1
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
2
|
John Von Freyend S, Kwok-Schuelein T, Netter HJ, Haqshenas G, Semblat JP, Doerig C. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens. Pathogens 2017; 6:pathogens6020017. [PMID: 28430160 PMCID: PMC5488651 DOI: 10.3390/pathogens6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
Collapse
Affiliation(s)
- Simona John Von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Terry Kwok-Schuelein
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| | - Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
3
|
Quintero CA, Tudela JG, Damiani MT. Rho GTPases as pathogen targets: Focus on curable sexually transmitted infections. Small GTPases 2015; 6:108-18. [PMID: 26023809 DOI: 10.4161/21541248.2014.991233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogens have evolved highly specialized mechanisms to infect hosts. Several microorganisms modulate the eukaryotic cell surface to facilitate their engulfment. Once internalized, they hijack the molecular machinery of the infected cell for their own benefit. At different stages of phagocytosis, particularly during invasion, certain pathogens manipulate pathways governed by small GTPases. In this review, we focus on the role of Rho proteins on curable, sexually transmitted infections caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis and Treponema pallidum. Despite the high, worldwide frequencies of these sexually-transmitted diseases, very little is known about the strategies developed by these microorganisms to usurp key eukaryotic proteins that control intracellular signaling and actin dynamics. Improved knowledge of these molecular mechanisms will contribute to the elucidation of how these clinically important pathogens manipulate intracellular processes and parasitize their hosts.
Collapse
Affiliation(s)
- Cristián A Quintero
- a Laboratory of Phagocytosis and Intracellular Trafficking; IHEM-CONICET; School of Medicine; University of Cuyo ; Mendoza , Argentina
| | | | | |
Collapse
|
4
|
Calton CM, Wade LK, So M. Upregulation of ATF3 inhibits expression of the pro-inflammatory cytokine IL-6 during Neisseria gonorrhoeae infection. Cell Microbiol 2013; 15:1837-50. [PMID: 23648135 DOI: 10.1111/cmi.12153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 04/12/2013] [Accepted: 03/28/2013] [Indexed: 12/16/2022]
Abstract
Neisseria gonorrhoeae regulates the expression of epithelial cell genes, activates cytoprotective pathways in the infected cell and protects it from apoptosis. Many of these responses are enhanced by the Type IV pilus (Tfp). We tested the hypothesis that N. gonorrhoeae modulates the innate immune response by inducing expression of ATF3, a transcription factor that negatively regulates the expression of many cytokine genes. We further determined whether Tfp are involved in these events. We found that N. gonorrhoeae induces ATF3 expression in mucosal epithelial cells through activation of mitogen-activated protein kinases. Maximal ATF3 expression requires Tfp retraction. Knocking down endogenous levels of ATF3 results in higher levels of IL-6 transcript. Our findings strongly suggest that ATF3 is involved in suppressing cytokine expression during gonococcal infection. We propose a model for the role of ATF3 in the context of N. gonorrhoeae infection.
Collapse
Affiliation(s)
- Christine M Calton
- Department of Molecular Microbiology and Immunology, L220, Oregon Health and Science University, Portland, OR, 97239, USA; The BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, 85721, USA
| | | | | |
Collapse
|
5
|
Bien J, Palagani V, Bozko P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therap Adv Gastroenterol 2013; 6:53-68. [PMID: 23320050 PMCID: PMC3539291 DOI: 10.1177/1756283x12454590] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gut microbiota is a compilation of microorganisms dwelling in the entire mammalian gastrointestinal tract. They display a symbiotic relationship with the host contributing to its intestinal health and disease. Even a slight fluctuation in this equipoise may be deleterious to the host, leading to many pathological conditions like Clostridium difficile infection or inflammatory bowel disease (IBD). In this review, we focus on the role of microbial dysbiosis in initiation of C. difficile infection and IBD, and we also touch upon the role of specific pathogens, particularly C. difficile, as causative agents of IBD. We also discuss the molecular mechanisms activated by C. difficile that contribute to the development and exacerbation of gastrointestinal disorders.
Collapse
Affiliation(s)
- Justyna Bien
- Witold Stefanski Institute of Parasitology of the Polish Academy of Sciences, Warsaw, Poland
| | - Vindhya Palagani
- Department of Internal Medicine I, Faculty of Medicine, Tübingen University, Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Faculty of Medicine, Tübingen University, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Raymond B, Crepin VF, Collins JW, Frankel G. The WxxxE effector EspT triggers expression of immune mediators in an Erk/JNK and NF-κB-dependent manner. Cell Microbiol 2011; 13:1881-93. [PMID: 21848814 PMCID: PMC4977063 DOI: 10.1111/j.1462-5822.2011.01666.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium colonize their respective hosts while forming attaching and effacing lesions. Their infection strategy relies on translocation of a battery of type III secretion system effectors, including Map, EspM and EspT, which belong to the WxxxE/SopE family of guanine nucleotide exchange factors. Using the C. rodentium mouse model we found that EspT triggers expression of KC and TNFα in vivo. Indeed, a growing body of evidence suggests that, in addition to subversion of actin dynamics, the SopE and the WxxxE effectors activate signalling pathways involved in immune responses. In this study we found that EspT induces expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2) an enzyme involved in production of prostaglandin E(2) (PGE2), interleukin (Il)-8 and Il-1β in U937 human macrophages by activating the nuclear factor kappa-B (NF-κB), the extracellular signal-regulated kinases 1 and 2 (Erk1/2) and c-Jun N-terminal kinase (JNK) pathways. Since EspT modulates the activation of Cdc42 and Rac1, which mediates bacterial invasion into epithelial cells, we investigated the involvement of these Rho GTPases and bacterial invasion on pro-inflammatory responses and found that (i) Rac1, but not Cdc42, is involved in EspT-induced Il-8 and Il-1β secretion and (ii) cytochalasin D inhibits EspT-induced EPEC invasion into U937 but not Il-8 or Il-1β secretion. These results suggest that while EPEC translocates a number of effectors (i.e. NleC, NleD, NleE, NleH) that inhibit inflammation, a subset of strains, which encode EspT, employ an infection strategy that also involves upregulation of immune mediators.
Collapse
Affiliation(s)
- Benoit Raymond
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Valerie F. Crepin
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - James W. Collins
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
7
|
Jha HC, Srivastava P, Prasad J, Mittal A. Chlamydia pneumoniae heat shock protein 60 enhances expression of ERK, TLR-4 and IL-8 in atheromatous plaques of coronary artery disease patients. Immunol Invest 2011; 40:206-22. [PMID: 21192737 DOI: 10.3109/08820139.2010.534217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chlamydia pneumoniae heat shock protein (cHSP) 60 is produced during chronic chlamydial infection and activate innate immune and inflammatory responses thereby contributing to atherogenesis. However, to date there is no apparent signaling cascade delineated in human atherosclerotic plaques in C. pneumoniae positive coronary artery disease (CAD) patients. Atherosclerotic plaques were obtained from 40 CAD patients (28 men, 12 women) attending Department of Cardio Thoracic and Vascular Surgery Safdarjung Hospital, New Delhi. Atherosclerotic plaques were used for gene expression studies at RNA level by real-time PCR and to study expression of ERK1/2, JNK1/2, NF-kB, IkkB and MCP-1 at protein level by immunoblotting. Significantly higher (p < 0.001) RNA expression was found for IL-8, TLR-2/4, TGF-β, ICAM1, VCAM1 and MAPKinase genes, whereas significantly lower (p < 0.001) RNA expression for SMAD4, IkkB, BRCA1 and IL-10 was detected in cHSP60-positive atheromatous plaque of CAD patients. Moreover, at proteins level pERK1/2 (p = 0.05), NF-kB (p = 0.017), MCP-1 (p = 0.011) was higher and IkkB expression was lower (p = 0.038) in cHSP60-positive atheromatous plaque of CAD patients. This study by using human atheromatous plaques at RNA and protein levels demonstrated higher expression of TLR-2/4, IL-8, ICAM1, VCAM1, ERK1/2 and NF-kB in cHSP60-positive CAD patients.
Collapse
Affiliation(s)
- Hem C Jha
- Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, 110 029, India
| | | | | | | |
Collapse
|
8
|
Ascorbate promotes carbon tetrachloride-induced hepatic injury in senescence marker protein 30-deficient mice by enhancing inflammation. J Nutr Biochem 2011; 22:535-42. [DOI: 10.1016/j.jnutbio.2010.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 01/24/2023]
|
9
|
Helicobacter pylori accelerates hepatic fibrosis by sensitizing transforming growth factor-β1-induced inflammatory signaling. J Transl Med 2010; 90:1507-16. [PMID: 20531291 DOI: 10.1038/labinvest.2010.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our earlier report has shown that Helicobacter pylori promoted hepatic fibrosis in a murine model. Herein, in order to elucidate the mechanism by which H. pylori accelerate liver fibrosis, the authors investigated the changes in expression levels of mitogen-activated protein kinases (MAPKs), p53-related proteins, antioxidants, and proinflammatory cytokines in liver samples. H. pylori infection enhanced CCl4-induced MAP kinase activation and p53 signaling pathway as well as Bax- and proliferating-cell nuclear antigen expressions, whereas H. pylori alone induced neither of these expressions nor hepatic fibrosis. Moreover, mRNA expressions of inflammatory cytokines, glutathione peroxidase expression, and the proliferative index were strongly augmented in livers of the H. pylori with CCl4 treatment group compared with those of the CCl4-alone treatment group, whereas there was no difference in apoptotic index between the two groups. Interestingly, H. pylori treatment increased the number of α-fetoprotein-expressing hepatocytes independently of CCl4 intoxication. In vitro analyses, using an immortalized rat hepatic stellate cell (HSC) line, revealed that H. pylori lysates increased the proliferation of HSCs, which was boosted by the addition of transforming growth factor-beta1 (TGF-β1). Furthermore, the treatment of H. pylori lysates promoted the translocation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) into the nucleus based on an increase in the degradation of NF-κB inhibitor alpha, in the presence of TGF-β1, as did H2O2 treatment. In conclusion, H. pylori infection along with an elevated TGF-β1 may accelerate hepatic fibrosis through increased TGF-β1-induced pro-inflammatory signaling pathways in HSCs. Moreover, H. pylori infection might increase the risk of TGF-β1-mediated tumorigenesis by disturbing the balance between apoptosis and proliferation of hepatocytes.
Collapse
|
10
|
Agarwal V, Asmat TM, Dierdorf NI, Hauck CR, Hammerschmidt S. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase. J Biol Chem 2010; 285:35615-23. [PMID: 20829350 DOI: 10.1074/jbc.m110.172999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald
| | | | | | | | | |
Collapse
|
11
|
Kepp O, Gottschalk K, Churin Y, Rajalingam K, Brinkmann V, Machuy N, Kroemer G, Rudel T. Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection. PLoS Pathog 2009; 5:e1000348. [PMID: 19300516 PMCID: PMC2654407 DOI: 10.1371/journal.ppat.1000348] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 02/25/2009] [Indexed: 11/18/2022] Open
Abstract
Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death.
Collapse
Affiliation(s)
- Oliver Kepp
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kathleen Gottschalk
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yuri Churin
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Krishnaraj Rajalingam
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Core Facility for Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nikolaus Machuy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Guido Kroemer
- INSERM, U848, Institute Gustave Roussy, Université Paris Sud, Paris, France
| | - Thomas Rudel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Biozentrum, University of Würzburg, Department of Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Wang JH, Zhou YJ, He P, Chen BY. Roles of mitogen-activated protein kinase pathways during Escherichia coli-induced apoptosis in U937 cells. Apoptosis 2006; 12:375-85. [PMID: 17191113 DOI: 10.1007/s10495-006-0623-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.
Collapse
Affiliation(s)
- J H Wang
- Department of Geriatrics, The Second Affiliated Hospital, China Medical University, Shenyang, P.R. China
| | | | | | | |
Collapse
|
13
|
Patrone JB, Bish SE, Stein DC. TNF-α-Independent IL-8 Expression: Alterations in Bacterial Challenge Dose Cause Differential Human Monocytic Cytokine Response. THE JOURNAL OF IMMUNOLOGY 2006; 177:1314-22. [DOI: 10.4049/jimmunol.177.2.1314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Cardinale JA, Clark VL. Determinants of nitric oxide steady-state levels during anaerobic respiration by Neisseria gonorrhoeae. Mol Microbiol 2006; 58:177-88. [PMID: 16164557 DOI: 10.1111/j.1365-2958.2005.04807.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important host defence molecule that varies its immune stimulatory effects depending on the concentrations at which it is produced, with low concentrations (< 1 microM) promoting an anti-inflammatory host response while higher concentrations (>1 microM) lead to inflammatory responses. Neisseria gonorrhoeae grows anaerobically by anaerobic respiration using nitrite reductase (Nir) to convert nitrite to NO and nitric oxide reductase (Nor) to convert NO to nitrous oxide. As N. gonorrhoeae can both produce and degrade NO, we have begun a study of NO metabolism in this bacterium to understand how gonococcal manipulation of NO concentration may influence the inflammatory response during infection. N. gonorrhoeae has an apparent Nir Km of 33 microM nitrite and an apparent Nor Km of 1.2 microM NO. The maximum specific activities for Nir and Nor were 135 nmoles nitrite reduced per minute per OD600 (pH 6.7) and 270 nmoles NO reduced per minute per OD600 (pH 7.5) respectively. N. gonorrhoeae established a steady-state concentration of NO after nitrite addition that was dependent on the nitrite concentration until saturation at 1 mM nitrite. The NO steady-state level decreased as pH increased, and the ratio of activities of Nir and Nor correlated to the NO steady-state level. When the NO donor DETA/NO was used to simulate host NO production, N. gonorrhoeae also established a NO steady-state level. The concentration of NO at steady state was found to be a function of the concentration of NO generated by DETA/NO, with N. gonorrhoeae reducing the NO from proinflammatory (>1 microM) to anti-inflammatory (approximately 100 nM) concentrations. The implications of the ability of N. gonorrhoeae to maintain an anti-inflammatory NO concentration is discussed in relation to asymptomatic infection in women.
Collapse
|
15
|
Zhang H, Gao G, Clayburne G, Schumacher HR. Elimination of rheumatoid synovium in situ using a Fas ligand 'gene scalpel'. Arthritis Res Ther 2005; 7:R1235-43. [PMID: 16277676 PMCID: PMC1297566 DOI: 10.1186/ar1811] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 07/29/2005] [Accepted: 08/03/2005] [Indexed: 11/10/2022] Open
Abstract
Surgical synovectomy to remove the inflammatory synovium can temporarily ameliorate rheumatoid inflammation and delay the progress of joint destruction. An efficient medically induced programmed cell death (apoptosis) in the rheumatoid synovium might play a role similar to synovectomy but without surgical tissue damage. Gene transfer of Fas ligand (FasL) has increased the frequency of apoptotic cells in mouse and rabbit arthritic synovium. In this study, we investigated whether repeated FasL gene transfer could remove human inflammatory synovial tissue in situ and function as a molecular synovectomy. Briefly, specimens of human synovium from joint replacement surgeries and synovectomies of rheumatoid arthritis (RA) patients were grafted subcutaneously into male C.B-17 severe combined immunodeficiency (SCID) mice. Injections of a recombinant FasL adenovirus (Ad-FasL) into the grafted synovial tissue at the dosage of 10(11) particles per mouse were performed every two weeks. Three days after the fifth virus injection, the mice were euthanized by CO2 inhalation and the human synovial tissues were collected, weighed and further examined. Compared to the control adenovirus-LacZ (Ad-LacZ) and phosphate buffered saline (PBS) injected RA synovium, the Ad-FasL injected RA synovium was dramatically reduced in size and weight (P < 0.005). The number of both synoviocytes & mononuclear cells was significantly reduced. Interestingly, an approximate 15-fold increased frequency of apoptotic cells was observed in RA synovium three days after Ad-FasL injection, compared with control tissues. In summary, our in vivo investigation of gene transfer to human synovium in SCID mice suggests that repeated intra-articular gene transfer of an apoptosis inducer, such as FasL, may function as a 'gene scalpel' for molecular synovectomy to arrest inflammatory synovium at an early stage of RA.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Apoptosis/genetics
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/therapy
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cartilage, Articular/transplantation
- Cell Count
- Disease Models, Animal
- Fas Ligand Protein
- Gene Transfer Techniques
- Gene Transfer, Horizontal
- Genetic Therapy
- Humans
- In Situ Nick-End Labeling
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, SCID
- RNA, Messenger/metabolism
- Specific Pathogen-Free Organisms
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Synovial Membrane/transplantation
- Transplantation, Heterologous
- Tumor Necrosis Factors/genetics
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Haidi Zhang
- Division of Pharmaceutics and Industry Pharmacy, School of Pharmacy, Long Island University, Brooklyn, NY, USA
| | - Guangping Gao
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gilda Clayburne
- Veterans Affairs Medical Center in Philadelphia, Philadelphia, PA, USA
| | - H Ralph Schumacher
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Veterans Affairs Medical Center in Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
16
|
Wessler S, Muenzner P, Meyer TF, Naumann M. The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection. Biol Chem 2005; 386:481-90. [PMID: 15927892 DOI: 10.1515/bc.2005.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNeisseria gonorrhoeae(Ngo) is a Gram-negative pathogenic bacterium responsible for an array of diseases ranging from urethritis to disseminated gonococcal infections. Early events in the establishment of infection involve interactions betweenNgoand the mucosal epithelium, which induce a local inflammatory response. Here we analyzed the molecular mechanism involved in theNgo-induced induction of the proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and IL-8. We identified the immediate early response transcription factor nuclear factor κB (NF-κB) as a key molecule for the induction of cytokine release.Ngo-induced activation of direct upstream signaling molecules was demonstrated for IκB kinase α and β (IKKα and IKKβ) by phosphorylation of IκBα as a substrate and IKK autophosphorylation. Using dominant negative cDNAs encoding kinase-dead IKKα, IKKβ, and NF-κB-inducing kinase (NIK),Ngo-induced NF-κB activity was significantly inhibited. Curcumin, the yellow pigment derived fromCurcuma longa, inhibited IKKα, IKKβ and NIK, indicating its strong potential to block NF-κB-mediated cytokine release and the innate immune response. In addition to the inhibition ofNgo-induced signaling, curcumin treatment of cells completely abolished the adherence of bacteria to cells in late infection, underlining the high potential of curcumin as an anti-microbial compound without cytotoxic side effects.
Collapse
|
17
|
The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol 2005; 3:e100. [PMID: 15769184 PMCID: PMC1065265 DOI: 10.1371/journal.pbio.0030100] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 01/18/2005] [Indexed: 01/16/2023] Open
Abstract
The Neisseria gonorrhoeae type IV pilus is a retractile appendage that can generate forces near 100 pN. We tested the hypothesis that type IV pilus retraction influences epithelial cell gene expression by exerting tension on the host membrane. Wild-type and retraction-defective bacteria altered the expression of an identical set of epithelial cell genes during attachment. Interestingly, pilus retraction, per se, did not regulate novel gene expression but, rather, enhanced the expression of a subset of the infection-regulated genes. This is accomplished through mitogen-activated protein kinase activation and at least one other undefined stress-activated pathway. These results can be reproduced by applying artificial force on the epithelial membrane, using a magnet and magnetic beads. Importantly, this retraction-mediated signaling increases the ability of the cell to withstand apoptotic signals triggered by infection. We conclude that pilus retraction stimulates mechanosensitive pathways that enhance the expression of stress-responsive genes and activate cytoprotective signaling. A model for the role of pilus retraction in influencing host cell survival is presented.
Collapse
|
18
|
Sokolova O, Heppel N, Jägerhuber R, Kim KS, Frosch M, Eigenthaler M, Schubert-Unkmeir A. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 2004; 6:1153-66. [PMID: 15527495 DOI: 10.1111/j.1462-5822.2004.00422.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis traversal across the blood-cerebrospinal fluid barrier is an essential step in the pathogenesis of bacterial meningitis. We have previously shown that invasion of human brain microvascular endothelial cells (HBMEC) by meningococci is mediated by bacterial outer membrane protein Opc that binds fibronectin, thereby anchoring the bacterium to the integrin alpha 5 beta 1-receptor on the endothelial cell surface. However, subsequent signal transduction mechanisms essential for or regulated by N. meningitidis adhesion and invasion, or HBMEC responses to N. meningitidis are unknown. In this report we investigated the role of c-Jun N-terminal kinases 1 and 2 (JNK1 and JNK2), p38 mitogen-activated (MAP) kinase and protein tyrosine kinases in endothelial-N. meningitidis interaction. Binding of meningococci to HBMEC phosphorylated and activated JNK1 and JNK2 and p38 MAPK as well as their direct substrates c-Jun and MAP kinase activated kinase-2 (MAPKAPK-2), respectively. Non-invasive meningococcal strains lacking opc gene (opc mutants and sequence type 11 complex meningococci) still activated p38 MAPK, however, failed to activate JNK. Inhibition of JNK1 and JNK2 significantly reduced internalization of N. meningitidis by HBMEC without affecting its adherence. Blocking the endothelial integrin alpha 5 beta 1 also decreased N. meningitidis-induced JNK activation in HBMEC. These findings indicate the crucial role of JNK signalling pathway in N. meningitidis invasion in HBMEC. In contrast, p38 MAPK pathway was important for the control of interleukin-6 (IL-6) and IL-8 release by HBMEC. Genistein, a protein tyrosine kinase inhibitor, decreased both invasion of N. meningitidis into HBMEC and IL-6 and IL-8 release, indicating that protein tyrosine kinases, which link signals from integrins to intracellular signalling pathways are essential for both bacterial internalization and cytokine secretion by HBMEC.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Hygiene and Microbiology, University of Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Dixon GLJ, Heyderman RS, van der Ley P, Klein NJ. High-level endothelial E-selectin (CD62E) cell adhesion molecule expression by a lipopolysaccharide-deficient strain of Neisseria meningitidis despite poor activation of NF-kappaB transcription factor. Clin Exp Immunol 2004; 135:85-93. [PMID: 14678268 PMCID: PMC1808929 DOI: 10.1111/j.1365-2249.2004.02335.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Binding of host inflammatory cells to the endothelium is a critical contributor to the vascular damage characteristic of severe meningococcal disease and is regulated by endothelial cell adhesion molecules such as ICAM-1, VCAM-1 and CD62E. Intact meningococci induce far higher levels of CD62E than lipopolysaccharide (LPS) alone, whereas LPS is at least as potent as meningococci at inducing both VCAM-1 and ICAM-1 expression. This suggests that meningococci possess additional factors other than LPS present in whole bacteria that result in differential adhesion molecule expression. To investigate this possibility, we studied the capacity of an LPS-deficient isogenic strain of serogroup B Neisseria meningitidis H44/76 (lpxA-) to induce endothelial cell adhesion molecule expression and translocation of the transcription factor NF-kappaB, and compared it to both parent and unencapsulated strains of both B1940 and H44/76 and purified LPS. Although the LPS-deficient isogenic mutant of strain H44/76 was found to be a poor inducer of NF-kappaB, it induced higher levels of CD62E expression than LPS alone. These data provide evidence that intact meningococci induce a range of signals in the endothelium that are distinct from those seen with purified LPS alone and that they occur in a LPS-dependent and LPS-independent manner. These signals may explain the potent effects of N. meningitidis on CD62E expression on vascular endothelium and provide a basis for the complex endothelial dysregulation seen in meningococcal sepsis.
Collapse
Affiliation(s)
- G L J Dixon
- Immunobiology Unit, Institute of Child Health, London, UK.
| | | | | | | |
Collapse
|
20
|
Chung WO, Dale BA. Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 2004; 72:352-8. [PMID: 14688115 PMCID: PMC343965 DOI: 10.1128/iai.72.1.352-358.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response is critical for the epithelial antimicrobial barrier. The human beta-defensins are small, cationic antimicrobial peptides that are made by epithelial cells and that play a role in mucosal and skin defenses. Human beta-defensin 1 (hBD-1) is expressed constitutively in epithelial tissues, whereas hBD-2 and hBD-3 are expressed in response to bacterial stimuli or inflammation. Previous studies showed that hBD-2 was induced by Fusobacterium nucleatum cell wall extract without the involvement of the NF-kappaB transcription factors, which typically are associated with innate immunity and inflammation. The goal of this study was to characterize signaling pathways involved in hBD-2 induction in response to commensal and pathogenic bacteria. Cultured human oral and foreskin keratinocytes were treated separately with inhibitors of NF-kappaB, c-Jun N-terminal kinase (JNK), and p38 and then stimulated with oral commensal Streptococcus gordonii, oral pathogens Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans, skin commensal Staphylococcus epidermidis, or skin pathogen Streptococcus pyogenes. Different bacteria induced different levels of hBD-2 and in response to the various inhibitors tested, although certain common patterns were observed for commensal- and pathogen-stimulated cells. hBD-2 induction by all bacteria tested was partially or completely blocked by inhibitors of the JNK and p38 pathways. However, in addition, hBD-2 induction by pathogenic bacteria in both oral and foreskin keratinocytes was blocked by inhibitors of NF-kappaB. The results indicate that commensal and pathogenic bacteria utilize different pathways in hBD-2 induction and suggest that epithelial cells from different body sites have common signaling mechanisms to distinguish between commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Whasun O Chung
- Department of Oral Biology, University of Washington, Seattle, Washington 98195-7132, USA.
| | | |
Collapse
|
21
|
Kogut MH, Lowry VK, Farnell M. The use of selective pharmacological inhibitors to delineate signal transduction pathways activated during complement receptor-mediated degranulation in chicken heterophils. Int Immunopharmacol 2003; 3:693-706. [PMID: 12757738 DOI: 10.1016/s1567-5769(03)00057-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complement receptors (CRs), along with Fc receptors, play a primary role in the removal of bacterial pathogens in poultry. The binding of serum-opsonized bacteria to CR results in the secretion of both toxic oxygen metabolites and antibacterial granules. We have previously shown that the stimulation of chicken heterophils with serum-opsonized Salmonella enteritidis induced tyrosine kinase-dependent phosphorylation regulated degranulation. In the present studies, we used selective pharmacological inhibitors to investigate the roles of protein tyrosine kinases, phospholipases C and D (PLC and PLD), phosphatidylinositol 3'-kinase (PI3-K), and the super family of mitogen-activated protein kinases (MAPKs) on CR-mediated heterophil degranulation. Inhibitors of receptor-linked tyrosine kinases (the tryphostins AG1478 and AG1296) had no attenuating effects on CR-mediated degranulation. However, PP2, a selective inhibitor of the src family of protein tyrosine kinases, and piceatannol, an inhibitor of Syk tyrosine kinases, both significantly attenuated the CR-mediated degranulation. Additionally, the specific inhibitors of PLC, U73122, and PI3-K, LY294002, significantly decreased CR-mediated heterophil degranulation. Two inhibitors of PLD-mediated signaling, 2,3-diphosphoglycerate (2,3-DPG) and 1-butanol, hindered degranulation. Addition of purified PLD restored control levels of degranulation in heterophils in which PLD was inhibited. Lastly, SP600125, a selective inhibitor of c-Jun N-terminal kinase (JNK), inhibited degranulation; whereas neither PD98059, the inhibitor of p38 MAPK, nor SB203580, the inhibitor of extracellular signal-regulated kinase, had any effect on CR-mediated heterophil degranulation. These studies demonstrate that CRs on chicken heterophils lack intrinsic tyrosine kinase activity, but that binding of serum-opsonized bacteria activates both proximal tyrosine kinases (src and Syk kinases), but differentially activates downstream tyrosine kinases (JNK, but not p38 nor ERK). Activation of src and Syk kinases plays a significant role in signal transduction of heterophil degranulation probably by stimulating downstream phosphorylation of PLC, PLD, and PI3-K. PI3-K has also been recently shown to be an upstream mediator of JNK activation, suggesting that this enzyme can induce signaling as both a lipid kinase and protein kinase. Engaging CRs on chicken heterophils activates a proximal tyrosine kinase (src and Syk kinases)-->PLC (PLD)-->PI3-K-->JNK signal transduction pathway that induces degranulation.
Collapse
Affiliation(s)
- Michael H Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA.
| | | | | |
Collapse
|
22
|
Maisey K, Nardocci G, Imarai M, Cardenas H, Rios M, Croxatto HB, Heckels JE, Christodoulides M, Velasquez LA. Expression of proinflammatory cytokines and receptors by human fallopian tubes in organ culture following challenge with Neisseria gonorrhoeae. Infect Immun 2003; 71:527-32. [PMID: 12496205 PMCID: PMC143407 DOI: 10.1128/iai.71.1.527-532.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of the Fallopian tubes (FT) by Neisseria gonorrhoeae can lead to acute salpingitis, an inflammatory condition, which is a major cause of infertility. Challenge of explants of human FT with gonococci induced mRNA expression and protein secretion for the proinflammatory cytokines interleukin (IL)-1alpha, IL-1beta, and tumor necrosis factor alpha (TNF-alpha) but not for granulocyte-macrophage colony-stimulating factor. In contrast, FT expression of IL-6 and of the cytokine receptors IL-6R, TNF receptor I (TNF-RI), and TNF-RII was constitutive and was not increased by gonococcal challenge. These studies suggest that several proinflammatory cytokines are likely to contribute to the cell and tissue damage observed in gonococcal salpingitis.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH) Instituto Chileno de Medicina Reproductiva, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Harvey HA, Post DMB, Apicella MA. Immortalization of human urethral epithelial cells: a model for the study of the pathogenesis of and the inflammatory cytokine response to Neisseria gonorrhoeae infection. Infect Immun 2002; 70:5808-15. [PMID: 12228311 PMCID: PMC128333 DOI: 10.1128/iai.70.10.5808-5815.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The primary human urethral epithelial cells developed by our laboratory have been immortalized by transduction with a retroviral vector expressing the human papillomavirus E6E7 oncogenes. Analysis of telomerase expression and comparison to that in primary cells revealed detectable levels in the transduced human urethral epithelial cells. Immortalized urethral cells could be passaged over 20 times. Immunofluorescence microscopy studies showed that the immortalized cells were phenotypically similar and responded to gonococcal infection similarly to primary cells. Specifically, positive cytokeratin staining showed that the immortalized cells are keratinocytes; cell surface levels of human asialoglycoprotein receptor increase following gonococcal infection, and, like the primary cells, the immortalized urethral epithelial cells are CD14 negative. Using enzyme-linked immunosorbent assay, we found that interleukin-6 (IL-6) and IL-8 levels in primary urethral epithelial cell supernatants increase after challenge with N. gonorrhoeae. Likewise, the immortalized urethral epithelial cells produced higher levels of IL-6 and IL-8 cytokines in response to gonococcal infection. Cells challenged with a gonococcal lipid A msbB mutant produced reduced IL-6 and IL-8 levels when compared to the parent strain. Additionally, these data suggest that the 1291 msbB lipooligosaccharide may suppress cytokine induction.
Collapse
Affiliation(s)
- Hillery A Harvey
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
24
|
Watanabe K, Yilmaz O, Nakhjiri SF, Belton CM, Lamont RJ. Association of mitogen-activated protein kinase pathways with gingival epithelial cell responses to Porphyromonas gingivalis infection. Infect Immun 2001; 69:6731-7. [PMID: 11598045 PMCID: PMC100050 DOI: 10.1128/iai.69.11.6731-6737.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Accepted: 08/03/2001] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase pathways are key factors in host signaling events and can also play important roles in the internalization of pathogenic bacteria by host cells. Porphyromonas gingivalis, a periodontal pathogen, can efficiently invade human gingival epithelial cells (GECs). In this study, we examined the activation of MAP kinase pathways in GECs infected with P. gingivalis. c-Jun N-terminal kinase (JNK) was activated after 5 min of infection with P. gingivalis, whereas noninvasive Streptococcus gordonii did not have a significant effect on JNK activation. In contrast, extracellular signal-regulated kinase (ERK) 1/2 was downregulated in a dose-dependent manner by P. gingivalis, but not by S. gordonii, after a 15-min exposure. Nonmetabolically active P. gingivalis cells were unable to modulate MAP kinase activity. U0126, a specific inhibitor of MEK1/2 (ERK1/2 kinase), and toxin B, a specific inhibitor of Rho family GTPases, had no effect on P. gingivalis invasion. Genistein, a tyrosine protein kinase inhibitor, blocked uptake of P. gingivalis. The transcriptional regulator NF-kappaB was not activated by P. gingivalis. These results suggest that P. gingivalis can selectively target components of the MAP kinase pathways. ERK1/2, while not involved in P. gingivalis invasion of GECs, may be downregulated by internalized P. gingivalis. Activation of JNK is associated with the invasive process of P. gingivalis.
Collapse
Affiliation(s)
- K Watanabe
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
25
|
Dixon GL, Newton PJ, Chain BM, Katz D, Andersen SR, Wong S, van der Ley P, Klein N, Callard RE. Dendritic cell activation and cytokine production induced by group B Neisseria meningitidis: interleukin-12 production depends on lipopolysaccharide expression in intact bacteria. Infect Immun 2001; 69:4351-7. [PMID: 11401973 PMCID: PMC98506 DOI: 10.1128/iai.69.7.4351-4357.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of in vitro-generated human DCs to a serogroup B strain of Neisseria meningitidis compared to an isogenic mutant lpxA strain totally deficient in LPS and purified LPS from the same strain. We show that the parent strain, lpxA mutant, and meningococcal LPS all induce DC maturation as measured by increased surface expression of costimulatory molecules and HLA class I and II molecules. Both the parent and lpxA strains induced production of tumor necrosis factor alpha (TNF-alpha), interleukin-1alpha (IL-1alpha), and IL-6 in DCs, although the parent was the more potent stimulus. In contrast, high-level IL-12 production was only seen with the parent strain. Compared to intact bacteria, purified LPS was a very poor inducer of IL-1alpha, IL-6, and TNF-alpha production and induced no detectable IL-12. Addition of exogenous LPS to the lpxA strain only partially restored cytokine production and did not restore IL-12 production. These data show that non-LPS components of N. meningitidis induce DC maturation, but that LPS in the context of the intact bacterium is required for high-level cytokine production, especially that of IL-12. These findings may be useful in assessing components of N. meningitidis as potential vaccine candidates.
Collapse
Affiliation(s)
- G L Dixon
- Immunobiology Unit, Institute of Child Health, London WC1N 1EH, Windeyer Institute, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Churin Y, Kardalinou E, Meyer TF, Naumann M. Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection. Mol Microbiol 2001; 40:815-23. [PMID: 11401689 DOI: 10.1046/j.1365-2958.2001.02443.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori has been identified as the major aetiological agent in the development of chronic gastritis and duodenal ulcer, and it plays a role in the development of gastric carcinoma. Attachment of H. pylori to gastric epithelial cells leads to nuclear and cytoskeletal responses in host cells. Here, we show that Rho GTPases Rac1 and Cdc42 were activated during infection of gastric epithelial cells with either the wild-type H. pylori or the mutant strain cagA. In contrast, no activation of Rho GTPases was observed when H. pylori mutant strains (virB7 and PAI) were used that lack functional type IV secretion apparatus. We demonstrated that H. pylori-induced activation of Rac1 and Cdc42 led to the activation of p21-activated kinase 1 (PAK1) mediating nuclear responses, whereas the mutant strain PAI had no effect on PAK1 activity. Activation of Rac1, Cdc42 and PAK1 represented a very early event in colonization of gastric epithelial cells by H. pylori. Rac1 and Cdc42 were recruited to the sites of bacterial attachment and are therefore probably involved in the regulation of local and overall cytoskeleton rearrangement in host cells. Finally, actin rearrangement and epithelial cell motility in H. pylori infection depended on the presence of a functional type IV secretion system encoded by the cag pathogenicity island (PAI).
Collapse
Affiliation(s)
- Y Churin
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Schumannstrasse 21/22, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Uronen H, Williams AJ, Dixon G, Andersen SR, Van Der Ley P, Van Deuren M, Callard RE, Klein N. Gram-negative bacteria induce proinflammatory cytokine production by monocytes in the absence of lipopolysaccharide (LPS). Clin Exp Immunol 2000; 122:312-5. [PMID: 11122234 PMCID: PMC1905807 DOI: 10.1046/j.1365-2249.2000.01409.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumour necrosis factor-alpha (TNF-alpha), IL-1alpha and IL-6 production by human monocytes in response to a clinical strain of the Gram-negative encapsulated bacteria Neisseria meningitidis and an isogenic lpxA- strain deficient in LPS was investigated. Wild-type N. meningitidis at concentrations between 105 and 108 organisms/ml and purified LPS induced proinflammatory cytokine production. High levels of these cytokines were also produced in response to the lpxA- strain at 107 and 108 organisms/ml. The specific LPS antagonist bactericidal/permeability-increasing protein (rBPI21) inhibited cytokine production induced by LPS and wild-type bacteria at 105 organisms/ml but not at higher concentrations, and not by LPS-deficient bacteria at any concentration. These data show that proinflammatory cytokine production by monocytes in response to N. meningitidis does not require the presence of LPS. Therapeutic strategies designed to block LPS alone may not therefore be sufficient for interrupting the inflammatory response in severe meningococcal disease.
Collapse
Affiliation(s)
- H Uronen
- Immunobiology Unit, Institute of Child Health, University College London, London and Edward Jenner Institute for Vaccine Research, Compton, UK.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Naumann M. Nuclear factor-kappa B activation and innate immune response in microbial pathogen infection. Biochem Pharmacol 2000; 60:1109-14. [PMID: 11007948 DOI: 10.1016/s0006-2952(00)00390-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human pathogenic microorganisms have developed a variety of strategies to infect the host organism successfully, whereas the host has evolved a series of defense mechanisms. In most cases, the epithelial cell layer represents the first barrier for the bacterial pathogen and triggers the innate and inflammatory responses in the host. Epithelial cells release proinflammatory mediators including cytokines and chemokines, leading to the subsequent attraction of monocytes/macrophages. Therefore, epithelial cells represent an immediate-early warning system in the host organism. Subsequent to the colonization of the epithelial layer, invasive microbial pathogens often induce an acute inflammatory response, which functions to activate residential macrophages and recruits blood leukocytes to the site of infection. Distinct receptors of the Toll family on the cell surface of immune cells mediate antibacterial responses in mammals as well as in Drosophila. One of the most important cellular factors involved in the regulation of the host innate antimicrobial response is the immediate-early response transcription factor nuclear factor (NF)-kappa B. Microbial pathogens activate cellular signal transduction pathways that induce NF-kappa B activation, but pathogens also find ways to overcome the innate immune response through active manipulation of the NF-kappa B signal transduction pathways. Exploration of the mechanisms that influence NF-kappa B activity could contribute to a better understanding of the molecular pathogenesis of microbial infections and could be important for potential therapeutic intervention that may be relevant in a wide variety of inflammatory diseases.
Collapse
Affiliation(s)
- M Naumann
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, 10117 Berlin, Germany.
| |
Collapse
|
29
|
Hausding M, Witteck A, Rodriguez-Pascual F, von Eichel-Streiber C, Förstermann U, Kleinert H. Inhibition of small G proteins of the rho family by statins or clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II. Br J Pharmacol 2000; 131:553-61. [PMID: 11015307 PMCID: PMC1572362 DOI: 10.1038/sj.bjp.0703607] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In order to investigate the involvement of Ras and/or Rho proteins in the induction of the inducible isoform of nitric oxide synthase (NOS II) we used HMG-CoA reductase inhibitors (statins) and Clostridium difficile toxin B (TcdB) as pharmacological tools. Statins indirectly inhibit small G proteins by preventing their essential farnesylation (Ras) and/or geranylgeranylation (Rho). In contrast, TcdB is a glucosyltransferase and inactivates Rho-proteins directly. Human A549/8- and DLD-1 cells as well as murine 3T3 fibroblasts were preincubated for 18 h with statins (1 - 100 microM) or TcdB (0.01-10 ng ml(-1)). Then NOS II expression was induced by cytokines. NOS II mRNA was measured after 4 - 8 h by RNase protection assay, and NO production were measured by the Griess assay after 24 h. Statins and TcdB markedly increased cytokine-induced NOS II mRNA expression and NO production. Statin-mediated enhancement of NOS II mRNA expression was reversed almost completely by cotreatment with mevalonate or geranylgeranylpyrophosphate. It was only slightly reduced by farnesylpyrophosphate. Therefore, small G proteins of the Rho family are likely to be involved in NOS II induction. In A549/8 cells stably transfected with a luciferase reporter gene under the control of a 16 kb fragment of the human NOS II promoter (pNOS2(16)Luc), statins produced only a small increase in cytokine-induced NOS II promoter activity. In contrast, statins had a considerable superinducing effect in DLD-1 cells stably transfected with pNOS2(16)Luc. In conclusion, our studies provide evidence that statins and TcdB potentiate cytokine-induced NOS II expression via inhibition of small G proteins of the Rho family. This in turn results in an enhanced NOS II promoter activity and/or a prolonged NOS II mRNA stability.
Collapse
Affiliation(s)
- Michael Hausding
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | - Andrea Witteck
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | - Fernando Rodriguez-Pascual
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | | | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
- Author for correspondence:
| |
Collapse
|
30
|
Warny M, Keates AC, Keates S, Castagliuolo I, Zacks JK, Aboudola S, Qamar A, Pothoulakis C, LaMont JT, Kelly CP. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J Clin Invest 2000; 105:1147-56. [PMID: 10772660 PMCID: PMC300827 DOI: 10.1172/jci7545] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile toxin A causes acute neutrophil infiltration and intestinal mucosal injury. In cultured cells, toxin A inactivates Rho proteins by monoglucosylation. In monocytes, toxin A induces IL-8 production and necrosis by unknown mechanisms. We investigated the role of mitogen-activated protein (MAP) kinases in these events. In THP-1 monocytic cells, toxin A activated the 3 main MAP kinase cascades within 1 to 2 minutes. Activation of p38 was sustained, whereas stimulation of extracellular signal-regulated kinases and c-Jun NH(2)-terminal kinase was transient. Rho glucosylation became evident after 15 minutes. IL-8 gene expression was reduced by 70% by the MEK inhibitor PD98059 and abrogated by the p38 inhibitor SB203580 or by overexpression of dominant-negative mutants of the p38-activating kinases MKK3 and MKK6. SB203580 also blocked monocyte necrosis and IL-1beta release caused by toxin A but not by other toxins. Finally, in mouse ileum, SB203580 prevented toxin A-induced neutrophil recruitment by 92% and villous destruction by 90%. Thus, in monocytes exposed to toxin A, MAP kinase activation appears to precede Rho glucosylation and is required for IL-8 transcription and cell necrosis. p38 MAP kinase also mediates intestinal inflammation and mucosal damage induced by toxin A.
Collapse
Affiliation(s)
- M Warny
- Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wessler S, Höcker M, Fischer W, Wang TC, Rosewicz S, Haas R, Wiedenmann B, Meyer TF, Naumann M. Helicobacter pylori activates the histidine decarboxylase promoter through a mitogen-activated protein kinase pathway independent of pathogenicity island-encoded virulence factors. J Biol Chem 2000; 275:3629-36. [PMID: 10652359 DOI: 10.1074/jbc.275.5.3629] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Helicobacter pylori infection of the gastric mucosa is accompanied by an activated histamine metabolism. Histamine plays a central role in the regulation of gastric acid secretion and is involved in the pathogenesis of gastroduodenal ulcerations. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production, and its activity is regulated through transcriptional mechanisms. The present study investigated the effect of H. pylori infection on the transcriptional activity of the human HDC (hHDC) promoter in a gastric epithelial cell line (AGS) and analyzed the underlying molecular mechanisms. Our studies demonstrate that H. pylori infection potently transactivated the hHDC promoter. The H. pylori-responsive element of the hHDC gene was mapped to the sequence +1 to +27 base pairs, which shows no homology to known cis-acting elements and also functions as a gastrin-responsive element. H. pylori regulates the activity of this element via a Raf-1/MEK/ERK pathway, which was activated in a Ras-independent manner. Furthermore, we found that H. pylori-induced transactivation of the hHDC promoter was independent of the cag pathogenicity island and the vacuolating cytotoxin A gene and therefore may be exerted through (a) new virulence factor(s). A better understanding of H. pylori-directed hHDC transcription can provide novel insights into the molecular mechanisms of H. pylori-dependent gene regulation in gastric epithelial cells and may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- S Wessler
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Naumann M, Bech-Otschir D, Huang X, Ferrell K, Dubiel W. COP9 signalosome-directed c-Jun activation/stabilization is independent of JNK. J Biol Chem 1999; 274:35297-300. [PMID: 10585392 DOI: 10.1074/jbc.274.50.35297] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic region-leucine zipper transcription factor c-Jun regulates gene expression and cell function. It participates in the formation of homo- or heterodimeric complexes that specifically bind to DNA sequences called activating protein 1 (AP-1) sites. The stability and activity of c-Jun is regulated by phosphorylation within the N-terminal activation domain. Mitogen- and stress-activated c-Jun N-terminal kinases (JNKs) were previously the only described enzymes phosphorylating c-Jun at the N terminus in vivo. In this report we demonstrate a JNK-independent activation of c-Jun in vivo directed by the constitutive photomorphogenesis (COP9) signalosome. The overexpression of signalosome subunit 2 (Sgn2), a subunit of the COP9 signalosome, leads to de novo assembly of the complex with a partial incorporation of the overexpressed subunit. The de novo formation of COP9 signalosome parallels an increase of c-Jun protein resulting in elevated AP-1 transcriptional activity. The c-Jun activation caused by Sgn2 overexpression is independent of JNK and mitogen-activated protein kinase kinase 4. The data demonstrate the existence of a novel COP9 signalosome-directed c-Jun activation pathway.
Collapse
Affiliation(s)
- M Naumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Humboldt University, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Procyk KJ, Rippo MR, Testi R, Hoffmann F, Parker PJ, Baccarini M. Distinct Mechanisms Target Stress and Extracellular Signal-Activated Kinase 1 and Jun N-Terminal Kinase During Infection of Macrophages with Salmonella. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.9.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The interaction between bacteria and macrophages is central to the outcome of Salmonella infections. Salmonella can escape killing by these phagocytes and survive and multiply within them, giving rise to chronic infections. Cytokines produced by infected macrophages are involved in the early gastrointestinal pathology of the infection as well as in the induction and maintenance of the immune response against the invaders. Jun N-terminal kinases (JNK) are activated by inflammatory stimuli and play a role in cytokine production. We have investigated the signaling routes leading to JNK activation in Salmonella-infected macrophages and have discovered that they differ radically from the mechanisms operating in epithelial cells. In particular, activation of the JNK kinase stress and extracellular-activated kinase 1 (SEK1) and of JNK in macrophages occurs independently of actin rearrangements and of the GTPases Cdc42 and Rac, essential mediators in other cells. Activation of JNK is effected by a novel pathway comprising tyrosine kinase(s), phosphoinositide 3-kinase and, likely, atypical protein kinase C ζ. SEK1 is stimulated by a distinct mechanism involving phosphatidylcholine-phospholipase C and acidic sphingomyelinase. Dominant-negative SEK1 can block JNK activation by LPS, but not by Salmonella. These data demonstrate that SEK1 and JNK are activated independently in Salmonella-infected macrophages and offer experimental support for the concept that incoming signals can direct the selective coupling of downstream pathways to elicit highly specific responses. Inhibitors of stress kinase pathways are receiving increasing attention as potential anti-inflammatory drugs. The precise reconstruction of stimulus-specific pathways will be instrumental in predicting/evaluating the effects of the inhibitors on a given pathological condition.
Collapse
Affiliation(s)
- Katarzyna J. Procyk
- *Department of Cell and Microbiology, Institute of Microbiology and Genetics, Vienna Biocenter, Vienna, Austria
| | - Maria Rita Rippo
- †Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,” Rome, Italy
| | - Roberto Testi
- †Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,” Rome, Italy
| | - Fred Hoffmann
- ‡Institut für Pharmakologie und Toxikologie, Freiburg, Germany; and
| | - Peter J. Parker
- §Protein Phosphorylation Lab, Imperial Cancer Research Fund, London United Kingdom
| | - Manuela Baccarini
- *Department of Cell and Microbiology, Institute of Microbiology and Genetics, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
34
|
Dixon GL, Heyderman RS, Kotovicz K, Jack DL, Andersen SR, Vogel U, Frosch M, Klein N. Endothelial adhesion molecule expression and its inhibition by recombinant bactericidal/permeability-increasing protein are influenced by the capsulation and lipooligosaccharide structure of Neisseria meningitidis. Infect Immun 1999; 67:5626-33. [PMID: 10531209 PMCID: PMC96935 DOI: 10.1128/iai.67.11.5626-5633.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial injury is responsible for many of the clinical manifestations of severe meningococcal disease. Binding and migration of activated host inflammatory cells is a central process in vascular damage. The expression and function of adhesion molecules regulate interactions between leukocytes and endothelial cells. Little is known about how meningococci directly influence these receptors. In this study we have explored the effect of Neisseria meningitidis on endothelial adhesion molecule expression and found this organism to be a potent inducer of the adhesion molecules CD62E, ICAM-1, and VCAM-1. Exposure of endothelium to a serogroup B strain of Neisseria meningitidis, B1940, and a range of isogenic mutants revealed that lipooligosaccharide (LOS) structure and capsulation influence the expression of adhesion molecules. Following only a brief exposure (15 min) to the bacteria, there were large differences in the capacity of the different mutants to induce vascular cell adhesion molecules, with the unencapsulated and truncated LOS strains being most potent (P < 0.05). Furthermore, the pattern of cell adhesion molecule expression was different with purified endotoxin from that with intact bacteria. Meningococci were more potent stimuli of CD62E expression than was endotoxin, whereas endotoxin was at least as effective as meningococci in inducing ICAM-1 and VCAM-1. The effect of bactericidal/permeability increasing protein (rBPI(21)), an antibacterial molecule with antiendotoxin properties, was also dependent on LOS structure. The strains which possessed a truncated or nonsialylated LOS, whether capsulated or not, were more sensitive to the inhibitory effects of rBPI(21). These findings could have important implications for the use of antiendotoxin therapy in meningococcal disease.
Collapse
Affiliation(s)
- G L Dixon
- Immunobiology Unit, Institute of Child Health, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Naumann M, Wessler S, Bartsch C, Wieland B, Covacci A, Haas R, Meyer TF. Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J Biol Chem 1999; 274:31655-62. [PMID: 10531374 DOI: 10.1074/jbc.274.44.31655] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori interacts with the apical membrane of the gastric epithelium and induces a number of proinflammatory cytokines/chemokines. The subsequent infiltration of macrophages and granulocytes into the mucosa leads to gastric inflammation accompanied by epithelial degeneration. Gastric diseases, e.g. peptic ulcer or gastric adenocarcinoma, are more common among people infected with H. pylori strains producing VacA (vacuolating cytotoxin A) and possessing a cag (cytotoxin-associated antigen A) pathogenicity island. For the induction of the cytokine/chemokine genes in response to H. pylori, we studied the signaling leading to the nuclear activation of the early response transcription factor activator protein 1 (AP-1). We found that H. pylori strains carrying the pathogenicity island induce activation of AP-1 and nuclear factor kappaB. In contrast to the wild type or an isogenic strain without the vacA gene, isogenic H. pylori strains with mutations in certain cag genes revealed only weak AP-1 and nuclear factor kappaB activation. In respect to the molecular components that direct AP-1 activity, our results indicate a cascade of the cellular stress response kinases c-Jun N-terminal kinase, MAP kinase kinase 4, and p21-activated kinase, and small Rho-GTPases including Rac1 and Cdc42, which contributes to the activation of proinflammatory cytokines/chemokines induced by H. pylori encoding the cag pathogenicity island.
Collapse
Affiliation(s)
- M Naumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, 10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cdc42p is an essential GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. The 11 current members of the Cdc42p family display between 75 and 100% amino acid identity and are functional as well as structural homologs. Cdc42p transduces signals to the actin cytoskeleton to initiate and maintain polarized gorwth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42p plays an important role in multiple actin-dependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42p regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors within the nucleus. Cdc42p mediates these processes through interactions with a myriad of downstream effectors, whose number and regulation we are just starting to understand. In addition, Cdc42p has been implicated in a number of human diseases through interactions with its regulators and downstream effectors. While much is known about Cdc42p structure and functional interactions, little is known about the mechanism(s) by which it transduces signals within the cell. Future research should focus on this question as well as on the detailed analysis of the interactions of Cdc42p with its regulators and downstream effectors.
Collapse
Affiliation(s)
- D I Johnson
- Department of Microbiology & Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405,
| |
Collapse
|
37
|
Abstract
Neisseria gonorrhoeae is a highly adapted human pathogen that utilises multiple adhesins to interact with a variety of host cell receptors. Recently, substantial progress has been made in unravelling the signalling events induced by N. gonorrhoae that can lead to cytoskeletal reorganisation, invasion or phagocytic uptake, intraphagosomal accommodation, nuclear signalling, cytokine/chemokine release and apoptosis.
Collapse
Affiliation(s)
- M Naumann
- Max-Planck-Institut für Infektionsbiologie Abteilung Molekulare Biologie Monbijou Str 2 10117 Berlin Germany
| | | | | |
Collapse
|
38
|
Müller A, Günther D, Düx F, Naumann M, Meyer TF, Rudel T. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J 1999; 18:339-52. [PMID: 9889191 PMCID: PMC1171129 DOI: 10.1093/emboj/18.2.339] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The porin (PorB) of Neisseria gonorrhoeae is an intriguing bacterial factor owing to its ability to translocate from the outer bacterial membrane into host cell membranes where it modulates the infection process. Here we report on the induction of programmed cell death after prolonged infection of epithelial cells with pathogenic Neisseria species. The underlying mechanism we propose includes translocation of the porin, a transient increase in cytosolic Ca2+ and subsequent activation of the Ca2+ dependent protease calpain as well as proteases of the caspase family. Blocking the porin channel by ATP eliminates the Ca2+ signal and also abolishes its pro-apoptotic function. The neisserial porins share structural and functional homologies with the mitochondrial voltage-dependent anion channels (VDAC). The neisserial porin may be an analogue or precursor of the ancient permeability transition pore, the putative central regulator of apoptosis.
Collapse
Affiliation(s)
- A Müller
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|