1
|
Castellón JO, Yuen C, Han B, Andrews KH, Ofori S, Julio AR, Boatner LM, Palafox MF, Perumal N, Damoiseaux R, Backus KM. An activation-based high throughput screen identifies caspase-10 inhibitors. RSC Chem Biol 2025; 6:604-617. [PMID: 40013156 PMCID: PMC11854450 DOI: 10.1039/d5cb00017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Caspases are a family of highly homologous cysteine proteases that play critical roles in inflammation and apoptosis. Small molecule inhibitors are useful tools for studying caspase biology, complementary to genetic approaches. However, achieving inhibitor selectivity for individual members of this highly homologous enzyme family remains a major challenge in developing such tool compounds. Prior studies have revealed that one strategy to tackle this selectivity gap is to target the precursor or zymogen forms of individual caspases, which share reduced structural homology when compared to active proteases. To establish a screening assay that favors the discovery of zymogen-directed caspase-10 selective inhibitors, we engineered a low-background and high-activity tobacco etch virus (TEV)-activated caspase-10 protein. We then subjected this turn-on protease to a high-throughput screen of approximately 100 000 compounds, with an average Z' value of 0.58 across all plates analyzed. Counter screening, including against TEV protease, delineated bona fide procaspase-10 inhibitors. Confirmatory studies identified a class of thiadiazine-containing compounds that undergo isomerization and oxidation to generate cysteine-reactive compounds with caspase-10 inhibitory activity. In parallel, mode-of-action studies revealed that pifithrin-μ (PFTμ), a reported TP53 inhibitor, also functions as a promiscuous caspase inhibitor. Both inhibitor classes showed preferential zymogen inhibition. Given the generalized utility of activation assays, we expect our screening platform to have widespread applications in identifying state-specific protease inhibitors.
Collapse
Affiliation(s)
- José O Castellón
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
| | - Constance Yuen
- California NanoSystems Institute (CNSI), UCLA Los Angeles CA 90095 USA
- Department of Molecular and Medical Pharmacology, UCLA Los Angeles CA 90095 USA
| | - Brandon Han
- California NanoSystems Institute (CNSI), UCLA Los Angeles CA 90095 USA
| | - Katrina H Andrews
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry UCLA CA 90095 USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry UCLA CA 90095 USA
| | - Maria F Palafox
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry UCLA CA 90095 USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
| | - Nithesh Perumal
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry UCLA CA 90095 USA
| | - Robert Damoiseaux
- California NanoSystems Institute (CNSI), UCLA Los Angeles CA 90095 USA
- Department of Molecular and Medical Pharmacology, UCLA Los Angeles CA 90095 USA
- Department of Bioengineering, Samueli School of Engineering, UCLA Los Angeles CA 90095 USA
- Jonsson Comprehensive Cancer Center, UCLA Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA Los Angeles CA 90095 USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry UCLA CA 90095 USA
- California NanoSystems Institute (CNSI), UCLA Los Angeles CA 90095 USA
- Jonsson Comprehensive Cancer Center, UCLA Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA Los Angeles CA 90095 USA
- UCLA DOE Institute for Genomics and Proteomics, UCLA Los Angeles CA 90095 USA
| |
Collapse
|
2
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
3
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
4
|
Hull CM, Larcombe-Young D, Mazza R, George M, Davies DM, Schurich A, Maher J. Granzyme B-activated IL18 potentiates αβ and γδ CAR T cell immunotherapy in a tumor-dependent manner. Mol Ther 2024; 32:2373-2392. [PMID: 38745414 PMCID: PMC11286818 DOI: 10.1016/j.ymthe.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Interleukin (IL)18 is a potent pro-inflammatory cytokine that is activated upon caspase 1 cleavage of the latent precursor, pro-IL18. Therapeutic T cell armoring with IL18 promotes autocrine stimulation and positive modulation of the tumor microenvironment (TME). However, existing strategies are imperfect since they involve constitutive/poorly regulated activity or fail to modify the TME. Here, we have substituted the caspase 1 cleavage site within pro-IL18 with that preferred by granzyme B, yielding GzB-IL18. We demonstrate that GzB-IL18 is constitutively released but remains functionally latent unless chimeric antigen receptor (CAR) T cells are activated, owing to concomitant granzyme B release. Armoring with GzB-IL18 enhances cytolytic activity, proliferation, interferon (IFN)-γ release, and anti-tumor efficacy by a similar magnitude to constitutively active IL18. We also demonstrate that GzB-IL18 provides a highly effective armoring strategy for γδ CAR T cells, leading to enhanced metabolic fitness and significant potentiation of therapeutic activity. Finally, we show that constitutively active IL18 can unmask CAR T cell-mediated cytokine release syndrome in immunocompetent mice. By contrast, GzB-IL18 promotes anti-tumor activity and myeloid cell re-programming without inducing such toxicity. Using this stringent system, we have tightly coupled the biological activity of IL18 to the activation state of the host CAR T cell, favoring safer clinical implementation of this technology.
Collapse
MESH Headings
- Interleukin-18/metabolism
- Granzymes/metabolism
- Animals
- Mice
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Cell Line, Tumor
- Tumor Microenvironment/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lymphocyte Activation/immunology
- Cytotoxicity, Immunologic
- Xenograft Model Antitumor Assays
- Interferon-gamma/metabolism
Collapse
Affiliation(s)
- Caroline M Hull
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Daniel Larcombe-Young
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Roberta Mazza
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Molly George
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M Davies
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Anna Schurich
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK.
| |
Collapse
|
5
|
Castellón JO, Ofori S, Burton NR, Julio AR, Turmon AC, Armenta E, Sandoval C, Boatner LM, Takayoshi EE, Faragalla M, Taylor C, Zhou AL, Tran K, Shek J, Yan T, Desai HS, Fregoso OI, Damoiseaux R, Backus KM. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors. J Am Chem Soc 2024; 146:14972-14988. [PMID: 38787738 PMCID: PMC11832190 DOI: 10.1021/jacs.3c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.
Collapse
Affiliation(s)
- José O Castellón
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R Burton
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Evan E Takayoshi
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marina Faragalla
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Cameron Taylor
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
| | - Ann L Zhou
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ky Tran
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Jeremy Shek
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, California 90095, United States
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Castellón JO, Ofori S, Armenta E, Burton N, Boatner LM, Takayoshi EE, Faragalla M, Zhou A, Tran K, Shek J, Yan T, Desai HS, Backus KM. Chemoproteomics identifies proteoform-selective caspase-2 inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563785. [PMID: 37961563 PMCID: PMC10634807 DOI: 10.1101/2023.10.25.563785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all twelve human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive non-catalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify caspase contributions to initiation of intrinsic apoptosis, supports compensatory caspase-9 activity in the context of caspase-2 inactivation. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target non-conserved and non-catalytic cysteine residues.
Collapse
|
7
|
Herzig MC, Christy BA, Montgomery RK, Cantu-Garza C, Barrera GD, Lee JH, Mucha N, Talackine JR, Abaasah IA, Bynum JA, Cap AP. Short-term assays for mesenchymal stromal cell immunosuppression of T-lymphocytes. Front Immunol 2023; 14:1225047. [PMID: 37822938 PMCID: PMC10562633 DOI: 10.3389/fimmu.2023.1225047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Trauma patients are susceptible to coagulopathy and dysfunctional immune responses. Mesenchymal stromal cells (MSCs) are at the forefront of the cellular therapy revolution with profound immunomodulatory, regenerative, and therapeutic potential. Routine assays to assess immunomodulation activity examine MSC effects on proliferation of peripheral blood mononuclear cells (PBMCs) and take 3-7 days. Assays that could be done in a shorter period of time would be beneficial to allow more rapid comparison of different MSC donors. The studies presented here focused on assays for MSC suppression of mitogen-stimulated PBMC activation in time frames of 24 h or less. Methods Three potential assays were examined-assays of apoptosis focusing on caspase activation, assays of phosphatidyl serine externalization (PS+) on PBMCs, and measurement of tumor necrosis factor alpha (TNFα) levels using rapid ELISA methods. All assays used the same initial experimental conditions: cryopreserved PBMCs from 8 to 10 pooled donors, co-culture with and without MSCs in 96-well plates, and PBMC stimulation with mitogen for 2-72 h. Results Suppression of caspase activity in activated PBMCs by incubation with MSCs was not robust and was only significant at times after 24 h. Monitoring PS+ of live CD3+ or live CD4+/CD3+ mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, 2 h, although no increase in the percentage of PS+ cells was seen with time. The ability of MSC in co-culture to suppress PBMC PS+ externalization compared favorably to two concomitant assays for MSC co-culture suppression of PBMC proliferation, at 72 h by ATP assay, or at 96 h by fluorescently labeled protein signal dilution. TNFα release by mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, with accumulating signal over time. However, suppression levels with MSC co-culture was reliably seen only after 24 h. Discussion Takeaways from these studies are as follows: (1) while early measures of PBMC activation is evident at 2-6 h, immunosuppression was only reliably detected at 24 h; (2) PS externalization at 24 h is a surrogate assay for MSC immunomodulation; and (3) rapid ELISA assay detection of TNFα release by PBMCs is a robust and sensitive assay for MSC immunomodulation at 24 h.
Collapse
Affiliation(s)
- Maryanne C. Herzig
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Barbara A. Christy
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Robbie K. Montgomery
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Carolina Cantu-Garza
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Gema D. Barrera
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Ji H. Lee
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Nicholas Mucha
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Jennifer R. Talackine
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Isaac A. Abaasah
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - James A. Bynum
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
- Department of Surgery, University of Texas, Health Science Center, San Antonio, TX, United States
| | - Andrew P. Cap
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| |
Collapse
|
8
|
Flow cytometric detection of IFN-γ production and Caspase-3 activation in CD4 + T lymphocytes to discriminate between healthy and Mycobacterium bovis naturally infected water buffaloes. Tuberculosis (Edinb) 2023; 139:102327. [PMID: 36857964 DOI: 10.1016/j.tube.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Tuberculosis has a negative economic impact on buffalo farming, and it poses a potential threat to human health. Interferon-gamma (IFN-γ) plays a central role in protection against mycobacterial diseases, illustrating the importance of T-cell mediated immune responses in tuberculosis infection. Recently, the expression of Caspase-3, a critical executor of apoptosis, in M. tuberculosis-specific IFN-γ+CD4+ T cells was used as a new marker to distinguish active from latent tuberculosis infection in humans. The aims of this work were to develop a whole blood flow cytometric assay to detect the production of IFN-γ and the activation of Caspase-3 by CD4+ T lymphocytes from water buffalo and to evaluate whether these parameters can discriminate between healthy and M. bovis naturally infected buffaloes. A total of 35 Italian Mediterranean buffaloes were grouped in two groups: uninfected and M. bovis infected (based on the results of antemortem diagnostic tests: single intradermal tuberculin (SIT) and ELISA IFN-γ tests). Whole blood was incubated for 6 h with tubercular antigens: PPD-B, PPD-A, ESAT-6/CFP-10 and a new mix of precocious secreted antigens (PA). Our results showed a significant increase in the percentage of IFN-γ+CD4+ T cells in infected compared to the uninfected animals after each stimulus. Improved sensitivity of the assay was obtained by including the stimulation with the new mix of PA. Interestingly, we observed a concomitant decrease in percentage of Caspase-3+CD4+ T cells in M. bovis infected animals compared to the control healthy ones, regardless of the stimulus used. Overall, these results showed that M. bovis infection activates CD4+ T lymphocytes to produce IFN-γ and at the same time causes a concomitant decrease of Caspase-3 activation in CD4+ T cells. This study for the first time in water buffalo describes the development of a whole blood flow cytometric assay for the detection of IFN-γ producing CD4+ T cells and proposes the expression of active Caspase-3 as an additional bovine TB biomarker. Although further studies are needed to better understand the mechanisms of Caspase-3-mediated cell death during tuberculosis, our data can help to better understand the cellular immune response to M. bovis infection in buffalo species.
Collapse
|
9
|
Segura J, Ireland J, Zou Z, Roth G, Buchwald J, Shen TJ, Fischer E, Moir S, Chun TW, Sun PD. HIV-1 release requires Nef-induced caspase activation. PLoS One 2023; 18:e0281087. [PMID: 36780482 PMCID: PMC9925082 DOI: 10.1371/journal.pone.0281087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
HIV infection remains incurable to date and there are no compounds targeted at the viral release. We show here HIV viral release is not spontaneous, rather requires caspases activation and shedding of its adhesion receptor, CD62L. Blocking the caspases activation caused virion tethering by CD62L and the release of deficient viruses. Not only productive experimental HIV infections require caspases activation for viral release, HIV release from both viremic and aviremic patient-derived CD4 T cells also require caspase activation, suggesting HIV release from cellular viral reservoirs depends on apoptotic shedding of the adhesion receptor. Further transcriptomic analysis of HIV infected CD4 T cells showed a direct contribution of HIV accessory gene Nef to apoptotic caspases activation. Current HIV cure focuses on the elimination of latent cellular HIV reservoirs that are resistant to infection-induced cell death. This has led to therapeutic strategies to stimulate T cell apoptosis in a "kick and kill" approach. Our current work has shifted the paradigm on HIV-induced apoptosis and suggests such approach would risk to induce HIV release and thus be counter-productive. Instead, our study supports targeting of viral reservoir release by inhibiting of caspases activation.
Collapse
Affiliation(s)
- Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Julianna Buchwald
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas J. Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Elizabeth Fischer
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kalita J, Shukla R, Pandey PC, Misra UK. Balancing between apoptosis and survival biomarkers in the patients with tuberculous meningitis. Cytokine 2022; 157:155960. [PMID: 35820324 DOI: 10.1016/j.cyto.2022.155960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The balancing factor of apoptosis, survival, inflammatory and oxidative stress biomarkers may determine the clinico-radiological severity and death in the patients with tuberculous meningitis (TBM). AIM We report the relationship of death [caspase-3, malondialdehyde (MDA), tumor necrosis factor-α (TNFα), interleukin 6 (IL6)] and survival biomarkers [X-linked inhibitory apoptotic protein (XIAP), IL10, glutathione (GSH) and catalase] in TBM, and its role in determining disease severity and death. METHODS The diagnosis of TBM was based on clinical, MRI and cerebrospinal fluid (CSF) findings. Their clinical and MRI findings were noted. The severity of TBM was categorized as stages I to III. Serum and CSF caspase-3 and XIAP were measured by ELISA, and TNFα, IL6 and IL10 gene expression in peripheral blood mononuclear cells using RT-PCR (reverse-transcriptase polymerase chain reaction). Plasma MDA, GSH and catalase were measured by spectrophotometer. RESULTS There were 40 patients with TBM whose mean age was 31.6 years and 50% were females. TBM patients had higher expression of death (caspase-3, TNFα, IL6, and MDA) and suppression of survival biomarkers (XIAP, catalase and GSH) compared to the healthy controls. Caspase-3 positively correlated with TNFα, IL6 and MDA, and negatively with XIAP, GSH and catalase. Patients with longer duration of illness and definite TBM had higher expression of caspase-3. Patients who died has higher expression of caspase-3 and suppression of XIAP compared to those who survived. CONCLUSION It can be concluded from this study that there is up-regulation of death signals and suppression of survival signals in TBM.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India.
| | - Ruchi Shukla
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Prakash C Pandey
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Usha K Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
11
|
Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells. Br J Cancer 2022; 127:649-660. [PMID: 35597867 PMCID: PMC9381772 DOI: 10.1038/s41416-022-01839-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Immunotherapy with immune checkpoint inhibitors (ICIs) is being explored to improve cholangiocarcinoma (CCA) therapy. However, it remains difficult to predict which ICI will be effective for individual patients. Therefore, the aim of this study is to develop a co-culture method with patient-derived CCA organoids and immune cells, which could represent anti-cancer immunity in vitro. Methods CCA organoids were co-cultured with peripheral blood mononuclear cells or T cells. Flow cytometry, time-lapse confocal imaging for apoptosis, and quantification of cytokeratin 19 fragment (CYFRA) release were applied to analyse organoid and immune cell behaviour. CCA organoids were also cultured in immune cell-conditioned media to analyse the effect of soluble factors. Results The co-culture system demonstrated an effective anti-tumour organoid immune response by a decrease in live organoid cells and an increase in apoptosis and CYFRA release. Interpatient heterogeneity was observed. The cytotoxic effects could be mediated by direct cell–cell contact and by release of soluble factors, although soluble factors only decreased viability in one organoid line. Conclusions In this proof-of-concept study, a novel CCA organoid and immune cell co-culture method was established. This can be the first step towards personalised immunotherapy for CCA by predicting which ICIs are most effective for individual patients.
Collapse
|
12
|
Zhang C, Tian R, Dreifus EM, Hashemi Shahraki A, Holt G, Cai R, Griswold A, Bejarano P, Jackson R, V Schally A, Mirsaeidi M. Activity of the growth hormone-releasing hormone antagonist MIA602 and its underlying mechanisms of action in sarcoidosis-like granuloma. Clin Transl Immunology 2021; 10:e1310. [PMID: 34257968 PMCID: PMC8256670 DOI: 10.1002/cti2.1310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Growth hormone-releasing hormone (GHRH) is a potent stimulator of growth hormone (GH) secretion from the pituitary gland. Although GHRH is essential for the growth of immune cells, the regulatory effects of its antagonist in granulomatous disease remain unknown. METHODS Here, we report expression of GHRH receptor (R) in human tissue with sarcoidosis granuloma and demonstrate the anti-inflammatory effects of MIA602 (a GHRH antagonist) in two in vitro human granuloma models and an in vivo granuloma model using different methods including ELISA, immunohistochemistry, RNA-seq analysis and flow cytometry. RESULTS MIA602 decreases the levels of IL-2, IL-2R, IL-7, IL-12, IL-17A and TNF-α in an in vitro granuloma model. Further, we show that the anti-inflammatory effect of MIA602 appears to be mediated by a reduction in CD45+CD68+ cells in granulomatous tissue and upregulation in PD-1 expression in macrophages. Analysis of the expression of proteins involved in the mitochondrial stage of apoptosis showed that MIA602 increases the levels of caspase-3, BCL-xL/BAK dimer and MCl-1/Bak dimer in the granuloma. These findings indicate that MIA602 may not induce apoptosis. CONCLUSIONS Our findings further suggest that GHRH-R is potentially a clinical target for the treatment of granulomatous disease and that MIA602 may be used as a novel therapeutic agent for sarcoidosis.
Collapse
Affiliation(s)
- Chongxu Zhang
- Section of PulmonaryMiami VA Healthcare SystemMiamiFLUSA
| | - Runxia Tian
- Section of PulmonaryMiami VA Healthcare SystemMiamiFLUSA
| | | | | | - Gregory Holt
- Section of PulmonaryMiami VA Healthcare SystemMiamiFLUSA
- Division of Pulmonary and Critical CareUniversity of MiamiMiamiFLUSA
| | - Renzhi Cai
- Section of PulmonaryMiami VA Healthcare SystemMiamiFLUSA
| | - Anthony Griswold
- School of MedicineJohn P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFLUSA
| | | | - Robert Jackson
- Section of PulmonaryMiami VA Healthcare SystemMiamiFLUSA
- School of MedicineUniversity of MiamiMiamiFLUSA
| | - Andrew V Schally
- Polypeptide and Cancer InstituteVeterans Affairs Medical CenterMiamiFLUSA
- Department of PathologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Mehdi Mirsaeidi
- Section of PulmonaryMiami VA Healthcare SystemMiamiFLUSA
- Division of Pulmonary and Critical CareUniversity of MiamiMiamiFLUSA
| |
Collapse
|
13
|
Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends Immunol 2021; 42:323-335. [PMID: 33653660 DOI: 10.1016/j.it.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
The leukocyte nucleus must be sufficiently elastic to squeeze through tissue barriers during migration, but not so collapsible as to risk damaging chromatin. The proper balance is struck in part by the composition of the nuclear lamina, a flexible meshwork composed mainly of intermediate filaments woven from type A and type B lamin proteins, that is located subjacent to the inner nuclear membrane. There is now increasing evidence that, in addition to influencing nuclear shape and stiffness and cell migration, lamins and lamin-interacting proteins may also interact functionally with chromatin to influence leukocyte gene expression, differentiation, and effector function, including T cell differentiation, B cell somatic hypermutation, and the formation of neutrophil extracellular traps (NETosis).
Collapse
|
14
|
Liu Y, Xu X, Wang X, Zhu T, Li J, Pang Y, Li Q. Analysis of the lamprey genotype provides insights into caspase evolution and functional divergence. Mol Immunol 2021; 132:8-20. [PMID: 33524772 DOI: 10.1016/j.molimm.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
The cysteine-containing aspartate specific proteinase (caspase) family plays important roles in apoptosis and the maintenance of homeostasis in lampreys. We conducted genomic and functional comparisons of six distinct lamprey caspase groups with human counterparts to determine how these expanded molecules evolved to adapt to the changing caspase-mediated signaling pathways. Our results showed that lineage-specific duplication and rearrangement were responsible for expanding lamprey caspases 3 and 7, whereas caspases 1, 6, 8, and 9 maintained a relatively stable genome and protein structure. Lamprey caspase family molecules displayed various expression patterns and were involved in the innate immune response. Caspase 1 and 7 functioned as a pattern recognition receptor with a broad-spectrum of microbial recognition and bactericidal effect. Additionally, caspases 1 and 7 may induce cell apoptosis in a time- and dose-dependent manner; however, apoptosis was inhibited by caspase inhibitors. Thus, these molecules may reflect the original state of the vertebrates caspase family. Our phylogenetic and functional data provide insights into the evolutionary history of caspases and illustrate their functional characteristics in primitive vertebrates.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaoluan Xu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaotong Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
15
|
Abstract
Kawasaki disease (KD) is a medium vessel vasculitis that affects young children. Despite extensive research over the last 50 years, the etiology of KD remains an enigma. Seasonal change in wind patterns was shown to have correlation with the epidemics of KD in Japan. Occurrence of disease in epidemiological clusters, seasonal variation, and a very low risk of recurrence suggest that KD is triggered by an infectious agent. The identification of oligoclonal IgA response in the affected tissues suggests an antigen-driven inflammation. The recent identification of a viral antigen in the cytoplasm of bronchial ciliated epithelium also favors infection as the main trigger for KD. Pointers that suggest a genetic basis of KD include a high disease prevalence in North-East Asian populations, a high risk among siblings, and familial occurrence of cases. Dysregulated innate and adaptive immune responses are evident in the acute stages of KD. In addition to the coronary wall inflammation, endothelial dysfunction and impaired vascular remodeling contribute to the development of coronary artery abnormalities (CAAs) and thrombosis. Genetic aberrations in certain intracellular signaling pathways involving immune effector functions are found to be associated with increased susceptibility to KD and development of coronary artery abnormalities (CAAs). Several susceptible genes have been identified through genome-wide association studies (GWAS) and linkage studies (GWLS). The genes that are studied in KD can be classified under 4 major groups-enhanced T cell activation (ITPKC, ORAI1, STIM1), dysregulated B cell signaling (CD40, BLK, FCGR2A), decreased apoptosis (CASP3), and altered transforming growth factor beta signaling (TGFB2, TGFBR2, MMP, SMAD). The review aims to highlight the role of several genetic risk factors that are linked with the increased susceptibility to KD.
Collapse
Affiliation(s)
- Rajni Kumrah
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pandiarajan Vignesh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Surjit Singh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
16
|
Kurd NS, Lutes LK, Yoon J, Chan SW, Dzhagalov IL, Hoover AR, Robey EA. A role for phagocytosis in inducing cell death during thymocyte negative selection. eLife 2019; 8:48097. [PMID: 31868579 PMCID: PMC6957271 DOI: 10.7554/elife.48097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, using a murine thymic slice model in which thymocytes undergo negative selection in situ, we demonstrate that phagocytosis promotes negative selection, and provide evidence for the escape of autoreactive CD8 T cells to the periphery when phagocytosis in the thymus is impaired. We also show that negative selection is more efficient when the phagocyte also presents the negative selecting peptide. Our findings support a model for negative selection in which the death process initiated following strong TCR signaling is facilitated by phagocytosis. Thus, the phagocytic capability of cells that present self-peptides is a key determinant of thymocyte fate.
Collapse
Affiliation(s)
- Nadia S Kurd
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Lydia K Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jaewon Yoon
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivan L Dzhagalov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ashley R Hoover
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
17
|
Chen EW, Tay NQ, Brzostek J, Gascoigne NRJ, Rybakin V. A Dual Inhibitor of Cdc7/Cdk9 Potently Suppresses T Cell Activation. Front Immunol 2019; 10:1718. [PMID: 31402912 PMCID: PMC6670834 DOI: 10.3389/fimmu.2019.01718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
T cell activation is mediated by signaling pathways originating from the T cell receptor (TCR). Propagation of signals downstream of the TCR involves a cascade of numerous kinases, some of which have yet to be identified. Through a screening strategy that we have previously introduced, PHA-767491, an inhibitor of the kinases Cdc7 and Cdk9, was identified to impede TCR signaling. PHA-767491 suppressed several T cell activation phenomena, including the expression of activation markers, proliferation, and effector functions. We also observed a defect in TCR signaling pathways upon PHA-767491 treatment. Inhibition of Cdc7/Cdk9 impairs T cell responses, which could potentially be detrimental for the immune response to tumors, and also compromises the ability to resist infections. The Cdc7/Cdk9 inhibitor is a strong candidate as a cancer therapeutic, but its effect on the immune system poses a problem for clinical applications.
Collapse
Affiliation(s)
- Elijah W Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Neil Q Tay
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Centre for Life Sciences, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Centre for Life Sciences, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
19
|
Lee WH, Seo D, Lim SG, Suk K. Reverse Signaling of Tumor Necrosis Factor Superfamily Proteins in Macrophages and Microglia: Superfamily Portrait in the Neuroimmune Interface. Front Immunol 2019; 10:262. [PMID: 30838001 PMCID: PMC6389649 DOI: 10.3389/fimmu.2019.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) is a protein superfamily of type II transmembrane proteins commonly containing the TNF homology domain. The superfamily contains more than 20 protein members, which can be released from the cell membrane by proteolytic cleavage. Members of the TNFSF function as cytokines and regulate diverse biological processes, including immune responses, proliferation, differentiation, apoptosis, and embryogenesis, by binding to TNFSF receptors. Many TNFSF proteins are also known to be responsible for the regulation of innate immunity and inflammation. Both receptor-mediated forward signaling and ligand-mediated reverse signaling play important roles in these processes. In this review, we discuss the functional expression and roles of various reverse signaling molecules and pathways of TNFSF members in macrophages and microglia in the central nervous system (CNS). A thorough understanding of the roles of TNFSF ligands and receptors in the activation of macrophages and microglia may improve the treatment of inflammatory diseases in the brain and periphery. In particular, TNFSF reverse signaling in microglia can be exploited to gain further insights into the functions of the neuroimmune interface in physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Su-Geun Lim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
20
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
21
|
Warren JL, MacIver NJ. Regulation of Adaptive Immune Cells by Sirtuins. Front Endocrinol (Lausanne) 2019; 10:466. [PMID: 31354630 PMCID: PMC6637536 DOI: 10.3389/fendo.2019.00466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
It is now well-established that the pathways that control lymphocyte metabolism and function are intimately linked, and changes in lymphocyte metabolism can influence and direct cellular function. Interestingly, a number of recent advances indicate that lymphocyte identity and metabolism is partially controlled via epigenetic regulation. Epigenetic mechanisms, such as changes in DNA methylation or histone acetylation, have been found to alter immune function and play a role in numerous chronic disease states. There are several enzymes that can mediate epigenetic changes; of particular interest are sirtuins, protein deacetylases that mediate adaptive responses to a variety of stresses (including calorie restriction and metabolic stress) and are now understood to play a significant role in immunity. This review will focus on recent advances in the understanding of how sirtuins affect the adaptive immune system. These pathways are of significant interest as therapeutic targets for the treatment of autoimmunity, cancer, and transplant tolerance.
Collapse
Affiliation(s)
- Jonathan L. Warren
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Nancie J. MacIver
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Nancie J. MacIver
| |
Collapse
|
22
|
Heylmann D, Badura J, Becker H, Fahrer J, Kaina B. Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in the differential radiation response. Cell Death Dis 2018; 9:1053. [PMID: 30323167 PMCID: PMC6189042 DOI: 10.1038/s41419-018-1095-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
Activation of T cells, a major fraction of peripheral blood lymphocytes (PBLCS), is essential for the immune response. Genotoxic stress resulting from ionizing radiation (IR) and chemical agents, including anticancer drugs, has serious impact on T cells and, therefore, on the immune status. Here we compared the sensitivity of non-stimulated (non-proliferating) vs. CD3/CD28-stimulated (proliferating) PBLC to IR. PBLCs were highly sensitive to IR and, surprisingly, stimulation to proliferation resulted in resistance to IR. Radioprotection following CD3/CD28 activation was observed in different T-cell subsets, whereas stimulated CD34+ progenitor cells did not become resistant to IR. Following stimulation, PBLCs showed no significant differences in the repair of IR-induced DNA damage compared with unstimulated cells. Interestingly, ATM is expressed at high level in resting PBLCs and CD3/CD28 stimulation leads to transcriptional downregulation and reduced ATM phosphorylation following IR, indicating ATM to be key regulator of the high radiosensitivity of resting PBLCs. In line with this, pharmacological inhibition of ATM caused radioresistance of unstimulated, but not stimulated, PBLCs. Radioprotection was also achieved by inhibition of MRE11 and CHK1/CHK2, supporting the notion that downregulation of the MRN-ATM-CHK pathway following CD3/CD28 activation results in radioprotection of proliferating PBLCs. Interestingly, the crosslinking anticancer drug mafosfamide induced, like IR, more death in unstimulated than in stimulated PBLCs. In contrast, the bacterial toxin CDT, damaging DNA through inherent DNase activity, and the DNA methylating anticancer drug temozolomide induced more death in CD3/CD28-stimulated than in unstimulated PBLCs. Thus, the sensitivity of stimulated vs. non-stimulated lymphocytes to genotoxins strongly depends on the kind of DNA damage induced. This is the first study in which the killing response of non-proliferating vs. proliferating T cells was comparatively determined. The data provide insights on how immunotherapeutic strategies resting on T-cell activation can be impacted by differential cytotoxic effects resulting from radiation and chemotherapy.
Collapse
Affiliation(s)
- Daniel Heylmann
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.,Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Jennifer Badura
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Huong Becker
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.,Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| |
Collapse
|
23
|
Walker MM, Crute BW, Cambier JC, Getahun A. B Cell-Intrinsic STING Signaling Triggers Cell Activation, Synergizes with B Cell Receptor Signals, and Promotes Antibody Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:2641-2653. [PMID: 30282750 DOI: 10.4049/jimmunol.1701405] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Generation of protective immune responses requires coordinated stimulation of innate and adaptive immune responses. An important mediator of innate immunity is stimulator of IFN genes (STING, MPYS, MITA), a ubiquitously but differentially expressed adaptor molecule that functions in the relay of signals initiated by sensing of cytosolic DNA and bacterial cyclic dinucleotides (CDNs). Whereas systemic expression of STING is required for CDN-aided mucosal Ab responses, its function in B cells in particular is unclear. In this study, we show that B cells can be directly activated by CDNs in a STING-dependent manner in vitro and in vivo. Direct activation of B cells by CDNs results in upregulation of costimulatory molecules and cytokine production and this can be accompanied by caspase-dependent cell death. CDN-induced cytokine production by B cells and other cell types also contributes to activation and immune responses. Type I IFN is primarily responsible for this indirect stimulation although other cytokines may contribute. BCR and STING signaling pathways act synergistically to promote Ab responses independent of type I IFN. B cell expression of STING is required for optimal in vivo IgG and mucosal IgA Ab responses induced by T cell-dependent Ags and cyclic-di-GMP but plays no discernable role in Ab responses in which alum is used as an adjuvant. Thus, STING functions autonomously in B cells responding to CDNs, and its activation synergizes with Ag receptor signals to promote B cell activation.
Collapse
Affiliation(s)
- Melissa M Walker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Bergren W Crute
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045; and.,Department of Biomedical Sciences, National Jewish Health, Denver, CO 80206
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045; and .,Department of Biomedical Sciences, National Jewish Health, Denver, CO 80206
| |
Collapse
|
24
|
Adekambi T, Ibegbu CC, Cagle S, Ray SM, Rengarajan J. High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4 + T Cells Are Associated With Active Tuberculosis. Front Immunol 2018; 9:1481. [PMID: 29983703 PMCID: PMC6026800 DOI: 10.3389/fimmu.2018.01481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/14/2018] [Indexed: 01/02/2023] Open
Abstract
Antigen-specific CD4+ T cell responses to Mycobacterium tuberculosis (Mtb) infection are important for host defense against tuberculosis (TB). However, Mtb-specific IFN-γ-producing T cells do not distinguish active tuberculosis (ATB) patients from individuals with asymptomatic latent Mtb infection (LTBI). We reasoned that the immune phenotype of Mtb-specific IFN-γ+CD4+ T cells could provide an indirect gauge of Mtb antigen load within individuals. We sought to identify immune markers in Mtb-specific IFN-γ+CD4+ T cells and hypothesized that expression of caspase-3 Mtb-specific CD4+ T cells would be associated with ATB. Using polychromatic flow cytometry, we evaluated the expression of caspase-3 in Mtb-specific CD4+ T cells from LTBI and ATB as well as from ATB patients undergoing anti-TB treatment. We found significantly higher frequencies of Mtb-specific caspase-3+IFN-γ+CD4+ T cells in ATB compared to LTBI. Caspase-3+IFN-γ+CD4+ T cells were also more activated compared to their caspase-3-negative counterparts. Furthermore, the frequencies of caspase-3+IFN-γ+CD4+ T cells decreased in response to anti-TB treatment. Our studies suggest that the frequencies of caspase-3-expressing antigen-specific CD4+ T cells may reflect mycobacterial burden in vivo and may be useful for distinguishing Mtb infection status along with other host biomarkers.
Collapse
Affiliation(s)
- Toidi Adekambi
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Chris C Ibegbu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephanie Cagle
- Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Susan M Ray
- Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
25
|
Laforge M, Silvestre R, Rodrigues V, Garibal J, Campillo-Gimenez L, Mouhamad S, Monceaux V, Cumont MC, Rabezanahary H, Pruvost A, Cordeiro-da-Silva A, Hurtrel B, Silvestri G, Senik A, Estaquier J. The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. J Clin Invest 2018; 128:1627-1640. [PMID: 29553486 DOI: 10.1172/jci95127] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Apoptosis has been proposed as a key mechanism responsible for CD4+ T cell depletion and immune dysfunction during HIV infection. We demonstrated that Q-VD-OPH, a caspase inhibitor, inhibits spontaneous and activation-induced death of T cells from SIV-infected rhesus macaques (RMs). When administered during the acute phase of infection, Q-VD-OPH was associated with (a) reduced levels of T cell death, (b) preservation of CD4+/CD8+ T cell ratio in lymphoid organs and in the gut, (c) maintenance of memory CD4+ T cells, and (d) increased specific CD4+ T cell response associated with the expression of cytotoxic molecules. Although therapy was limited to the acute phase of infection, Q-VD-OPH-treated RMs showed lower levels of both viral load and cell-associated SIV DNA as compared with control SIV-infected RMs throughout the chronic phase of infection, and prevented the development of AIDS. Overall, our data demonstrate that Q-VD-OPH injection in SIV-infected RMs may represent an adjunctive therapeutic agent to control HIV infection and delaying disease progression to AIDS.
Collapse
Affiliation(s)
| | - Ricardo Silvestre
- CNRS FR 3636, Université Paris Descartes, Paris, France.,Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vasco Rodrigues
- CNRS FR 3636, Université Paris Descartes, Paris, France.,i3S - Instituto de Investigação e Inovação em Saúde and.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Julie Garibal
- CNRS FR 3636, Université Paris Descartes, Paris, France
| | | | | | - Valérie Monceaux
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | | | | | - Alain Pruvost
- CEA, iBiTecS, SPI, Laboratoire d'Etude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde and.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bruno Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Anna Senik
- CNRS FR 3636, Université Paris Descartes, Paris, France
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France.,Université Laval, Centre de Recherche du CHU de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
26
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
27
|
Songane M, Khair M, Saleh M. An updated view on the functions of caspases in inflammation and immunity. Semin Cell Dev Biol 2018; 82:137-149. [PMID: 29366812 DOI: 10.1016/j.semcdb.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
The binary classification of mammalian caspases as either apoptotic or inflammatory is now obsolete. Emerging data indicate that all mammalian caspases are intricately involved in the regulation of inflammation and immunity. They participate in embryonic and adult tissue homeostasis, control leukocyte differentiation, activation and effector functions, and mediate innate and adaptive immunity signaling. Caspases also promote host resistance by regulating anti-oxidant defense and pathogen clearance through regulation of phagosomal maturation, actin dynamics and phagosome-lysosome fusion. Beyond apoptosis, they regulate inflammatory cell death, eliciting rapid pyroptosis of infected cells, while inhibiting necroptosis-mediated tissue destruction and chronic inflammation. In this review, we describe the cellular and molecular mechanisms underlying non-apoptotic functions of caspases in inflammation and immunity and provide an updated view of their functions as central regulators of tissue homeostasis and host defense.
Collapse
Affiliation(s)
- Mario Songane
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Mostafa Khair
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
28
|
Bijnens J, Missiaen L, Bultynck G, Parys JB. A critical appraisal of the role of intracellular Ca 2+-signaling pathways in Kawasaki disease. Cell Calcium 2018; 71:95-103. [PMID: 29604968 DOI: 10.1016/j.ceca.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 12/31/2022]
Abstract
Kawasaki disease is a multi-systemic vasculitis that generally occurs in children and that can lead to coronary artery lesions. Recent studies showed that Kawasaki disease has an important genetic component. In this review, we discuss the single-nucleotide polymorphisms in the genes encoding proteins with a role in intracellular Ca2+ signaling: inositol 1,4,5-trisphosphate 3-kinase C, caspase-3, the store-operated Ca2+-entry channel ORAI1, the type-3 inositol 1,4,5-trisphosphate receptor, the Na+/Ca2+ exchanger 1, and phospholipase Cß4 and Cß1. An increase of the free cytosolic Ca2+ concentration is proposed to be a major factor in susceptibility to Kawasaki disease and disease outcome, but only for polymorphisms in the genes encoding the inositol 1,4,5-trisphosphate 3-kinase C and the Na+/Ca2+ exchanger 1, the free cytosolic Ca2+ concentration was actually measured and shown to be increased. Excessive cytosolic Ca2+ signaling can result in hyperactive calcineurin in T cells with an overstimulated nuclear factor of activated T cells pathway, in hypersecretion of interleukin-1ß and tumor necrosis factor-α by monocytes/macrophages, in increased urotensin-2 signaling, and in an overactivation of vascular endothelial cells.
Collapse
Affiliation(s)
- Jeroen Bijnens
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium.
| |
Collapse
|
29
|
When dying is not the end: Apoptotic caspases as drivers of proliferation. Semin Cell Dev Biol 2017; 82:86-95. [PMID: 29199139 DOI: 10.1016/j.semcdb.2017.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
Caspases are well known for their role as executioners of apoptosis. However, recent studies have revealed that these lethal enzymes also have important mitogenic functions. Caspases can promote proliferation through autonomous regulation of the cell cycle, as well as by induction of secreted signals, which have a profound impact in neighboring tissues. Here, I review the proliferative role of caspases during development and homeostasis, in addition to their key regenerative function during tissue repair upon injury. Furthermore, the emerging properties of apoptotic caspases as drivers of carcinogenesis are discussed, as well as their involvement in other diseases. Finally, I examine further effects of caspases regulating death and survival in a non-autonomous manner.
Collapse
|
30
|
Death of adrenocortical cells during murine acute T. cruzi infection is not associated with TNF-R1 signaling but mostly with the type II pathway of Fas-mediated apoptosis. Brain Behav Immun 2017; 65:284-295. [PMID: 28666938 DOI: 10.1016/j.bbi.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6-Tnfrsf1a tm1Imx or TNF-R1-/-) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses.
Collapse
|
31
|
Li CL, Leng Y, Zhao B, Gao C, Du FF, Jin N, Lian QZ, Xu SY, Yan GL, Xia JJ, Zhuang GH, Fu QL, Qi ZQ. Human iPSC-MSC-Derived Xenografts Modulate Immune Responses by Inhibiting the Cleavage of Caspases. Stem Cells 2017; 35:1719-1732. [PMID: 28520232 DOI: 10.1002/stem.2638] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) negatively modulate immune properties. Induced pluripotent stem cells (iPSCs)-derived MSCs are alternative source of MSCs. However, the effects of iPSC-MSCs on T cells phenotypes in vivo remain unclear. We established an iPSC-MSC-transplanted host versus graft reaction mouse model using subcapsular kidney injection. Th1, Th2, regulatory T cells (Treg), and Th17 phenotypes and their cytokines were investigated in vivo and in vitro. The role of caspases and the soluble factors involved in the effects of MSCs were examined. We found that iPSC-MSC grafts led to more cell survival and less infiltration of inflammatory cells in mice. iPSC-MSC transplantation inhibited T cell proliferation, decreased Th1 and Th2 phenotypes and cytokines, upregulated Th17 and Treg subsets. Moreover, iPSC-MSCs inhibited the cleavage of caspases 3 and 8 and inhibition of caspases downregulated Th1, Th2 responses and upregulated Th17, Treg responses. Soluble factors were determined using protein array and TGF-β1/2/3, IL-10, and MCP-1 were found to be highly expressed in iPSC-MSCs. The administration of the soluble factors decreased Th1/2 response, upregulated Treg response and inhibited the cleavage of caspases. Our results demonstrate that iPSC-MSCs regulate T cell responses as a result of a combined action of the above soluble factors secreted by iPSC-MSCs. These factors suppress T cell responses by inhibiting the cleavage of caspases. These data provide a novel immunomodulatory mechanism for the underlying iPSC-MSC-based immunomodulatory effects on T cell responses. Stem Cells 2017;35:1719-1732.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yun Leng
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Bin Zhao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Chang Gao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Fei-Fei Du
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Ning Jin
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Qi-Zhou Lian
- Department of Ophthalmology, and Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Shuang-Yue Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Guo-Liang Yan
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Jun-Jie Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Guo-Hong Zhuang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhong-Quan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, People's Republic of China.,Xiamen Key Laboratory of Regenerative Medicine, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
32
|
Wang W, Yang YB, Ma XY, Yu XL, Hwang I. Changes in calpain and caspase gene expression at the mRNA level during bovine muscle satellite cell myogenesis and the correlation between the cell model and the muscle tissue. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1-dependent manner. Blood 2017; 129:2782-2792. [PMID: 28381396 DOI: 10.1182/blood-2016-10-745034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
AML1-ETO (AE), a fusion oncoprotein generated by t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3-compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), which acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo. Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease.
Collapse
|
34
|
Minina EA, Coll NS, Tuominen H, Bozhkov PV. Metacaspases versus caspases in development and cell fate regulation. Cell Death Differ 2017; 24:1314-1325. [PMID: 28234356 DOI: 10.1038/cdd.2017.18] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Initially found to be critically involved in inflammation and apoptosis, caspases have since then been implicated in the regulation of various signaling pathways in animals. How caspases and caspase-mediated processes evolved is a topic of great interest and hot debate. In fact, caspases are just the tip of the iceberg, representing a relatively small group of mostly animal-specific enzymes within a broad family of structurally related cysteine proteases (family C14 of CD clan) found in all kingdoms of life. Apart from caspases, this family encompasses para- and metacaspases, and all three groups of proteases exhibit significant variation in biochemistry and function in vivo. Notably, metacaspases are present in all eukaryotic lineages with a remarkable absence in animals. Thus, metacaspases and caspases must have adapted to operate under distinct cellular and physiological settings. Here we discuss biochemical properties and biological functions of metacaspases in comparison to caspases, with a major focus on the regulation of developmental aspects in plants versus animals.
Collapse
Affiliation(s)
- E A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - N S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - H Tuominen
- Umeaå Plant Science Centre, Department of Plant Physiology, Umeaå University, Umeaå, Sweden
| | - P V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
35
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, Corchete LA, San Miguel JF, Del Cañizo C, Blanco B. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol 2016; 9:113. [PMID: 27765055 PMCID: PMC5072323 DOI: 10.1186/s13045-016-0343-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. METHODS The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. RESULTS Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. CONCLUSIONS These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.
Collapse
Affiliation(s)
- Mª Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura San Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Luis Antonio Corchete
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
36
|
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J 2016; 283:2577-98. [PMID: 26648190 PMCID: PMC5606204 DOI: 10.1111/febs.13616] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap.
Collapse
Affiliation(s)
- Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nuria Sanchez Coll
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
37
|
Tsang JLY, Jia SH, Parodo J, Plant P, Lodyga M, Charbonney E, Szaszi K, Kapus A, Marshall JC. Tyrosine Phosphorylation of Caspase-8 Abrogates Its Apoptotic Activity and Promotes Activation of c-Src. PLoS One 2016; 11:e0153946. [PMID: 27101103 PMCID: PMC4839753 DOI: 10.1371/journal.pone.0153946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
Src family tyrosine kinases (SFKs) phosphorylate caspase-8A at tyrosine (Y) 397 resulting in suppression of apoptosis. In addition, the phosphorylation of caspase-8A at other sites including Y465 has been implicated in the regulation of caspase-8 activity. However, the functional consequences of these modifications on caspase-8 processing/activity have not been elucidated. Moreover, various Src substrates are known to act as potent Src regulators, but no such role has been explored for caspase-8. We asked whether the newly identified caspase-8 phosphorylation sites might regulate caspase-8 activation and conversely, whether caspase-8 phosphorylation might affect Src activity. Here we show that Src phosphorylates caspase-8A at multiple tyrosine sites; of these, we have focused on Y397 within the linker region and Y465 within the p12 subunit of caspase-8A. We show that phosphomimetic mutation of caspase-8A at Y465 prevents its cleavage and the subsequent activation of caspase-3 and suppresses apoptosis. Furthermore, simultaneous phosphomimetic mutation of caspase-8A at Y397 and Y465 promotes the phosphorylation of c-Src at Y416 and increases c-Src activity. Finally, we demonstrate that caspase-8 activity prevents its own tyrosine phosphorylation by Src. Together these data reveal that dual phosphorylation converts caspase-8 from a pro-apoptotic to a pro-survival mediator. Specifically, tyrosine phosphorylation by Src renders caspase-8 uncleavable and thereby inactive, and at the same time converts it to a Src activator. This novel dynamic interplay between Src and caspase-8 likely acts as a potent signal-integrating switch directing the cell towards apoptosis or survival.
Collapse
Affiliation(s)
- Jennifer LY Tsang
- Division of Critical Care, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Critical Care, Department of Medicine, Niagara Health System, Niagara, Ontario, Canada
- * E-mail:
| | - Song Hui Jia
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Jean Parodo
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Pamela Plant
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Emmanuel Charbonney
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche de “Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Katalin Szaszi
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Surgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Surgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San-Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, SanMiguel JF, Del Cañizo C, Blanco B. Effect of mTORC1/mTORC2 inhibition on T cell function: potential role in graft-versus-host disease control. Br J Haematol 2016; 173:754-68. [PMID: 26914848 DOI: 10.1111/bjh.13984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is crucial for the activation and function of T cells, which play an essential role in the development of graft-versus-host disease (GvHD). Despite its partial ability to block mTOR pathway, the mTORC1 inhibitor rapamycin has shown encouraging results in the control of GvHD. Therefore, we considered that simultaneous targeting of both mTORC1 and mTORC2 complexes could exert a more potent inhibition of T cell activation and, thus, could have utility in GvHD control. To assess this assumption, we have used the dual mTORC1/mTORC2 inhibitors CC214-1 and CC214-2. In vitro studies confirmed the superior ability of CC214-1 versus rapamycin to block mTORC1 and mTORC2 activity and to reduce T cell proliferation. Both drugs induced a similar decrease in Th1/Th2 cytokine secretion, but CC214-1 was more efficient in inhibiting naïve T cell activation and the expression of T-cell activation markers. In addition, CC214-1 induced specific tolerance against alloantigens, while preserving anti-cytomegalovirus response. Finally, in a mouse model of GvHD, the administration of CC214-2 significantly improved mice survival and decreased GvHD-induced damages. In conclusion, the current study shows, for the first time, the immunosuppressive ability of CC214-1 on T lymphocytes and illustrates the role of CC214-2 in the allogeneic transplantation setting as a possible GvHD prophylaxis agent.
Collapse
Affiliation(s)
- Ma Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Laura San-Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Salamanca, Spain
| | - Jesús F SanMiguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
39
|
Huang Y, Deng D, Li H, Xiao Q, Huang L, Zhang B, Ye F, Ye B, Mo Z, Yang X, Liu Z. Fas-670A>G polymorphism is not associated with an increased risk of acute myeloid leukemia development. Biomed Rep 2016; 4:153-160. [PMID: 26893830 PMCID: PMC4734045 DOI: 10.3892/br.2015.564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
The association between the increased risk of acute myeloid leukemia (AML) and Fas promoter polymorphisms has been reported previously; however, the results are inconclusive. The present study performed one case-control study to investigate the association, and a total of 98 AML patients and 2,014 healthy controls were genotyped. The data showed that the distribution of Fas-670AA, GA and GG genotypes among the AML patients were not significantly different from those of the healthy controls, all P>0.05. Following this a sub-study was conducted to analyze individuals who neither smoked nor drank. The results demonstrated that there was still no significant association between the Fas-670 polymorphism and risk of AML development, all P>0.05. Furthermore, in order to address a more accurate estimation of the association, a meta-analysis was conducted. Data were systematically collected from the Pubmed, EMBASE and the Wanfang Library. A total of 3 studies were included in this meta-analysis, which contained 1,144 AML cases and 3,806 controls. No significant association was detected between the Fas-670A>G polymorphism and AML risk [GA+GG vs. AA: odds ratio (OR) 0.93; 95% confidence interval (CI), 0.79–1.09; GG vs. AA: OR, 1.01; 95% CI, 0.82–1.24; GA vs. AA: OR, 1.12; 95% CI, 0.94–1.32; GG vs. AA+GA: OR, 0.94; 95% CI, 0.79–1.12; G vs. A: OR, 1.01; 95% CI, 0.91–1.12; all P>0.05). The analysis clearly indicated that there was no significant connection between the Fas-670A>G polymorphism and the increased risk of AML.
Collapse
Affiliation(s)
- Ying Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Donghong Deng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hongying Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Xiao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fanghui Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bingbing Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zengnan Mo
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
40
|
Dar AA, Pradhan TN, Kulkarni DP, Shah SU, Rao KV, Chaukar DA, D'Cruz AK, Chiplunkar SV. Extracellular 2'5'-oligoadenylate synthetase 2 mediates T-cell receptor CD3-ζ chain down-regulation via caspase-3 activation in oral cancer. Immunology 2015; 147:251-64. [PMID: 26595239 DOI: 10.1111/imm.12560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022] Open
Abstract
Decreased expression of CD3-ζ chain, an adaptor protein associated with T-cell signalling, is well documented in patients with oral cancer, but the mechanistic justifications are fragmentary. Previous studies in patients with oral cancer have shown that decreased expression of CD3-ζ chain was associated with decreased responsiveness of T cells. Tumours are known to induce localized as well as systemic immune suppression. This study provides evidence that oral tumour-derived factors promote immune suppression by down-regulating CD3-ζ chain expression. 2'5'-Oligoadenylate synthetase 2 (OAS2) was identified by the proteomic approach and our results established a causative link between CD3-ζ chain down-regulation and OAS2 stimulation. The surrogate situation was established by over-expressing OAS2 in a HEK293 cell line and cell-free supernatant was collected. These supernatants when incubated with T cells resulted in down-regulation of CD3-ζ chain, which shows that the secreted OAS2 is capable of regulating CD3-ζ chain expression. Incubation of T cells with cell-free supernatants of oral tumours or recombinant human OAS2 (rh-OAS2) induced caspase-3 activation, which resulted in CD3-ζ chain down-regulation. Caspase-3 inhibition/down-regulation using pharmacological inhibitor or small interfering RNA restored down-regulated CD3-ζ chain expression in T cells induced by cell-free tumour supernatant or rh-OAS2. Collectively these results show that OAS2 leads to impairment in CD3-ζ chain expression, so offering an explanation that might be applicable to the CD3-ζ chain deficiency observed in cancer and diverse disease conditions.
Collapse
Affiliation(s)
- Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Trupti N Pradhan
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Dakshayni P Kulkarni
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Sagar U Shah
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Kanury V Rao
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| |
Collapse
|
41
|
Rajah T, Chow SC. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress. PLoS One 2015; 10:e0123711. [PMID: 25915766 PMCID: PMC4411069 DOI: 10.1371/journal.pone.0123711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.
Collapse
Affiliation(s)
- Tanuja Rajah
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
| | - Sek Chuen Chow
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
- * E-mail:
| |
Collapse
|
42
|
Tsuchiya Y, Murai S, Yamashita S. Dual inhibition of Cdc2 protein kinase activation during apoptosis inXenopusegg extracts. FEBS J 2015; 282:1256-70. [DOI: 10.1111/febs.13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| | - Shin Murai
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| | - Shigeru Yamashita
- Department of Biochemistry; Toho University School of Medicine; Ota-ku Tokyo Japan
| |
Collapse
|
43
|
The role of CD95 and CD95 ligand in cancer. Cell Death Differ 2015; 22:549-59. [PMID: 25656654 PMCID: PMC4356349 DOI: 10.1038/cdd.2015.3] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/27/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023] Open
Abstract
CD95 (Fas/APO-1) and its ligand, CD95L, have long been viewed as a death receptor/death ligand system that mediates apoptosis induction to maintain immune homeostasis. In addition, these molecules are important in the immune elimination of virus-infected cells and cancer cells. CD95L was, therefore, considered to be useful for cancer therapy. However, major side effects have precluded its systemic use. During the last 10 years, it has been recognized that CD95 and CD95L have multiple cancer-relevant nonapoptotic and tumor-promoting activities. CD95 and CD95L were discovered to be critical survival factors for cancer cells, and were found to protect and promote cancer stem cells. We now discuss five different ways in which inhibiting or eliminating CD95L, rather than augmenting, may be beneficial for cancer therapy alone or in combination with standard chemotherapy or immune therapy.
Collapse
|
44
|
KMT1E-mediated chromatin modifications at the FcγRIIb promoter regulate thymocyte development. Genes Immun 2015; 16:162-9. [PMID: 25569264 DOI: 10.1038/gene.2014.70] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/28/2014] [Accepted: 11/06/2014] [Indexed: 11/09/2022]
Abstract
This work examines the role the lysine methyltransferase KMT1E (Setdb1) in thymocyte development. We have developed and described a T cell-specific conditional knockout of Setdb1. A partial block was seen at the double-positive to single-positive transition, causing reduced numbers of single-positive T cells in the thymus and periphery. Knockout thymocytes had reduced numbers of CD69(+) and T-cell receptor TCRβ(+) cells and increased numbers of apoptotic cells in the double-positive compartment, suggesting an alteration in the selection process. Transcriptional profiling of thymocytes revealed that Setdb1 deletion derepresses expression of FcγRIIb, the inhibitory Fc receptor. We demonstrate that a KMT1E-containing complex directly interacts with the FcγRIIb promoter and that histone H3 at lysine 9 tri-methylation at this promoter is dependent on Setdb1 expression. Derepression of FcγRIIb causes exacerbated signaling through the TCR complex, with specifically increased phosphorylation of ZAP70, affecting selection. This work identifies KMT1E as a novel repressor of FcγRIIb and identifies an underappreciated role of FcγRIIb in fine tuning thymocyte development.
Collapse
|
45
|
A mutation in caspase-9 decreases the expression of BAFFR and ICOS in patients with immunodeficiency and lymphoproliferation. Genes Immun 2015; 16:151-61. [PMID: 25569260 DOI: 10.1038/gene.2014.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/09/2014] [Accepted: 11/17/2014] [Indexed: 01/25/2023]
Abstract
Lymphocyte apoptosis is mainly induced by either death receptor-dependent activation of caspase-8 or mitochondria-dependent activation of caspase-9. Mutations in caspase-8 lead to autoimmunity/lymphoproliferation and immunodeficiency. This work describes a heterozygous H237P mutation in caspase-9 that can lead to similar disorders. H237P mutation was detected in two patients: Pt1 with autoimmunity/lymphoproliferation, severe hypogammaglobulinemia and Pt2 with mild hypogammaglobulinemia and Burkitt lymphoma. Their lymphocytes displayed defective caspase-9 activity and decreased apoptotic and activation responses. Transfection experiments showed that mutant caspase-9 display defective enzyme and proapoptotic activities and a dominant-negative effect on wild-type caspase-9. Ex vivo analysis of the patients' lymphocytes and in vitro transfection experiments showed that the expression of mutant caspase-9 correlated with a downregulation of BAFFR (B-cell-activating factor belonging to the TNF family (BAFF) receptor) in B cells and ICOS (inducible T-cell costimulator) in T cells. Both patients carried a second inherited heterozygous mutation missing in the relatives carrying H237P: Pt1 in the transmembrane activator and CAML interactor (TACI) gene (S144X) and Pt2 in the perforin (PRF1) gene (N252S). Both mutations have been previously associated with immunodeficiencies in homozygosis or compound heterozygosis. Taken together, these data suggest that caspase-9 mutations may predispose to immunodeficiency by cooperating with other genetic factors, possibly by downregulating the expression of BAFFR and ICOS.
Collapse
|
46
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 929] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
47
|
Gaiha GD, McKim KJ, Woods M, Pertel T, Rohrbach J, Barteneva N, Chin CR, Liu D, Soghoian DZ, Cesa K, Wilton S, Waring MT, Chicoine A, Doering T, Wherry EJ, Kaufmann DE, Lichterfeld M, Brass AL, Walker BD. Dysfunctional HIV-specific CD8+ T cell proliferation is associated with increased caspase-8 activity and mediated by necroptosis. Immunity 2014; 41:1001-12. [PMID: 25526311 PMCID: PMC4312487 DOI: 10.1016/j.immuni.2014.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/04/2014] [Indexed: 02/04/2023]
Abstract
Decreased HIV-specific CD8(+) T cell proliferation is a hallmark of chronic infection, but the mechanisms of decline are unclear. We analyzed gene expression profiles from antigen-stimulated HIV-specific CD8(+) T cells from patients with controlled and uncontrolled infection and identified caspase-8 as a correlate of dysfunctional CD8(+) T cell proliferation. Caspase-8 activity was upregulated in HIV-specific CD8(+) T cells from progressors and correlated positively with disease progression and programmed cell death-1 (PD-1) expression, but negatively with proliferation. In addition, progressor cells displayed a decreased ability to upregulate membrane-associated caspase-8 activity and increased necrotic cell death following antigenic stimulation, implicating the programmed cell death pathway necroptosis. In vitro necroptosis blockade rescued HIV-specific CD8(+) T cell proliferation in progressors, as did silencing of necroptosis mediator RIPK3. Thus, chronic stimulation leading to upregulated caspase-8 activity contributes to dysfunctional HIV-specific CD8(+) T cell proliferation through activation of necroptosis and increased cell death.
Collapse
Affiliation(s)
| | | | | | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Natasha Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher R Chin
- Ragon Institute of MGH, Cambridge, MA 02139, USA; Department of Microbiology and Physiological Systems (MaPS), University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dongfang Liu
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Kevin Cesa
- Ragon Institute of MGH, Cambridge, MA 02139, USA
| | | | - Michael T Waring
- Ragon Institute of MGH, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Travis Doering
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549, USA
| | - E John Wherry
- Department of Microbiology and Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel E Kaufmann
- Ragon Institute of MGH, Cambridge, MA 02139, USA; Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Mathias Lichterfeld
- Ragon Institute of MGH, Cambridge, MA 02139, USA; Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Abraham L Brass
- Ragon Institute of MGH, Cambridge, MA 02139, USA; Department of Microbiology and Physiological Systems (MaPS), University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Bruce D Walker
- Ragon Institute of MGH, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
48
|
Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol 2014; 35:14-23. [PMID: 25087983 DOI: 10.1016/j.semcdb.2014.07.013] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Necroptosis is a form of regulated necrosis that can be activated by ligands of death receptors and stimuli that induce the expression of death receptor ligands under apoptotic deficient conditions. Activation of necroptosis by ligands of death receptors requires the kinase activity of RIP1, which mediates the activation of RIP3 and MLKL, two critical downstream mediators of necroptosis. Blocking the kinase activity of RIP1, a key druggable target in the necroptosis pathway, by necrostatins inhibits the activation of necroptosis and allows cell survival and proliferation in the presence of death receptor ligands. The activation of necroptosis is modulated by different forms of ubiquitination, including K63, linear and K48 ubiquitination, as well as phosphorylation of RIP1, RIP3 and MLKL. Necroptosis is suppressed by caspase-8/FADD-mediated apoptosis. Deficiency in caspase-8 and FADD leads to embryonic lethality, tissue degeneration and inflammation which can be suppressed by inhibition of RIP1 kinase and RIP3. On the other hand, the lack of RIP3 kinase activity leads to early embryonic lethality which can be suppressed by the loss of caspase-8, suggesting that although the kinase activity of RIP3 is involved in mediating necroptosis, the basal activity of RIP3 kinase may be required for suppressing caspase-8 mediated apoptosis. Necroptosis as well as RIP1- and RIP3-mediated inflammatory response have been implicated in mediating multiple human diseases including TNF-mediated hypothermia and systemic inflammation, ischemic reperfusion injury, neurodegeneration, Gaucher's disease, progressive atherosclerotic lesions, etc. Targeting RIP1 kinase may provide therapeutic benefits for the treatment of human diseases characterized by necrosis and inflammation.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Kyläniemi MK, Kaukonen R, Myllyviita J, Rasool O, Lahesmaa R. The regulation and role of c-FLIP in human Th cell differentiation. PLoS One 2014; 9:e102022. [PMID: 25019384 PMCID: PMC4096760 DOI: 10.1371/journal.pone.0102022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/14/2014] [Indexed: 12/19/2022] Open
Abstract
The early differentiation of T helper (Th) cells is a tightly controlled and finely balanced process, which involves several factors including cytokines, transcription factors and co-stimulatory molecules. Recent studies have shown that in addition to the regulation of apoptosis, caspase activity is also needed for Th cell proliferation and activation and it might play a role in Th cell differentiation. The isoforms of the cellular FLICE inhibitory protein (c-FLIP) are regulators of CASPASE-8 activity and the short isoform, c-FLIPS, has been shown to be up-regulated by IL-4, the Th2 driving cytokine. In this work, we have studied the expression and functional role of three c-FLIP isoforms during the early Th cell differentiation. Only two of the isoforms, c-FLIPS and c-FLIPL, were detected at the protein level although c-FLIPR was expressed at the mRNA level. The knockdown of c-FLIPL led to enhanced Th1 differentiation and elevated IL-4 production by Th2 cells, whereas the knockdown of c-FLIPS diminished GATA3 expression and IL-4 production by Th2 cells. In summary, our results provide new insight into the role of c-FLIP proteins in the early differentiation of human Th cells.
Collapse
Affiliation(s)
- Minna K. Kyläniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- National Doctoral Programme in Informational and Structural Biology, Åbo Akademi University, Turku, Finland
| | - Riina Kaukonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Myllyviita
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- * E-mail:
| |
Collapse
|
50
|
Rajah T, Chow S. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress. Toxicol Appl Pharmacol 2014; 278:100-6. [DOI: 10.1016/j.taap.2014.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022]
|