1
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Rishabh K, Matosevic S. The diversity of natural killer cell functional and phenotypic states in cancer. Cancer Metastasis Rev 2025; 44:26. [PMID: 39853430 DOI: 10.1007/s10555-025-10242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
The role of natural killer (NK) cells as immune effectors is well established, as is their utility as immunotherapeutic agents against various cancers. However, NK cells' anti-cancer roles are suppressed in cancer patients by various immunomodulatory mechanisms which alter these cells' identity, function, and potential for immunosurveillance. This manifests in abnormal NK cell responses accompanied by changes in phenotypic or genotypic identity, giving rise to specific NK cell subsets that are either hypofunctional or, more broadly, defective in their responses. Anergy, senescence, and exhaustion are some of the terms that have been used to define and characterize these NK cell functional states. These responses vary not only with cancer type but also NK cell location within tissues. Collectively, these phenomena suggest a highly plastic nature of NK cell biology in tumors. In this review, we present and discuss a summary of these functionally distinct states and provide an overview of how NK cells behave at different locations within the context of cancer.
Collapse
Affiliation(s)
- Kumar Rishabh
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Wu H, Liu Q, Wang F, Gao W, Zhou F, Zhao H. Research Progress of NK Cells in Glioblastoma Treatment. Onco Targets Ther 2025; 18:87-106. [PMID: 39845286 PMCID: PMC11752833 DOI: 10.2147/ott.s486411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025] Open
Abstract
NK cells are a type of antitumor immune cell with promising clinical application, following T cells. The activity of NK cells is primarily regulated by their surface receptors and immune microenvironment. In gliomas, the tumor microenvironment exerts a strong immunosuppressive effect, which significantly reduces the clinical efficacy of NK cell immunotherapy. Therefore, this review aims to discuss the latest research on the role of NK cells in glioma immunotherapy, focusing on aspects such as NK cell development, function, and localization. It summarizes information on the compounds, monoclonal antibodies, and cytokine therapies targeting NK cells while emphasizing the current status and trends of gene-modified NK cells in glioma treatment. Additionally, it explores the molecular mechanisms underlying immune escape in glioma cells, providing a theoretical foundation and new perspectives for NK cell-based immunotherapy in gliomas.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
| | - Qi Liu
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, People’s Republic of China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
| | - Feng Zhou
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, People’s Republic of China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
4
|
Yun IH, Yang J. Mechanisms of allorecognition and xenorecognition in transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:273-293. [PMID: 39743230 PMCID: PMC11732770 DOI: 10.4285/ctr.24.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
Foreign antigen recognition is the ability of immune cells to distinguish self from nonself, which is crucial for immune responses in both invertebrates and vertebrates. In vertebrates, T cells play a pivotal role in graft rejection by recognizing alloantigens presented by antigen-presenting cells through direct, indirect, or semidirect pathways. B cells also significantly contribute to the indirect presentation of antigens to T cells. Innate immune cells, such as dendritic cells, identify pathogen- or danger-associated molecular patterns through pattern recognition receptors, thereby facilitating effective antigen presentation to T cells. Recent studies have shown that innate immune cells, including macrophages and NK cells, can recognize allogeneic or xenogeneic antigens using immune receptors like CD47 or activating NK receptors, instead of pattern recognition receptors. Additionally, macrophages and NK cells are capable of exhibiting memory responses to alloantigens, although these responses are shorter than those of adaptive memory. T cells also recognize xenoantigens through either direct or indirect presentation. Notably, macrophages and NK cells can directly recognize xenoantigens via surface immune receptors in an antibody-independent manner, or they can be activated in an antibody-dependent manner. Advances in our understanding of the recognition mechanisms of adaptive and innate immunity against allogeneic and xenogeneic antigens may improve our understanding of graft rejection.
Collapse
Affiliation(s)
- Il Hee Yun
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
van Vliet AA, van den Hout MGCN, Steenmans D, Duru AD, Georgoudaki AM, de Gruijl TD, van IJcken WFJ, Spanholtz J, Raimo M. Bulk and single-cell transcriptomics identify gene signatures of stem cell-derived NK cell donors with superior cytolytic activity. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200870. [PMID: 39346765 PMCID: PMC11426129 DOI: 10.1016/j.omton.2024.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Allogeneic natural killer (NK) cell therapies are a valuable treatment option for cancer, given their remarkable safety and favorable efficacy profile. Although the use of allogeneic donors allows for off-the-shelf and timely patient treatment, intrinsic interindividual differences put clinical efficacy at risk. The identification of donors with superior anti-tumor activity is essential to ensure the success of adoptive NK cell therapies. Here, we investigated the heterogeneity of 10 umbilical cord blood stem cell-derived NK cell batches. First, we evaluated the donors' cytotoxic potential against tumor cell lines from solid and hematological cancer indications, to distinguish a group of superior, "excellent" killers (4/10), compared with "good" killers (6/10). Next, bulk and single-cell RNA sequencing, performed at different stages of NK differentiation, revealed distinct transcriptomic features of the two groups. Excellent donors showed an enrichment in cytotoxicity pathways and a depletion of myeloid traits, linked to the presence of a larger population of effector-like NK cells early on during differentiation. Consequently, we defined a multi-factorial gene expression signature able to predict the donors' cytotoxic potential. Our study contributes to the identification of key traits of superior NK cell batches, supporting the development of efficacious NK therapeutics and the achievement of durable anti-tumor responses.
Collapse
Affiliation(s)
- Amanda A van Vliet
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Mirjam G C N van den Hout
- Erasmus MC Center for Biomics and Department of Cell Biology, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | | | - Adil D Duru
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | | | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC Center for Biomics and Department of Cell Biology, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jan Spanholtz
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Monica Raimo
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| |
Collapse
|
6
|
Greppi M, De Franco F, Obino V, Rebaudi F, Goda R, Frumento D, Vita G, Baronti C, Melaiu O, Bozzo M, Candiani S, Vellone VG, Papaccio F, Pesce S, Marcenaro E. NK cell receptors in anti-tumor and healthy tissue protection: Mechanisms and therapeutic advances. Immunol Lett 2024; 270:106932. [PMID: 39303993 DOI: 10.1016/j.imlet.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Natural Killer (NK) cells are integral to the innate immune system, renowned for their ability to target and eliminate cancer cells without the need for antigen presentation, sparing normal tissues. These cells are crucial in cancer immunosurveillance due to their diverse array of activating and inhibitory receptors that modulate their cytotoxic activity. However, the tumor microenvironment can suppress NK cell function through various mechanisms. Over recent decades, research has focused on overcoming these tumor escape mechanisms. Initially, efforts concentrated on enhancing T cell activity, leading to impressive results with immunotherapeutic approaches aimed at boosting T cell responses. Nevertheless, a substantial number of patients do not benefit from these treatments and continue to seek effective alternatives. In this context, NK cells present a promising avenue for developing new treatments, given their potent cytotoxic capabilities, safety profile, and activity against T cell-resistant tumors, such as those lacking HLA-I expression. Recent advancements in immunotherapy include strategies to restore and amplify NK cell activity through immune checkpoint inhibitors, cytokines, adoptive NK cell therapy, and CAR-NK cell technology. This review provides a comprehensive overview of NK cell receptors, the tumor escape mechanisms that hinder NK cell function, and the evolving field of NK cell-based cancer immunotherapy, highlighting ongoing efforts to develop more effective and targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Davide Frumento
- Department of Education Sciences, University of Rome Tre, Rome, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Valerio G Vellone
- Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy; Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
7
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Li X, Gu Y, Liao C, Ma X, Bi Y, Lian Y, Huang Y. A comprehensive model to better screen out antiviral treatment candidates for chronic hepatitis B patients. Int Immunopharmacol 2024; 140:112848. [PMID: 39096876 DOI: 10.1016/j.intimp.2024.112848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a serious human health threat given its high morbidity and mortality. Timely and effective antiviral treatment can postpone liver disease progression and reduce the occurrence of HBV-related end-stage liver disease. At present, the antiviral treatment criteria are mainly based on alanine transaminase (ALT) levels, HBV DNA levels and HBV e antigen levels according to the American Association for the Study of Liver Diseases treatment guidelines. However, some chronic hepatitis B (CHB) patients not meeting the above criteria still experience liver disease progression without antiviral treatment. It is urgent to identify a more comprehensive tool to screen out more antiviral treatment candidates as soon as possible. METHODS Considering the vital role of the immune response in the development of HBV infection and CHB cure, we collected data from 335 treatment-naïve CHB patients and comprehensively analysed their clinical and immune traits (including innate and adaptive responses). The immune parameters were obtained by flow cytometry. Finally, we established a model that can better distinguished CHB patients who need treatment through machine learning and LASSO regression of serological and immune parameters. RESULTS Through a series of analyses, we selected four important clinical parameters (ALT, HBV DNA, the Fibroscan value, and the A/G ratio) and four immune indicators (NKbright + NKp44+, NKbright + NKG2A+, NKT+GranzymeB+, and CD3 + CD107a + ) from more than 200 variables and then successfully established a mathematical model with high sensitivity and specificity to better screen out antiviral treatment candidates from all CHB patients. CONCLUSIONS Our results developed a refined model to better screen out antiviral treatment candidates from all CHB patients by combining common clinical parameters and important immune indicators, including innate and adaptive immunity. These findings provide more information for improving treatment guidelines and have potential implications for the timing of antiviral therapy to achieve better virus control and reduce the occurrence of end-stage liver disease.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yurong Gu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinyi Ma
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Yuehua Huang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Lanier LL. Five decades of natural killer cell discovery. J Exp Med 2024; 221:e20231222. [PMID: 38842526 PMCID: PMC11157086 DOI: 10.1084/jem.20231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024] Open
Abstract
The first descriptions of "non-specific" killing of tumor cells by lymphocytes were reported in 1973, and subsequently, the mediators of the activity were named "natural killer" (NK) cells by Rolf Kiessling and colleagues at the Karolinska Institute in 1975. The activity was detected in mice, rats, and humans that had no prior exposure to the tumors, major histocompatibility complex (MHC) antigen matching of the effectors and tumor cells was not required, and the cells responsible were distinct from MHC-restricted, antigen-specific T cells. In the ensuing five decades, research by many labs has extended knowledge of NK cells beyond an in vitro curiosity to demonstrate their in vivo relevance in host defense against tumors and microbial pathogens and their role in regulation of the immune system. This brief Perspective highlights a timeline of a few selected advancements in NK cell biology from a personal perspective of being involved in this quest.
Collapse
Affiliation(s)
- Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
11
|
Skeate JG, Pomeroy EJ, Slipek NJ, Jones BJ, Wick BJ, Chang JW, Lahr WS, Stelljes EM, Patrinostro X, Barnes B, Zarecki T, Krueger JB, Bridge JE, Robbins GM, McCormick MD, Leerar JR, Wenzel KT, Hornberger KM, Walker K, Smedley D, Largaespada DA, Otto N, Webber BR, Moriarity BS. Evolution of the clinical-stage hyperactive TcBuster transposase as a platform for robust non-viral production of adoptive cellular therapies. Mol Ther 2024; 32:1817-1834. [PMID: 38627969 PMCID: PMC11184336 DOI: 10.1016/j.ymthe.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.
Collapse
Affiliation(s)
- Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Bryce J Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jae-Woong Chang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob E Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gabrielle M Robbins
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madeline D McCormick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Neil Otto
- Bio-Techne, Minneapolis, MN 55413, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Søgaard CK, Otterlei M. Targeting proliferating cell nuclear antigen (PCNA) for cancer therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:209-246. [PMID: 39034053 DOI: 10.1016/bs.apha.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway; APIM Therapeutics A/S, Trondheim, Norway.
| |
Collapse
|
13
|
Aguilar OA, Fong LK, Lanier LL. ITAM-based receptors in natural killer cells. Immunol Rev 2024; 323:40-53. [PMID: 38411263 PMCID: PMC11102329 DOI: 10.1111/imr.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The ability of cells of the immune system to acquire features such as increased longevity and enhanced secondary responses was long thought to be restricted to cells of the adaptive immune system. Natural killer (NK) cells have challenged this notion by demonstrating that they can also gain adaptive features. This has been observed in both humans and mice during infection with cytomegalovirus (CMV). The generation of adaptive NK cells requires antigen-specific recognition of virally infected cells through stimulatory NK receptors. These receptors lack the ability to signal on their own and rather rely on adaptor molecules that contain ITAMs for driving signals. Here, we highlight our understanding of how these receptors influence the production of adaptive NK cells and propose areas in the field that merit further investigation.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| | - Lam-Kiu Fong
- Dept. of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Larson AC, Doty KR, Solheim JC. The double life of a chemotherapy drug: Immunomodulatory functions of gemcitabine in cancer. Cancer Med 2024; 13:e7287. [PMID: 38770637 PMCID: PMC11106691 DOI: 10.1002/cam4.7287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pathology, Microbiology, & ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
15
|
Ebbinghaus M, Wittich K, Bancher B, Lebedeva V, Appelshoffer A, Femel J, Helm MS, Kollet J, Hardt O, Pfeifer R. Endogenous Signaling Molecule Activating (ESMA) CARs: A Novel CAR Design Showing a Favorable Risk to Potency Ratio for the Treatment of Triple Negative Breast Cancer. Int J Mol Sci 2024; 25:615. [PMID: 38203786 PMCID: PMC10779313 DOI: 10.3390/ijms25010615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
As chimeric antigen receptor (CAR) T cell therapy continues to gain attention as a valuable treatment option against different cancers, strategies to improve its potency and decrease the side effects associated with this therapy have become increasingly relevant. Herein, we report an alternative CAR design that incorporates transmembrane domains with the ability to recruit endogenous signaling molecules, eliminating the need for stimulatory signals within the CAR structure. These endogenous signaling molecule activating (ESMA) CARs triggered robust cytotoxic activity and proliferation of the T cells when directed against the triple-negative breast cancer (TNBC) cell line MDA-MB-231 while exhibiting reduced cytokine secretion and exhaustion marker expression compared to their cognate standard second generation CARs. In a NOD SCID Gamma (NSG) MDA-MB-231 xenograft mouse model, the lead candidate maintained longitudinal therapeutic efficacy and an enhanced T cell memory phenotype. Profound tumor infiltration by activated T cells repressed tumor growth, further manifesting the proliferative capacity of the ESMA CAR T cell therapy. Consequently, ESMA CAR T cells entail promising features for improved clinical outcome as a solid tumor treatment option.
Collapse
Affiliation(s)
- Mira Ebbinghaus
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
- School of Applied Biosciences and Chemistry, HAN University of Applied Sciences, 6525 EM Nijmegen, The Netherlands
| | - Katharina Wittich
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Benjamin Bancher
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Valeriia Lebedeva
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Anijutta Appelshoffer
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Julia Femel
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Martin S. Helm
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Jutta Kollet
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| |
Collapse
|
16
|
Diwanji N, Getts D, Wang Y. Chimeric Antigen Cytotoxic Receptors for In Vivo Engineering of Tumor-Targeting NK Cells. Immunohorizons 2024; 8:97-105. [PMID: 38240638 PMCID: PMC10835668 DOI: 10.4049/immunohorizons.2300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Chimeric Ag receptor (CAR) NK cells are challenging to manufacture and fail to achieve consistent tumor infiltration and sustained cytolytic function in the tumor microenvironment. In vivo engineering of NK cells using mRNA-based CAR delivery may overcome these issues. In this study, we developed an in vivo programming method by designing CARs that leverage the biology of NK cell receptors for cell type-specific expression and function. These CARs were engineered by fusion of a tumor recognition domain with the natural cytotoxic receptor family including NKp30, NKp44, and NKp46. Our results demonstrated that these natural cytotoxic receptor-based CARs can engage endogenous signaling adaptors to effectively activate human NK cells for tumor lysis and cytokine production. Specifically, we discovered that stable expression of an NKp44-based CAR was contingent on the presence of the immune cell-specific signaling adaptor DAP12. This innovative strategy facilitates direct in situ programming of NK cells, enhancing safety and minimizing off-target effects in nontargeted, healthy tissues.
Collapse
|
17
|
Costa GP, Mensurado S, Silva-Santos B. Therapeutic avenues for γδ T cells in cancer. J Immunother Cancer 2023; 11:e007955. [PMID: 38007241 PMCID: PMC10680012 DOI: 10.1136/jitc-2023-007955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/27/2023] Open
Abstract
γδ T cells are regarded as promising effector lymphocytes for next-generation cancer immunotherapies. In spite of being relatively rare in human peripheral blood, γδ T cells are more abundant in epithelial tissues where many tumors develop, and have been shown to actively participate in anticancer immunity as cytotoxic cells or as "type 1" immune orchestrators. A major asset of γδ T cells for tackling advanced cancers is their independence from antigen presentation via the major histocompatibility complex, which clearly sets them apart from conventional αβ T cells. Here we discuss the main therapeutic strategies based on human γδ T cells. These include antibody-based bispecific engagers and adoptive cell therapies, either focused on the Vδ1+ or Vδ2+ γδ T-cell subsets, which can be expanded selectively and differentiated or engineered to maximize their antitumor functions. We review the preclinical data that supports each of the therapeutic strategies under development; and summarize the clinical trials being pursued towards establishing γδ T cell-based treatments for solid and hematological malignancies.
Collapse
Affiliation(s)
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Agrez M, Chandler C, Thurecht KJ, Fletcher NL, Liu F, Subramaniam G, Howard CB, Blyth B, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall AM, Gooding H, Gallagher L. An immunomodulating peptide with potential to suppress tumour growth and autoimmunity. Sci Rep 2023; 13:19741. [PMID: 37957274 PMCID: PMC10643673 DOI: 10.1038/s41598-023-47229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Cancers and autoimmune diseases commonly co-exist and immune checkpoint inhibitor therapy (ICI) exacerbates autoimmune pathologies. We recently described a lipidic peptide, designated IK14004, that promotes expansion of immunosuppressive T regulatory (Treg) cells and uncouples interleukin-2 from interferon-gamma production while activating CD8+ T cells. Herein, we report IK14004-mediated inhibition of Lewis lung cancer (LLC) growth and re-invigoration of splenocyte-derived exhausted CD4+ T cells. In human immune cells from healthy donors, IK14004 modulates expression of the T cell receptor α/β subunits, induces Type I IFN expression, stimulates natural killer (NK) cells to express NKG2D/NKp44 receptors and enhances K562 cytotoxicity. In both T and NK cells, IK14004 alters the IL-12 receptor β1/β2 chain ratio to favour IL-12p70 binding. Taken together, this novel peptide offers an opportunity to gain further insight into the complexity of ICI immunotherapy so that autoimmune responses may be minimised without promoting tumour evasion from the immune system.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, New South Wales, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | | | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Benjamin Blyth
- Department of Oncology,, Peter MacCallum Cancer Centre and Sir Peter MacCallum, University of Melbourne, Melbourne, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, New South Wales, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
19
|
Lachota M, Zielniok K, Palacios D, Kanaya M, Penna L, Hoel HJ, Wiiger MT, Kveberg L, Hautz W, Zagożdżon R, Malmberg KJ. Mapping the chemotactic landscape in NK cells reveals subset-specific synergistic migratory responses to dual chemokine receptor ligation. EBioMedicine 2023; 96:104811. [PMID: 37741009 PMCID: PMC10520535 DOI: 10.1016/j.ebiom.2023.104811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells have a unique capability of spontaneous cytotoxicity against malignant cells and hold promise for off-the-shelf cell therapy against cancer. One of the key challenges in the field is to improve NK cell homing to solid tumors. METHODS To gain a deeper understanding of the cellular mechanisms regulating trafficking of NK cells into the tumor, we used high-dimensional flow cytometry, mass cytometry, and single-cell RNA-sequencing combined with functional assays, creating a comprehensive map of human NK cell migration phenotypes. FINDINGS We found that the chemokine receptor repertoire of peripheral blood NK cells changes in a coordinated manner becoming progressively more diversified during NK cell differentiation and correlating tightly with the migratory response of the distinct NK cell subsets. Simultaneous ligation of CXCR1/2 and CX3CR1, synergistically potentiated the migratory response of NK cells. Analysis of 9471 solid cancers from publicly available TCGA/TARGET repositories revealed dominant chemokine patterns that varied across tumor types but with no tumor group expressing ligands for more than one chemokine receptor present on mature NK cells. INTERPRETATION The finding that chemokine stimulation can elicit a synergistic migratory response in NK cells combined with the identified lack of naturally occurring pairs of chemokines-chemokine receptors in human cancers may explain the systematic exclusion of NK cells from the tumor microenvironment and provides a basis for engineering next-generation NK cell therapies against malignancies. FUNDING The Polish Ministry of Science and Higher Education, the National Science Centre, Poland, The Norwegian Cancer Society, the Norwegian Research Council, the South-Eastern Norway Regional Health Authority, The Swedish Cancer Society, the Swedish Children's Cancer Foundation, The Swedish Research Council, The Center of Excellence: Precision Immunotherapy Alliance, Knut and Alice Wallenberg Foundation and National Cancer Institute.
Collapse
Affiliation(s)
- Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland; Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Zielniok
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Daniel Palacios
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Norway
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Norway
| | - Leena Penna
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Hanna Julie Hoel
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Norway
| | - Merete Thune Wiiger
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Norway
| | - Lise Kveberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Norway
| | - Wojciech Hautz
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Norway; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Knaneh J, Hodak E, Fedida-Metula S, Edri A, Eren R, Yoffe Y, Amitay-Laish I, Prag Naveh H, Lubin I, Porgador A, Moyal L. mAb14, a Monoclonal Antibody against Cell Surface PCNA: A Potential Tool for Sezary Syndrome Diagnosis and Targeted Immunotherapy. Cancers (Basel) 2023; 15:4421. [PMID: 37686697 PMCID: PMC10486495 DOI: 10.3390/cancers15174421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of primary cutaneous T-cell lymphoma (CTCL). Proliferating cell nuclear antigen (PCNA) is expressed on the cell surface of cancer cells (csPCNA), but not on normal cells. It functions as an immune checkpoint ligand by interacting with natural killer (NK) cells through the NK inhibitory receptor NKp44, leading to the inhibition of NK cytotoxicity. A monoclonal antibody (mAb14) was established to detect csPCNA on cancer cells and block their interaction with NKp44. In this study, three CTCL cell lines and peripheral blood mononuclear cells (PBMCs) from patients with SS and healthy donors were analyzed for csPCNA using mAb14, compared to monoclonal antibody PC10, against nuclear PCNA (nPCNA). The following assays were used: immunostaining, imaging flow cytometry, flow cytometry, cell sorting, cell cycle analysis, ELISA, and the NK-cell cytotoxic assay. mAb14 successfully detected PCNA on the membrane and in the cytoplasm of viable CTCL cell lines associated with the G2/M phase. In the Sézary PBMCs, csPCNA was expressed on lymphoma cells that had an atypical morphology and not on normal cells. Furthermore, it was not expressed on PBMCs from healthy donors. In the co-culture of peripheral blood NK (pNK) cells with CTCL lines, mAb14 increased the secretion of IFN-γ, indicating the reactivation of pNK activity. However, mAb14 did not enhance the cytotoxic activity of pNK cells against CTCL cell lines. The unique expression of csPCNA detected by mAb14 suggests that csPCNA and mAb14 may serve as a potential biomarker and tool, respectively, for detecting malignant cells in SS and possibly other CTCL variants.
Collapse
Affiliation(s)
- Jamal Knaneh
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
| | - Emmilia Hodak
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| | | | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410101, Israel; (A.E.); (A.P.)
| | - Rachel Eren
- PiNK Biopharma Ltd., Ness Ziona 7403648, Israel; (S.F.-M.); (Y.Y.)
| | - Yael Yoffe
- PiNK Biopharma Ltd., Ness Ziona 7403648, Israel; (S.F.-M.); (Y.Y.)
| | - Iris Amitay-Laish
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Division of Dermatology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Hadas Prag Naveh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Division of Dermatology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Ido Lubin
- Core Facility, Felsenstein Medical Research Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410101, Israel; (A.E.); (A.P.)
- National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva 8410101, Israel
| | - Lilach Moyal
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| |
Collapse
|
21
|
Kiaei SZF, Nouralishahi A, Ghasemirad M, Barkhordar M, Ghaffari S, Kheradjoo H, Saleh M, Mohammadzadehsaliani S, Molaeipour Z. Advances in natural killer cell therapies for breast cancer. Immunol Cell Biol 2023; 101:705-726. [PMID: 37282729 DOI: 10.1111/imcb.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023]
Abstract
Breast cancer (BC) is the most common cause of cancer death in women. According to the American Cancer Society's yearly cancer statistics, BC constituted almost 15% of all the newly diagnosed cancer cases in 2022 for both sexes. Metastatic disease occurs in 30% of patients with BC. The currently available treatments fail to cure metastatic BC, and the average survival time for patients with metastatic BC is approximately 2 years. Developing a treatment method that terminates cancer stem cells without harming healthy cells is the primary objective of novel therapeutics. Adoptive cell therapy is a branch of cancer immunotherapy that utilizes the immune cells to attack cancer cells. Natural killer (NK) cells are an essential component of innate immunity and are critical in destroying tumor cells without prior stimulation with antigens. With the advent of chimeric antigen receptors (CARs), the autologous or allogeneic use of NK/CAR-NK cell therapy has raised new hopes for treating patients with cancer. Here, we describe recent developments in NK and CAR-NK cell immunotherapy, including the biology and function of NK cells, clinical trials, different sources of NK cells and their future perspectives on BC.
Collapse
Affiliation(s)
- Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ghasemirad
- Department of Periodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Barkhordar
- Hematology, Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| | | | - Zahra Molaeipour
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Basílio-Queirós D, Mischak-Weissinger E. Natural killer cells- from innate cells to the discovery of adaptability. Front Immunol 2023; 14:1172437. [PMID: 37275911 PMCID: PMC10232812 DOI: 10.3389/fimmu.2023.1172437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Natural Killer (NK) cells have come a long way since their first description in the 1970's. The most recent reports of their adaptive-like behavior changed the way the immune system dichotomy is described. Adaptive NK cells present characteristics of both the innate and adaptive immune system. This NK cell subpopulation undergoes a clonal-like expansion in response to an antigen and secondary encounters with the same antigen result in an increased cytotoxic response. These characteristics can be of extreme importance in the clinical setting, especially as adoptive immunotherapies, since NK cells present several advantages compared other cell types. This review will focus on the discovery and the path to the current knowledge of the adaptive NK cell population.
Collapse
|
23
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Mariotti FR, Supino D, Landolina N, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8: A molecular brake of anti-tumor and anti-viral activity of NK cells and ILC. Semin Immunol 2023; 66:101712. [PMID: 36753974 DOI: 10.1016/j.smim.2023.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.
Collapse
Affiliation(s)
- Francesca R Mariotti
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Garlanda
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
25
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
26
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
27
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
28
|
Harvey AG, Graves AM, Uppalapati CK, Matthews SM, Rosenberg S, Parent EG, Fagerlie MH, Guinan J, Lopez BS, Kronstad LM. Dendritic cell-natural killer cell cross-talk modulates T cell activation in response to influenza A viral infection. Front Immunol 2022; 13:1006998. [PMID: 36618376 PMCID: PMC9815106 DOI: 10.3389/fimmu.2022.1006998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses lead to substantial morbidity and mortality including ~3-5 million cases of severe illness and ~290,000-650,000 deaths annually. One of the major hurdles regarding influenza vaccine efficacy is generating a durable, robust cellular immune response. Appropriate stimulation of the innate immune system is key to generating cellular immunity. Cross-talk between innate dendritic cells (DC) and natural killer (NK) cells plays a key role in activating virus-specific T cells, yet the mechanisms used by influenza A viruses (IAV) to govern this process remain incompletely understood. Here, we used an ex vivo autologous human primary immune cell culture system to evaluate the impact of DC-NK cell cross-talk and subsequent naïve T cell activation at steady-state and after exposure to genetically distinct IAV strains-A/California/07/2009 (H1N1) and A/Victoria/361/2011 (H3N2). Using flow cytometry, we found that exposure of DCs to IAV in co-culture with NK cells led to a decreased frequency of CD83+ and CD86+ cells on DCs and an increased frequency of HLA-DR+ on both DCs and NK cells. We then assessed the outcome of DC-NK cell cross-talk on T cell activation. At steady-state, DC-NK cell cross-talk increased pan T cell CD69 and CD25 expression while exposure to either IAV strain reduced pan T cell CD25 expression and suppressed CD4+ and CD8+ T cell IFN-γ and TNF production, following chemical stimulation with PMA/Ionomycin. Moreover, exposure to A/Victoria/361/2011 elicited lower IFN-γ production by CD4+ and CD8+ T cells compared with A/California/07/2009. Overall, our results indicate a role for DC-NK cell cross-talk in T cell priming in the context of influenza infection, informing the immunological mechanisms that could be manipulated for the next generation of influenza vaccines or immunotherapeutics.
Collapse
Affiliation(s)
- Abigail G. Harvey
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Athens M. Graves
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Chandana K. Uppalapati
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Saoirse M. Matthews
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Stephanie Rosenberg
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Emma G. Parent
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Madison H. Fagerlie
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Jack Guinan
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Brina S. Lopez
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Lisa M. Kronstad
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States,*Correspondence: Lisa M. Kronstad,
| |
Collapse
|
29
|
NKp44-Derived Peptide Used in Combination Stimulates Antineoplastic Efficacy of Targeted Therapeutic Drugs. Int J Mol Sci 2022; 23:ijms232214054. [PMID: 36430528 PMCID: PMC9692391 DOI: 10.3390/ijms232214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer cells in the tumor microenvironment facilitate immune evasion that leads to failure of conventional chemotherapies, despite provisionally decided on the genetic diagnosis of patients in a clinical setup. The current study follows three lung cancer patients who underwent "personalized" chemotherapeutic intervention. Patient-derived xenografts (PDXs) were subjected to tumor microarray and treatment screening with chemotherapies, either individually or in combination with the peptide R11-NLS-pep8; this peptide targets both membrane-associated and nuclear PCNA. Ex vivo, employing PDX-derived explants, it was found that combination with R11-NLS-pep8 stimulated antineoplastic effect of chemotherapies that were, although predicted based on the patient's genetic mutation, inactive on their own. Furthermore, treatment in vivo of PDX-bearing mice showed an exactly similar trend in the result, corroborating the finding to be translated into clinical setup.
Collapse
|
30
|
Gunasekaran M, Difiglia A, Fitzgerald J, Hariri R, van der Touw W, Mahlakõiv T. Human placental hematopoietic stem cell-derived natural killer cells (CYNK) recognize and eliminate influenza A virus-infected cells. Front Immunol 2022; 13:900624. [DOI: 10.3389/fimmu.2022.900624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) infections are a significant recurrent threat to public health and a significant burden on global economy, highlighting the need for developing more effective therapies. Natural killer (NK) cells play a pivotal role in the control of pulmonary IAV infection, however, little is known about the therapeutic potential of adoptively transferred NK cells for viral infections. Here, we investigated the antiviral activity of CYNK, human placental hematopoietic stem cell-derived NK cells, against IAV infection in vitro. Virus infection induced the expression of NK cell activating ligands on respiratory epithelial cells, resulting in enhanced recognition by CYNK cells. Upon co-culture with IAV-infected epithelial cells, CYNK exhibited elevated degranulation and increased production of IFN-γ, TNF-α and GM-CSF in a virus dose-dependent manner. Furthermore, CYNK showed virus dose-dependent cytotoxicity against IAV-infected cells. The antiviral activity of CYNK was mediated by NKp46 and NKG2D. Together, these data demonstrate that CYNK possesses potent antiviral function against IAV and warrant clinical investigations for adoptive NK cell therapies against viral infections.
Collapse
|
31
|
Gong Z, Liu Y, Ding F, Ba L, Zhang M. Natural killer cells-related immune traits and amyotrophic lateral sclerosis: A Mendelian randomization study. Front Neurosci 2022; 16:981371. [PMID: 36248644 PMCID: PMC9562140 DOI: 10.3389/fnins.2022.981371] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundObservational studies have suggested that peripheral immune disorders are associated with amyotrophic lateral sclerosis (ALS). Previous studies predominantly focused on changes in adaptive immunity. However, emerging evidence showed natural killer (NK) cells, an essential component of innate immunity, were involved in the degeneration of motor neurons. However, the causal relationship between dysregulated NK cells-related immune traits and ALS remains unclear.ObjectiveThis study aimed to explore the causal relationship between NK cells-related immune traits and the risk of ALS.Materials and methodsSingle nucleotide polymorphisms (SNPs) significantly associated with NK cells-related immune traits were selected as instrumental variables to estimate their causal effects on ALS. SNPs from a genome-wide association study (GWAS) on NK cells-related immune traits were used as exposure instruments, including an absolute NK-cells count, absolute HLA-DR+ NK-cells count, NK cells/lymphocytes, NK cells/CD3– lymphocytes, HLA DR+ NK cells/NK cells, HLA DR+ NK cells/CD3– lymphocytes, and the median fluorescence intensities of CD16–CD56+ on NK cells and HLA-DR+ NK cells. Summary-level GWAS statistics of ALS were used as the outcome data. Exposure and outcome data were analyzed using the two-sample Mendelian randomization (MR) method.ResultsEach one standard deviation increase in the expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells were associated with a lower risk of ALS in both the MR-Egger and inverse variance weighted methods (P < 0.05). The results proved robust under all sensitivity analyses. Neither instrumental outliers nor heterogeneity were detected.ConclusionOur results suggest that higher expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells are associated with a lower risk of ALS.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Ba
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| |
Collapse
|
32
|
Shemesh A, Pickering H, Roybal KT, Lanier LL. Differential IL-12 signaling induces human natural killer cell activating receptor-mediated ligand-specific expansion. J Exp Med 2022; 219:e20212434. [PMID: 35758909 PMCID: PMC9240274 DOI: 10.1084/jem.20212434] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
IL-12 is an essential cytokine involved in the generation of memory or memory-like NK cells. Mouse cytomegalovirus infection triggers NK receptor-induced, ligand-specific IL-12-dependent NK cell expansion, yet specific IL-12 stimulation ex vivo leading to NK cell proliferation and expansion is not established. Here, we show that IL-12 alone can sustain human primary NK cell survival without providing IL-2 or IL-15 but was insufficient to promote human NK cell proliferation. IL-12 signaling analysis revealed STAT5 phosphorylation and weak mTOR activation, which was enhanced by activating NK receptor upregulation and crosslinking leading to STAT5-dependent, rapamycin-sensitive, or TGFβ-sensitive NK cell IL-12-dependent expansion, independently of IL-12 receptor upregulation. Prolonged IL-2 culture did not impair IL-12-dependent ligand-specific NK cell expansion. These findings demonstrate that activating NK receptor stimulation promotes differential IL-12 signaling, leading to human NK cell expansion, and suggest adopting strategies to provide IL-12 signaling in vivo for ligand-specific IL-2-primed NK cell-based therapies.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| |
Collapse
|
33
|
Sankar J, Arora S, Joshi G, Kumar R. Pore-forming proteins and their role in cancer and inflammation: Mechanistic insights and plausible druggable targets. Chem Biol Interact 2022; 366:110127. [DOI: 10.1016/j.cbi.2022.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
|
34
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
35
|
Zhao W, Liu L, Li X, Xu S. EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in lung adenocarcinoma. Int Immunopharmacol 2022; 110:109031. [PMID: 35839564 DOI: 10.1016/j.intimp.2022.109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/24/2022]
Abstract
Backgrounds Lung adenocarcinoma is the most frequent histological type among patients with lung cancer. Ephrin receptor A10 (EphA10), a member of the receptor tyrosine kinase family, has been reported to participate in tumor progression, but its role in lung adenocarcinoma (LUAD) remains unknown. Methods Immunohistochemistry staining and real-time PCR were employed to determine the expression of EphA10 in clinical LUAD samples. EphA10 silencing or overexpression in LUAD cells was achieved by transduction of lentivirus. The effects of EphA10 on LUAD cells were evaluated by CCK-8, EdU staining, flow cytometry, Transwell, and Western blot. The in vivo tumor growth was assessed in the xenograft mice model. Results EphA10 was overexpressed in LUAD tissues. Higher EphA10 expression was observed in the tissues at the advanced tumor stage and was positively correlated with the EGFR. Mechanistically, silencing of EphA10 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition of LUAD cells. Additionally, EphA10 knockdown significantly reduced the PD-L1 expression in LUAD cells and enhanced NK cell-mediated anti-tumor effects. Furthermore, EphA10 activated the MAPK/ERK pathway, and U0126, an inhibitor of MEK, markedly reversed the promoting impacts of EphA10 overexpression on LUAD cells. Consistently, results from subcutaneous tumor xenografts in nude mice confirmed that EphA10 knockdown significantly inhibited tumor growth in vivo. Conclusions This work demonstrates that EphA10 drives tumor progression and immune evasion by regulating the MAPK/ERK cascade in LUAD, implying that EphA10 has the potential to be a therapeutic target in treating LUAD.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Lu Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Xuehao Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China.
| |
Collapse
|
36
|
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, Marcenaro E, Rutigliani M, Provinciali N, Paleari L, DeCensi A, Sivori S, Carlomagno S. NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines (Basel) 2022; 10:1033. [PMID: 35891197 PMCID: PMC9323201 DOI: 10.3390/vaccines10071033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Giordano
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | | | | | - Laura Paleari
- A.Li.Sa., Liguria Region Health Authority, 16121 Genoa, Italy;
| | - Andrea DeCensi
- Medical Oncology, Galliera Hospital, 16128 Genoa, Italy; (N.P.); (A.D.)
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| |
Collapse
|
37
|
Demel I, Koristek Z, Motais B, Hajek R, Jelinek T. Natural killer cells: Innate immune system as a part of adaptive immunotherapy in hematological malignancies. Am J Hematol 2022; 97:802-817. [PMID: 35285978 DOI: 10.1002/ajh.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Natural killer (NK) cells are part of a phylogenetically old defense system, which is characterized by its strong cytolytic function against physiologically stressed cells such as tumor cells and virus-infected cells. Their use in the treatment of hematological malignancies may be more advantageous in several ways when compared with the already established T lymphocyte-based immunotherapy. Given the different mechanisms of action, allogeneic NK cell products can be produced in a non-personal based manner without the risk of the formidable graft-versus-host disease. Advanced manufacturing processes are capable of producing NK cells relatively easily in large and clinically sufficient numbers, useable without subsequent manipulations or after genetic modifications, which can solve the lack of specificity and improve clinical efficacy of NK cell products. This review summarizes the basic characteristics of NK cells and provides a quick overview of their sources. Results of clinical trials in hematological malignancies are presented, and strategies on how to improve the clinical outcome of NK cell therapy are discussed.
Collapse
Affiliation(s)
- Ivo Demel
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
| | - Zdenek Koristek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| | - Benjamin Motais
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Roman Hajek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| | - Tomas Jelinek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| |
Collapse
|
38
|
Hue SSS, Ng SB, Wang S, Tan SY. Cellular Origins and Pathogenesis of Gastrointestinal NK- and T-Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:2483. [PMID: 35626087 PMCID: PMC9139583 DOI: 10.3390/cancers14102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intestinal immune system, which must ensure appropriate immune responses to both pathogens and commensal microflora, comprises innate lymphoid cells and various T-cell subsets, including intra-epithelial lymphocytes (IELs). An example of innate lymphoid cells is natural killer cells, which may be classified into tissue-resident, CD56bright NK-cells that serve a regulatory function and more mature, circulating CD56dim NK-cells with effector cytolytic properties. CD56bright NK-cells in the gastrointestinal tract give rise to indolent NK-cell enteropathy and lymphomatoid gastropathy, as well as the aggressive extranodal NK/T cell lymphoma, the latter following activation by EBV infection and neoplastic transformation. Conventional CD4+ TCRαβ+ and CD8αβ+ TCRαβ+ T-cells are located in the lamina propria and the intraepithelial compartment of intestinal mucosa as type 'a' IELs. They are the putative cells of origin for CD4+ and CD8+ indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and intestinal T-cell lymphoma, NOS. In addition to such conventional T-cells, there are non-conventional T-cells in the intra-epithelial compartment that express CD8αα and innate lymphoid cells that lack TCRs. The central feature of type 'b' IELs is the expression of CD8αα homodimers, seen in monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which primarily arises from both CD8αα+ TCRαβ+ and CD8αα+ TCRγδ+ IELs. EATL is the other epitheliotropic T-cell lymphoma in the GI tract, a subset of which arises from the expansion and reprograming of intracytoplasmic CD3+ innate lymphoid cells, driven by IL15 and mutations of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| |
Collapse
|
39
|
Iraqi M, Edri A, Greenshpan Y, Goldstein O, Ofir N, Bolel P, Abu Ahmad M, Zektser M, Campbell KS, Rouvio O, Gazit R, Porgador A. Blocking the PCNA/NKp44 Checkpoint to Stimulate NK Cell Responses to Multiple Myeloma. Int J Mol Sci 2022; 23:4717. [PMID: 35563109 PMCID: PMC9105815 DOI: 10.3390/ijms23094717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells' functions. Here we studied in vitro the expression and function of PCNA on MM cells. First, we show that PCNA is present on the cell membrane of five out of six MM cell lines, using novel anti-PCNA mAb developed to recognize membrane-associated PCNA. Next, we stained primary bone marrow (BM) mononuclear cells from MM patients and showed significant staining of membrane-associated PCNA in the fraction of CD38+CD138+ BM cells that contain the MM cells. Importantly, blocking of the membrane PCNA on MM cells enhanced the activity of NK cells, including IFN-γ-secretion and degranulation. Our results highlight the possible blocking of the NKp44-PCNA immune checkpoint by the mAb 14-25-9 antibody to enhance NK cell responses against MM, providing a novel treatment option.
Collapse
Affiliation(s)
- Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Oron Goldstein
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Noa Ofir
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Priyanka Bolel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Muhammad Abu Ahmad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Miri Zektser
- Internal Medicine A and Multiple Myeloma Clinic, Soroka Medical Center, Beer Sheva 8489501, Israel; (M.Z.); (O.R.)
| | - Kerry S. Campbell
- Blood Cell Development and Host Defense Program, Research Institute at Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Ory Rouvio
- Internal Medicine A and Multiple Myeloma Clinic, Soroka Medical Center, Beer Sheva 8489501, Israel; (M.Z.); (O.R.)
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
40
|
Ramos-Mejia V, Arellano-Galindo J, Mejía-Arangure JM, Cruz-Munoz ME. A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Front Immunol 2022; 13:803995. [PMID: 35493522 PMCID: PMC9046543 DOI: 10.3389/fimmu.2022.803995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Veronica Ramos-Mejia
- GENYO: Centro Pfizer, Universidad de Granada, Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Jose Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México “Dr. Federico Gomez”, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Arangure
- Genómica del Cancer, Instituto Nacional de Medicina Genómica (INMEGEN) & Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| |
Collapse
|
41
|
Gleason J, Zhao Y, Raitman I, Kang L, He S, Hariri R. Human placental hematopoietic stem cell derived natural killer cells (CYNK-001) mediate protection against influenza a viral infection. Hum Vaccin Immunother 2022; 18:2055945. [PMID: 35404743 PMCID: PMC9255201 DOI: 10.1080/21645515.2022.2055945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) infections are associated with a high healthcare burden around the world and there is an urgent need to develop more effective therapies. Natural killer (NK) cells have been shown to play a pivotal role in reducing IAV-induced pulmonary infections in preclinical models; however, little is known about the therapeutic potential of adoptively transferred NK cells for IAV infections. Here, we investigated the effects of CYNK-001, human placental hematopoietic stem cell derived NK cells that exhibited strong cytolytic activity against a range of malignant cells and expressed high levels of activating receptors, against IAV infections. In a severe IAV-induced acute lung injury model, mice treated with CYNK-001 showed a milder body weight loss and clinical symptoms, which led to a delayed onset of mortality, thus demonstrating their antiviral protection in vivo. Analysis of bronchoalveolar lavage fluid (BALF) revealed that CYNK-001 reduced proinflammatory cytokines and chemokines highlighting CYNK-001’s anti-inflammatory actions in viral induced-lung injury. Furthermore, CYNK-001-treated mice had altered immune responses to IAV with reduced number of neutrophils in BALF yet increased number of CD8+ T cells in the BALF and lung compared to vehicle-treated mice. Our results demonstrate that CYNK-001 displays protective functions against IAV via its anti-inflammatory and immunomodulating activities, which leads to alleviation of disease burden and progression in a severe IAV-infected mice model. The potential of adoptive NK therapy for IAV infections warrants clinical investigation.
Collapse
Affiliation(s)
| | - Yuechao Zhao
- Celularity Inc., Florham Park, New Jersey, NJ, USA
| | | | - Lin Kang
- Celularity Inc., Florham Park, New Jersey, NJ, USA
| | - Shuyang He
- Celularity Inc., Florham Park, New Jersey, NJ, USA
| | | |
Collapse
|
42
|
Mair KH, Crossman AJ, Wagner B, Babasyan S, Noronha L, Boyd P, Zarlenga D, Stadler M, van Dongen KA, Gerner W, Saalmüller A, Lunney JK. The Natural Cytotoxicity Receptor NKp44 (NCR2, CD336) Is Expressed on the Majority of Porcine NK Cells Ex Vivo Without Stimulation. Front Immunol 2022; 13:767530. [PMID: 35154097 PMCID: PMC8832162 DOI: 10.3389/fimmu.2022.767530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/10/2022] [Indexed: 01/02/2023] Open
Abstract
Natural killer (NK) cells have been studied extensively in humans and mice for their vital role in the vertebrate innate immune system. They are known to rapidly eliminate tumors or virus infected cells in an immune response utilizing their lytic properties. The natural cytotoxicity receptors (NCRs) NKp30 (NCR3), NKp44 (NCR2), and NKp46 (NCR1) are important mediators of NK-cell cytotoxicity. NKp44 expression was reported for NK cells in humans as well as in some non-human primates and found exclusively on activated NK cells. Previously, no information was available on NKp44 protein expression and its role in porcine lymphocytes due to the lack of species-specific monoclonal antibodies (mAbs). For this study, porcine-specific anti-NKp44 mAbs were generated and their reactivity was tested on blood and tissue derived NK cells in pigs of different age classes. Interestingly, NKp44 expression was detected ex vivo already on resting NK cells; moreover, the frequency of NKp44+ NK cells was higher than that of NKp46+ NK cells in most animals analyzed. Upon in vitro stimulation with IL-2 or IL-15, the frequency of NKp44+ NK cells, as well as the intensity of NKp44 expression at the single cell level, were increased. Since little is known about swine NK cells, the generation of a mAb (clone 54-1) against NKp44 will greatly aid in elucidating the mechanisms underlying the differentiation, functionality, and activation of porcine NK cells.
Collapse
Affiliation(s)
- Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,CD Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Assiatu J Crossman
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center (BARC) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States.,Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Leela Noronha
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Manhattan, KS, United States
| | - Patricia Boyd
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center (BARC) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Dante Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center (BARC) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katinka A van Dongen
- CD Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,CD Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,The Pirbright Institute, Woking, United Kingdom
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Joan K Lunney
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center (BARC) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| |
Collapse
|
43
|
Abstract
Natural killer (NK) cells are innate immune cells that are critical to the body's antitumor and antimetastatic defense. As such, novel therapies are being developed to utilize NK cells as part of a next generation of immunotherapies to treat patients with metastatic disease. Therefore, it is essential for us to examine how metastatic cancer cells and NK cells interact with each other throughout the metastatic cascade. In this Review, we highlight the recent body of work that has begun to answer these questions. We explore how the unique biology of cancer cells at each stage of metastasis alters fundamental NK cell biology, including how cancer cells can evade immunosurveillance and co-opt NK cells into cells that promote metastasis. We also discuss the translational potential of this knowledge.
Collapse
Affiliation(s)
- Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology, and
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew J. Ewald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Mair KH, Stadler M, Razavi MA, Saalmüller A, Gerner W. Porcine Plasmacytoid Dendritic Cells Are Unique in Their Expression of a Functional NKp46 Receptor. Front Immunol 2022; 13:822258. [PMID: 35371050 PMCID: PMC8970115 DOI: 10.3389/fimmu.2022.822258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
The activating receptor NKp46 shows a unique expression pattern on porcine leukocytes. We showed already that in swine not all NK cells express NKp46 and that CD3+NKp46+ lymphocytes form a T-cell subset with unique functional properties. Here we demonstrate the expression of NKp46 on CD4highCD14-CD172a+ porcine plasmacytoid dendritic cells (pDCs). Multicolor flow cytometry analyses revealed that the vast majority of porcine pDCs (94.2% ± 4) express NKp46 ex vivo and have an increased expression on the single-cell level compared to NK cells. FSC/SSChighCD4highNKp46+ cells produced high levels of IFN-α after CpG ODN 2216 stimulation, a hallmark of pDC function. Following receptor triggering with plate-bound monoclonal antibodies against NKp46, phosphorylation of signaling molecules downstream of NKp46 was analyzed in pDCs and NK cells. Comparable to NK cells, NKp46 triggering led to an upregulation of the phosphorylated ribosomal protein S6 (pS6) in pDCs, indicating an active signaling pathway of NKp46 in porcine pDCs. Nevertheless, a defined effector function of the NK-associated receptor on porcine pDCs could not be demonstrated yet. NKp46-mediated cytotoxicity, as shown for NK cells, does not seem to occur, as NKp46+ pDCs did not express perforin. Yet, NKp46 triggering seems to contribute to cytokine production in porcine pDCs, as induction of TNF-α was observed in a small pDC subset after NKp46 cross-linking. To our knowledge, this is the first report on NKp46 expression on pDCs in a mammalian species, showing that this receptor contributes to pDC activation and function.
Collapse
Affiliation(s)
- Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Kerstin H. Mair,
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
45
|
Moesin: A novel receptor on NK lymphocytes binds to TOMM40 on K562 leukemia cells initiating cytolysis. Hum Immunol 2022; 83:418-427. [DOI: 10.1016/j.humimm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
46
|
Colomar-Carando N, Gauthier L, Merli P, Loiacono F, Canevali P, Falco M, Galaverna F, Rossi B, Bosco F, Caratini M, Mingari MC, Locatelli F, Vivier E, Meazza R, Pende D. Exploiting Natural Killer Cell Engagers to Control Pediatric B-cell Precursor Acute Lymphoblastic Leukemia. Cancer Immunol Res 2022; 10:291-302. [PMID: 35078821 PMCID: PMC9662914 DOI: 10.1158/2326-6066.cir-21-0843] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023]
Abstract
Natural killer (NK) cells represent a promising cell type in antitumor immunotherapy for efficacy and safety, particularly in the treatment of hematologic malignancies. NK cells have been shown to exert antileukemia activity in the context of haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Products have been developed to boost the activation of NK cells only when cross-linked by tumor cells, avoiding any off-target effect. Here, we tested the in vitro effect of different NK-cell engagers (NKCE), which trigger either NKp46 or NKp30 together with CD16A, and target either CD19 or CD20 to induce killing of pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Target cells were NALM-16 and MHH-CALL-4 cell lines and four primary leukemias, while effector cells were resting NK cells derived from healthy donors and pediatric patients with leukemia after αβT/B-depleted haplo-HSCT. The NK cell-resistant MHH-CALL-4 was efficiently killed using all NKCEs. Boosting of NK activity against MHH-CALL-4 was also evident by degranulation and IFNγ production. Because of the lack of CD20 and high expression of CD19 on primary BCP-ALL, we focused on NKCEs targeting CD19. NKp46- and NKp30-based NKCEs displayed similar potency at inducing NK-cell activity, even when challenged with primary BCP-ALL blasts. Their efficacy was shown also using NK cells derived from transplanted patients. NKCE-induced activation against BCP-ALL can override HLA-specific inhibitory interactions, although the strongest response was observed by the alloreactive NK-cell subset. These data support the therapeutic use of NKp46/CD16A/CD19-NKCE to fight refractory/relapsed leukemia in pretransplantation or posttransplantation settings.
Collapse
Affiliation(s)
- Natalia Colomar-Carando
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Experimental Medicine, University of Genoa, Genova, Italy
| | | | - Pietro Merli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Fabrizio Loiacono
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Canevali
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federica Galaverna
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | | | | | | | - Maria Cristina Mingari
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy.,Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Roma, Italy
| | - Eric Vivier
- Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Raffaella Meazza
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Pende
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Corresponding Author: Daniela Pende, Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova 16132, Italy. Phone: 39-010-555-8220; E-mail:
| |
Collapse
|
47
|
Harnessing Natural Killer Cells in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11040605. [PMID: 35203256 PMCID: PMC8869885 DOI: 10.3390/cells11040605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. There are two main subtypes: small cell lung cancer (SCLC), and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of lung cancer diagnoses. Early lung cancer very often has no specific symptoms, and many patients present with late stage disease. Despite the various treatments currently available, many patients experience tumor relapse or develop therapeutic resistance, highlighting the need for more effective therapies. The development of immunotherapies has revolutionized the cancer treatment landscape by enhancing the body’s own immune system to fight cancer. Natural killer (NK) cells are crucial anti-tumor immune cells, and their exclusion from the tumor microenvironment is associated with poorer survival. It is well established that NK cell frequencies and functions are impaired in NSCLC; thus, placing NK cell-based immunotherapies as a desirable therapeutic concept for this malignancy. Immunotherapies such as checkpoint inhibitors are transforming outcomes for NSCLC. This review explores the current treatment landscape for NSCLC, the role of NK cells and their dysfunction in the cancer setting, the advancement of NK cell therapies, and their future utility in NSCLC.
Collapse
|
48
|
Angelo LS, Hogg GD, Abeynaike S, Bimler L, Vargas-Hernandez A, Paust S. Phenotypic and Functional Plasticity of CXCR6+ Peripheral Blood NK Cells. Front Immunol 2022; 12:810080. [PMID: 35173710 PMCID: PMC8841448 DOI: 10.3389/fimmu.2021.810080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Human NK cells are comprised of phenotypic subsets, whose potentially unique functions remain largely unexplored. C-X-C-motif-chemokine-receptor-6 (CXCR6)+ NK cells have been identified as phenotypically immature tissue-resident NK cells in mice and humans. A small fraction of peripheral blood (PB)-NK cells also expresses CXCR6. However, prior reports about their phenotypic and functional plasticity are conflicting. In this study, we isolated, expanded, and phenotypically and functionally evaluated CXCR6+ and CXCR6– PB-NK cells, and contrasted results to bulk liver and spleen NK cells. We found that CXCR6+ and CXCR6– PB-NK cells preserved their distinct phenotypic profiles throughout 14 days of in vitro expansion (“day 14”), after which phenotypically immature CXCR6+ PB-NK cells became functionally equivalent to CXCR6– PB-NK cells. Despite a consistent reduction in CD16 expression and enhanced expression of the transcription factor Eomesodermin (Eomes), day 14 CXCR6+ PB-NK cells had superior antibody-dependent cellular cytotoxicity (ADCC) compared to CXCR6– PB-NK cells. Further, bulk liver NK cells responded to IL-15, but not IL-2 stimulation, with STAT-5 phosphorylation. In contrast, bulk splenic and PB-NK cells robustly responded to both cytokines. Our findings may allow for the selection of superior NK cell subsets for infusion products increasingly used to treat human diseases.
Collapse
Affiliation(s)
- Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Graham D. Hogg
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Lynn Bimler
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Alexander Vargas-Hernandez
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Silke Paust,
| |
Collapse
|
49
|
Correia MP, Stojanovic A, Wels WS, Cerwenka A. Innate-like NKp30 +CD8 + T cells armed with TCR/CAR target tumor heterogeneity. Oncoimmunology 2022; 10:1973783. [PMID: 35036073 PMCID: PMC8758178 DOI: 10.1080/2162402x.2021.1973783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intratumoral heterogeneity is frequently associated with tumor immune escape, with MHC-class I and antigen expression loss rendering tumor cells invisible to T cell killing, representing a major challenge for the design of successful adoptive transfer protocols for cancer immunotherapy. While CD8+ T cell recognition of tumor cells is based on the detection of MHC-peptide complexes via specific T cell receptors (TCRs), Natural Killer (NK) cells detect tumor-associated NK ligands by an array of NK receptors. We have recently identified a population of innate-like CD8+ T cells marked by the expression of NKp30, a potent natural cytotoxicity activating NK receptor, whose tumor ligand, B7H6, is frequently upregulated on several cancer types. Here, we harnessed the dual-recognition potential of NKp30+CD8+ T cells, by arming these cells with TCRs or chimeric antigen receptors (CARs) targeting Epidermal Growth Factor Receptor 2 (ErbB2, or HER2), a tumor-associated target overexpressed in several malignancies. HER2-specific NKp30+CD8+ T cells killed not only HER2-expressing target cell lines, but also eliminated tumor cells in the absence of MHC-class I or antigen expression, making them especially effective in eliminating heterogeneous tumor cell populations. Our results show that NKp30+CD8+ T cells equipped with a specific TCR or CAR display a dual capacity to recognize and kill target cells, combining the anti-tumor activity of both CD8+ T and NK cells. This dual-recognition capacity allows these effector cells to target tumor heterogeneity, thus improving therapeutic strategies against tumor escape.
Collapse
Affiliation(s)
- Margareta P Correia
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
50
|
Sun Y, Sedgwick AJ, Khan MAAK, Palarasah Y, Mangiola S, Barrow AD. A Transcriptional Signature of IL-2 Expanded Natural Killer Cells Predicts More Favorable Prognosis in Bladder Cancer. Front Immunol 2021; 12:724107. [PMID: 34858395 PMCID: PMC8631443 DOI: 10.3389/fimmu.2021.724107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Activation of natural killer (NK) cell function is regulated by cytokines, such as IL-2, and secreted factors upregulated in the tumor microenvironment, such as platelet-derived growth factor D (PDGF-DD). In order to elucidate a clinical role for these important regulators of NK cell function in antitumor immunity, we generated transcriptional signatures representing resting, IL-2-expanded, and PDGF-DD-activated, NK cell phenotypes and established their abundance in The Cancer Genome Atlas bladder cancer (BLCA) dataset using CIBERSORT. The IL-2-expanded NK cell phenotype was the most abundant in low and high grades of BLCA tumors and was associated with improved prognosis. In contrast, PDGFD expression was associated with numerous cancer hallmark pathways in BLCA tumors compared with normal bladder tissue, and a high tumor abundance of PDGFD transcripts and the PDGF-DD-activated NK cell phenotype were associated with a poor BLCA prognosis. Finally, high tumor expression of transcripts encoding the activating NK cell receptors, KLRK1 and the CD160-TNFRSF14 receptor-ligand pair, was strongly correlated with the IL-2-expanded NK cell phenotype and improved BLCA prognosis. The transcriptional parameters we describe may be optimized to improve BLCA patient prognosis and risk stratification in the clinic and potentially provide gene targets of therapeutic significance for enhancing NK cell antitumor immunity in BLCA.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Md Abdullah-Al-Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yaseelan Palarasah
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|