induced by vaccination; this included identification of unconventional lymphocytes such as γδ-T cells and MAIT cells that increased following vaccination and displayed an activated phenotype. This study details a comprehensive view of the immune response to intrapulmonary adjuvant administration and provides pre-clinical evidence to support delta-inulin as a suitable adjuvant for pulmonary vaccines.
Collapse
Affiliation(s)
- Kia C Ferrell
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Erica L Stewart
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - Claudio Counoupas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Centenary Institute and The University of Sydney, Camperdown, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J Britton
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - James A Triccas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
11
|
Christensen R, Gunnarsson AP, Jensen UB. The role of stem cell antigen-1/Lymphocyte antigen 6A-2/6E-1 knock out in murine epidermis. Stem Cell Res 2020; 49:102047. [PMID: 33157392 DOI: 10.1016/j.scr.2020.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022] Open
Abstract
Stem Cell Antigen-1 (SCA-1) is a central positive marker for isolating stem cells in several tissues in the mouse. However, for the epidermis, this appears to be the opposite since lack of SCA-1 has been shown to identify keratinocyte populations with progenitor characteristics. This study investigates the effect of SCA-1 knockout in murine keratinocytes. We compared Sca-1EGFP/EGFP knockout and wildtype mice with respect to the three-dimensional morphology of the epidermis, performed functional assays, and generated gene expression profiles on FACS sorted cells. There were no morphological abnormalities on skin, fur, or hair follicles in transgenic knockout mice compared to wild type mice. SCA-1 knockout keratinocytes showed significantly reduced colony-forming efficiency, colony size and proliferation rate in vitro, however, SCA-1 knockout did not alter wound healing efficiency or keratinocyte proliferation rate in vivo. Moreover, gene expression profiling shows that the effect from knockout of SCA-1 in keratinocytes is dissimilar from what has been observed in other tissues. Additionally, tumor assay indicated that SCA-1 knockout decreases the number of formed papillomas. The results indicate a more complex role for SCA-1, which might differ between epidermal keratinocytes during homeostasis and activated conditions.
Collapse
Affiliation(s)
- Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgaardsvej 21C, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark.
| | - Anders Patrik Gunnarsson
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgaardsvej 21C, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark.
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgaardsvej 21C, 8200 Aarhus N, Denmark.
| |
Collapse
|
12
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Vagnozzi RJ, Sargent MA, Lin SCJ, Palpant NJ, Murry CE, Molkentin JD. Genetic Lineage Tracing of Sca-1 + Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation 2019; 138:2931-2939. [PMID: 29991486 DOI: 10.1161/circulationaha.118.035210] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.
Collapse
Affiliation(s)
- Ronald J Vagnozzi
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Michelle A Sargent
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Suh-Chin J Lin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia (N.J.P.)
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle (C.E.M.)
| | - Jeffery D Molkentin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH.,Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| |
Collapse
|
14
|
Tassone NM, Li B, Patel MS, Devine MY, Firmiss PR, Gould AD, Kochan KS, Stubbee RA, Bowen DK, Dettman RW, Gong EM. Stem cell antigen/Ly6a protects against bladder fibrosis in mice. Am J Physiol Renal Physiol 2019; 317:F1503-F1512. [PMID: 31532245 DOI: 10.1152/ajprenal.00160.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have defined a population of stem cell antigen (Sca)-1+/CD34+/lin- mesenchymal stem cells in the mouse urinary bladder. These cells are reduced after partial bladder outlet obstruction (PO). To test the role of Sca-1 expressed by these cells, we analyzed bladders from Sca-1 knockout (KO) mice in both uninjured male mice and male mice subjected to PO. We found that loss of Sca-1 alone had little effect on bladder development or function but reduced the total number of mesenchymal stem cells by 30%. After PO, bladders from Sca-1-null KO male mice were larger, with more collagen and less muscle, than obstructed wild-type mice. Steady-state levels of caldesmon were significantly reduced and levels of fibroblast-specific protein 1 were significantly increased in Sca-1 KO mice compared with wild-type mice after PO. In investigating the effects of PO on cell proliferation, we found that loss of Sca-1 changed the timing of cell division in CD34+/lin-, collagen-producing, and smooth muscle cells. PO in combination with loss of Sca-1 drastically reduced the ability of CD34+/lin- cells to form colonies in vitro. Our findings therefore support the hypothesis that Sca-1 protects the bladder from fibrotic remodeling after obstruction, in part by influencing the proliferation of cells responding to the injury.
Collapse
Affiliation(s)
- Nicholas M Tassone
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Belinda Li
- Department of Urology, Loyola University Health System, Maywood, Illinois
| | - Mehul S Patel
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Megan Y Devine
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Paula R Firmiss
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Andrew D Gould
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kirsten S Kochan
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Reid A Stubbee
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Diana K Bowen
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Robert W Dettman
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Edward M Gong
- Pediatric Urology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
15
|
Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA, Sims JJ, Bell P, Raymond A, Stanford WL, Wilson JM. The GPI-Linked Protein LY6A Drives AAV-PHP.B Transport across the Blood-Brain Barrier. Mol Ther 2019; 27:912-921. [PMID: 30819613 DOI: 10.1016/j.ymthe.2019.02.013] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Efficient delivery of gene therapy vectors across the blood-brain barrier (BBB) is the holy grail of neurological disease therapies. A variant of the neurotropic vector adeno-associated virus (AAV) serotype 9, called AAV-PHP.B, was shown to very efficiently deliver transgenes across the BBB in C57BL/6J mice. Based on our recent observation that this phenotype is mouse strain dependent, we used whole-exome sequencing-based genetics to map this phenotype to a specific haplotype of lymphocyte antigen 6 complex, locus A (Ly6a) (stem cell antigen-1 [Sca-1]), which encodes a glycosylphosphatidylinositol (GPI)-anchored protein whose function had been thought to be limited to the biology of hematopoiesis. Additional biochemical and genetic studies definitively linked high BBB transport to the binding of AAV-PHP.B with LY6A (SCA-1). These studies identify, for the first time, a ligand for this GPI-anchored protein and suggest a role for it in BBB transport that could be hijacked by viruses in natural infections or by gene therapy vectors to treat neurological diseases.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuan Yuan
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter M Clark
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - R Alexander Martino
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua J Sims
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Angela Raymond
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
DeLong JH, Hall AO, Konradt C, Coppock GM, Park J, Harms Pritchard G, Hunter CA. Cytokine- and TCR-Mediated Regulation of T Cell Expression of Ly6C and Sca-1. THE JOURNAL OF IMMUNOLOGY 2018; 200:1761-1770. [PMID: 29358280 DOI: 10.4049/jimmunol.1701154] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 02/05/2023]
Abstract
Ly6C and Sca-1 (Ly6A/E) are Ly6 family GPI-anchored surface molecules that are differentially expressed by multiple immune populations. Ly6C expression has been used to distinguish short-lived effector CD4+ T cells from memory precursor effector cells, whereas Sca-1 has been used in the identification of CD8+ memory stem cells. This study examines the expression patterns of these molecules and establishes that, in vitro, IL-27, type I IFN, and IFN-γ are potent inducers of Ly6C and Sca-1 in naive mouse CD4+ and CD8+ T cells, whereas TGF-β limits their expression. The induction of Ly6C and Sca-1 by IL-27 and IFN-γ is dependent on STAT1, but not STAT3 or T-bet. In mouse splenocytes, at homeostasis, Ly6C and Sca-1 expression was not restricted to effector cells, but was also found at various levels on naive and memory populations. However, in response to infection with Toxoplasma gondii, pathogen-specific T cells expressed high levels of these molecules and in this context, endogenous IL-27 and IFN-γ were required for the expression of Ly6C but not Sca-1. Together, these findings highlight the TCR-dependent and cytokine-mediated signals that modulate T cell expression of Ly6C and Sca-1 in vitro and in vivo during infection.
Collapse
Affiliation(s)
- Jonathan H DeLong
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aisling O'Hara Hall
- Immunology Discovery Research, Janssen Research and Development, LLC, Spring House, PA 19002
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gaia M Coppock
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Nephrology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeongho Park
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
17
|
Liu Z, Wu L, Zhu J, Zhu X, Zhu J, Liu JQ, Zhang J, Davis JP, Varikuti S, Satoskar AR, Zhou J, Li MS, Bai XF. Interleukin-27 signalling induces stem cell antigen-1 expression in T lymphocytes in vivo. Immunology 2017; 152:638-647. [PMID: 28758191 DOI: 10.1111/imm.12805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Stem cell antigen-1 (Sca-1/Ly6A/E) is a cell surface glycoprotein that is often used as a biomarker for stem cells and cell stemness. However, it is not clear what factors can directly induce the expression of Sca-1/Ly6A/E in T lymphocytes in vivo, and if induction of Sca-1 is associated with T cell stemness. In this study, we show that interleukin-27 (IL-27), a member of the IL-12 family of cytokines, directly induces Sca-1 expression in T cells in vivo. We found that mice-deficient for IL-27 (either P28 or EBI3) or its signalling (IL-27Rα) had profound reduction of Sca-1 expression in naive (CD62L+ CD44- ), memory (CD62L+ CD44+ ) and effector (CD62L- CD44+ ) T cells. In contrast, in vivo delivery of IL-27 using adeno-associated viral vectors strongly induced the expression of Sca-1 in naive and memory/effector T-cell populations in an IL-27 receptor- or signal transducer and activator of transcription 1-dependent manner. Interestingly, IL-27-induced Sca-1+ T cells do not express or up-regulate classic stem cell-associated genes such as Nanog, Oct4, Sox2 and Ctnnb1. However, IL-27-induced Sca-1+ T cells had increased expression of effector/memory-associated transcription factor T-bet, Eomes and Blimp1. Hence, IL-27 signalling directly induces the expression of Sca-1/Ly6A/E expression in T cells. Direct expansion of Sca-1+ CD62L+ CD44- T memory stem cells may explain why IL-27 enhances T-cell memory.
Collapse
Affiliation(s)
- Zhihao Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Lisha Wu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jing Zhu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xiaotong Zhu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jianmin Zhu
- Paediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jianchao Zhang
- Department of Physiology, Ohio State University, Columbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology, Ohio State University, Columbus, OH, USA
| | - Sanjay Varikuti
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Abhay R Satoskar
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Paediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Natale BV, Schweitzer C, Hughes M, Globisch MA, Kotadia R, Tremblay E, Vu P, Cross JC, Natale DRC. Sca-1 identifies a trophoblast population with multipotent potential in the mid-gestation mouse placenta. Sci Rep 2017; 7:5575. [PMID: 28717241 PMCID: PMC5514127 DOI: 10.1038/s41598-017-06008-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/06/2017] [Indexed: 01/23/2023] Open
Abstract
Trophoblast stem (TS) cells in the mouse derive from the polar trophectoderm of the blastocyst and persist through early gestation (to E8.5) to support placental development. Further development and growth is proposed to rely on layer-restricted progenitor cells. Stem cell antigen (Sca) -1 is a member of the Ly6 gene family and a known marker of stem cells in both hematopoietic and non-hematopoietic mouse tissues. Having identified that Sca-1 mRNA was highly expressed in mouse TS cells in culture, we found that it was also expressed in a subset of trophoblast within the chorion and labyrinth layer of the mouse placenta. Isolation and in vitro culture of Sca-1+ trophoblast cells from both differentiated TS cell cultures and dissected mouse placentae resulted in proliferating colonies that expressed known markers of TS cells. Furthermore, these cells could be stimulated to differentiate and expressed markers of both junctional zone and labyrinth trophoblast subtypes in a manner comparable to established mouse TS cell lines. Our results suggest that we have identified a subpopulation of TS cell-like cells that persist in the mid- to late- gestation mouse placenta as well as a cell surface protein that can be used to identify and isolate these cells.
Collapse
Affiliation(s)
- Bryony V Natale
- Department of Reproductive Medicine, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Schweitzer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Martha Hughes
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Maria A Globisch
- Department of Reproductive Medicine, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramie Kotadia
- Department of Reproductive Medicine, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emilie Tremblay
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Priscilla Vu
- Department of Reproductive Medicine, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - James C Cross
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - David R C Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada. .,Department of Reproductive Medicine, Faculty of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
19
|
Lang MA, Jenkins SA, Balzano P, Owoyele A, Patel A, Bamezai AK. Engaging Ly-6A/Sca-1 triggers lipid raft-dependent and -independent responses in CD4 + T-cell lines. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:448-460. [PMID: 28660664 PMCID: PMC5691314 DOI: 10.1002/iid3.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The lymphocyte antigen 6 (Ly-6) supergene family encodes proteins of 12-14 kda in molecular mass that are either secreted or anchored to the plasma membrane through a glycosyl-phosphatidylinisotol (GPI) lipid anchor at the carboxy-terminus. The lipidated GPI-anchor allows localization of Ly-6 proteins to the 10-100 nm cholesterol-rich nano-domains on the membrane, also known as lipid rafts. Ly-6A/Sca-1, a member of Ly-6 gene family is known to transduce signals despite the absence of transmembrane and cytoplasmic domains. It is hypothesized that the localization of Ly-6A/Sca-1 with in lipid rafts allows this protein to transduce signals to the cell interior. METHODS AND RESULTS In this study, we found that cross-linking mouse Ly-6A/Sca-1 protein with a monoclonal antibody results in functionally distinct responses that occur simultaneously. Ly-6A/Sca-1 triggered a cell stimulatory response as gauged by cytokine production with a concurrent inhibitory response as indicated by growth inhibition and apoptosis. While production of interleukin 2 (IL-2) cytokine by CD4+ T cell line in response to cross-linking Ly-6A/Sca-1 was dependent on the integrity of lipid rafts, the observed cell death occurred independently of it. Growth inhibited CD4+ T cells showed up-regulated expression of the inhibitory cell cycle protein p27kip but not of p53. In addition, Ly-6A/Sca-1 induced translocation of cytochrome C to the cytoplasm along with activated caspase 3 and caspase 9, thereby suggesting an intrinsic apoptotic cell death mechanism. CONCLUSIONS We conclude that opposing responses with differential dependence on the integrity of lipid rafts are triggered by engaging Ly-6A/Sca-1 protein on the membrane of transformed CD4+ T cells.
Collapse
Affiliation(s)
- Melissa A Lang
- Department of Biology, Villanova University, Villanova, Pennsylvania
| | - Sultan A Jenkins
- Department of Biology, Villanova University, Villanova, Pennsylvania
| | - Phillip Balzano
- Department of Biology, Villanova University, Villanova, Pennsylvania
| | - Adeyinka Owoyele
- Department of Biology, Villanova University, Villanova, Pennsylvania
| | - Akshay Patel
- Department of Biology, Villanova University, Villanova, Pennsylvania
| | - Anil K Bamezai
- Department of Biology, Villanova University, Villanova, Pennsylvania
| |
Collapse
|
20
|
James AW, Shen J, Tsuei R, Nguyen A, Khadarian K, Meyers CA, Pan HC, Li W, Kwak JH, Asatrian G, Culiat CT, Lee M, Ting K, Zhang X, Soo C. NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair. JCI Insight 2017; 2:92573. [PMID: 28614787 PMCID: PMC5470886 DOI: 10.1172/jci.insight.92573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
NELL-1 is a secreted, osteogenic protein first discovered to control ossification of the cranial skeleton. Recently, NELL-1 has been implicated in bone maintenance. However, the cellular determinants of NELL-1's bone-forming effects are still unknown. Here, recombinant human NELL-1 (rhNELL-1) implantation was examined in a clinically relevant nonhuman primate lumbar spinal fusion model. Prolonged rhNELL-1 protein release was achieved using an apatite-coated β-tricalcium phosphate carrier, resulting in a local influx of stem cell antigen-1-positive (Sca-1+) mesenchymal progenitor cells (MPCs), and complete osseous fusion across all samples (100% spinal fusion rate). Murine studies revealed that Nell-1 haploinsufficiency results in marked reductions in the numbers of Sca-1+CD45-CD31- bone marrow MPCs associated with low bone mass. Conversely, rhNELL-1 systemic administration in mice showed a marked anabolic effect accompanied by increased numbers of Sca-1+CD45-CD31- bone marrow MPCs. Mechanistically, rhNELL-1 induces Sca-1 transcription among MPCs, in a process requiring intact Wnt/β-catenin signaling. In summary, NELL-1 effectively induces bone formation across small and large animal models either via local implantation or intravenous delivery. NELL-1 induces an expansion of a bone marrow subset of MPCs with Sca-1 expression. These findings provide compelling justification for the clinical translation of a NELL-1-based therapy for local or systemic bone formation.
Collapse
Affiliation(s)
- Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Jia Shen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Rebecca Tsuei
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Alan Nguyen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Kevork Khadarian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hsin Chuan Pan
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Weiming Li
- Department of Orthopedics, The First Clinical Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin H Kwak
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | | | - Min Lee
- Section of Biomaterials, School of Dentistry, UCLA, Los Angeles, California, USA
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA.,Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
21
|
Investigating B Cell Development, Natural and Primary Antibody Responses in Ly-6A/Sca-1 Deficient Mice. PLoS One 2016; 11:e0157271. [PMID: 27322740 PMCID: PMC4913937 DOI: 10.1371/journal.pone.0157271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/26/2016] [Indexed: 11/24/2022] Open
Abstract
Ly-6A/Stem cell antigen-1 (Ly-6A/Sca-1) is a glycosylphosphatidylinositol-anchored protein expressed on many cell types including hematopoietic stem cells (HSCs) and early lymphoid-specific progenitors. Ly-6A/Sca-1 is expressed on CD4+ T cells and plays a role in regulating cellular responses to foreign antigens. The role of Ly-6A/Sca-1 in primary antibody responses has not been defined. To investigate whether Ly-6A/Sca-1 functions in humoral immunity, we first injected Ly-6A/Sca-1-deficient and wild-type control mice with chicken ovalbumin (c-Ova) protein mixed with an adjuvant. We then assessed the ability of the mice to generate a primary antibody response against cOva. We further examined the development of B cells and circulating antibody isotypes in non-immunized Ly-6A/Sca-1deficient mice to determine if Ly6A/Sca-1 functions in development irrespective of antigen-specific immune activation. Ly-6A/Sca-1/Sca-1-deficient mice did not show any significant changes in the number of B lymphocytes in the bone marrow and peripheral lymphoid tissues. Interestingly, Ly-6A/Sca-1/Sca-1-/- mice have significantly elevated serum levels of IgA with λ light chains compared to wild type controls. B cell clusters with high reactivity to anti-IgA λ monoclonal antibody were detected in the lamina propria of the gut, though this was not observed in the bone marrow and peripheral lymphoid tissues. Despite these differences, the Ly-6A/Sca-1deficient mice generated a similar primary antibody response when compared to the wild-type mice. In summary, we conclude that the primary antibody response to cOva antigen is similar in Ly-6A/Sca-1deficient and sufficient mice. In addition, we report significantly higher expression of the immunoglobulin λ light chain by B cells in lamina propria of Ly-6A/Sca-1deficient mice when compared to the wild-type control.
Collapse
|
22
|
Zhu X, Liu Z, Liu JQ, Zhu J, Zhang J, Davis JP, Chu J, Yu J, Zhou J, Li MS, Bai XF. Systemic delivery of IL-27 by an adeno-associated viral vector inhibits T cell-mediated colitis and induces multiple inhibitory pathways in T cells. J Leukoc Biol 2016; 100:403-11. [PMID: 27106672 DOI: 10.1189/jlb.3a1215-540r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
IL-27 is a heterodimeric cytokine that is composed of two subunits, i.e., EBV-induced gene 3 and IL-27p28 (also known as IL-30). Although the role of endogenous IL-27 in the pathogenesis of autoimmune colitis, an experimental model of human inflammatory bowel disease, remains controversial, IL-27 local delivery has been shown to inhibit autoimmune colitis. IL-30 has been shown to inhibit Th1 and Th17 responses and is considered a potential therapeutic for certain autoimmune diseases. In this study, we have compared the therapeutic efficacy of adeno-associated viral vector-delivered IL-27 and IL-30 in a murine model of autoimmune colitis. We found that 1 single administration of adeno-associated viral vector-delivered IL-27, but not adeno-associated viral vector-delivered IL-30, nearly completely inhibited autoimmune colitis. Adeno-associated viral vector-delivered IL-27 administration inhibited Th17 responses and induced T cell expression of IL-10, programmed death ligand 1, and stem cell antigen 1. Intriguingly, adeno-associated viral vector-delivered IL-27 treatment enhanced Th1 responses and inhibited regulatory T cell responses. Experiments involving the adoptive transfer of IL-10-deficient T cells revealed that adeno-associated viral vector-delivered IL-27-induced IL-10 production was insufficient to mediate inhibition of autoimmune colitis, whereas anti-programmed death 1 antibody treatment resulted in the breaking of adeno-associated viral vector-delivered IL-27-induced T cell tolerance. Thus, systemic delivery of IL-27 inhibits Th17 responses and induces multiple inhibitory pathways, including programmed death ligand 1 in T cells, and adeno-associated viral vector-delivered IL-27, but not IL-30, may have a therapeutic potential for the treatment of human inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA; Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianchao Zhang
- Department of Physiology, Ohio State University, Columbus, Ohio, USA; and
| | - Jonathan P Davis
- Department of Physiology, Ohio State University, Columbus, Ohio, USA; and
| | - Jianhong Chu
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China;
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA; Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China;
| |
Collapse
|
23
|
Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics 2016; 10:10. [PMID: 27098205 PMCID: PMC4839075 DOI: 10.1186/s40246-016-0074-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/14/2016] [Indexed: 01/08/2023] Open
Abstract
Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted. The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression, functions, and evolution, and introduce new names for novel family members.
Collapse
|
24
|
Guo Q, Ji D, Wang M, Zhang S, Li H. Identification and expression of an uncharacterized Ly-6 gene cluster in zebrafish Danio rerio. Funct Integr Genomics 2015; 15:577-85. [PMID: 26113395 DOI: 10.1007/s10142-015-0449-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 01/19/2023]
Abstract
The Ly-6/uPAR/CD59/neurotoxin superfamily (Ly-6SF) identified in most metazoan has been shown to play important roles in different biological processes including immunity, cellular adhesion, and cell signaling. Members of this superfamily contain one or more conserved domains known as Ly-6/uPAR (LU) domain, which harbors 8 or 10 conserved cysteine residues forming 4-5 disulfide bonds. In this study, we reported the identification of a novel zebrafish Ly-6 gene cluster on chromosome 21, which consists of seven genes ly21.1, ly21.2, ly21.3, ly21.4, ly21.5, ly21.6, and ly21.7 and their spatiotemporal expression pattern during development. All the seven genes possess features typical of the Ly-6/neurotoxin superfamily, and phylogenetic analysis shows that these genes form a single cluster branching form other members of Ly-6 family, suggesting that the seven genes evolved by an event of intra-chromosome gene duplication. However, deduced Ly21.1-7 proteins share little homology with Ly-6 family proteins from other species, no orthologs are identified in vertebrates, including teleosts, hinting that ly21.1-7 genes are evolutionarily a novel addition to zebrafish. Expression analyses show that maternal mRNAs of ly21.1-7 genes are detected during early developmental stages, but later in development, they exhibit tissue-specific expression. Except for ly21.2 which is expressed in the skin ionocytes, all the remaining six genes are mainly expressed in the developing brain.
Collapse
Affiliation(s)
- Quanyang Guo
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Room 301, Darwin Building, Qingdao, 266003, China
| | | | | | | | | |
Collapse
|
25
|
Camarata TD, Weaver GC, Vasilyev A, Arnaout MA. Negative Regulation of TGFβ Signaling by Stem Cell Antigen-1 Protects against Ischemic Acute Kidney Injury. PLoS One 2015; 10:e0129561. [PMID: 26053644 PMCID: PMC4460127 DOI: 10.1371/journal.pone.0129561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/10/2015] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury, often caused by an ischemic insult, is associated with significant short-term morbidity and mortality, and increased risk of chronic kidney disease. The factors affecting the renal response to injury following ischemia and reperfusion remain to be clarified. We found that the Stem cell antigen-1 (Sca-1), commonly used as a stem cell marker, is heavily expressed in renal tubules of the adult mouse kidney. We evaluated its potential role in the kidney using Sca-1 knockout mice submitted to acute ischemia reperfusion injury (IRI), as well as cultured renal proximal tubular cells in which Sca-1 was stably silenced with shRNA. IRI induced more severe injury in Sca-1 null kidneys, as assessed by increased expression of Kim-1 and Ngal, rise in serum creatinine, abnormal pathology, and increased apoptosis of tubular epithelium, and persistent significant renal injury at day 7 post IRI, when recovery of renal function in control animals was nearly complete. Serum creatinine, Kim-1 and Ngal were slightly but significantly elevated even in uninjured Sca-1-/- kidneys. Sca-1 constitutively bound both TGFβ receptors I and II in cultured normal proximal tubular epithelial cells. Its genetic loss or silencing lead to constitutive TGFβ receptor—mediated activation of canonical Smad signaling even in the absence of ligand and to KIM-1 expression in the silenced cells. These studies demonstrate that by normally repressing TGFβ-mediated canonical Smad signaling, Sca-1 plays an important in renal epithelial cell homeostasis and in recovery of renal function following ischemic acute kidney injury.
Collapse
Affiliation(s)
- Troy D. Camarata
- Leukocyte Biology & Inflammation Program, Renal Division and Department of Medicine Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Grant C. Weaver
- Leukocyte Biology & Inflammation Program, Renal Division and Department of Medicine Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Alexandr Vasilyev
- Leukocyte Biology & Inflammation Program, Renal Division and Department of Medicine Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - M. Amin Arnaout
- Leukocyte Biology & Inflammation Program, Renal Division and Department of Medicine Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center For Regenerative Medicine, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 2015; 520:549-52. [PMID: 25707806 DOI: 10.1038/nature14131] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 12/02/2014] [Indexed: 01/03/2023]
Abstract
Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.
Collapse
|
27
|
Frankel WN, Mahaffey CL, McGarr TC, Beyer BJ, Letts VA. Unraveling genetic modifiers in the gria4 mouse model of absence epilepsy. PLoS Genet 2014; 10:e1004454. [PMID: 25010494 PMCID: PMC4091709 DOI: 10.1371/journal.pgen.1004454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/07/2014] [Indexed: 12/24/2022] Open
Abstract
Absence epilepsy (AE) is a common type of genetic generalized epilepsy (GGE), particularly in children. AE and GGE are complex genetic diseases with few causal variants identified to date. Gria4 deficient mice provide a model of AE, one for which the common laboratory inbred strain C3H/HeJ (HeJ) harbors a natural IAP retrotransposon insertion in Gria4 that reduces its expression 8-fold. Between C3H and non-seizing strains such as C57BL/6, genetic modifiers alter disease severity. Even C3H substrains have surprising variation in the duration and incidence of spike-wave discharges (SWD), the characteristic electroencephalographic feature of absence seizures. Here we discovered extensive IAP retrotransposition in the C3H substrain, and identified a HeJ-private IAP in the Pcnxl2 gene, which encodes a putative multi-transmembrane protein of unknown function, resulting in decreased expression. By creating new Pcnxl2 frameshift alleles using TALEN mutagenesis, we show that Pcnxl2 deficiency is responsible for mitigating the seizure phenotype – making Pcnxl2 the first known modifier gene for absence seizures in any species. This finding gave us a handle on genetic complexity between strains, directing us to use another C3H substrain to map additional modifiers including validation of a Chr 15 locus that profoundly affects the severity of SWD episodes. Together these new findings expand our knowledge of how natural variation modulates seizures, and highlights the feasibility of characterizing and validating modifiers in mouse strains and substrains in the post-genome sequence era. Absence seizures - also known as “petit-mal” - define a common form of epilepsy most prevalent in children, but also seen at other ages, and in related diseases such as juvenile myoclonic epilepsy. Absence seizures cause brief periods of unconsciousness, and are accompanied by characteristic abnormal brain waves called “spike-wave discharges” (SWD) due to their appearance in the electroencephalogram (EEG). Although few genes are known for human absence seizures, perhaps because the underlying genetics are complex, several laboratory rodent models exist, including one caused by mutation of a gene called Gria4. While studying Gria4, we noticed that a mouse strain called C3H can suppress or enhance the frequency and severity of Gria4-associated SWD in a perplexing manner; such effects are generally attributed to “modifier” genes. Here we identify a novel modifier – called “pecanex-like 2”, or Pcnxl2 for short – that reduces the severity of SWD in the C3H substrain in which the Gria4 mutation originally arose. This finding directed us to use of related substrains to locate additional modifiers, one of which has an even more profound effect on SWD episodes. Modifier genes, nature's way of controlling seizure severity, are promising targets for better understanding seizure mechanisms and potential new therapies in the future.
Collapse
Affiliation(s)
- Wayne N. Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| | | | - Tracy C. McGarr
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Barbara J. Beyer
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Verity A. Letts
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
28
|
Cytotoxic CD8+ T Cells Stimulate Hematopoietic Progenitors by Promoting Cytokine Release from Bone Marrow Mesenchymal Stromal Cells. Cell Stem Cell 2014; 14:460-72. [DOI: 10.1016/j.stem.2014.01.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 11/17/2013] [Accepted: 12/26/2013] [Indexed: 12/22/2022]
|
29
|
Abstract
Obesity, defined as an excessive increase in white adipose tissue (WAT), is a global health epidemic. In obesity, WAT expands by increased adipocyte size (hypertrophy) and number (hyperplasia). The location and cellular mechanisms of WAT expansion greatly affect the pathogenesis of obesity. However, the cellular and molecular mechanisms regulating adipocyte size, number, and depot-dependent expansion in vivo remain largely unknown. This perspective summarizes previous work addressing adipocyte number in development and obesity and discusses recent advances in the methodologies, genetic tools, and characterization of in vivo adipocyte precursor cells allowing for directed study of hyperplastic WAT growth in vivo.
Collapse
Affiliation(s)
- Ryan Berry
- Department of Molecular, Cell and Developmental Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Jeffery
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cell and Developmental Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
30
|
Bernstein HS, Samad T, Cholsiripunlert S, Khalifian S, Gong W, Ritner C, Aurigui J, Ling V, Wilschut KJ, Bennett S, Hoffman J, Oishi P. Stem cell antigen-1 in skeletal muscle function. PLOS CURRENTS 2013; 5. [PMID: 24042315 PMCID: PMC3770837 DOI: 10.1371/currents.md.411a8332d61e22725e6937b97e6d0ef8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age.
Collapse
|
31
|
PSCA and Oct-4 expression in the benign and malignant lesions of gallbladder: implication for carcinogenesis, progression, and prognosis of gallbladder adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:648420. [PMID: 23984394 PMCID: PMC3747335 DOI: 10.1155/2013/648420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 06/09/2013] [Indexed: 02/06/2023]
Abstract
PSCA and Oct-4 have been thought as markers of cancer stem cells. Although overexpression of PSCA and Oct-4 in cancer has been reported, little is known about the clinical and pathological significance with PSCA and Oct-4 expression in gallbladder adenocarcinoma. In this study, overexpression of PSCA and Oct-4 was detected in gallbladder adenocarcinoma (54.6% and
55.6%). Less expression of PSCA and Oct-4 was detected in the pericancerous tissues (19.6% and 21.7%), gallbladder polyps (13.3% and 13.3%), and gallbladder epithelium with chronic cholecystitis (14.3% and 14.3%). The overexpression of PSCA and Oct-4 was significantly associated with differentiation, tumor mass, lymph node metastasis, invasion of gallbladder adenocarcinoma, and decreased overall survival. Our study suggested that overexpression of PSCA and Oct-4 might be closely related to the carcinogenesis, progression, metastasis, or invasive potential and prognosis of gallbladder carcinoma.
Collapse
|
32
|
Wang Y, Murakami Y, Yasui T, Wakana S, Kikutani H, Kinoshita T, Maeda Y. Significance of glycosylphosphatidylinositol-anchored protein enrichment in lipid rafts for the control of autoimmunity. J Biol Chem 2013; 288:25490-25499. [PMID: 23864655 DOI: 10.1074/jbc.m113.492611] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylphosphatidylinositols (GPI) are complex glycolipids that are covalently linked to the C terminus of proteins as a post-translational modification and tether proteins to the plasma membrane. One of the most striking features of GPI-anchored proteins (APs) is their enrichment in lipid rafts. The biosynthesis of GPI and its attachment to proteins occur in the endoplasmic reticulum. In the Golgi, GPI-APs are subjected to fatty acid remodeling, which replaces an unsaturated fatty acid at the sn-2 position of the phosphatidylinositol moiety with a saturated fatty acid. We previously reported that fatty acid remodeling is critical for the enrichment of GPI-APs in lipid rafts. To investigate the biological significance of GPI-AP enrichment in lipid rafts, we generated a PGAP3 knock-out mouse (PGAP3(-/-)) in which fatty acid remodeling of GPI-APs does not occur. We report here that a significant number of aged PGAP3(-/-) mice developed autoimmune-like symptoms, such as increased anti-DNA antibodies, spontaneous germinal center formation, and enlarged renal glomeruli with deposition of immune complexes and matrix expansion. A possible cause for this was the impaired engulfment of apoptotic cells by resident peritoneal macrophages in PGAP3(-/-) mice. Mice with conditional targeting of PGAP3 in either B or T cells did not develop such autoimmune-like symptoms. In addition, PGAP3(-/-) mice exhibited the tendency of Th2 polarization. These data demonstrate that PGAP3-dependent fatty acid remodeling of GPI-APs has a significant role in the control of autoimmunity, possibly by the regulation of apoptotic cell clearance and Th1/Th2 balance.
Collapse
Affiliation(s)
- Yetao Wang
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Yoshiko Murakami
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Teruhito Yasui
- Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory of Molecular Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 and
| | - Shigeharu Wakana
- the Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN Bioresource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hitoshi Kikutani
- Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory of Molecular Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 and
| | - Taroh Kinoshita
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Yusuke Maeda
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and.
| |
Collapse
|
33
|
Lee MS, Kim B, Lee SM, Cho WC, Lee WB, Kang JS, Choi UY, Lyu J, Kim YJ. Genome-wide profiling of in vivo LPS-responsive genes in splenic myeloid cells. Mol Cells 2013; 35:498-513. [PMID: 23666259 PMCID: PMC3887871 DOI: 10.1007/s10059-013-2349-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS), the major causative agent of bacterial sepsis, has been used by many laboratories in genome-wide expression profiling of the LPS response. However, these studies have predominantly used in vitro cultured macrophages (Macs), which may not accurately reflect the LPS response of these innate immune cells in vivo. To overcome this limitation and to identify inflammatory genes in vivo, we have profiled genome-wide expression patterns in non-lymphoid, splenic myeloid cells extracted directly from LPS-treated mice. Genes encoding factors known to be involved in mediating or regulating inflammatory processes, such as cytokines and chemokines, as well as many genes whose immunological functions are not well known, were strongly induced by LPS after 3 h or 8 h of treatment. Most of the highly LPS-responsive genes that we randomly selected from the microarray data were independently confirmed by quantitative RT-PCR, implying that our microarray data are quite reliable. When our in vivo data were compared to previously reported microarray data for in vitro LPS-treated Macs, a significant proportion (∼20%) of the in vivo LPS-responsive genes defined in this study were specific to cells exposed to LPS in vivo, but a larger proportion of them (∼60%) were influenced by LPS in both in vitro and in vivo settings. This result indicates that our in vivo LPS-responsive gene set includes not only previously identified in vitro LPS-responsive genes but also novel LPS-responsive genes. Both types of genes would be a valuable resource in the future for understanding inflammatory responses in vivo.
Collapse
Affiliation(s)
- Myeong Sup Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Byungil Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Sun-Min Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Woo-Cheul Cho
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Un Yung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Jaemyun Lyu
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
- Department of Integrated OMICS for Biomedical Sciences, World Class University, Yonsei University, Seoul 120–749,
Korea
| |
Collapse
|
34
|
Fogel LA, Sun MM, Geurs TL, Carayannopoulos LN, French AR. Markers of nonselective and specific NK cell activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:6269-76. [PMID: 23656738 DOI: 10.4049/jimmunol.1202533] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NK cell activation is controlled by the integration of signals from cytokine receptors and germline-encoded activation and inhibitory receptors. NK cells undergo two distinct phases of activation during murine CMV (MCMV) infection: a nonselective phase mediated by proinflammatory cytokines and a specific phase driven by signaling through Ly49H, an NK cell activation receptor that recognizes infected cells. We sought to delineate cell surface markers that could distinguish NK cells that had been activated nonselectively from those that had been specifically activated through NK cell receptors. We demonstrated that stem cell Ag 1 (Sca-1) is highly upregulated during viral infections (to an even greater extent than CD69) and serves as a novel marker of early, nonselective NK cell activation. Indeed, a greater proportion of Sca-1(+) NK cells produced IFN-γ compared with Sca-1(-) NK cells during MCMV infection. In contrast to the universal upregulation of Sca-1 (as well as KLRG1) on NK cells early during MCMV infection, differential expression of Sca-1, as well as CD27 and KLRG1, was observed on Ly49H(+) and Ly49H(-) NK cells late during MCMV infection. Persistently elevated levels of KLRG1 in the context of downregulation of Sca-1 and CD27 were observed on NK cells that expressed Ly49H. Furthermore, the differential expression patterns of these cell surface markers were dependent on Ly49H recognition of its ligand and did not occur solely as a result of cellular proliferation. These findings demonstrate that a combination of Sca-1, CD27, and KLRG1 can distinguish NK cells nonselectively activated by cytokines from those specifically stimulated through activation receptors.
Collapse
Affiliation(s)
- Leslie A Fogel
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
35
|
Lee PY, Wang JX, Parisini E, Dascher CC, Nigrovic PA. Ly6 family proteins in neutrophil biology. J Leukoc Biol 2013; 94:585-94. [PMID: 23543767 DOI: 10.1189/jlb.0113014] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The murine Ly6 complex was identified 35 years ago using antisera to lymphocytes. With advances in mAb development, molecular cloning, and genome sequencing, >20 structurally related genes have been identified within this complex on chromosome 15. All members of the Ly6 family and their human homologues share the highly conserved LU domain and most also possess a GPI anchor. Interestingly, many Ly6 proteins are expressed in a lineage-specific fashion, and their expression often correlates with stages of differentiation. As a result, Ly6 proteins are frequently used as surface markers for leukocyte subset identification and targets for antibody-mediated depletion. Murine neutrophils display prominent surface expression of several Ly6 proteins, including Ly6B, Ly6C, and Ly6G. Although the physiology of most Ly6 proteins is not well understood, a role in neutrophil functions, such as migration, is recognized increasingly. In this review, we will provide an overview of the Ly6 complex and discuss, in detail, the specific Ly6 proteins implicated in neutrophil biology.
Collapse
Affiliation(s)
- Pui Y Lee
- 1.Immunology, and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Smith 516c, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
36
|
Azalea-Romero M, González-Mendoza M, Cáceres-Pérez AA, Lara-Padilla E, Cáceres-Cortés JR. Low expression of stem cell antigen-1 on mouse haematopoietic precursors is associated with erythroid differentiation. Cell Immunol 2012; 279:187-95. [PMID: 23246681 DOI: 10.1016/j.cellimm.2012.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/18/2012] [Accepted: 10/04/2012] [Indexed: 11/28/2022]
Abstract
Sca1 is a surface marker of haematopoietic stem cell but its role in erythropoiesis is still largely unknown. In this work we evaluated the ability of Sca1⁺ cells to differentiate into cells of the erythrocytic lineage. We performed FACS analysis of complete and purified Sca1⁺ bone marrow cells from C3H/HeNHsd mice and measured the expression of CD71 and Terr119 to evaluate the stages in erythroid development. Definitive erythropoiesis was evident within the complete bone marrow, while only proerythroblasts were found in Sca1⁺ cells, suggesting that Sca1 is a negative regulator of erythropoiesis. We also used FDCP-mix cells and their PU.1 and SCL transfectants. The PU.1 transfectant showed significantly increased expression of Sca1 and was not induced to differentiate into red blood cells, while the SCL transfectant showed significantly lower expression of Sca1 and produced red blood cells. The results of this study suggest that increased Sca1 expression on erythropoietic precursors inhibits erythroid differentiation.
Collapse
Affiliation(s)
- Mirna Azalea-Romero
- Laboratory of Cancer and Hematopoiesis, Superior School of Medicine, National Polytechnic Institute, C.P. 11340 México, Mexico
| | | | | | | | | |
Collapse
|
37
|
Penvose A, Westerman KA. Sca-1 is involved in the adhesion of myosphere cells to αVβ3 integrin. Biol Open 2012; 1:839-47. [PMID: 23213478 PMCID: PMC3507234 DOI: 10.1242/bio.20121222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/07/2012] [Indexed: 12/18/2022] Open
Abstract
A myosphere cell is a unique type of muscle stem cell that is able to maintain its pre-myogenic state in culture over time. These cells are propagated in culture as free-floating, non-adherent spheres. We believe that the 3-dimensional adhesive cell-cell interactions involved in maintaining the sphere-like myosphere structures are also involved in maintaining their longevity in culture. We found that Sca-1, which is highly expressed by myosphere cells, plays a role in the growth and the formation of the myospheres. In comparing adhesion molecules expressed by 3-dimensionally grown myosphere cells to those expressed by 2-dimensionally grown primary myoblasts, we found that there was a distinct difference in the expression of β3 integrin. Upon further investigation we discovered that there is an adhesive interaction between Sca-1(+) cells and αVβ3 integrin. Here we show that Sca-1(+) cells (myosphere cells and NIH3T3 cells) adhere to αVβ3 integrin and that Sca-1(-) cells (primary myoblasts) do not adhere. The interaction between Sca-1 and αVβ3 integrin was confirmed using antibody blocking, shRNA knockdown of Sca-1 in Sca-1(+) cells, and by expressing Sca-1 cDNA in Sca-1(-) cells, which demonstrated that the level of adhesion of these cells to αVβ3 integrin was dependent on the presence of Sca-1. Additionally, we found that the co-expression of Sca-1 and β3 resulted in significantly greater adhesion of Sca-1(+) cells to αVβ3 integrin. In conclusion, our data indicate that Sca-1 is involved in maintaining the 3-dimensional myosphere cell-cell contacts and that Sca-1 is involved in the binding of cells to αVβ3 integrin.
Collapse
Affiliation(s)
- Ashley Penvose
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital , 75 Francis Street, Boston, MA 02115 , USA
| | | |
Collapse
|
38
|
Melvan JN, Siggins RW, Stanford WL, Porretta C, Nelson S, Bagby GJ, Zhang P. Alcohol impairs the myeloid proliferative response to bacteremia in mice by inhibiting the stem cell antigen-1/ERK pathway. THE JOURNAL OF IMMUNOLOGY 2012; 188:1961-9. [PMID: 22238460 DOI: 10.4049/jimmunol.1102395] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enhancement of stem cell Ag-1 (Sca-1) expression by myeloid precursors promotes the granulopoietic response to bacterial infection. However, the underlying mechanisms remain unclear. ERK pathway activation strongly enhances proliferation of hematopoietic progenitor cells. In this study, we investigated the role of Sca-1 in promoting ERK-dependent myeloid lineage proliferation and the effects of alcohol on this process. Thirty minutes after i.p. injection of alcohol, mice received i.v. challenge with 5 × 10(7) Escherichia coli for 8 or 24 h. A subset of mice received i.v. BrdU injection 20 h after challenge. Bacteremia increased Sca-1 expression, ERK activation, and proliferation of myeloid and granulopoietic precursors. Alcohol administration suppressed this response and impaired granulocyte production. Sca-1 expression positively correlated with ERK activation and cell cycling, but negatively correlated with myeloperoxidase content in granulopoietic precursors. Alcohol intoxication suppressed ERK activation in granulopoietic precursors and proliferation of these cells during bacteremia. Granulopoietic precursors in Sca-1(-/-) mice failed to activate ERK signaling and could not increase granulomacrophagic CFU activity following bacteremia. These data indicate that Sca-1 expression promotes ERK-dependent myeloid cell proliferation during bacteremia. Suppression of this response could represent an underlying mechanism for developing myelosuppression in alcohol-abusing hosts with severe bacterial infection.
Collapse
Affiliation(s)
- John Nicholas Melvan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Yuan H, Upadhyay G, Yin Y, Kopelovich L, Glazer RI. Stem cell antigen-1 deficiency enhances the chemopreventive effect of peroxisome proliferator-activated receptorγ activation. Cancer Prev Res (Phila) 2012; 5:51-60. [PMID: 21955520 PMCID: PMC3252486 DOI: 10.1158/1940-6207.capr-11-0256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stem cell antigen-1 (Sca-1, Ly6A) is a glycerophosphatidylinositol (GPI)-anchored protein that was identified as a murine marker of bone marrow stem cells. Although Sca-1 is widely used to enrich for stem and progenitor cells in various tissues, little is known about its function and associated signaling pathways in normal and malignant cells. Here, we report that the absence of Sca-1 in the mammary gland resulted in higher levels of PPARγ and PTEN, and a reduction of pSer84PPARγ, pERK1/2, and PPARδ. This phenotype correlated with markedly increased sensitivity of Sca-1 null mice to PPARγ agonist GW7845 and insensitivity to PPARδ agonist GW501516. Reduction of Sca-1 expression in mammary tumor cells by RNA interference resulted in a phenotype similar to the Sca-1 deficient mammary gland, as evidenced by increased PPARγ expression and transcriptional activity, resulting in part from a lesser susceptibility to proteasomal degradation. These data implicate Sca-1 as a negative regulator of the tumor suppressor effects of PPARγ.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Geeta Upadhyay
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Yuzhi Yin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Levy Kopelovich
- Chemoprevention Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
40
|
Murakami H, Wang Y, Hasuwa H, Maeda Y, Kinoshita T, Murakami Y. Enhanced response of T lymphocytes from Pgap3 knockout mouse: Insight into roles of fatty acid remodeling of GPI anchored proteins. Biochem Biophys Res Commun 2012; 417:1235-41. [DOI: 10.1016/j.bbrc.2011.12.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
|
41
|
Rosenblatt-Velin N, Ogay S, Felley A, Stanford WL, Pedrazzini T. Cardiac dysfunction and impaired compensatory response to pressure overload in mice deficient in stem cell antigen-1. FASEB J 2011; 26:229-39. [PMID: 21957128 DOI: 10.1096/fj.11-189605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stem cell antigen-1 (Sca-1) has been used to identify cardiac stem cells in the mouse heart. To investigate the function of Sca-1 in aging and during the cardiac adaptation to stress, we used Sca-1-deficient mice. These mice developed dilated cardiomyopathy [end-diastolic left ventricular diameter at 18 wk of age: wild-type (WT) mice, 4.2 mm ± 0.3; Sca-1-knockout (Sca-1-KO) mice, 4.6 mm ± 0.1; ejection fraction: WT mice, 51.1 ± 2.7%; Sca-1-KO mice, 42.9 ± 2.7%]. Furthermore, the hearts of mice lacking Sca-1 demonstrated exacerbated susceptibility to pressure overload [ejection fraction after transaortic constriction (TAC): WT mice, 43.5 ± 3.2%; Sca-1-KO mice, 30.8% ± 4.0] and increased apoptosis, as shown by the 2.5-fold increase in TUNEL(+) cells in Sca-1-deficient hearts under stress. Sca-1 deficiency affected primarily the nonmyocyte cell fraction. Indeed, the number of Nkx2.5(+) nonmyocyte cells, which represent a population of cardiac precursor cells (CPCs), was 2-fold smaller in Sca-1 deficient neonatal hearts. In vitro, the ability of CPCs to differentiate into cardiomyocytes was not affected by Sca-1 deletion. In contrast, these cells demonstrated unrestricted differentiation into cardiomyocytes. Interestingly, proliferation of cardiac nonmyocyte cells in response to stress, as judged by BrdU incorporation, was higher in mice lacking Sca-1 (percentages of BrdU(+) cells in the heart after TAC: WT mice, 4.4 ± 2.1%; Sca-1-KO mice, 19.3 ± 4.2%). These data demonstrate the crucial role of Sca-1 in the maintenance of cardiac integrity and suggest that Sca-1 restrains spontaneous differentiation in the precursor population. The absence of Sca-1 results in uncontrolled precursor recruitment, exhaustion of the precursor pool, and cardiac dysfunction.
Collapse
|
42
|
Melvan JN, Siggins RW, Bagby GJ, Stanford WL, Welsh D, Nelson S, Zhang P. Suppression of the stem cell antigen-1 response and granulocyte lineage expansion by alcohol during septicemia. Crit Care Med 2011; 39:2121-30. [PMID: 21602669 PMCID: PMC3232067 DOI: 10.1097/ccm.0b013e31821e89dc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Granulocytopenia frequently occurs in alcohol abusers with severe bacterial infection, which strongly correlates with poor clinical outcome. Knowledge of the molecular mechanisms underlying the granulopoietic response to bacterial infection remains limited. This study investigated the involvement of stem cell antigen-1 expression by granulocyte lineage-committed progenitors in the granulopoietic response to septicemia and how alcohol affected this response. DESIGN : Laboratory investigation. SETTING University laboratory. SUBJECTS Male Balb/c mice. INTERVENTIONS Thirty mins after intraperitoneal injection of alcohol (20% ethanol in saline at 5 g of ethanol/kg) or saline, mice received an intravenous Escherichia coli challenge. MEASUREMENTS AND MAIN RESULTS E. coli septicemia activated stem cell antigen-1 expression by marrow immature granulocyte differentiation antigen-1 precursors which correlated with an increase in proliferation, granulocyte macrophage colony-forming unit production, and expansion of this granulopoietic precursor cell pool. Acute alcohol treatment suppressed stem cell antigen-1 activation and inhibited the infection-induced increases in proliferation, granulocyte macrophage colony-forming unit production, and expansion the of immature granulocyte differentiation antigen-1 precursor cell population. Consequently, recovery of the marrow mature granulocyte differentiation antigen-1 cell population after E. coli challenge was impaired. Stem cell antigen-1 was induced in sorted granulocyte differentiation antigen-1, stem cell antigen-1' cells by lipopolysaccharide-stimulated C-Jun kinase activation that was also inhibited by alcohol. Furthermore, stem cell antigen-1 knockout mice failed to expand the marrow immature granulocyte differentiation antigen-1 cell pool and demonstrated fewer newly produced granulocytes in the circulation after the E. coli challenge. CONCLUSIONS Alcohol suppresses the stem cell antigen-1 response in granulocyte lineage-committed precursors and restricts granulocyte production during septicemia, which may serve as a novel mechanism underlying impaired host defense in alcohol abusers.
Collapse
Affiliation(s)
- John N. Melvan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Gregory J. Bagby
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Department of Medicine, Section of Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - William L. Stanford
- Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering and Applied Chemistry, Institute of Medical Science, University of Toronto, Toronto, Canada, M5S 3G9
| | - David Welsh
- Department of Medicine, Section of Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Steve Nelson
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Department of Medicine, Section of Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Ping Zhang
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
43
|
de Jong S, Kas MJH, Kiernan J, de Mooij-van Malsen AG, Oppelaar H, Janson E, Vukobradovic I, Farber CR, Stanford WL, Ophoff RA. Hippocampal gene expression analysis highlights Ly6a/Sca-1 as candidate gene for previously mapped novelty induced behaviors in mice. PLoS One 2011; 6:e20716. [PMID: 21673958 PMCID: PMC3108967 DOI: 10.1371/journal.pone.0020716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/08/2011] [Indexed: 01/19/2023] Open
Abstract
In this study, we show that the covariance between behavior and gene expression in the brain can help further unravel the determinants of neurobehavioral traits. Previously, a QTL for novelty induced motor activity levels was identified on murine chromosome 15 using consomic strains. With the goal of narrowing down the linked region and possibly identifying the gene underlying the quantitative trait, gene expression data from this F2-population was collected and used for expression QTL analysis. While genetic variation in these mice was limited to chromosome 15, eQTL analysis of gene expression showed strong cis-effects as well as trans-effects elsewhere in the genome. Using weighted gene co-expression network analysis, we were able to identify modules of co-expressed genes related to novelty induced motor activity levels. In eQTL analyses, the expression of Ly6a (a.k.a. Sca-1) was found to be cis-regulated by chromosome 15. Ly6a also surfaced in a group of genes resulting from the network analysis that was correlated with behavior. Behavioral analysis of Ly6a knock-out mice revealed reduced novelty induced motor activity levels when compared to wild type controls, confirming functional importance of Ly6a in this behavior, possibly through regulating other genes in a pathway. This study shows that gene expression profiling can be used to narrow down a previously identified behavioral QTL in mice, providing support for Ly6a as a candidate gene for functional involvement in novelty responsiveness.
Collapse
Affiliation(s)
- Simone de Jong
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martien J. H. Kas
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeffrey Kiernan
- Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, Ontario, Canada
| | - Annetrude G. de Mooij-van Malsen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen Center for Neuroscience, Nijmegen, The Netherlands
| | - Hugo Oppelaar
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esther Janson
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Igor Vukobradovic
- Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Charles R. Farber
- Department of Medicine, Department of Biochemistry and Molecular Genetics and Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - William L. Stanford
- Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, Ontario, Canada
| | - Roel A. Ophoff
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Staszkiewicz J, Gimble JM, Dietrich MA, Gawronska-Kozak B. Diet-induced obesity in stem cell antigen-1 KO mice. Stem Cells Dev 2011; 21:249-59. [PMID: 21510817 DOI: 10.1089/scd.2010.0507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem Cell Antigen-1 (Sca-1) is a member of the lymphocyte-activated protein 6 family and has served as a marker for the identification of stem cells in various tissues, including fat depots. In vitro and in vivo studies suggest the possible involvement of Sca-1 in adipogenic differentiation and link Sca-1 antigenicity with adipocyte progenitors. Previously, we showed that Sca-1-enriched populations of ear mesenchymal stem cells possess enhanced capacity to differentiate into adipocytes. Additionally, we determined the natural frequency and localization of Sca-1-positive progenitor/stem cells in brown and white fat in situ. The present study addressed the question whether Sca-1 deficiency alters the white adipose tissue response to a high-saturated-fat diet. Our results show that Sca-1 null mice (Sca-1(-/-)) fed high-fat diet developed obesity equally well as wild-type mice, suggesting either an indirect in vivo effect of Sca-1 or a compensatory response to Sca-1 deficiency. However, contrary to wild-type mice, high fat diet-fed Sca-1(-/-) mice showed no alterations in serum adipocytokines. The data lead to the conclusion that Sca-1 is either redundant or a nonessential marker of adipose progenitor/stem cells. Nevertheless, since Sca-1-deficient mice displayed elevated blood glucose at fasting and exhibited glucose intolerance and insulin resistance, Sca-1 has subtle effects on adipose function. Thus, the Sca-1-deficient mice may provide a useful model for metabolic studies.
Collapse
Affiliation(s)
- Jaroslaw Staszkiewicz
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
45
|
Long KK, Pavlath GK, Montano M. Sca-1 influences the innate immune response during skeletal muscle regeneration. Am J Physiol Cell Physiol 2010; 300:C287-94. [PMID: 21123737 DOI: 10.1152/ajpcell.00319.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efficient muscle regeneration requires the clearance of dead and dying tissue via phagocytosis before remodeling. We have previously shown that mice lacking stem cell antigen-1 (Sca-1) display a defect in skeletal muscle regeneration characterized by increased fibrosis and decreased turnover of the extracellular matrix. In the present study we demonstrate that Sca-1(-/-) mice have a defect in their capacity to recruit soluble IgM, and subsequently C3 complement, to damaged muscle. We hypothesize that this defect in recruitment delays or decreases phagocytosis by macrophages, contributing to the previously observed fibrotic phenotype of these mice. As the primary source of soluble IgM is peritoneal B-1a cells, which are a subset of self-renewing B cells, we analyzed this cell population and observed a significant reduction in B-1a cells in Sca-1(-/-) animals. Interestingly, these mice are protected from ischemia-reperfusion injury, an acute inflammatory reaction also mediated by IgM and C3 complement that has been linked to a deficit in B-1a cells in previous studies. Collectively, these data reveal a novel role for Sca-1 in innate immunity during muscle regeneration and indicate that further elucidation of immuno-myogenic processes will help to better understand and promote muscle regeneration.
Collapse
Affiliation(s)
- Kimberly K Long
- Boston Medical Center, Department of Medicine, Section of Infectious Diseases, Boston, Massachusetts, USA
| | | | | |
Collapse
|
46
|
Prevorsek Z, Gorjanc G, Paigen B, Horvat S. Congenic and bioinformatics analyses resolved a major-effect Fob3b QTL on mouse Chr 15 into two closely linked loci. Mamm Genome 2010; 21:172-85. [PMID: 20204375 DOI: 10.1007/s00335-010-9252-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/29/2010] [Indexed: 11/28/2022]
Abstract
We previously identified a Chr 15 quantitative trait locus (QTL) Fob3b in lines of mice selected for high (Fat line) and low (Lean line) body fat content that represent a unique model of polygenic obesity. Here we genetically dissected the Fob3b interval by analyzing the phenotypes of eight overlapping congenic lines and four F(2) congenic intercrosses and prioritized candidates by bioinformatics approaches. Analyses revealed that the Fob3b QTL consists of at least two separate linked QTLs Fob3b1 and Fob3b2. They exhibit additive inheritance and are linked in coupling with alleles originating from the Lean line, decreasing obesity-related traits. In further analyses, we focused on Fob3b1 because it had a larger effect on obesity-related traits than Fob3b2, e.g., the difference between homozygotes for adiposity index (ADI) percentage was 1.22 and 0.77% for Fob3b1 and Fob3b2, respectively. A set of bioinformatics tools was used to narrow down positional candidates from 85 to 4 high-priority Fob3b1 candidates. A previous single Fob3b QTL was therefore resolved into another two closely linked QTLs, confirming the fractal nature of QTLs mapped at low resolution. The interval of the original Fob3b QTL was narrowed from 22.39 to 4.98 Mbp for Fob3b1 and to 7.68 Mbp for Fob3b2, which excluded the previously assigned candidate squalene epoxidase (Sqle) as the causal gene because it maps proximal to refined Fob3b1 and Fob3b2 intervals. A high-resolution map along with prioritization of Fob3b1 candidates by bioinformatics represents an important step forward to final identification of the Chr 15 obesity QTL.
Collapse
Affiliation(s)
- Zala Prevorsek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
| | | | | | | |
Collapse
|
47
|
Kawaguchi T, Sho M, Tojo T, Yamato I, Nomi T, Hotta K, Hamada K, Suzaki Y, Sugiura S, Kushibe K, Nakajima Y, Taniguchi S. Clinical Significance of Prostate Stem Cell Antigen Expression in Non-small Cell Lung Cancer. Jpn J Clin Oncol 2010; 40:319-26. [DOI: 10.1093/jjco/hyp181] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
48
|
Whitmire JK, Eam B, Whitton JL. Mice deficient in stem cell antigen-1 (Sca1, Ly-6A/E) develop normal primary and memory CD4+ and CD8+ T-cell responses to virus infection. Eur J Immunol 2009; 39:1494-504. [PMID: 19384870 PMCID: PMC2757104 DOI: 10.1002/eji.200838959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cell antigen-1 (Sca1, Ly-6A/E) is a well-established marker of murine hematopoietic stem cells, and also is expressed on memory T cells. It has been suggested that the functional maintenance of T-cell memory requires the expression of Sca1 on a specialized population of memory T cells termed "memory stem cells". Here, we evaluate the requirement for Sca1 in the primary T-cell response to virus infection, and in the establishment and maintenance of T-cell memory. We find that Sca1 expression increases on almost all CD4(+) and CD8(+) T cells during virus infection, and remains high on virus-specific memory cells. However, Sca1-deficient (Sca1KO) mice generate normal primary T-cell responses to infection; the kinetics, the immunodominance hierarchy, and the absolute numbers of CD4(+) and CD8(+) T cells are essentially indistinguishable from those observed in WT mice. Furthermore, by several criteria, primary and memory T cells in Sca1-deficient mice are phenotypically and functionally normal. These data indicate that Sca1, although perhaps a useful marker of virus-specific memory T cells, is not required for the regulation of T-cell quantity or quality, or for the development of a competent pool of memory cells.
Collapse
Affiliation(s)
- Jason K. Whitmire
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7147, FAX: 858-784-7380,
| | - Boreth Eam
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7147, FAX: 858-784-7380,
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7147, FAX: 858-784-7380,
| |
Collapse
|
49
|
Tjwa M, Sidenius N, Moura R, Jansen S, Theunissen K, Andolfo A, De Mol M, Dewerchin M, Moons L, Blasi F, Verfaillie C, Carmeliet P. Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells. J Clin Invest 2009; 119:1008-18. [PMID: 19273908 DOI: 10.1172/jci36010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 01/14/2009] [Indexed: 01/17/2023] Open
Abstract
The mechanisms of BM hematopoietic stem/progenitor cell (HSPC) adhesion, engraftment, and mobilization remain incompletely identified. Here, using WT and transgenic mice, we have shown that membrane-anchored plasminogen activator, urokinase receptor (MuPAR) marks a subset of HSPCs and promotes the preservation of the size of this pool of cells in the BM. Loss or inhibition of MuPAR increased HSPC proliferation and impaired their homing, engraftment, and adhesion to the BM microenvironment. During mobilization, MuPAR was inactivated by plasmin via proteolytic cleavage. Cell-autonomous loss of the gene encoding MuPAR also impaired long-term engraftment and multilineage repopulation in primary and secondary recipient mice. These findings identify MuPAR and plasmin as regulators of the proliferation, marrow pool size, homing, engraftment, and mobilization of HSPCs and possibly also of HSCs.
Collapse
Affiliation(s)
- Marc Tjwa
- VIB--Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kafadar KA, Yi L, Ahmad Y, So L, Rossi F, Pavlath GK. Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration. Dev Biol 2009; 326:47-59. [PMID: 19059231 PMCID: PMC2659587 DOI: 10.1016/j.ydbio.2008.10.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/16/2008] [Accepted: 10/20/2008] [Indexed: 01/03/2023]
Abstract
Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family proteins that functions in cell growth, differentiation, and self-renewal in multiple tissues. In skeletal muscle Sca-1 negatively regulates myoblast proliferation and differentiation, and may function in the maintenance of progenitor cells. We investigated the role of Sca-1 in skeletal muscle regeneration and show here that Sca-1 expression is upregulated in a subset of myogenic cells upon muscle injury. We demonstrate that extract from crushed muscle upregulates Sca-1 expression in myoblasts in vitro, and that this effect is reversible and independent of cell proliferation. Sca-1(-/-) mice exhibit defects in muscle regeneration, with the development of fibrosis following injury. Sca-1(-/-) muscle displays reduced activity of matrix metalloproteinases, critical regulators of extracellular matrix remodeling. Interestingly, we show that the number of satellite cells is similar in wild-type and Sca-1(-/-) muscle, suggesting that in satellite cells Sca-1 does not play a role in self-renewal. We hypothesize that Sca-1 upregulates, directly or indirectly, the activity of matrix metalloproteinases, leading to matrix breakdown and efficient muscle regeneration. Further elucidation of the role of Sca-1 in matrix remodeling may aid in the development of novel therapeutic strategies for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
| | - Lin Yi
- University of British Columbia, The Biomedical Research Centre, Vancouver, BC V6T 1Z3
| | - Yusra Ahmad
- Emory University Department of Pharmacology, Atlanta, GA 30322
| | - Leslie So
- University of British Columbia, The Biomedical Research Centre, Vancouver, BC V6T 1Z3
| | - Fabio Rossi
- University of British Columbia, The Biomedical Research Centre, Vancouver, BC V6T 1Z3
| | | |
Collapse
|