1
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Hogan MJ, Maheshwari N, Begg BE, Nicastri A, Hedgepeth EJ, Muramatsu H, Pardi N, Miller MA, Reilly SP, Brossay L, Lynch KW, Ternette N, Eisenlohr LC. Cryptic MHC-E epitope from influenza elicits a potent cytolytic T cell response. Nat Immunol 2023; 24:1933-1946. [PMID: 37828378 DOI: 10.1038/s41590-023-01644-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.
Collapse
Affiliation(s)
- Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Nikita Maheshwari
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bridget E Begg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma J Hedgepeth
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Century Therapeutics, Philadelphia, PA, USA
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol 2023; 66:101733. [PMID: 36841147 DOI: 10.1016/j.smim.2023.101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yufei Cui
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M White
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Lodha M, Erhard F, Dölken L, Prusty BK. The Hidden Enemy Within: Non-canonical Peptides in Virus-Induced Autoimmunity. Front Microbiol 2022; 13:840911. [PMID: 35222346 PMCID: PMC8866975 DOI: 10.3389/fmicb.2022.840911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Viruses play a key role in explaining the pathogenesis of various autoimmune disorders, whose underlying principle is defined by the activation of autoreactive T-cells. In many cases, T-cells escape self-tolerance due to the failure in encountering certain MHC-I self-peptide complexes at substantial levels, whose peptides remain invisible from the immune system. Over the years, contribution of unstable defective ribosomal products (DRiPs) in immunosurveillance has gained prominence. A class of unstable products emerge from non-canonical translation and processing of unannotated mammalian and viral ORFs and their peptides are cryptic in nature. Indeed, high throughput sequencing and proteomics have revealed that a substantial portion of our genomes comprise of non-canonical ORFs, whose generation is significantly modulated during disease. Many of these ORFs comprise short ORFs (sORFs) and upstream ORFs (uORFs) that resemble DRiPs and may hence be preferentially presented. Here, we discuss how such products, normally “hidden” from the immune system, become abundant in viral infections activating autoimmune T-cells, by discussing their emerging role in infection and disease. Finally, we provide a perspective on how these mechanisms can explain several autoimmune disorders in the wake of the COVID-19 pandemic.
Collapse
|
5
|
Leko V, Rosenberg SA. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell 2020; 38:454-472. [PMID: 32822573 PMCID: PMC7737225 DOI: 10.1016/j.ccell.2020.07.013] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Cancer elimination in humans can be achieved with immunotherapy that relies on T lymphocyte-mediated recognition of tumor antigens. Several types of these antigens have been recognized based on their cellular origins and expression patterns, while their detection has been greatly facilitated by recent achievements in next-generation sequencing and immunopeptidomics. Some of them have been targeted in clinical trials with various immunotherapy approaches, while many others remain untested. Here, we discuss molecular identification of different tumor antigen types, and the clinical safety and efficacy of targeting them with immunotherapy. Additionally, we suggest strategies to increase the efficacy and availability of antigen-directed immunotherapies for treatment of patients with metastatic cancer.
Collapse
Affiliation(s)
- Vid Leko
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Kinetically distinct processing pathways diversify the CD8 + T cell response to a single viral epitope. Proc Natl Acad Sci U S A 2020; 117:19399-19407. [PMID: 32719124 DOI: 10.1073/pnas.2004372117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The source proteins from which CD8+ T cell-activating peptides are derived remain enigmatic. Glycoproteins are particularly challenging in this regard owing to several potential trafficking routes within the cell. By engineering a glycoprotein-derived epitope to contain an N-linked glycosylation site, we determined that optimal CD8+ T cell expansion and function were induced by the peptides that are rapidly produced from the exceedingly minor fraction of protein mislocalized to the cytosol. In contrast, peptides derived from the much larger fraction that undergoes translocation and quality control are produced with delayed kinetics and induce suboptimal CD8+ T cell responses. This dual system of peptide generation enhances CD8+ T cell participation in diversifying both antigenicity and the kinetics of peptide display.
Collapse
|
7
|
Smith CC, Chai S, Washington AR, Lee SJ, Landoni E, Field K, Garness J, Bixby LM, Selitsky SR, Parker JS, Savoldo B, Serody JS, Vincent BG. Machine-Learning Prediction of Tumor Antigen Immunogenicity in the Selection of Therapeutic Epitopes. Cancer Immunol Res 2019; 7:1591-1604. [PMID: 31515258 PMCID: PMC6774822 DOI: 10.1158/2326-6066.cir-19-0155] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/19/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Current tumor neoantigen calling algorithms primarily rely on epitope/major histocompatibility complex (MHC) binding affinity predictions to rank and select for potential epitope targets. These algorithms do not predict for epitope immunogenicity using approaches modeled from tumor-specific antigen data. Here, we describe peptide-intrinsic biochemical features associated with neoantigen and minor histocompatibility mismatch antigen immunogenicity and present a gradient boosting algorithm for predicting tumor antigen immunogenicity. This algorithm was validated in two murine tumor models and demonstrated the capacity to select for therapeutically active antigens. Immune correlates of neoantigen immunogenicity were studied in a pan-cancer data set from The Cancer Genome Atlas and demonstrated an association between expression of immunogenic neoantigens and immunity in colon and lung adenocarcinomas. Lastly, we present evidence for expression of an out-of-frame neoantigen that was capable of driving antitumor cytotoxic T-cell responses. With the growing clinical importance of tumor vaccine therapies, our approach may allow for better selection of therapeutically relevant tumor-specific antigens, including nonclassic out-of-frame antigens capable of driving antitumor immunity.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, North Carolina
| | - Amber R Washington
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Samuel J Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kevin Field
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason Garness
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lisa M Bixby
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Bioinformatics Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Bioinformatics Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina
| | - Jonathan S Serody
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, Division of Hematology/Oncology, UNC School of Medicine, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, North Carolina
- Department of Medicine, Division of Hematology/Oncology, UNC School of Medicine, Chapel Hill, North Carolina
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour-specific antigens. Nat Rev Cancer 2019; 19:465-478. [PMID: 31278396 PMCID: PMC6874891 DOI: 10.1038/s41568-019-0162-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
The study of tumour-specific antigens (TSAs) as targets for antitumour therapies has accelerated within the past decade. The most commonly studied class of TSAs are those derived from non-synonymous single-nucleotide variants (SNVs), or SNV neoantigens. However, to increase the repertoire of available therapeutic TSA targets, 'alternative TSAs', defined here as high-specificity tumour antigens arising from non-SNV genomic sources, have recently been evaluated. Among these alternative TSAs are antigens derived from mutational frameshifts, splice variants, gene fusions, endogenous retroelements and other processes. Unlike the patient-specific nature of SNV neoantigens, some alternative TSAs may have the advantage of being widely shared by multiple tumours, allowing for universal, off-the-shelf therapies. In this Opinion article, we will outline the biology, available computational tools, preclinical and/or clinical studies and relevant cancers for each alternative TSA class, as well as discuss both current challenges preventing the therapeutic application of alternative TSAs and potential solutions to aid in their clinical translation.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Bioinformatics Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Marsico Hall, Chapel Hill, NC, USA
| | - Shengjie Chai
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jonathan S Serody
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Zanker DJ, Oveissi S, Tscharke DC, Duan M, Wan S, Zhang X, Xiao K, Mifsud NA, Gibbs J, Izzard L, Dlugolenski D, Faou P, Laurie KL, Vigneron N, Barr IG, Stambas J, Van den Eynde BJ, Bennink JR, Yewdell JW, Chen W. Influenza A Virus Infection Induces Viral and Cellular Defective Ribosomal Products Encoded by Alternative Reading Frames. THE JOURNAL OF IMMUNOLOGY 2019; 202:3370-3380. [PMID: 31092636 DOI: 10.4049/jimmunol.1900070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
Abstract
The importance of antiviral CD8+ T cell recognition of alternative reading frame (ARF)-derived peptides is uncertain. In this study, we describe an epitope (NS1-ARF21-8) present in a predicted 14-residue peptide encoded by the +1 register of NS1 mRNA in the influenza A virus (IAV). NS1-ARF21-8 elicits a robust, highly functional CD8+ T cell response in IAV-infected BALB/c mice. NS1-ARF21-8 is presented from unspliced NS mRNA, likely from downstream initiation on a Met residue that comprises the P1 position of NS1-ARF21-8 Derived from a 14-residue peptide with no apparent biological function and negligible impacts on IAV infection, infectivity, and pathogenicity, NS1-ARF21-8 provides a clear demonstration of how immunosurveillance exploits natural errors in protein translation to provide antiviral immunity. We further show that IAV infection enhances a model cellular ARF translation, which potentially has important implications for virus-induced autoimmunity.
Collapse
Affiliation(s)
- Damien J Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - David C Tscharke
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Siyuan Wan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Xiaomu Zhang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kun Xiao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.,Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - James Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lenny Izzard
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Daniel Dlugolenski
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Karen L Laurie
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | | | - Ian G Barr
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | | | - Jack R Bennink
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia;
| |
Collapse
|
10
|
Wei J, Yewdell JW. Autoimmune T cell recognition of alternative-reading-frame-encoded peptides. Nat Med 2019; 23:409-410. [PMID: 28388603 DOI: 10.1038/nm.4317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiajie Wei
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Peng BJ, Carlson JM, Liu MKP, Gao F, Goonetilleke N, McMichael AJ, Borrow P, Gilmour J, Heath SL, Hunter E, Bansal A, Goepfert PA. Antisense-Derived HIV-1 Cryptic Epitopes Are Not Major Drivers of Viral Evolution during the Acute Phase of Infection. J Virol 2018; 92:e00711-18. [PMID: 30021907 PMCID: PMC6146806 DOI: 10.1128/jvi.00711-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/07/2018] [Indexed: 01/31/2023] Open
Abstract
While prior studies have demonstrated that CD8 T cell responses to cryptic epitopes (CE) are readily detectable during HIV-1 infection, their ability to drive escape mutations following acute infection is unknown. We predicted 66 CE in a Zambian acute infection cohort based on escape mutations occurring within or near the putatively predicted HLA-I-restricted epitopes. The CE were evaluated for CD8 T cell responses for patients with chronic and acute HIV infections. Of the 66 predicted CE, 10 were recognized in 8/32 and 4/11 patients with chronic and acute infections, respectively. The immunogenic CE were all derived from a single antisense reading frame within pol However, when these CE were tested using longitudinal study samples, CE-specific T cell responses were detected but did not consistently select for viral escape mutations. Thus, while we demonstrated that CE are immunogenic in acute infection, the immune responses to CE are not major drivers of viral escape in the initial stages of HIV infection. The latter finding may be due to either the subdominant nature of CE-specific responses, the low antigen sensitivity, or the magnitude of CE responses during acute infections.IMPORTANCE Although prior studies demonstrated that cryptic epitopes of HIV-1 induce CD8 T cell responses, evidence that targeting these epitopes drives HIV escape mutations has been substantially limited, and no studies have addressed this question following acute infection. In this comprehensive study, we utilized longitudinal viral sequencing data obtained from three separate acute infection cohorts to predict potential cryptic epitopes based on HLA-I-associated viral escape. Our data show that cryptic epitopes are immunogenic during acute infection and that many of the responses they elicit are toward translation products of HIV-1 antisense reading frames. However, despite cryptic epitope targeting, our study did not find any evidence of early CD8-mediated immune escape. Nevertheless, improving cryptic epitope-specific CD8 T cell responses may still be beneficial in both preventative and therapeutic HIV-1 vaccines.
Collapse
Affiliation(s)
- Binghao J Peng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Michael K P Liu
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Feng Gao
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Nilu Goonetilleke
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Hickman HD, Mays JW, Gibbs J, Kosik I, Magadán JG, Takeda K, Das S, Reynoso GV, Ngudiankama BF, Wei J, Shannon JP, McManus D, Yewdell JW. Influenza A Virus Negative Strand RNA Is Translated for CD8 + T Cell Immunosurveillance. THE JOURNAL OF IMMUNOLOGY 2018; 201:1222-1228. [PMID: 30012850 DOI: 10.4049/jimmunol.1800586] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
Abstract
Probing the limits of CD8+ T cell immunosurveillance, we inserted the SIINFEKL peptide into influenza A virus (IAV)-negative strand gene segments. Although IAV genomic RNA is considered noncoding, there is a conserved, relatively long open reading frame present in segment 8, encoding a potential protein termed NEG8. The biosynthesis of NEG8 from IAV has yet to be demonstrated. Although we failed to detect NEG8 protein expression in IAV-infected mouse cells, cell surface Kb-SIINFEKL complexes are generated when SIINFEKL is genetically appended to the predicted C terminus of NEG8, as shown by activation of OT-I T cells in vitro and in vivo. Moreover, recombinant IAV encoding of SIINFEKL embedded in the negative strand of the neuraminidase-stalk coding sequence also activates OT-I T cells in mice. Together, our findings demonstrate both the translation of sequences on the negative strand of a single-stranded RNA virus and its relevance in antiviral immunosurveillance.
Collapse
Affiliation(s)
- Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jacqueline W Mays
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - James Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ivan Kosik
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Javier G Magadán
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Suman Das
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Glennys V Reynoso
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Barbara F Ngudiankama
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - JiaJie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - John P Shannon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Daniel McManus
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
13
|
Laumont CM, Perreault C. Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cell Mol Life Sci 2018; 75:607-621. [PMID: 28823056 PMCID: PMC11105255 DOI: 10.1007/s00018-017-2628-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023]
Abstract
Cryptic MHC I-associated peptides (MAPs) are produced via two mechanisms: translation of protein-coding genes in non-canonical reading frames and translation of allegedly non-coding sequences. In general, cryptic MAPs are coded by relatively short open reading frames whose translation can be regulated at the level of initiation, elongation or termination. In contrast to conventional MAPs, the processing of cryptic MAPs is frequently proteasome independent. The existence of cryptic MAPs derived from allegedly non-coding regions enlarges the scope of CD8 T cell immunosurveillance from a mere ~2% to as much as ~75% of the human genome. Considering that 99% of cancer-specific mutations are located in those allegedly non-coding regions, cryptic MAPs could furthermore represent a particularly rich source of tumor-specific antigens. However, extensive proteogenomic analyses will be required to determine the breath as well as the temporal and spatial plasticity of the cryptic MAP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Céline M Laumont
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Division of Hematology, Hôpital Maisonneuve-Rosemont, 5415 de l'Assomption Boulevard, Montreal, QC, H1T 2M4, Canada.
| |
Collapse
|
14
|
Wei J, Zanker D, Di Carluccio AR, Smelkinson MG, Takeda K, Seedhom MO, Dersh D, Gibbs JS, Yang N, Jadhav A, Chen W, Yewdell JW. Varied Role of Ubiquitylation in Generating MHC Class I Peptide Ligands. THE JOURNAL OF IMMUNOLOGY 2017; 198:3835-3845. [PMID: 28363906 DOI: 10.4049/jimmunol.1602122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
CD8+ T cell immunosurveillance is based on recognizing oligopeptides presented by MHC class I molecules. Despite decades of study, the importance of protein ubiquitylation to peptide generation remains uncertain. In this study, we examined the ability of MLN7243, a recently described ubiquitin-activating enzyme E1 inhibitor, to block overall cytosolic peptide generation and generation of specific peptides from vaccinia- and influenza A virus-encoded proteins. We show that MLN7243 rapidly inhibits ubiquitylation in a variety of cell lines and can profoundly reduce the generation of cytosolic peptides. Kinetic analysis of specific peptide generation reveals that ubiquitylation of defective ribosomal products is rate limiting in generating class I peptide complexes. More generally, our findings demonstrate that the requirement for ubiquitylation in MHC class I-restricted Ag processing varies with class I allomorph, cell type, source protein, and peptide context. Thus, ubiquitin-dependent and -independent pathways robustly contribute to MHC class I-based immunosurveillance.
Collapse
Affiliation(s)
- Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Damien Zanker
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Anthony R Di Carluccio
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Margery G Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993; and
| | - Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ajit Jadhav
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892
| | - Weisan Chen
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
15
|
Yang N, Gibbs JS, Hickman HD, Reynoso GV, Ghosh AK, Bennink JR, Yewdell JW. Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. THE JOURNAL OF IMMUNOLOGY 2016; 196:3608-17. [PMID: 27016602 DOI: 10.4049/jimmunol.1502303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Influenza A virus gene segment 7 encodes two proteins: the M1 protein translated from unspliced mRNA and the M2 protein produced by mRNA splicing and largely encoded by the M1 +1 reading frame. To better understand the generation of defective ribosomal products relevant to MHC class I Ag presentation, we engineered influenza A virus gene segment 7 to encode the model H-2 K(b) class I peptide ligand SIINFEKL at the M2 protein C terminus. Remarkably, after treating virus-infected cells with the RNA splicing inhibitor spliceostatin A to prevent M2 mRNA generation, K(b)-SIINFEKL complexes were still presented on the cell surface at levels ≤60% of untreated cells. Three key findings indicate that SIINFEKL is produced by cytoplasmic translation of unspliced M1 mRNA initiating at CUG codons within the +1 reading frame: 1) synonymous mutation of CUG codons in the M2-reading frame reduced K(b)-SIINFEKL generation; 2) K(b)-SIINFEKL generation was not affected by drug-mediated inhibition of AUG-initiated M1 synthesis; and 3) K(b)-SIINFEKL was generated in vitro and in vivo from mRNA synthesized in the cytoplasm by vaccinia virus, and hence cannot be spliced. These findings define a viral defective ribosomal product generated by cytoplasmic noncanonical translation and demonstrate the participation of CUG-codon-based translation initiation in pathogen immunosurveillance.
Collapse
Affiliation(s)
- Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Glennys V Reynoso
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
16
|
Bansal A, Mann T, Sterrett S, Peng BJ, Bet A, Carlson JM, Goepfert PA. Enhanced Recognition of HIV-1 Cryptic Epitopes Restricted by HLA Class I Alleles Associated With a Favorable Clinical Outcome. J Acquir Immune Defic Syndr 2015; 70:1-8. [PMID: 26322665 DOI: 10.1097/qai.0000000000000700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cryptic epitopes (CEs) are peptides derived from the translation of 1 or more of the 5 alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared response rates to HIV-1-specific CE predicted to be restricted by HLA-I alleles associated with protection against disease progression to those without any such association. METHODS Peptides (9mer to 11mer) were designed based on HLA-I-binding algorithms for B*27, B*57, or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (nonprotective allele) in all 5 ARFs of the 9 HIV-1 encoded proteins. Peptides with >50% probability of being an epitope (n = 231) were tested for T-cell responses in an IFN-γ enzyme-linked immunosorbent spot (ELISpot) assay. Peripheral blood mononuclear cell samples from HIV-1 seronegative donors (n = 42) and HIV-1 seropositive patients with chronic clade B infections (n = 129) were used. RESULTS Overall, 16%, 2%, and 2% of chronic HIV infected patients had CE responses by IFN-γ ELISpot in the protective, nonprotective, and seronegative groups, respectively (P = 0.009, Fischer exact test). Twenty novel CE-specific responses were mapped (median magnitude of 95 spot forming cells/10 peripheral blood mononuclear cells), and most were both antisense derived (90%) and represented ARFs of accessory proteins (55%). CE-specific CD8 T cells were multifunctional and proliferated when assessed by intracellular cytokine staining. CONCLUSIONS CE responses were preferentially restricted by the protective HLA-I alleles in HIV-1 infection, suggesting that they may contribute to viral control in this group of patients.
Collapse
Affiliation(s)
- Anju Bansal
- *Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and †Microsoft Research, Redmond, WA
| | | | | | | | | | | | | |
Collapse
|
17
|
van Els CACM, Corbière V, Smits K, van Gaans-van den Brink JAM, Poelen MCM, Mascart F, Meiring HD, Locht C. Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis Immunoproteome. Front Immunol 2014; 5:361. [PMID: 25157249 PMCID: PMC4127798 DOI: 10.3389/fimmu.2014.00361] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022] Open
Abstract
CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here, we review Mtb protein PTMs and methods to assess their role in protective immunity against Mtb.
Collapse
Affiliation(s)
- Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | - Véronique Corbière
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | - Kaat Smits
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | | | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , Bilthoven , Netherlands
| | - Francoise Mascart
- Laboratory for Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium ; Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.) , Brussels , Belgium
| | - Hugo D Meiring
- Institute for Translational Vaccinology , Bilthoven , Netherlands
| | - Camille Locht
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille , Lille , France ; INSERM U1019 , Lille , France ; CNRS UMR8204 , Lille , France ; Université Lille Nord de France , Lille , France
| |
Collapse
|
18
|
Bet A, Sterret S, Sato A, Bansal A, Goepfert PA. Characterization of T-cell responses to cryptic epitopes in recipients of a noncodon-optimized HIV-1 vaccine. J Acquir Immune Defic Syndr 2014; 65:142-50. [PMID: 24442221 PMCID: PMC3896890 DOI: 10.1097/qai.0b013e3182a9917e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Cryptic epitopes (CEs) can be encoded by any of the 5 alternative reading frames (ARFs, 2 sense and 3 antisense) of a known gene. Although CE responses are commonly detected during HIV-1 infection, it is not known whether these responses are induced after vaccination. METHODS Using a bioinformatic approach, we determined that vaccines with codon-optimized HIV inserts significantly skewed CE sequences and are not likely to induce crossreactive responses to natural HIV CE. We then evaluated the CE- and protein-specific T-cell responses using Gag, Pol, and ARF peptide pools among participants immunized with a non-codon optimized vaccine regimen of 2 pGA2/JS7 DNA primes followed by 2 MVA/HIV62 Gag-Pol-Env vector boosts or 4 saline injections. RESULTS Vaccinees had significantly more interferon gamma enzyme-linked immunosorbent spot (IFNγ ELISpot) responses toward Gag (P = 0.003) but not toward Pol protein than did placebo recipients. However, CE-specific T-cell responses were low in magnitude, and their frequencies did not differ significantly between vaccine and placebo recipients. Additionally, most positive CE responses could not be mapped to individual peptides. After expanding responses in a cultured assay, however, the frequency and the median magnitude of responses to ARF peptides were significantly greater in vaccinees (P < 0.0001), indicating that CE-specific T-cell responses are present but below an ex vivo assay's limit of detection. CONCLUSIONS Our data demonstrate that HIV-1 vaccines currently in clinical trials are poorly immunogenic with regard to CE-specific T-cell responses. Therefore, the context of HIV-1 immunogens may need to be modified as a comprehensive strategy to broaden vaccine-induced T-cell responses.
Collapse
Affiliation(s)
- Anne Bet
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA 35294
| | - Sarah Sterret
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA 35294
| | - Alicia Sato
- Statistical Center for HIV/AIDS Research & Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA 35294
| | - Paul A. Goepfert
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA 35294
| |
Collapse
|
19
|
Champiat S, Raposo RAS, Maness NJ, Lehman JL, Purtell SE, Hasenkrug AM, Miller JC, Dean H, Koff WC, Hong MA, Martin JN, Deeks SG, Spotts GE, Pilcher CD, Hecht FM, Kallas EG, Garrison KE, Nixon DF. Influence of HAART on alternative reading frame immune responses over the course of HIV-1 infection. PLoS One 2012; 7:e39311. [PMID: 22768072 PMCID: PMC3387156 DOI: 10.1371/journal.pone.0039311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 05/18/2012] [Indexed: 12/22/2022] Open
Abstract
Background Translational errors can result in bypassing of the main viral protein reading frames and the production of alternate reading frame (ARF) or cryptic peptides. Within HIV, there are many such ARFs in both sense and the antisense directions of transcription. These ARFs have the potential to generate immunogenic peptides called cryptic epitopes (CE). Both antiretroviral drug therapy and the immune system exert a mutational pressure on HIV-1. Immune pressure exerted by ARF CD8+ T cells on the virus has already been observed in vitro. HAART has also been described to select HIV-1 variants for drug escape mutations. Since the mutational pressure exerted on one location of the HIV-1 genome can potentially affect the 3 reading frames, we hypothesized that ARF responses would be affected by this drug pressure in vivo. Methodology/Principal findings In this study we identified new ARFs derived from sense and antisense transcription of HIV-1. Many of these ARFs are detectable in circulating viral proteins. They are predominantly found in the HIV-1 env nucleotide region. We measured T cell responses to 199 HIV-1 CE encoded within 13 sense and 34 antisense HIV-1 ARFs. We were able to observe that these ARF responses are more frequent and of greater magnitude in chronically infected individuals compared to acutely infected patients, and in patients on HAART, the breadth of ARF responses increased. Conclusions/Significance These results have implications for vaccine design and unveil the existence of potential new epitopes that could be included as vaccine targets.
Collapse
Affiliation(s)
- Stephane Champiat
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rui André Saraiva Raposo
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nicholas J. Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John L. Lehman
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Biology, Saint Mary’s College of California, Moraga, California, United States of America
| | - Sean E. Purtell
- Department of Biology, Saint Mary’s College of California, Moraga, California, United States of America
| | - Aaron M. Hasenkrug
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jacob C. Miller
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Hansi Dean
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Wayne C. Koff
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Marisa Ailin Hong
- Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil, and Institute Adolfo Lutz, São Paulo, Brazil
| | - Jeffrey N. Martin
- Epidemiology and Prevention Interventions Center, Division of Infectious Diseases, and The Positive Health Program, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Gerald E. Spotts
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher D. Pilcher
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Fredrick M. Hecht
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Esper G. Kallas
- University of São Paulo, São Paulo, Brazil, Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil
| | - Keith E. Garrison
- Department of Biology, Saint Mary’s College of California, Moraga, California, United States of America
| | - Douglas F. Nixon
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Starck SR, Shastri N. Non-conventional sources of peptides presented by MHC class I. Cell Mol Life Sci 2011; 68:1471-9. [PMID: 21390547 PMCID: PMC3071930 DOI: 10.1007/s00018-011-0655-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/14/2022]
Abstract
Effectiveness of immune surveillance of intracellular viruses and bacteria depends upon a functioning antigen presentation pathway that allows infected cells to reveal the presence of an intracellular pathogen. The antigen presentation pathway uses virtually all endogenous polypeptides as a source to produce antigenic peptides that are eventually chaperoned to the cell surface by MHC class I molecules. Intriguingly, MHC I molecules present peptides encoded not only in the primary open reading frames but also those encoded in alternate reading frames. Here, we review recent studies on the generation of cryptic pMHC I. We focus on the immunological significance of cryptic pMHC I, and the novel translational mechanisms that allow production of these antigenic peptides from unconventional sources.
Collapse
Affiliation(s)
- Shelley R. Starck
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, LSA 421, Berkeley, CA 94720-3200 USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, LSA 421, Berkeley, CA 94720-3200 USA
| |
Collapse
|
21
|
Carlson TL, Green KA, Green WR. Alternative translational reading frames as a novel source of epitopes for an expanded CD8 T-cell repertoire: use of a retroviral system to assess the translational requirements for CTL recognition and lysis. Viral Immunol 2011; 23:577-83. [PMID: 21142443 DOI: 10.1089/vim.2010.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CD8 T-cell responses constitute a key host defense mechanism against tumor cells and a variety of viral infections, including retroviral infections that lead to acquired immunodeficiency. However, both for tumor cells and for many viral infections, there can be a relative paucity of immunodominant protective CD8 T-cell responses. For retroviruses, their rapid and error-prone replication, coupled with initial CD8 T-cell immunoselection of epitope-variant, retroviral quasi-species, are major impediments to sustaining a protective CD8 T-cell response. To approach this limitation of functional CD8 T-cell epitopes, here we further characterize an underappreciated source of additional T-cell epitopes: cryptic determinants, in particular those encoded in unconventional, alternative reading frames (ARFs). By use of the CD8 T-cell epitope, SYNTGRFPPL, which we have defined as encoded by the +1NT ARF of the gag gene of the LP-BM5 retrovirus that causes murine AIDS, we further characterize the regulation of ARF-epitope expression. Specifically, we examine the translation initiation requirements for production of sufficient epitope for effector CD8 T-cell recognition. Such translation must arise from rare frame-shifting events, making it crucial to understand any other constraints on epitope production, and therefore on the ability of the anti-Kd/SYNTGRFPPL CD8 T cells to protect from LP-BM5 pathogenesis and retroviral load, as we have previously shown. The data herein demonstrate that ARF epitope production depends entirely on conventional AUG-initiated translation, and that the more proximal in-frame ARF AUG is most important. However, maximal epitope production for protective CD8 T-cell lytic function also requires synergy of this initiation codon with a counterpart conventional AUG codon upstream in the same ARF (ORF 2), and with the classic ORF 1 AUG that initiates conventional gag polyprotein translation. These results have implications for the design of ARF-epitope-based vaccines, both to counter retroviral pathogenesis, as well as potentially more broadly, including in tumor systems.
Collapse
Affiliation(s)
- Timothy L Carlson
- Department of Microbiology and Immunology and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | |
Collapse
|
22
|
Misplon JA, Lo CY, Gabbard JD, Tompkins SM, Epstein SL. Genetic control of immune responses to influenza A matrix 2 protein (M2). Vaccine 2010; 28:5817-27. [PMID: 20600476 DOI: 10.1016/j.vaccine.2010.06.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 06/11/2010] [Accepted: 06/22/2010] [Indexed: 11/26/2022]
Abstract
Vaccines should protect genetically diverse populations. Therefore we tested the candidate "universal" influenza A matrix protein 2 (M2) vaccine in multiple mouse strains. Mice were primed with M2 DNA and boosted with M2 recombinant adenovirus (rAd). C57BL/6 (B6) mice developed no antibody or T-cell response to M2, while BALB/c responded strongly. CBA responses were intermediate. Both MHC and background genes influenced responsiveness. To improve low responses we immunized with adjuvanted peptide-carrier conjugates, or co-immunized with nucleoprotein (NP), which can augment T-cell help. The conjugate vaccine enhanced some outcomes but not others. Co-immunizing with NP improved outcomes over either NP or M2 immunizations alone. These results have implications for vaccination of genetically diverse populations.
Collapse
Affiliation(s)
- Julia A Misplon
- Food and Drug Administration, Center for Biologics and Research, HFM-730, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
23
|
Berger CT, Carlson JM, Brumme CJ, Hartman KL, Brumme ZL, Henry LM, Rosato PC, Piechocka-Trocha A, Brockman MA, Harrigan PR, Heckerman D, Kaufmann DE, Brander C. Viral adaptation to immune selection pressure by HLA class I-restricted CTL responses targeting epitopes in HIV frameshift sequences. ACTA ACUST UNITED AC 2010; 207:61-75. [PMID: 20065065 PMCID: PMC2812535 DOI: 10.1084/jem.20091808] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD8+ cytotoxic T lymphocyte (CTL)-mediated immune responses to HIV contribute to viral control in vivo. Epitopes encoded by alternative reading frame (ARF) peptides may be targeted by CTLs as well, but their frequency and in vivo relevance are unknown. Using host genetic (human leukocyte antigen [HLA]) and plasma viral sequence information from 765 HIV-infected subjects, we identified 64 statistically significant (q<0.2) associations between specific HLA alleles and sequence polymorphisms in alternate reading frames of gag, pol, and nef that did not affect the regular frame protein sequence. Peptides spanning the top 20 HLA-associated imprints were used to test for ex vivo immune responses in 85 HIV-infected subjects and showed responses to 10 of these ARF peptides. The most frequent response recognized an HLA-A*03-restricted +2 frame-encoded epitope containing a unique A*03-associated polymorphism at position 6. Epitope-specific CTLs efficiently inhibited viral replication in vitro when viruses containing the wild-type sequence but not the observed polymorphism were tested. Mutating alternative internal start codons abrogated the CTL-mediated inhibition of viral replication. These data indicate that responses to ARF-encoded HIV epitopes are induced during natural infection, can contribute to viral control in vivo, and drive viral evolution on a population level.
Collapse
Affiliation(s)
- Christoph T Berger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bansal A, Carlson J, Yan J, Akinsiku OT, Schaefer M, Sabbaj S, Bet A, Levy DN, Heath S, Tang J, Kaslow RA, Walker BD, Ndung'u T, Goulder PJ, Heckerman D, Hunter E, Goepfert PA. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription. ACTA ACUST UNITED AC 2010; 207:51-9. [PMID: 20065064 PMCID: PMC2812545 DOI: 10.1084/jem.20092060] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity.
Collapse
Affiliation(s)
- Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Transcriptional errors in human immunodeficiency virus type 1 generate targets for T-cell responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1369-71. [PMID: 19571107 DOI: 10.1128/cvi.00410-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We measured T-cell responses to human immunodeficiency virus type 1 (HIV-1) cryptic epitopes encoded by regions of the viral genome not normally translated into viral proteins. T-cell responses to cryptic epitopes and to regions normally spliced out of the HIV-1 viral proteins Rev and Tat were detected in HIV-1-infected subjects.
Collapse
|
26
|
Ho O, Green WR. Alternative translational products and cryptic T cell epitopes: expecting the unexpected. THE JOURNAL OF IMMUNOLOGY 2007; 177:8283-9. [PMID: 17142722 DOI: 10.4049/jimmunol.177.12.8283] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD8 T cell epitopes have been studied extensively, often overlooked are unconventional cryptic epitopes generated from nontraditional sources of peptides/proteins and/or mechanisms of translation. In this review, we discuss alternative reading frame epitopes, both mechanistically and also in terms of their physiologic importance in the induction of antiviral and antitumor CTL responses. Issues of the influence of cryptic translational products on foreign and self-Ag diversity, thymic selection, and the T cell repertoire; disease pathogenesis; and approaches to vaccine design are discussed in context of the potentially large impact of unconventional epitopes on T cell immunity.
Collapse
Affiliation(s)
- On Ho
- Department of Microbiology and Immunology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
27
|
Xiong Z, Liu E, Yan Y, Silver RT, Yang F, Chen IH, Chen Y, Verstovsek S, Wang H, Prchal J, Yang XF. An unconventional antigen translated by a novel internal ribosome entry site elicits antitumor humoral immune reactions. THE JOURNAL OF IMMUNOLOGY 2006; 177:4907-16. [PMID: 16982933 PMCID: PMC3902139 DOI: 10.4049/jimmunol.177.7.4907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-tumor Ags that elicit antitumor immune responses in responses to IFN-alpha stimulation remain poorly defined. We screened a human testis cDNA library with sera from three polycythemia vera patients who responded to IFN-alpha and identified a novel Ag, MPD6. MPD6 belongs to the group of cryptic Ags without conventional genomic structure and is encoded by a cryptic open reading frame located in the 3'-untranslated region of myotrophin mRNA. MPD6 elicits IgG Ab responses in a subset of polycythemia vera patients, as well as patients with chronic myelogenous leukemia and prostate cancer, suggesting that it is broadly immunogenic. The expression of myotrophin-MPD6 transcripts was up-regulated in some tumor cells, but only slightly increased in K562 cells in response to IFN-alpha treatment. By using bicistronic reporter constructs, we showed that the translation of MPD6 was mediated by a novel internal ribosome entry site (IRES) upstream of the MPD6 reading frame. Furthermore, the MPD6-IRES-mediated translation, but not myotrophin-MPD6 transcription, was significantly up-regulated in response to IFN-alpha stimulation. These findings demonstrate that a novel IRES-mediated mechanism may be responsible for the translation of unconventional self-Ag MPD6 in responsive to IFN-alpha stimulation. The eliciting antitumor immune response against unconventional Ag MPD6 in patients with myeloproliferative diseases suggests MPD6 as a potential target of novel immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/physiology
- Antigens, Neoplasm/ultrastructure
- Blotting, Northern
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Gene Library
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Interferon-gamma/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Male
- Molecular Sequence Data
- Polycythemia Vera/immunology
- Prostatic Neoplasms/immunology
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/ultrastructure
- Testis/physiology
Collapse
Affiliation(s)
- Zeyu Xiong
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Enli Liu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yan Yan
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Richard T. Silver
- Department of Medicine, New York Presbyterian-Weill Cornell Medical Center, New York, NY 10021
| | - Fan Yang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Irene H. Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Yangyang Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Hong Wang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Josef Prchal
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Xiao-Feng Yang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
- Address correspondence and reprint requests to Dr. Xiao-Feng Yang, Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140.
| |
Collapse
|
28
|
Zook MB, Howard MT, Sinnathamby G, Atkins JF, Eisenlohr LC. Epitopes Derived by Incidental Translational Frameshifting Give Rise to a Protective CTL Response. THE JOURNAL OF IMMUNOLOGY 2006; 176:6928-34. [PMID: 16709853 DOI: 10.4049/jimmunol.176.11.6928] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aberrant gene expression can be caused by several different mechanisms at the transcriptional, RNA processing, and translational level. Although most of the resulting proteins may have no significant biological function, they can be meaningful for the immune system, which is sensitive to extremely low levels of Ag. We have tested this possibility by investigating the ability of CD8+ T cells (TCD8+) to respond to an epitope whose expression results from incidental ribosomal frameshifting at a sequence element within the HSV thymidine kinase gene. This element, with no apparent functional significance, has been identified due to its ability to facilitate escape from the antiviral compound acyclovir. Using a recombinant vaccinia virus expression system, we find that in vitro and in vivo TCD8+ responses to the frameshift-dependent epitope are easily discernible. Furthermore, the in vivo response is at a sufficient level to mediate protection from a tumor challenge. Thus, the targets of immune responses to infectious agents can extend beyond the products of conventional open reading frames. On a per-cell basis, responses to such minimally expressed epitopes may be exceedingly effective due to the selective expansion of high avidity TCD8+.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/physiology
- Cytotoxicity, Immunologic/genetics
- Egg Proteins/genetics
- Egg Proteins/physiology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/physiology
- Female
- Frameshifting, Ribosomal
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphoma/immunology
- Lymphoma/virology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Neoplasm Transplantation/immunology
- Nucleocapsid Proteins
- Nucleoproteins/genetics
- Nucleoproteins/physiology
- Ovalbumin/genetics
- Ovalbumin/physiology
- Peptide Fragments
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/physiology
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Thymidine Kinase/genetics
- Thymidine Kinase/physiology
- Viral Core Proteins/genetics
- Viral Core Proteins/physiology
Collapse
Affiliation(s)
- Matthew B Zook
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
29
|
Shastri N, Cardinaud S, Schwab SR, Serwold T, Kunisawa J. All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol Rev 2005; 207:31-41. [PMID: 16181325 DOI: 10.1111/j.0105-2896.2005.00321.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The end result of the antigen-processing pathway is the display of peptide-bound major histocompatibility complex I (pMHC I) molecules. The pMHC I molecules are expressed on the cell surface where they can be surveyed by CD8(+) T cells for abnormal proteins. MHC I molecules present a large repertoire of peptides that fit perfectly in their binding grooves and represent the otherwise hidden intracellular contents. Many peptides originate as defective ribosomal products in the cytoplasm. In a stepwise manner, the antigen-processing pathway generates and protects the proteolytic intermediates until they yield the final peptides that can fit the MHC I in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Nilabh Shastri
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
30
|
Schirmbeck R, Riedl P, Fissolo N, Lemonnier FA, Bertoletti A, Reimann J. Translation from Cryptic Reading Frames of DNA Vaccines Generates an Extended Repertoire of Immunogenic, MHC Class I-Restricted Epitopes. THE JOURNAL OF IMMUNOLOGY 2005; 174:4647-56. [PMID: 15814688 DOI: 10.4049/jimmunol.174.8.4647] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To test whether simple expression units used in DNA vaccines can generate immunogenic, MHC class I-binding epitopes by translating other than the primary open reading frame (ORF), we constructed a vector (pCI/SX) that encodes the small hepatitis B surface Ag in the primary ORF, and a C-terminal fragment (residue 344-832) of the polymerase (Pol) in an alternative (out-of-frame) reading frame. pCI/SX efficiently primed multispecific, HLA-A2-restricted CD8+ T cell responses to epitopes of hepatitis B surface Ag and of Pol (Pol3, Pol(803-811)). Pol3-containing products generated from pCI/SX were detected only by T cell assays, but not by biochemical assays. Priming Pol-specific T cell responses to epitopes generated from alternative ORFs depended on promoter sequences that drive transcription in the DNA vaccine (human CMV-derived promoter sequences being more efficient than SV40-derived promoter sequences). Human CMV promoter-driven Pol constructs encoding different Pol fragments in primary or alternative reading frames elicited comparable levels of Pol3-specific T cell responses. We confirmed efficient T cell priming to epitopes from alternative ORFs by constructing DNA vaccines that encode an SV40-derived cT(1-272) protein fused either in frame or out of frame with an immunogenic OVA fragment (OVA(18-385)). Similar OVA-specific CD8+ T cell responses were primed by both alternative vaccine constructs. Hence, DNA vaccine-stimulated T cell responses to epitopes generated from alternative ORFs seem to be a regular event, although its biological role and risks are largely unexplored.
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol 2004; 2:e366. [PMID: 15510226 PMCID: PMC524250 DOI: 10.1371/journal.pbio.0020366] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 08/24/2004] [Indexed: 11/29/2022] Open
Abstract
Major histocompatibility class I molecules display tens of thousands of peptides on the cell surface for immune surveillance by T cells. The peptide repertoire represents virtually all cellular translation products, and can thus reveal a foreign presence inside the cell. These peptides are derived from not only conventional but also cryptic translational reading frames, including some without conventional AUG codons. To define the mechanism that generates these cryptic peptides, we used T cells as probes to analyze the peptides generated in transfected cells. We found that when CUG acts as an alternate initiation codon, it can be decoded as leucine rather than the expected methionine residue. The leucine start does not depend on an internal ribosome entry site–like mRNA structure, and its efficiency is enhanced by the Kozak nucleotide context. Furthermore, ribosomes scan 5′ to 3′ specifically for the CUG initiation codon in a eukaryotic translation initiation factor 2–independent manner. Because eukaryotic translation initiation factor 2 is frequently targeted to inhibit protein synthesis, this novel translation mechanism allows stressed cells to display antigenic peptides. This initiation mechanism could also be used at non-AUG initiation codons often found in viral transcripts as well as in a growing list of cellular genes. Proteins have been identified for which a unique translational machinery makes use of unconventional start codons
Collapse
Affiliation(s)
- Susan R Schwab
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Jessica A Shugart
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Tiffany Horng
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Subramaniam Malarkannan
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Nilabh Shastri
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| |
Collapse
|
32
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
33
|
Affiliation(s)
- Rainer Gosert
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
34
|
Shastri N, Schwab S, Serwold T. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 2002; 20:463-93. [PMID: 11861610 DOI: 10.1146/annurev.immunol.20.100301.064819] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene-chips contain thousands of nucleotide sequences that allow simultaneous analysis of the complex mixture of RNAs transcribed in cells. Like these gene-chips, major histocompatibility complex (MHC) class I molecules display a large array of peptides on the cell surface for probing by the CD8(+) T cell repertoire. The peptide mixture represents fragments of most, if not all, intracellular proteins. The antigen processing machinery accomplishes the daunting task of sampling these proteins and cleaving them into the precise set of peptides displayed by MHC I molecules. It has long been believed that antigenic peptides arose as by-products of normal protein turnover. Recent evidence, however, suggests that the primary source of peptides is newly synthesized proteins that arise from conventional as well as cryptic translational reading frames. It is increasingly clear that for many peptides the C-terminus is generated in the cytoplasm, and N-terminal trimming occurs in the endoplasmic reticulum in an MHC I-dependent manner. Nature's gene-chips are thus both parsimonious and elegant.
Collapse
Affiliation(s)
- Nilabh Shastri
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|
35
|
Probst-Kepper M, Stroobant V, Kridel R, Gaugler B, Landry C, Brasseur F, Cosyns JP, Weynand B, Boon T, Van den Eynde BJ. An alternative open reading frame of the human macrophage colony-stimulating factor gene is independently translated and codes for an antigenic peptide of 14 amino acids recognized by tumor-infiltrating CD8 T lymphocytes. J Exp Med 2001; 193:1189-98. [PMID: 11369790 PMCID: PMC2193327 DOI: 10.1084/jem.193.10.1189] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We show that cytotoxic T lymphocytes (CTLs) infiltrating a kidney tumor recognize a peptide encoded by an alternative open reading frame (ORF) of the macrophage colony-stimulating factor (M-CSF) gene. Remarkably, this alternative ORF, which is translated in many tumors concurrently with the major ORF, is also translated in some tissues that do not produce M-CSF, such as liver and kidney. Such a dissociation of the translation of two overlapping ORFs from the same gene is unexpected. The antigenic peptide encoded by the alternative ORF is presented by human histocompatibility leukocyte antigen (HLA)-B*3501 and has a length of 14 residues. Peptide elution indicated that tumor cells naturally present this 14 mer, which is the longest peptide known to be recognized by CTLs. Binding studies of peptide analogues suggest that it binds by its two extremities and bulges out of the HLA groove to compensate for its length.
Collapse
Affiliation(s)
- Michael Probst-Kepper
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
- Molecular Immunology Group, German Research Centre for Biotechnology, Braunschweig 38124, Germany
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Robert Kridel
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Béatrice Gaugler
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Claire Landry
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Francis Brasseur
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Jean-Pierre Cosyns
- Department of Pathology, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Birgit Weynand
- Department of Pathology, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Thierry Boon
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
36
|
An LL, Rodriguez F, Harkins S, Zhang J, Whitton JL. Quantitative and qualitative analyses of the immune responses induced by a multivalent minigene DNA vaccine. Vaccine 2000; 18:2132-41. [PMID: 10715528 DOI: 10.1016/s0264-410x(99)00546-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vaccines containing minigenes - isolated antigenic epitopes encoded by short open reading frames - can, under certain circumstances, confer protective immunity upon the vaccinee. Here we evaluate the efficacy of the minigene vaccine approach using DNA immunization and find that, to be immunogenic, a minigene-encoded epitope requires a perfect "Kozak" translational initiation region. In addition, using intracellular cytokine staining, we show that immunization with a plasmid encoding a full-length protein induces epitope-specific CD8(+) T cells which are detectable directly ex vivo, and constitute approximately 2% of the vaccinee's splenic CD8(+) T cells. In contrast, such cells are undetectable directly ex vivo in recipients of a minigene vaccine. Nevertheless, the minigene plasmid does induce a low number of epitope-specific CD8(+) T cells, which can be amplified to detectable levels by in vivo stimulation. Indeed, 4 days after in vivo stimulation (by virus infection), all vaccinated mice - regardless of whether they had been vaccinated with the minigene or with the full-length gene - had similar numbers of epitope-specific CD8(+) T cells. However, despite these strong responses at 4 days post-infection, recipients of the minigene vaccine showed no enhanced ability to limit virus replication and dissemination. We therefore observe a dichotomy; minigene vaccinees are not protected, despite the presence of strong virus-specific immune responses at 4 days post-challenge. We suggest that the protective benefits of vaccination exert themselves very soon - perhaps within minutes or hours - after virus challenge. If the vaccine-induced immune response is too low to achieve this early protective effect, virus-specific T cells will expand rapidly, but ineffectually, leading to the strong but non-protective response measured at 4 days post-infection. Thus, vaccine-induced immunity should be monitored very early in infection, since the extent to which these responses may later be amplified is largely irrelevant to the protection observed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Codon/genetics
- Cytokines/biosynthesis
- Epitopes/genetics
- Epitopes/immunology
- Genes, Synthetic
- Immunity, Cellular
- Lymphocyte Count
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/physiology
- Mengovirus/genetics
- Mengovirus/immunology
- Mengovirus/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Open Reading Frames
- Plasmids/genetics
- Plasmids/immunology
- Regulatory Sequences, Nucleic Acid
- Respiratory Syncytial Viruses/genetics
- Respiratory Syncytial Viruses/immunology
- Respirovirus/genetics
- Respirovirus/immunology
- Spleen/immunology
- Time Factors
- Vaccination
- Vaccines, DNA/immunology
- Vesicular stomatitis Indiana virus/genetics
- Vesicular stomatitis Indiana virus/immunology
- Viral Vaccines/immunology
- Virus Replication
Collapse
Affiliation(s)
- L L An
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
37
|
Wherry EJ, Puorro KA, Porgador A, Eisenlohr LC. The Induction of Virus-Specific CTL as a Function of Increasing Epitope Expression: Responses Rise Steadily Until Excessively High Levels of Epitope Are Attained. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The role of epitope expression levels in CD8+ T cell priming has been controversial. Yet this parameter is of great importance in the design of rational approaches to optimize CTL responses to a variety of pathogens. In this paper we examine the influence of epitope production on CD8+ T cell priming by exploiting a system that allows a 200-fold range of cell surface epitope expression in vitro with a fixed dose of vaccinia virus. Our results demonstrate that, with the exception of a notable decline at the highest level of epitope, the magnitude of the responding CTL population generated in vivo following equivalent viral infections is essentially proportional to epitope density.
Collapse
Affiliation(s)
- E. John Wherry
- *Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Kristin A. Puorro
- *Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Angel Porgador
- †Department of Microbiology and Immunology, Faculty Health Sciences, University of Ben-Gurion, Beer-Sheva, Israel
| | - Laurence C. Eisenlohr
- *Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; and
| |
Collapse
|
38
|
Karginov AV, Lodder M, Hecht SM. Facile characterization of translation initiation via nonsense codon suppression. Nucleic Acids Res 1999; 27:3283-90. [PMID: 10454635 PMCID: PMC148561 DOI: 10.1093/nar/27.16.3283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new strategy for studying the mechanism of translation initiation in eukaryotes has been developed. The strategy involves the use of an in vitro translation system to incorporate a non-natural fluorescent amino acid into a protein from a suppressor tRNAPheCUA misacylated with that amino acid. It is thereby possible to monitor translation initiation efficiency at an AUG codon in different contexts; this is illustrated for three constructs encoding Escherichia coli dihydrofolate reductase mRNA with different translation initiation regions. Fluorescence measurements after in vitro translation of the mRNAs in rabbit reticulocyte lysate reflected differences in the position and efficiency of translation initiation and, therefore, can be used for characterization of the translation initiation process.
Collapse
Affiliation(s)
- A V Karginov
- Department of Chemistry and Department of Biology, University of Virginia, Charlottesville, VA 22901, USA
| | | | | |
Collapse
|
39
|
Malarkannan S, Horng T, Shih PP, Schwab S, Shastri N. Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. Immunity 1999; 10:681-90. [PMID: 10403643 DOI: 10.1016/s1074-7613(00)80067-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immune surveillance by CD8 T cells requires that peptides derived from intracellular proteins be presented by MHC class I molecules on the target cell surface. Interestingly, MHC molecules can also present peptides encoded in alternate translational reading frames, some even without conventional AUG initiation codons. Using T cells to measure expression of MHC bound peptides, we identified the non-AUG translation initiation codons and established that their activity was at the level of translational rather than DNA replication or transcription mechanisms. This translation mechanism decoded the CUG initiation codon not as the canonical methionine but as the leucine residue, and its activity was independent of upstream translation initiation events. Naturally processed peptide/MHC complexes can thus arise from "noncoding" mRNAs via a novel translation initiation mechanism.
Collapse
Affiliation(s)
- S Malarkannan
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- S A Rosenberg
- Surgery Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
41
|
Mayrand SM, Green WR. Non-traditionally derived CTL epitopes: exceptions that prove the rules? IMMUNOLOGY TODAY 1998; 19:551-6. [PMID: 9864945 DOI: 10.1016/s0167-5699(98)01342-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S M Mayrand
- Dept of Microbiology and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
42
|
Shastri N, Serwold T, Paz P. Reading within the lines: naturally processed peptides displayed by MHC class I molecules. Curr Opin Immunol 1998; 10:137-44. [PMID: 9602301 DOI: 10.1016/s0952-7915(98)80241-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A typical mammalian cell contains tens of thousands of different gene products. Snippets of this genetic information are displayed on the cell surface by MHC class I molecules as short peptides for immune surveillance by CD8+ T lymphocytes. Genetic and biochemical analysis of these peptides is revealing novel sources and mechanisms by which these peptide/MHC class I complexes arise.
Collapse
Affiliation(s)
- N Shastri
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| | | | | |
Collapse
|