1
|
Balla J, Rathore APS, St. John AL. Maternal IgE Influence on Fetal and Infant Health. Immunol Rev 2025; 331:e70029. [PMID: 40281548 PMCID: PMC12032057 DOI: 10.1111/imr.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Immunoglobulin E (IgE) is the most recently discovered and evolved mammalian antibody type, best known for interacting with mast cells (MCs) as immune effectors. IgE-mediated antigen sensing by MC provides protection from parasites, venomous animals, bacteria, and other insults to barrier tissues exposed to the environment. IgE and MCs act as inflammation amplifiers and immune response adjuvants. Thus, IgE production and memory formation are greatly constrained and require specific licensing. Failure of regulation gives rise to allergic disease, one of the top causes of chronic illness. Increasing evidence suggests allergy development often starts early in life, including prenatally, with maternal influence being central in shaping the offspring's immune system. Although IgE often exists before birth, an endogenous source of IgE-producing B cells has not been identified. This review discusses the mechanisms of maternal IgE transfer into the offspring, its interactions with offspring MCs and antigen-presenting cells, and the consequences for allergic inflammation and allergen sensitization development. We discuss the multifaceted effects of pre-existing IgG, IgE, and their glycosylation on maternal IgE transfer and functionality in the progeny. Understanding the IgE-mediated mechanisms predisposing for early life allergy development may allow their targeting with existing therapeutics and guide the development of new ones.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
| | - Abhay P. S. Rathore
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Ashley L. St. John
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- SingHealth Duke‐NUS Global Health InstituteSingaporeSingapore
| |
Collapse
|
2
|
Beheshti R, Phipatanakul W, DiMango E, Grant TL. Indoor Allergen Interventions in Homes and Schools for Managing Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025:S2213-2198(25)00384-8. [PMID: 40288638 DOI: 10.1016/j.jaip.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Asthma remains a prevalent and burdensome chronic disease in the United States, disproportionately affecting low-income populations and placing a significant strain on the health care system. Environmental allergen exposure, particularly in urban areas, has been extensively linked to asthma development and exacerbations. Identifying effective strategies for reducing allergen exposure could help mitigate asthma morbidity, decrease health care utilization, and improve patients' quality of life. Studies evaluating environmental interventions, including home- and school-based allergen reduction strategies, have reported mixed results. Although some interventions, such as targeted allergen reduction, pest management, and air filtration, demonstrate improvements in asthma symptoms and health care utilization, others show limited impact on long-term asthma control and controller medication use. In this review, we assess the impact of environmental allergens on asthma prevalence, morbidity, and health care burden in the United States. We also examine the effectiveness of various allergen-reduction strategies in achieving sustained clinical benefits for asthma management and make practical recommendations for patient care.
Collapse
Affiliation(s)
- Ramin Beheshti
- Division of Pediatric Allergy, Immunology, and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Wanda Phipatanakul
- Division of Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Emily DiMango
- Division of Pulmonary and Critical Care, Columbia University Irving Medical Center, New York, NY
| | - Torie L Grant
- Division of Pediatric Allergy, Immunology, and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md
| |
Collapse
|
3
|
Wu Y, Yang F. Co-exposure to microplastics enhances the allergenic potentials of house dust mite allergen Der p 1. ENVIRONMENTAL RESEARCH 2025; 277:121613. [PMID: 40239735 DOI: 10.1016/j.envres.2025.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Air pollution is believed to exacerbate the prevalence of allergic diseases. But the underlying processes and mechanisms are not fully understood. In this study, the effects of polystyrene microplastics (PS-MPs) with a diameter of 0.1 μm, 1 μm, and 5 μm were investigated on the allergenic potentials of house dust mite allergen Der p 1. The results reveal that co-exposure to PS-MPs promoted the IgE-binding capacity of Der p 1 by altering the conformation, elevating the ligand-binding activity, and strengthening the aggregation of Der p 1. PS-MPs also exacerbated the damage to airway epithelial barrier by increasing the permeability of bronchial epithelial cells. Ultimately, co-exposure to PS-MPs aggravated the Th2-mediated immune responses and allergic sensitization induced by Der p 1. These evidences indicate that co-exposure to PS-MPs enhanced the allergenic potentials of Der p 1. Moreover, the PS-MPs-induced enhancement of the allergenic potential of Der p 1 is size-dependent, with smaller PS-MPs exhibiting greater promotion on the allergenic potential of Der p 1. Given the ubiquitous occurrence of PS-MPs in the environment, the co-exposure of allergens and PS-MPs should be seriously considered when assessing the allergenic risk of allergens in the real environment, especially for the PS-MPs with smaller size.
Collapse
Affiliation(s)
- Yiting Wu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, 310058, Hangzhou, China
| | - Fangxing Yang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, 310058, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiashan, China.
| |
Collapse
|
4
|
Platts-Mills TA, Keshavarz B, Wilson JM, Rifas-Shiman SL, Ailsworth SM, Sordillo JE, Workman L, Chapman M, Lidholm J, Oken E, Gold DR. High risk of asthma among early teens is associated with quantitative differences in mite and cat allergen specific IgE and IgG4: a modified Th2 related antibody response revisited. EBioMedicine 2025; 112:105556. [PMID: 39893721 PMCID: PMC11840499 DOI: 10.1016/j.ebiom.2024.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Although proteins derived from cats are an important contributor to indoor allergen exposure in relation to asthma, it has been known for at least twenty years that some children who live in a house with a cat can become clinically tolerant to these animals. In 2001, we reported that children exposed to high levels of cat allergens made high levels of IgG4 antibodies to the cat allergen Fel d 1, and we coined the term "a modified Th2 response". However, this phenomenon is still poorly understood. METHODS We studied serum antibodies among 616 individuals in the Viva unselected birth cohort recruited at their early teen visit (mean age 13.1 SD 0.8). IgE and IgG4 antibodies were measured by ImmunoCAP to inhaled allergens as well as the best characterised component allergens of cat, Fel d 1, Fel d 2, Fel d 4, and Fel d 7, and the dust mite allergens Der p 1, Der p 2, Der p 10, and Der p 23. FINDINGS The results confirm that young teens living in a home with a cat make high levels of IgG4 specific for cat allergens, and that those antibodies, and specifically those to Fel d 1 are negatively associated with asthma. By contrast, the IgG4 responses to Fel d 4 and Fel d 7 are significantly lower and have no significant association with asthma. Perhaps more surprisingly, a similar effect is seen in relation to dust-mite allergens. Although the allergen Der p 1 is a major part of the IgE response to mite allergens, this protein also induced high prevalence and levels of IgG4 antibodies and has a less strong relationship to asthma than IgE to Der p 2 or Der p 23. Indeed, values of specific IgE to Der p 1 >3.5 IU/mL were not significantly related to asthma (OR 1.5 CI 0.8-2.8, p = 0.3, Chi2 test). The prevalence and levels of specific IgG4 to these less abundant allergens are significantly lower for Der p 2 and almost absent for Der p 23. INTERPRETATION High exposure to specific allergens in household dust can enhance production of both sIgE and sIgG4 antibodies, while allergens where abundance is significantly lower in dust can induce sIgE with limited or no sIgG4. The result is that the less abundant allergens, i.e., Fel d 4, Fel d 7, Der p 2, and Der p 23, may have a significantly higher relevance to asthma than expected because they induce less sIgG4. FUNDING This work was funded by R01-AI20565 (TPM) and support for the IgE and IgG4 assays provided by Phadia/Thermo Fisher Kalamazoo, Michigan. Project Viva is also supported by NIH R01HD034568 and R24ES.
Collapse
Affiliation(s)
- Thomas A Platts-Mills
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Behnam Keshavarz
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey M Wilson
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Sheryl L Rifas-Shiman
- The Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Samuel M Ailsworth
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Joanne E Sordillo
- The Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Lisa Workman
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | - Emily Oken
- The Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; The Department of Environmental Medicine, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Baglivo I, Quaranta VN, Dragonieri S, Colantuono S, Menzella F, Selvaggio D, Carpagnano GE, Caruso C. The New Paradigm: The Role of Proteins and Triggers in the Evolution of Allergic Asthma. Int J Mol Sci 2024; 25:5747. [PMID: 38891935 PMCID: PMC11171572 DOI: 10.3390/ijms25115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Epithelial barrier damage plays a central role in the development and maintenance of allergic inflammation. Rises in the epithelial barrier permeability of airways alter tissue homeostasis and allow the penetration of allergens and other external agents. Different factors contribute to barrier impairment, such as eosinophilic infiltration and allergen protease action-eosinophilic cationic proteins' effects and allergens' proteolytic activity both contribute significantly to epithelial damage. In the airways, allergen proteases degrade the epithelial junctional proteins, allowing allergen penetration and its uptake by dendritic cells. This increase in allergen-immune system interaction induces the release of alarmins and the activation of type 2 inflammatory pathways, causing or worsening the main symptoms at the skin, bowel, and respiratory levels. We aim to highlight the molecular mechanisms underlying allergenic protease-induced epithelial barrier damage and the role of immune response in allergic asthma onset, maintenance, and progression. Moreover, we will explore potential clinical and radiological biomarkers of airway remodeling in allergic asthma patients.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Vitaliano Nicola Quaranta
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Silvano Dragonieri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Stefania Colantuono
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - David Selvaggio
- UOS di Malattie dell’Apparato Respiratorio Ospedale Cristo Re, 00167 Roma, Italy
| | - Giovanna Elisiana Carpagnano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Cristiano Caruso
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
6
|
Alzahrani KR, Gomez-Cardona E, Gandhi VD, Palikhe NS, Laratta C, Julien O, Vliagoftis H. German cockroach extract prevents IL-13-induced CCL26 expression in airway epithelial cells through IL-13 degradation. FASEB J 2024; 38:e23531. [PMID: 38466220 DOI: 10.1096/fj.202300828rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Inhaled aeroallergens can directly activate airway epithelial cells (AECs). Exposure to cockroach allergens is a strong risk factor for asthma. Cockroach allergens mediate some of their effects through their serine protease activity; protease activity is also a major contributor to allergenicity. The Th2 cytokine interleukin-13 (IL-13) induces upregulation of the eosinophil chemotactic factor CCL26. CCL26 induces eosinophil migration in allergic inflammation. In this work, we studied the effect of cockroach proteases on IL-13-induced effects. Immersed cultures of the human bronchial epithelial cell line BEAS-2B and air-liquid interface (ALI) cultures of primary normal human bronchial epithelial (NHBE) cells were stimulated with IL-13, Blattella Germanica cockroach extract (CE), or both. IL-13-induced genes were analyzed with qRT-PCR. IL-13 induced upregulation of CCL26, periostin, and IL-13Rα2 in bronchial epithelial cells which were decreased by CE. CE was heat-inactivated (HICE) or pre-incubated with protease inhibitors. HICE and CE preincubated with serine protease inhibitors did not prevent IL-13-induced CCL26 upregulation. CE-degraded IL-13 and specific cleavage sites were identified. CE also decreased IL-4-induced CCL26 upregulation and degraded IL-4. Other serine proteases such as bovine trypsin and house dust mite (HDM) serine proteases did not have the same effects on IL-13-induced CCL26. We conclude that CE serine proteases antagonize IL-13-induced effects in AECs, and this CE effect is mediated primarily through proteolytic cleavage of IL-13. IL-13 cleavage by cockroach serine proteases may modulate CCL26-mediated effects in allergic airway inflammation by interfering directly with the pro-inflammatory effects of IL-13 in vivo.
Collapse
Affiliation(s)
- Khadija Rashed Alzahrani
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Erik Gomez-Cardona
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vivek D Gandhi
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Laratta
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Grant TL, Wood RA, Chapman MD. Indoor Environmental Exposures and Their Relationship to Allergic Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2963-2970. [PMID: 37652348 PMCID: PMC10927277 DOI: 10.1016/j.jaip.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Cockroach, dust mite, cat, dog, mouse, and molds are major indoor allergens that have been associated with the development of allergic diseases and disease morbidity in allergen-sensitized individuals. Physical characteristics, such as allergen particle size, hydrophobicity, and charge, can determine an allergen's propensity to become airborne, location of respiratory tract penetration, and ability to elicit IgE responses in genetically predisposed individuals. Standardization and recent advancements in indoor allergen assessment serve to identify sources and distribution of allergens in a patient's home and public environment, inform public policy, and monitor the efficacy of allergen avoidance and therapeutics. Allergen exposure interventions have yielded mixed results with current US and international asthma guidelines differing on recommendations. A pragmatic, patient-centered approach to allergen avoidance includes: (1) tailoring intervention to the patient's sensitization and exposure status, (2) using a rigorous multifaceted intervention strategy to reduce allergen exposure as much as possible, and (3) beginning the intervention as soon as the patient is diagnosed. Further research into the risks/benefits of early allergen exposure, rapid and affordable in-home allergen assessment, and best practices for environmental control measures for asthma is needed.
Collapse
Affiliation(s)
- Torie L Grant
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | | |
Collapse
|
8
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Ragweed Major Allergen Amb a 11 Recombinant Production and Clinical Implications. Biomolecules 2023; 13:biom13010182. [PMID: 36671567 PMCID: PMC9855870 DOI: 10.3390/biom13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Ragweed pollen is highly allergenic and elicits type I hypersensitivity reactions in the exposed populations. Amb a 11 is a recently discovered component of this pollen, and its biological role in allergy is still being researched. In our study, ragweed allergy patients were recruited prospectively over a three-year period; a comprehensive questionnaire was administered, and sera were collected and stored. The production of recombinant Amb a 11 was achieved in parallel with patients' recruitment. The gene coding for mature protein was inserted in E. coli and in Sf9 Spodoptera frugiperda cells. The recombinant allergens (designated eAmb a 11 and iAmb a 11) were tested for His-tag presence in Western blot. IgE reactivity was evaluated in 150 patients' sera for both recombinant allergen forms in ELISA, with 5 positive sera being tested further by hRBL (humanized rat basophilic leukemia) hexosaminidase release assay. Both allergen forms were proven to be IgE-reactive His-tagged proteins, with an extensive overlap of positive sera (92 toward the former recombinant allergen, 100 toward the latter) and an overall Amb a 11 sensitization prevalence estimated at 68.67%. The hRBL mediator release assay revealed a significant, slightly weaker effect of recombinant allergens when compared with nAmb a 1. Sensitization to this major allergen appears to be associated with more severe asthma symptoms (OR = 4.71, 95% CI = 1.81-12.21). In conclusion, recombinant Amb a 11 is a bona fide allergen, which is IgE-reactive and an inducer of hRBL degranulation. It is an important IgE-reactive component from ragweed pollen, with high IgE sensitization prevalence in the sample population and allergenicity of the recombinant allergen comparable to Amb a 1.
Collapse
|
10
|
Rahimi RA, Sokol CL. Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. Immunohorizons 2022; 6:569-580. [PMID: 35926975 PMCID: PMC9897289 DOI: 10.4049/immunohorizons.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Frezza V, Najda Z, Davidovich P, Sullivan GP, Martin SJ. IL-1α and IL-36 Family Cytokines Can Undergo Processing and Activation by Diverse Allergen-Associated Proteases. Front Immunol 2022; 13:879029. [PMID: 35844537 PMCID: PMC9280268 DOI: 10.3389/fimmu.2022.879029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation driven by environmental allergens is an important source of morbidity in diseases such as asthma and eczema. How common allergens promote inflammation is still poorly understood, but previous studies have implicated the protease activity associated with many allergens as an important component of the pro-inflammatory properties of these agents. The IL-1 family cytokine, IL-33, has recently been shown to undergo processing and activation by proteases associated with multiple common allergens. However, it remains unclear whether the sensing of exogenous protease activity—as a proxy for the detection of invasive microbes, allergens and parasitic worms—is a general property of IL-1 family cytokines. In common with the majority of IL-1 family members, cytokines within the IL-36 sub-family (IL-36α, IL-36β and IL-36γ) are expressed as inactive precursors that require proteolysis within their N-termini for activation. Here we show that proteases associated with multiple common allergens of plant, insect, fungal and bacterial origin (including: Aspergillus fumigatus, ragweed, rye, house dust mite, cockroach and Bacillus licheniformis) are capable of processing and activating IL-36 family cytokines, with IL-36β being particularly susceptible to activation by multiple allergens. Furthermore, extracts from several allergens also processed and enhanced IL-1α activity. This suggests that multiple IL-1 family cytokines may serve as sentinels for exogenous proteases, coupling detection of such activity to unleashing the pro-inflammatory activity of these cytokines. Taken together with previous data on the diversity of proteases capable of activating IL-1 family cytokines, this suggests that members of this cytokine family may function as ‘activity recognition receptors’ for aberrant protease activity associated with infection, tissue injury or programmed necrosis.
Collapse
|
12
|
Zhang H, Xian M, Shi X, Luo T, Su Q, Li J, Feng M. Blocking function of allergen-specific immunoglobulin G, F(ab') 2, and Fab antibodies prepared from patients undergoing Dermatophagoides pteronyssinus immunotherapy. Ann Allergy Asthma Immunol 2022; 128:689-696. [PMID: 35405358 DOI: 10.1016/j.anai.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The blocking function of allergen-specific F(ab')2 [sF(ab')2] and Fab (sFab) fragment antibodies prepared from allergen immunotherapy-induced specific immunoglobulin G (sIgG) has not been fully investigated. OBJECTIVE To investigate the inhibitory function of sIgG, sF(ab')2, and sFab antibodies in patients undergoing Dermatophagoides pteronyssinus (Der-p) subcutaneous immunotherapy (SCIT). METHODS This study involved 10 subjects (aged 18-42 years) with house dust mite allergic rhinitis or asthma who received a 156-week course of Der-p SCIT. Total IgG levels were purified from the serum of the participants at weeks 0 and 156 by protein A affinity chromatography. Der-p sIgG was purified by affinity chromatography with Der-p as a ligand at week 156. The sF(ab')2 and sFab antibodies were prepared from Der-p sIgG by treatment with pepsin and papain, respectively. Furthermore, IgE-facilitated allergen binding assay, basophil activation inhibition test, and cytokine release inhibition assay were used to assess the inhibitory function of Der-p sIgG, sF(ab')2, and sFab antibodies. RESULTS We found that the Der-p sIgG, sF(ab')2, and sFab antibodies markedly blocked Der-p-allergen sIgE complex binding to B cells, inhibited basophil activation, and markedly reduced the production of interleukin (IL)-5, IL-13, IL-17, and tumor necrosis factor-α by peripheral blood mononuclear cells. CONCLUSION SCIT-induced Der-p sIgG, sF(ab')2, and sFab antibodies may block the formation of Der-p-sIgE complexes and may serve as a potential allergen-targeted biologics candidate for the treatment of allergic asthma. CLINICAL TRIAL REGISTRATION This study was approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University and registered in the Chinese Clinical Trial Registry (ChiCTR-OOC-15006207, https://www.chictr.org.cn/enindex.aspx).
Collapse
Affiliation(s)
- Huan Zhang
- Huizhou Central People's Hospital, Huizhou, Guangdong, People's Republic of China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiujuan Su
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Mulin Feng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China; People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
He R, Zhang Q, Gu X, Xie Y, Xu J, Peng X, Yang G. Transcriptome Analysis of Otodectes cynotis in Different Developmental Stages. Front Microbiol 2022; 13:687387. [PMID: 35444625 PMCID: PMC9014205 DOI: 10.3389/fmicb.2022.687387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
The mite Otodectes cynotis is distributed worldwide and parasitism the ear canals of cats and dogs, causing otitis externa. Molecular biology of O. cynotis is poorly understood, with only a few genes being deposited in public databases. In the present study, we aimed to perform transcriptome analysis of O. cynotis using SMRT and Illumina sequencing of RNA from different development stages. SMRT-Seq of O. cynotis demonstrated 5,431 final transcripts, including 406 long non-coding RNAs and 2,698 differentially expressed genes (DEGs), including 1,357 up-regulated genes and 1,341 down-regulated genes between adult mites and nymph/larva. A total of 397 putative allergen genes were detected, 231 of which were DEGs. Among them, 77 were homologous of known mite allergens. The expression level of allergen genes hints at the pathogenicity of mites in different life stages, and the protein interaction network analysis could identify possible key genes in the pathogenic mechanism. Intriguingly, Gene Ontology analysis showed that most of the (DEGs) were associated with the terms hydrolase activity and proteolysis. Kyoto Encyclopedia of genes and genomes (KEGG) analysis identified drug metabolism-cytochrome P450 signal pathway as one of the top pathways. SMRT-Seq of the full-length transcriptome of O. cynotis was performed first, and a valuable resource was acquired through the combination analysis with the Illumina sequencing data. The results of our analyses provide new information for further research into Otodectes cynotis.
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Feng M, Luo T, Xian M, Shi X, Qin R, Zeng X, Su Q, Li J. Suppression function against environmental dust exposure after Dermatophagoides pteronyssinus immunotherapy is associated with production of specific and cross-reactive immunoglobulin G4. Clin Exp Allergy 2021; 52:878-887. [PMID: 34962673 DOI: 10.1111/cea.14088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/06/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Whether Dermatophagoides pteronyssinus (Der-p) allergen immunotherapy (AIT) can induce Dermatophagoides farina (Der-f) specific immunoglobulin (sIg) G4 production and tolerance to environmental allergens has not been fully investigated. OBJECTIVE We aimed to determine serum Der-p-sIgG4 and Der-f-sIgG4 levels in asthma and/or rhinitis patients undergoing Der-p AIT and their ability to reduce immune responses triggered by indoor-dust extracts. METHODS We performed a real-world prospective trial and enrolled patients with allergic rhinitis and/or asthma in Guangzhou, China. These patients received either Der-p AIT (SCIT group) or routine medications (non-SCIT group) for 156 weeks. Clinical outcomes were assessed by the combined symptom medication score (SMS) and FEV1 % changes. House dust samples were collected to analyze allergen levels. Serum levels of Der-p-sIgG4 and Der-f-sIgG4, serum inhibitory capacity against Der-p, Der-f, and indoor dust extract by sIgE-facilitated allergen binding to B cells (IgE-FAB), and serum blocking indoor dust extract-induced basophil activation inhibition assays (BATI) in peripheral blood monocytes were carried out at weeks 0, 4, 12, 16, 52, 104, and 156 after the initiations of the treatments. RESULTS Our study enrolled a total of 60 participants, with 30 patients in each group. Patients in the SCIT group had significantly improved SMS when compared with the baseline and the patients in the non-SCIT group. Median levels of Der-p 1 and Der-f 1 in indoor dust extract were 1.86 μg/g and 4.74 μg/g, respectively. Serum Der-p-sIgG4 and Der-f-IgG4 levels in SCIT patients showed a significant increase from week 12 to week 156. Serum in these SCIT patients could significantly block Der-p, Der-f, and indoor dust extract formation of allergen-sIgE complex and reduced the threshold of IgE-FAB from 16 weeks after the initiation of the treatment. The capacity to inhibit Der-p, Der-f, and indoor dust extract BATI was observed in SCIT serum after 12 weeks. Der-p-sIgG4 and Der-f-sIgG4 had a significant correlation with IgE-FAB and BATI in SCIT patients at all time points. CONCLUSION Single Der-p immunotherapy induced both Der-p-sIgG4 and Der-f-sIgG4 production, which might cross-reactively induce tolerance against environmental allergen exposure in patients with asthma and/or rhinitis.
Collapse
Affiliation(s)
- Mulin Feng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,People's Hospital of Yangjiang, Yangjiang, China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rundong Qin
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zeng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiujuan Su
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,People's Hospital of Yangjiang, Yangjiang, China.,Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Adji A, Niode NJ, Memah VV, Posangi J, Wahongan GJP, Ophinni Y, Idroes R, Mahmud S, Emran TB, Nainu F, Tallei TE, Harapan H. Designing an epitope vaccine against Dermatophagoides pteronyssinus: An in silico study. Acta Trop 2021; 222:106028. [PMID: 34217726 DOI: 10.1016/j.actatropica.2021.106028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
The house dust mite, Dermatophagoides pteronyssinus, is a major source of the inhaled allergen Der p 1, which causes immunoglobulin E (IgE)-mediated hypersensitivity reactions manifesting in allergic diseases. To date, no drugs or vaccines effectively treat or prevent Der p 1 sensitization. We applied in silico immunoinformatics to design T-cell and B-cell epitopes that were specified and developed from the allergen Der p 1 of D. pteronyssinus. We identified the conserved epitope areas by predicting the accessibility and flexibility of B-cell epitopes, and the percentage of human leukocyte antigen representing T cells. Molecular docking using HADDOCK software indicated three optimal clusters: cluster 6 (z-score: -2.1), cluster 1 (z-score: -1.2), and cluster 3 (z-score: -0.6). The most negative Z-score was found in cluster 6, which represented three epitopes. The interaction between A chain proteins (IgE protein residues) and B chains (Der p 1 protein residues) exhibited a knowledge-based FADE and contact value >1, suggesting the best protein interactions occurred in the conserved area. Molecular dynamic simulation further predicted the stable nature of Der p 1 protein. The IQRDNGYQP region is the best candidate to be utilized as a D. pteronyssinus epitope vaccine, which could be used in the development of allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Aryani Adji
- Entomology Study Program, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia; Dermatovenereology Department, Faculty of Medicine, RD Kandou Hospital, Manado, North Sulawesi 95163, Indonesia
| | - Nurdjannah J Niode
- Entomology Study Program, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia; Dermatovenereology Department, Faculty of Medicine, RD Kandou Hospital, Manado, North Sulawesi 95163, Indonesia.
| | - Ventje V Memah
- Entomology Study Program, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Jimmy Posangi
- Department of Pharmacology, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Greta J P Wahongan
- Parasitology Department, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi 95163, Indonesia.
| | - Youdiil Ophinni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia.
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia.
| | - Trina E Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia.
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia.
| |
Collapse
|
16
|
Koenig JFE, Grydziuszko E, Jordana M. First contact: Serum amyloid A and pattern recognition in Th2 immunity. Allergy 2021; 76:2309-2311. [PMID: 33590523 DOI: 10.1111/all.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Joshua F. E. Koenig
- Department of Medicine McMaster Immunology Research Centre (MIRC) McMaster University Hamilton ON Canada
| | - Emily Grydziuszko
- Department of Medicine McMaster Immunology Research Centre (MIRC) McMaster University Hamilton ON Canada
| | - Manel Jordana
- Department of Medicine McMaster Immunology Research Centre (MIRC) McMaster University Hamilton ON Canada
| |
Collapse
|
17
|
Keshavarz B, Erickson LD, Platts-Mills TAE, Wilson JM. Lessons in Innate and Allergic Immunity From Dust Mite Feces and Tick Bites. FRONTIERS IN ALLERGY 2021; 2:692643. [PMID: 35387017 PMCID: PMC8974698 DOI: 10.3389/falgy.2021.692643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Allergic diseases represent a major cause of morbidity in modern industrialized and developing countries. The origins and development of allergic immune responses have proven difficult to unravel and remain an important scientific objective. House dust mites (HDM) and ticks represent two important causes of allergic disease. Investigations into HDM fecal particles and tick bites have revealed insights which have and will continue to shape our understanding of allergic immunity. In the present review, focus is given to the role of innate immunity in shaping the respective responses to HDM and ticks. The HDM fecal particle represents a rich milieu of molecules that can be recognized by pathogen-recognition receptors of the innate immune system. Factors in tick saliva and/or tissue damage resultant from tick feeding are thought to activate innate immune signaling that promotes allergic pathways. Recent evidence indicates that innate sensing involves not only the direct recognition of allergenic agents/organisms, but also indirect sensing of epithelial barrier disruption. Although fecal particles from HDM and bites from ticks represent two distinct causes of sensitization, both involve a complex array of molecules that contribute to an innate response. Identification of specific molecules will inform our understanding of the mechanisms that contribute to allergic immunity, however the key may lie in the combination of molecules delivered to specific sites in the body.
Collapse
Affiliation(s)
- Behnam Keshavarz
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Thomas A. E. Platts-Mills
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Wilson
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. J Invest Dermatol 2021; 141:105-113.e14. [DOI: 10.1016/j.jid.2020.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
|
19
|
Zou X, Hu H, Huang Z, Liao C, Huang L, Luo W, Jiang M, Sun B. Serum levels of specific immunoglobulin E to Dermatophagoides pteronyssinus allergen components in patients with allergic rhinitis or/and asthma. Allergy Asthma Proc 2021; 42:e40-e46. [PMID: 33404400 DOI: 10.2500/aap.2021.42.200105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: House-dust mites (HDM) allergen is one of the most important allergens in southern China; however, studies on the Dermatophagoides pteronyssinus components are relatively lacking. Objective: This study analyzed the molecular components of D. pteronyssinus in patients with allergic asthma (AS) and/or allergic rhinitis (AR) sensitized to D. pteronyssinus, and aimed to improve HDM immunotherapy in southern China. Methods: Allergen component-resolved diagnosis detection technology was used to detect the serum levels of specific immunoglobulin E (sIgE) to D. pteronyssinus allergen components (Der p 1, 2, 3, 5, 7, 10, and 23) in patients who were sensitized to D. pteronyssinus and with AR (n = 106), AS (n = 144), or AR combined with AS (n = 134). Results: The highest positive rates of D. pteronyssinus components were Der p 1 (94.8%), followed by Der p 2 (77.6%), Der p 23 (62.5%), Der p 7 (34.6%), Der p 5 (17.7%), Der p 10 (12.2%), and Der p 3 (2.6%). Patients with AR+AS had the highest positive rates to Der p 2 (85.8%), Der p 23 (62.7%), Der p 7 (40.3%), Der p 5 (25.0%), and Der p 10 (16.4%). Der p 1 had the highest positive rate in patients with AR (95.3%). The Der p 3 positive rate in patients with AS (6.0%) was higher than that in patients with AR (0.0%, χ² = 6.872, p < 0.05) and patients with AR+AS (0.7%, χ² = 6.063, p < 0.05) Among the patients with AR+AS, 19.1% were co-sensitized to Der p 1, Der p 2, Der p 23, and Der p 7. Interestingly, only one patient with AR was exclusively sensitized to Der p 23. An optimal scale analysis showed that Der p 5, Der p 23, and Der p 7 had strong connection (Cronbach α = 93.7%). Conclusion: Der p 1 and Der p 2 were the main sensitization components of D. pteronyssinus, and patients with AS+AR had the highest positive rate for five of seven D. pteronyssinus allergen components. This research can provide suggestions for personalized HDM-specific immunotherapy in southern China.
Collapse
|
20
|
Abu Khweek A, Kim E, Joldrichsen MR, Amer AO, Boyaka PN. Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma. Front Immunol 2020; 11:534501. [PMID: 33424827 PMCID: PMC7793902 DOI: 10.3389/fimmu.2020.534501] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
The prevalence of asthma has been rising steadily for several decades, and continues to be a major public health and global economic burden due to both direct and indirect costs. Asthma is defined as chronic heterogeneous inflammatory diseases characterized by airway obstruction, mucus production and bronchospasm. Different endotypes of asthma are being recognized based on the distinct pathophysiology, genetic predisposition, age, prognosis, and response to remedies. Mucosal innate response to environmental triggers such as pollen, cigarette smoke, fragrances, viral infection, and house dust mite (HDM) are now recognized to play an important role in allergic asthma. HDM are the most pervasive allergens that co-habitat with us, as they are ubiquitous in-house dusts, mattress and bedsheets, and feed on a diet of exfoliated human skin flakes. Dermatophagoides pteronyssinus, is one among several HDM identified up to date. During the last decade, extensive studies have been fundamental in elucidating the interactions between HDM allergens, the host immune systems and airways. Moreover, the paradigm in the field of HDM-mediated allergy has been shifted away from being solely a Th2-geared to a complex response orchestrated via extensive crosstalk between the epithelium, professional antigen presenting cells (APCs) and components of the adaptive immunity. In fact, HDM have several lessons to teach us about their allergenicity, the complex interactions that stimulate innate immunity in initiating and perpetuating the lung inflammation. Herein, we review main allergens of Dermatophagoides pteronyssinus and their interactions with immunological sentinels that promote allergic sensitization and activation of innate immunity, which is critical for the development of the Th2 biased adaptive immunity to HDM allergens and development of allergic asthma.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Marisa R Joldrichsen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Prosper N Boyaka
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Yan Y, Shao X, Gu W, Zhang A, Bu X, Liang B. Recombinant virus expressing hIFN-λ1 (rL-hIFN-λ1) has important effects on endoplasmic reticulum stress, autophagy and apoptosis in small cell lung cancer. Transl Cancer Res 2020; 9:5209-5217. [PMID: 35117888 PMCID: PMC8797832 DOI: 10.21037/tcr-20-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/18/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive tumor with a poor prognosis. Human IFN-λ1 (IL-29), belonging to the type III IFN family, captured increasing attention recently due to its crucial role in developing tumors. Recent studies have revealed that the recombinant Newcastle Disease Virus (NDV) expressing human IFN-λ1 (rL-hIFN-λ1) plays a critical role in the development of tumors. However, the role of rL-hIFN-λ1 in SCLC is still unknown. METHODS We determined the concentration of the virus intervention, followed by successfully infection in virus. We also investigated the effects of rL-hIFN-λ1 on endoplasmic reticulum stress (ERS), apoptosis and autophagy in H446 cells, and explored the interaction among the three. RESULTS We found that the ERS, autophagy and apoptosis related proteins were significantly upregulated after infected with rL-hIFN-λ1 or NDV. In addition, both 4-phenylbutyric acid (4-PBA) or 3-Methyladenine (3-MA) could downregulate the expression of related proteins which increased by rL-hIFN-λ1. Furthermore, we found that both B-cell lymphoma-2 (BCL-2) knockdown or Rapamycin (Rapa) could increase ERS, autophagy and apoptosis. CONCLUSIONS Our findings suggest that rL-hIFN-λ1 can induce ERS, autophagy and apoptosis in SCLC H446 cells, particularly, autophagy plays an important role during this process. Furthermore, rL-hIFN-λ1 might provide a potential biological treatment target for lung cancer treatment.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaomei Shao
- Clinical Medicine College of Jiangsu University, Zhenjiang, China
| | - Wenlu Gu
- Clinical Medicine College of Jiangsu University, Zhenjiang, China
| | - Anwei Zhang
- Clinical Medicine College of Jiangsu University, Zhenjiang, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Bing Liang
- Department of Respiratory Medicine, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
22
|
Bruni FM, Coutinho EMM, Andrade-Barros AI, Grund LZ, Lopes-Ferreira M, Lima C. Anaphylaxis induced by Thalassophryne nattereri venom in mice is an IgE/IgG1-mediated, IL-4-dependent phenomenon. Sci Rep 2020; 10:584. [PMID: 31953450 PMCID: PMC6969187 DOI: 10.1038/s41598-019-57231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
We hypothesized that beyond the Thalassophryne nattereri venoms ability to induce in mice a strong specific-Th2 response with high levels of specific IgE/IgG1, it would be able to trigger anaphylaxis in sensitized individuals. To investigate whether the venom is capable of inducing an allergic reaction in mice and characterize soluble and cellular mediators involved in this process, BALB/c female mice were sensitized intraperitoneally with decreasing-dose of venom at weekly intervals for 4 weeks and challenged by intraperitoneal, oral or epicutaneous routes with venom 2 weeks later. Our data show that sensitized-mice challenged by all routes showed intense symptoms of anaphylaxis, dependent on the anaphylactic IgG1 and IgE antibodies and mast cells. The late-phase reaction developed after initial symptoms was characterized by the influx of eosinophils, dependent on IL-5, IL-17A and eotaxin produced by Th2 cells in inflamed lungs and skin draining lymph-nodes. Using C57BL/6 deficient mice we demonstrated that IL-4 KO mice failed to develop anaphylactic symptoms or local Th2 inflammation, producing low levels of IgG1 and increased levels of IgG2a. Together our results demonstrated that the venom of T. nattereri has allergenic proteins that can trigger an allergic process, a phenomenon IgE-IgG1 dependent, IL-4-mediated and negatively regulated by IFN-γ.
Collapse
Affiliation(s)
- Fernanda Miriane Bruni
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | | | | | - Lidiane Zito Grund
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
23
|
Rekima A, Bonnart C, Macchiaverni P, Metcalfe J, Tulic MK, Halloin N, Rekima S, Genuneit J, Zanelli S, Medeiros S, Palmer DJ, Prescott S, Verhasselt V. A role for early oral exposure to house dust mite allergens through breast milk in IgE-mediated food allergy susceptibility. J Allergy Clin Immunol 2020; 145:1416-1429.e11. [PMID: 31954775 DOI: 10.1016/j.jaci.2019.12.912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Successful prevention of food allergy requires the identification of the factors adversely affecting the capacity to develop oral tolerance to food antigen in early life. OBJECTIVES This study sought to determine whether oral exposure to Dermatophagoides pteronyssinus through breast milk affects gut mucosal immunity with long-term effects on IgE-mediated food allergy susceptibility. METHODS Gut immunity was explored in 2-week-old mice breast-fed by mothers exposed to D pteronyssinus, protease-inactivated D pteronyssinus, or to PBS during lactation. We further analyzed oral tolerance to a bystander food allergen, ovalbumin (OVA). In a proof-of-concept study, Der p 1 and OVA levels were determined in 100 human breast milk samples and the association with prevalence of IgE-mediated egg allergy at 1 year was assessed. RESULTS Increased permeability, IL-33 levels, type 2 innate lymphoid cell activation, and Th2 cell differentiation were found in gut mucosa of mice nursed by mothers exposed to D pteronyssinus compared with PBS. This pro-Th2 gut mucosal environment inhibited the induction of antigen-specific FoxP3 regulatory T cells and the prevention of food allergy by OVA exposure through breast milk. In contrast, protease-inactivated D pteronyssinus had no effect on offspring gut mucosal immunity. Based on the presence of Der p 1 and/or OVA in human breast milk, we identified groups of lactating mothers, which mirror the ones found in mice to be responsible for different egg allergy risk. CONCLUSIONS This study highlights an unpredicted potential risk factor for the development of food allergy, that is, D pteronyssinus allergens in breast milk, which disrupt gut immune homeostasis and prevents oral tolerance induction to bystander food antigen through their protease activity.
Collapse
Affiliation(s)
- Akila Rekima
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Chrystelle Bonnart
- Institut National de la Santé et de la Recherche Médicale, U1220, Toulouse, France
| | | | - Jessica Metcalfe
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Meri K Tulic
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Institut National de la Santé et de la Recherche Médicale, U1065, Mediterranean Centre for Molecular Medicine, Team 12, Nice, France; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Nicolas Halloin
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samah Rekima
- Institut Biologie Valrose, Université Côte d'Azur, Institut National de la Santé et de la Recherche Medicale, Centre National de la Recherche Scientifique, Nice, France
| | - Jon Genuneit
- inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Pediatric Epidemiology, Department of Pediatrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Samantha Zanelli
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samara Medeiros
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debra J Palmer
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Susan Prescott
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Perth Childrens Hospital, Perth, Australia; School of Medicine, University of Western Australia, Crawley, Australia
| | - Valerie Verhasselt
- School of Molecular Sciences, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ.
| |
Collapse
|
24
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
25
|
He R, Gu XB, Xie Y, Peng XR, Angel C, Yang GY. Transcriptome-based analysis of putative allergens of Chorioptes texanus. Parasit Vectors 2019; 12:587. [PMID: 31842981 PMCID: PMC6916059 DOI: 10.1186/s13071-019-3843-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 11/24/2022] Open
Abstract
Background Mites of the genus Chorioptes are non-burrowing and cause mange in a wide range of domestic and wild animals including cattle, horses, sheep, goats, panda, moose, camelids, mydaus and alpacas. Molecular biology and host-parasite interactions of Chorioptes texanus are poorly understood, and only a few C. texanus genes and transcript sequences are available in public databases including the allergen genes. Methods Chorioptes texanus RNA was isolated from mites, and the transcriptome of C. texanus was analyzed using bioinformatics tools. Chorioptes texanus unigenes were compared with the allergen protein sequences from the mite allergen database website to predict the potential allergens. Chorioptes texanus putative allergen unigenes were compared with hydrolase genes by building a C. texanus hydrolase gene library with the best match of the homologous sequences. Three allergen genes were cloned and expressed, their recombinant proteins were purified and their allergenic activities were preliminarily investigated. Results Transcriptome sequencing (RNA-Seq) of C. texanus was analyzed and results demonstrated that 33,138 unigenes were assembled with an average length of 751 bp. A total of 15,130 unigenes were annotated and 5598 unigenes were enriched in 262 KEGG signaling pathways. We obtained 209 putative allergen genes and 34 putative allergen-hydrolase genes. Three recombinant allergen proteins were observed to induce different degrees of allergic reactions on rabbit skin. Conclusions The present transcriptome data provide a useful basis for understanding the host-parasite interaction and molecular biology of the C. texanus mite. The allergenic activities of recombinant Euroglyphus maynei 1-like (Eur m 1-like) protein, Dermatophagoides ptreronyssinus 1-like (Der p 1-like) protein and Dermatophagoides ptreronyssinus 7-like (Der p 7-like) protein were preliminarily investigated by intradermal skin test. Meanwhile, differences in eosinophil counts were observed in different injected sites of the skin. The identification of putative allergen genes and hydrolase genes offers opportunities for the development of new diagnostic, prevention and treatment methods.![]()
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Bin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Rong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Christiana Angel
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sindh, 67210, Pakistan
| | - Guang-You Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
26
|
Cai ZL, Zhang Z, Luo WL, Hou YB, He YS, Chen JJ, Ji K. Identification of immunodominant IgE epitopes of the major house dust mite allergen Der f 24. Int J Mol Med 2019; 44:1888-1898. [PMID: 31545417 PMCID: PMC6777665 DOI: 10.3892/ijmm.2019.4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022] Open
Abstract
Previously, a ubiquinol-cytochrome c reductase binding protein (UQCRB) homolog was identified in the house dust mite (HDM) species Dermatophagoides farinae (Der f) as a major allergen. In the present study, the immunodominant immunoglobulin E (IgE) epitope of the protein Der f 24 was investigated. Analysis of the homologous amino acid (aa) sequences in Der f and human UQCRB was performed. Four different recombinant Der f 24 and hybrid proteins formed by integrating Der f and human UQCRB sequences were expressed in Escherichia coli, purified using Ni-NTA resins, and IgE-binding activity was determined using IgE-western blotting and enzyme-linked immunosorbent assay (ELISA) experiments. IgE epitopes were further identified by IgE-dot blotting and IgE-ELISA with synthetic polypeptides and HDM-allergic sera. Three-dimensional (3D) structural modeling was used to analyze the position of the immuno-dominant IgE epitope. The amino acid sequence homology between Der f 24 and the human UQCRB protein was determined to be 39.34%. IgE-ELISA and western blot analysis showed that all of the Der f-human UQCRB hybrid proteins generated, except for the one lacking 59 residues of the N-terminal region of Der f 24, were bound by allergic serum IgE. A synthetic polypeptide consisting of 32 residues of the N-terminal reacted with IgEs from HDM-allergic sera and could be used to generate high titer specific IgG or specific IgE antibodies in immunized mice. The 32-aa N-terminal region of Der f 24 was localized to a structural protrusion, which may facilitate specific IgE-binding. These results indicate that the immunodominant IgE epitope of Der f 24 is located mainly in a 32-residue region of the N-terminus. These findings may inform the mechanisms of HDM allergy sensitization and allergy immunotherapy development.
Collapse
Affiliation(s)
- Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Wen-Li Luo
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yi-Bo Hou
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yong-Shen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
27
|
Weng YH, Chen WY, Lin YL, Wang JY, Chang MS. Blocking IL-19 Signaling Ameliorates Allergen-Induced Airway Inflammation. Front Immunol 2019; 10:968. [PMID: 31114590 PMCID: PMC6503049 DOI: 10.3389/fimmu.2019.00968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airway. Its major symptoms are reversible breathing problems causing airway narrowing and obstruction. IL-19 is a member of the IL-10 family cytokines. We previously showed that IL-19 induces T-helper 2 (Th2) cytokines and that asthma patients had higher serum IL-19 levels. To further examine whether inhibiting IL-19 and its receptor (IL-20R1) protected rodents against asthma, we used Dermatophagoides pteronyssinus (Der p; house dust mites) to induce chronic airway inflammation in wild-type C57BL/6 and IL-20R1-deficient mice and then analyzed the effect of the IL-20R1 deficiency on the pathogenesis of asthma. We also examined whether inhibiting IL-19 and IL-20R1 ameliorated Der p-induced chronic asthma. Der p induced IL-19 in lung airway epithelial cells, type 2 alveolar cells, and alveolar macrophages. An IL-20R1 deficiency abolished IL-19-induced Th2 cell differentiation in vitro. Th2 cytokine expression, immune cell infiltration in the bronchoalveolar lavage, airway hyperresponsiveness (AHR), and bronchial wall thickening were lower in Der p-challenged IL-20R1-deficient mice. Anti-IL-20R1 monoclonal antibody (mAb) 51D and IL-19 polyclonal antibody (pAb) both ameliorated Der p-induced AHR, lung immune cell infiltration, bronchial wall thickening, and Th2 cytokine expression. Moreover, we confirmed that anti-IL-19 mAb (1BB1) attenuated lung inflammation in a rat ovalbumin-induced asthma model. This is the first report to show that inhibition of IL-19 by targeting IL-19 or IL-20R1 protected rodents from allergic lung inflammation. Our study suggests that targeting IL-19 signaling might be a novel therapeutic strategy for treating allergic asthma.
Collapse
Affiliation(s)
- Yun-Han Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| | - Yen-Lin Lin
- Institute of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiu-Yao Wang
- Institute of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, College of Medical, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
29
|
Zhang J, Chen J, Robinson C. Cellular and Molecular Events in the Airway Epithelium Defining the Interaction Between House Dust Mite Group 1 Allergens and Innate Defences. Int J Mol Sci 2018; 19:E3549. [PMID: 30423826 PMCID: PMC6274810 DOI: 10.3390/ijms19113549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
Serodominant group 1 allergens of house dust mites (HDMs) are cysteine protease digestive enzymes. By increasing the detection of any allergen by dendritic antigen presenting cells, upregulating inflammatory signalling molecules, and activating cells crucial to the transition from innate to acquired immune responses, the proteolytic activity of these HDM allergens also underlies their behaviour as inhalant allergens. The significance of this property is underlined by the attenuation of allergic responses to HDMs by novel inhibitors in experimental models. The group 1 HDM allergens act as prothrombinases, enabling them to operate the canonical stimulation of protease activated receptors 1 and 4. This leads to the ligation of Toll-like receptor 4, which is an indispensable component in HDM allergy development, and reactive oxidant-regulated gene expression. Intermediate steps involve epidermal growth factor receptor ligation, activation of a disintegrin and metalloproteases, and the opening of pannexons. Elements of this transduction pathway are shared with downstream signalling from biosensors which bind viral RNA, suggesting a mechanistic linkage between allergens and respiratory viruses in disease exacerbations. This review describes recent progress in the characterisation of an arterial route which links innate responses to inhaled allergens to events underpinning the progression of allergy to unrelated allergens.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
30
|
Zhang J, Chen J, Zuo J, Newton GK, Stewart MR, Perrior TR, Garrod DR, Robinson C. Allergen Delivery Inhibitors: Characterisation of Potent and Selective Inhibitors of Der p 1 and Their Attenuation of Airway Responses to House Dust Mite Allergens. Int J Mol Sci 2018; 19:E3166. [PMID: 30326568 PMCID: PMC6214017 DOI: 10.3390/ijms19103166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Group 1 allergens of house dust mites (HDM) are globally significant triggers of allergic disease. They are considered as initiator allergens because their protease activity enables the development of allergy to a spectrum of unrelated allergens from various sources. This initiator-perpetuator function identifies Group 1 HDM allergens as attractive drug design targets for the first small-molecule approach directed towards a non-human, root cause trigger of allergic disease. The purpose of this study was to: (i) identify exemplar inhibitors of these allergens using Der p 1 as a design template, and (ii) characterise the pharmacological profiles of these compounds using in vitro and in vivo models relevant to allergy. Potent inhibitors representing four different chemotypes and differentiated by mechanism of action were investigated. These compounds prevented the ab initio development of allergy to the full spectrum of HDM allergens and in established allergy they inhibited the recruitment of inflammatory cells and blunted acute allergic bronchoconstriction following aerosol challenge with the full HDM allergen repertoire. Collectively, the data obtained in these experiments demonstrate that the selective pharmacological targeting of Der p 1 achieves an attractive range of benefits against exposure to all HDM allergens, consistent with the initiator-perpetuator function of this allergen.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Jie Zuo
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
- BOE Technology Center, BOE Technology Group Co., Ltd., Beijing 100176, China.
| | - Gary K Newton
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - Mark R Stewart
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - Trevor R Perrior
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - David R Garrod
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
31
|
Yan Y, Liu S, Li M, Zhao Y, Shao X, Hang M, Bu X. Recombinant Newcastle disease virus expressing human IFN-λ1 (rL-hIFN-λ1)-induced apoptosis of A549 cells is connected to endoplasmic reticulum stress pathways. Thorac Cancer 2018; 9:1437-1452. [PMID: 30246439 PMCID: PMC6209783 DOI: 10.1111/1759-7714.12857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND IFN-λs are a kind of cytokine with anti-tumor, immunomodulatory, and anti-proliferative activity. Recent studies have shown that the recombinant Newcastle disease virus expresses human IFN-λ1 (rL-hIFN-λ1), which plays a role in gastric cancer cell apoptosis. Endoplasmic reticulum stress (ERS) induces autophagy and apoptosis in tumor cells. In this study, we explored the relationship between ERS and rL-hIFN-λ1-induced apoptosis of lung adenocarcinoma A549 cells and its underlying mechanism. METHODS First, we investigated the effect of rL-hIFN-λ1 on cellular proliferation, migration, and proteins associated with ERS, autophagy, and apoptosis of A549. Second, after administration of the ERS inhibitor, the associated proteins induced by rL-hIFN-λ1 were detected. Finally, a subcutaneous mouse model was used to examine the effect of rL-hIFN-λ1 on tumor growth and the ERS and apoptosis associated proteins in tumor tissues. RESULTS The results showed that the proliferation and migration of A549 cells, and tumor tissue growth were significantly inhibited and the ERS, autophagy, and apoptosis associated proteins were upregulated in the experimental group. Additionally, both 4-PBA and knockdown of PERK or CHOP reduced the levels of rL-hIFN-λ1-induced autophagy and apoptosis-associated proteins. BCL-2 knockdown caused autophagy and apoptosis associated protein upregulation. CONCLUSIONS In summary, rL-hIFN-λ1 inhibited cell proliferation and activated ERS, autophagy, and apoptosis in A549 cells and tissues, and when ERS pathways were blocked, the inhibiting effect was even more pronounced. Therefore, the recombinant Newcastle disease virus rL-hIFN-λ1-induced apoptosis of A549 cells is connected to ER stress and could be a promising therapeutic agent for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Sha Liu
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Mi Li
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Yinghai Zhao
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Xiaomei Shao
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Min Hang
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Zhang J, Chen J, Newton GK, Perrior TR, Robinson C. Allergen Delivery Inhibitors: A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens through Structure-Based Protease Inhibitor Design. Mol Pharmacol 2018; 94:1007-1030. [PMID: 29976563 PMCID: PMC6064784 DOI: 10.1124/mol.118.112730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Diverse evidence from epidemiologic surveys and investigations into the molecular basis of allergenicity have revealed that a small cadre of "initiator" allergens promote the development of allergic diseases, such as asthma, allergic rhinitis, and atopic dermatitis. Pre-eminent among these initiators are the group 1 allergens from house dust mites (HDM). In mites, group 1 allergens function as cysteine peptidase digestive enzymes to which humans are exposed by inhalation of HDM fecal pellets. Their protease nature confers the ability to activate high gain signaling mechanisms which promote innate immune responses, leading to the persistence of allergic sensitization. An important feature of this process is that the initiator drives responses both to itself and to unrelated allergens lacking these properties through a process of collateral priming. The clinical significance of group 1 HDM allergens in disease, their serodominance as allergens, and their IgE-independent bioactivities in innate immunity make these allergens interesting therapeutic targets in the design of new small-molecule interventions in allergic disease. The attraction of this new approach is that it offers a powerful, root-cause-level intervention from which beneficial effects can be anticipated by interference in a wide range of effector pathways associated with these complex diseases. This review addresses the general background to HDM allergens and the validation of group 1 as putative targets. We then discuss structure-based drug design of the first-in-class representatives of allergen delivery inhibitors aimed at neutralizing the proteolytic effects of HDM group 1 allergens, which are essential to the development and maintenance of allergic diseases.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Jie Chen
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Gary K Newton
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Trevor R Perrior
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Clive Robinson
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| |
Collapse
|
33
|
Specific IgY anti-group 1 dust mite allergens induced by unglycosylated synthetic oligopeptides. BIOMEDICA 2018; 38:232-243. [PMID: 30184353 DOI: 10.7705/biomedica.v38i0.3689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/16/2017] [Indexed: 11/21/2022]
Abstract
Introduction: The use of specific antibodies capable of detecting allergens of the group 1 of house dust mites represents a potential strategy to reduce exposure and clinical symptomatology associated with asthma and allergic rhinitis.
Objective: To produce and purify chicken antibodies specific for the dust mites Dermatophagoides sp. and B. tropicalis using the IgY technology.
Materials and methods: We designed and synthesized oligopeptides showing immunogenic epitopes of Der p1, Der f1, and Blo t1. These were used to produce IgY antibodies in Hy Line Brown chickens. IgY were extracted from egg yolk using thiophilic chromatography. The immunogenicity and specificity were assayed by indirect ELISA and Dot Blot.
Results: We obtained high reactivity of IgY antibodies against epitopes of allergens present in whole body mites extracts of D. farinae, D. pteronyssinus, and B. tropicalis. The highest IgY levels were registered between days 32 and 40 after immunization. The antibodies showed high immunoreactivity and specificity towards D. farinae proteins with detection limits above 0.03 μg of mite proteins under the experimental conditions used. Purified IgY did not show significant reactivity when binding to Periplaneta americana extract.
Conclusion: The IgY technology allowed the production of specific antibodies against house dust mites group 1 allergens using non-glycosylated synthetic peptides. To our knowledge, this is the first time that this immunochemicals are used in the detection of mites of medical relevance.
Collapse
|
34
|
Neunkirchner A, Kratzer B, Köhler C, Smole U, Mager LF, Schmetterer KG, Trapin D, Leb-Reichl V, Rosloniec E, Naumann R, Kenner L, Jahn-Schmid B, Bohle B, Valenta R, Pickl WF. Genetic restriction of antigen-presentation dictates allergic sensitization and disease in humanized mice. EBioMedicine 2018; 31:66-78. [PMID: 29678672 PMCID: PMC6014064 DOI: 10.1016/j.ebiom.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Immunoglobulin(Ig)E-associated allergies result from misguided immune responses against innocuous antigens. CD4+ T lymphocytes are critical for initiating and perpetuating that process, yet the crucial factors determining whether an individual becomes sensitized towards a given allergen remain largely unknown. OBJECTIVE To determine the key factors for sensitization and allergy towards a given allergen. METHODS We here created a novel human T cell receptor(TCR) and human leucocyte antigen (HLA)-DR1 (TCR-DR1) transgenic mouse model of asthma, based on the human-relevant major mugwort (Artemisia vulgaris) pollen allergen Art v 1 to examine the critical factors for sensitization and allergy upon natural allergen exposure via the airways in the absence of systemic priming and adjuvants. RESULTS Acute allergen exposure led to IgE-independent airway hyperreactivity (AHR) and T helper(Th)2-prone lung inflammation in TCR-DR1, but not DR1, TCR or wildtype (WT) control mice, that was alleviated by prophylactic interleukin(IL)-2-αIL-2 mAb complex-induced expansion of Tregs. Chronic allergen exposure sensitized one third of single DR1 transgenic mice, however, without impacting on lung function. Similar treatment led to AHR and Th2-driven lung pathology in >90% of TCR-DR1 mice. Prophylactic and therapeutic expansion of Tregs with IL-2-αIL-2 mAb complexes blocked the generation and boosting of allergen-specific IgE associated with chronic allergen exposure. CONCLUSIONS We identify genetic restriction of allergen presentation as primary factor dictating allergic sensitization and disease against the major pollen allergen from the weed mugwort, which frequently causes sensitization and disease in humans. Furthermore, we demonstrate the importance of the balance between allergen-specific T effector and Treg cells for modulating allergic immune responses.
Collapse
Affiliation(s)
- Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Kratzer
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cordula Köhler
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas F Mager
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus G Schmetterer
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Edward Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, 38163, TN, USA; Memphis Veterans Affairs Medical Center, 38104, TN, USA; Department of Pathology, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Ronald Naumann
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lukas Kenner
- Department of Laboratory Animal Pathology, Medical University of Vienna, 1090 Vienna, Austria; Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Bohle
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried F Pickl
- Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria; Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
35
|
Zhang J, Chen J, Mangat SC, Perera Baruhupolage C, Garrod DR, Robinson C. Pathways of airway oxidant formation by house dust mite allergens and viral RNA converge through myosin motors, pannexons and Toll-like receptor 4. IMMUNITY INFLAMMATION AND DISEASE 2018. [PMID: 29542272 PMCID: PMC5946151 DOI: 10.1002/iid3.216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction Intracellular reactive oxidant species (ROS) are generated in human airway epithelial cells by the prothrombinase action of Group 1 house dust mite (HDM) allergens and by ligation of viral RNA sensor Toll‐like receptors (TLRs). We explored signaling convergence between HDM allergens and TLRs in ROS generation because epithelial cells form the primary barrier against inhaled substances and dictate host responses to allergens and viruses. Methods ROS formation by Calu‐3 human airway cells was studied by measuring dihydrorhodamine 123 oxidation after activation by polyinosinic:polycytidylic acid (to activate TLR3), CL097 (to activate TLR7), a natural mixture of HDM allergens, or BzATP. Results TLR4 activation was identified as an indispensable response element for all stimuli, operating downstream from myosin motor activation, pannexon gating for ATP release and the endogenous activation of prothrombin. Exogenous prothrombin activation by HDM allergens was prevented by SGUL 1733, a novel inhibitor of the proteolytic activity of Group 1 HDM allergens, which thus prevented TLR4 from being activated at source. Conclusions Our data identify for the first time that endogenously‐generated prothrombin and TLR4 form a shared effector mechanism essential to intracellular ROS generation activated by a group 1 HDM allergen (itself a prothrombinase) or by ligation of viral RNA‐sensing TLRs. These stimuli operate a confluent signaling pathway in which myosin motors, gating of pannexons, and ADAM 10 lead to prothrombin‐dependent activation of TLR4 with a recycling activation of pannexons.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jie Chen
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Shannon C Mangat
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | | | - David R Garrod
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clive Robinson
- Institute for Infection and Immunity, St George's, University of London, London, UK
| |
Collapse
|
36
|
Chaisri U, Tungtrongchitr A, Indrawattana N, Meechan P, Phurttikul W, Tasaniyananda N, Saelim N, Chaicumpa W, Sookrung N. Immunotherapeutic efficacy of liposome-encapsulated refined allergen vaccines against Dermatophagoides pteronyssinus allergy. PLoS One 2017; 12:e0188627. [PMID: 29182623 PMCID: PMC5705073 DOI: 10.1371/journal.pone.0188627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Allergen specific immunotherapy (AIT) can modulate the allergic response causing a long-term symptom subsidence/abolishment which leads to reduced drug use and prevention of new sensitization. AIT of house dust mite allergy (HDM) using the mite crude extract (CE) as the therapeutic agent is not only less effective than the AIT for many other allergens, but also frequently causes adverse effects during the treatment course. In this study, mouse model of Dermatophagoides pteronyssinus (Dp) allergy was invented for testing therapeutic efficacies of intranasally administered liposome (L) encapsulated vaccines made of single Dp major allergens (L-Der p 1, L-Der p 2), combined allergens (L-Der p 1 and Der p 2), and crude Dp extract (L-CE). The allergen sparing intranasal route was chosen as it is known that the effective cells induced at the nasal-associated lymphoid tissue can exert their activities at the lower respiratory tissue due to the common mucosal traffic. Liposome was chosen as the vaccine delivery vehicle and adjuvant as the micelles could reduce toxicity of the entrapped cargo. The Dp-CE allergic mice received eight doses of individual vaccines/placebo on alternate days. All vaccine formulations caused reduction of the Th2 response of the Dp allergic mice. However, only the vaccines made of single refined allergens induced expressions of immunosuppressive cytokines (TGF-β, IL-35 and/or IL-10) which are the imperative signatures of successful AIT. The data emphasize the superior therapeutic efficacy of single refined major allergen vaccines than the crude allergenic extract vaccine.
Collapse
Affiliation(s)
- Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Bangkok, Thailand
| | - Panisara Meechan
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watchara Phurttikul
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natt Tasaniyananda
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nawannaporn Saelim
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
He R, Shen N, Zhang H, Ren Y, He M, Xu J, Guo C, Xie Y, Gu X, Lai W, Peng X, Yang G. Molecular characteristics and serodiagnostic potential of chitinase-like protein from Sarcoptes scabiei. Oncotarget 2017; 8:83995-84005. [PMID: 29137399 PMCID: PMC5663571 DOI: 10.18632/oncotarget.21056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
Scabies, caused by the mite Sarcoptes scabiei, is an allergic skin disease that affects millions of people and other mammals worldwide. This highly contagious parasitic disease is among the top 50 epidemic disease and is regarded as a neglected tropical disease. Diagnosis of scabies is difficult in the early stage, and the pathogenesis of scabies is not currently clear. Here, we expressed, identified and located the chitinase-like protein of S. scabiei (SsCLP), and evaluated its potential as an early-stage diagnostic antigen for rabbit scabies. Indirect ELISA using recombinant SsCLP (rSsCLP) exhibited diagnostic sensitivity of 94.4% (17/18) and specificity of 86.7% (26/30). Early diagnostic test after artificial infection of rabbits with S. scabiei for 1 week showed a positive detection rate of 96.7% (29/30). Immunolocalization assays showed that fluorescence signals were localized on the surface of mites and, in infected rabbits, were observed in keratinized skin and embedded mites. Intradermal skin tests of rabbits by injecting rSsCLP showed a wheal, flare and erythema reaction. These results suggest that S. scabiei chitinase-like protein is conducive to host invasion, participates in inducing the allergic response of the host, and is an effective antigen for the diagnosis of S. scabiei.
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Haojie Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Sichuan Chengdu, China
| | - Manli He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Cheng Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
38
|
Zeller KS, Johansson H, Lund TØ, Kristensen NN, Roggen EL, Lindstedt M. An alternative biomarker-based approach for the prediction of proteins known to sensitize the respiratory tract. Toxicol In Vitro 2017; 46:155-162. [PMID: 29017774 DOI: 10.1016/j.tiv.2017.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/07/2017] [Accepted: 09/28/2017] [Indexed: 11/29/2022]
Abstract
Many natural and industrial proteins are known to have properties that can result in type I hypersensitivity, however, to date, no validated test system exists that can predict the sensitizing potential of these allergens. Thus, the objective of this study was to develop a protocol based on the myeloid cell-based Genomic Allergen Rapid Detection (GARD) assay that can be used to assess and predict the capacity of protein allergens known to induce sensitization in the respiratory tract. Cellular responses induced by eight selected proteins were assessed using transcriptional profiling, flow cytometry and multiplex cytokine analysis. 391 potential biomarkers were identified as a predictive signature and a series of cross-validations supported the validity of the model. These results together with biological pathway analysis of the transcriptomic data indicate that the investigated cell system is able to capture relevant events linked to type I hypersensitization.
Collapse
|
39
|
Mueller GA. Contributions and Future Directions for Structural Biology in the Study of Allergens. Int Arch Allergy Immunol 2017; 174:57-66. [PMID: 28992615 DOI: 10.1159/000481078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergy is defined as an inappropriate immune response to something normally considered harmless. The symptomatic immune response is driven by IgE antibodies directed against allergens. The study of allergens has contributed significantly to our understanding of allergic disease in 3 main areas. First, identifying allergens as the cause of symptoms and developing allergen standards has led to many advances in exposure assessment and patient diagnostics. Second, a biochemical understanding of allergens has suggested a number of hypotheses related to the mechanisms of allergic sensitization. And finally, studies of allergen-antibody interactions have contributed to understanding the cross-reactivity of allergens, mapping patient epitopes, and the development of hypoallergens. In this review, a few select cases are highlighted where structural biology, in particular, has contributed significantly to allergen research and provided new avenues for investigation.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Department of Health and Human Services, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
40
|
Allergens with Protease Activity from House Dust Mites. Int J Mol Sci 2017; 18:ijms18071368. [PMID: 28653989 PMCID: PMC5535861 DOI: 10.3390/ijms18071368] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 11/29/2022] Open
Abstract
Globally, house dust mites (HDM) are one of the main sources of allergens causing Type I allergy, which has a high risk of progressing into a severe disabling disease manifestation such as allergic asthma. The strong protease activities of a number of these allergens are thought to be involved in several steps of the pathophysiology of this allergic disease. It has been a common notion that protease activity may be one of the properties that confers allergenicity to proteins. In this review we summarize and discuss the roles of the different HDM proteases in the development of Type I allergy.
Collapse
|
41
|
Randall TA, London RE, Fitzgerald MC, Mueller GA. Proteases of Dermatophagoides pteronyssinus. Int J Mol Sci 2017; 18:ijms18061204. [PMID: 28587273 PMCID: PMC5486027 DOI: 10.3390/ijms18061204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023] Open
Abstract
Since the discovery that Der p 1 is a cysteine protease, the role of proteolytic activity in allergic sensitization has been explored. There are many allergens with proteolytic activity; however, exposure from dust mites is not limited to allergens. In this paper, genomic, transcriptomic and proteomic data on Dermatophagoides pteronyssinus (DP) was mined for information regarding the complete degradome of this house dust mite. D. pteronyssinus has more proteases than the closely related Acari, Dermatophagoides farinae (DF) and Sarcoptes scabiei (SS). The group of proteases in D. pteronyssinus is found to be more highly transcribed than the norm for this species. The distribution of protease types is dominated by the cysteine proteases like Der p 1 that account for about half of protease transcription by abundance, and Der p 1 in particular accounts for 22% of the total protease transcripts. In an analysis of protease stability, the group of allergens (Der p 1, Der p 3, Der p 6, and Der p 9) is found to be more stable than the mean. It is also statistically demonstrated that the protease allergens are simultaneously more highly expressed and more stable than the group of D. pteronyssinus proteases being examined, consistent with common assumptions about allergens in general. There are several significant non-allergen outliers from the normal group of proteases with high expression and high stability that should be examined for IgE binding. This paper compiles the first holistic picture of the D. pteronyssinus degradome to which humans may be exposed.
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| | | | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
42
|
Chevigné A, Campizi V, Szpakowska M, Bourry D, Dumez ME, Martins JC, Matagne A, Galleni M, Jacquet A. The Lys-Asp-Tyr Triad within the Mite Allergen Der p 1 Propeptide Is a Critical Structural Element for the pH-Dependent Initiation of the Protease Maturation. Int J Mol Sci 2017; 18:ijms18051087. [PMID: 28531096 PMCID: PMC5454996 DOI: 10.3390/ijms18051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
The major house dust mite allergen, Der p 1, is a papain-like cysteine protease expressed as an inactive precursor, proDer p 1, carrying an N-terminal propeptide with a unique structure. The maturation of the zymogen into an enzymatically-active form of Der p 1 is a multistep autocatalytic process initiated under acidic conditions through conformational changes of the propeptide, leading to the loss of its inhibitory ability and its subsequent gradual cleavage. The aims of this study were to characterize the residues present in the Der p 1 propeptide involved in the initiation of the zymogen maturation process, but also to assess the impact of acidic pH on the propeptide structure, the activity of Der p 1 and the fate of the propeptide. Using various complementary enzymatic and structural approaches, we demonstrated that a structural triad K17p-D51p-Y19p within the N-terminal domain of the propeptide is essential for its stabilization and the sensing of pH changes. Particularly, the protonation of D51p under acidic conditions unfolds the propeptide through disruption of the K17p-D51p salt bridge, reduces its inhibition capacity and unmasks the buried residues K17p and Y19p constituting the first maturation cleavage site of the zymogen. Our results also evidenced that this triad acts in a cooperative manner with other propeptide pH-responsive elements, including residues E56p and E80p, to promote the propeptide unfolding and/or to facilitate its proteolysis. Furthermore, we showed that acidic conditions modify Der p 1 proteolytic specificity and confirmed that the formation of the first intermediate represents the limiting step of the in vitro Der p 1 maturation process. Altogether, our results provide new insights into the early events of the mechanism of proDer p 1 maturation and identify a unique structural triad acting as a stabilizing and a pH-sensing regulatory element.
Collapse
Affiliation(s)
- Andy Chevigné
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - Vincenzo Campizi
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - David Bourry
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Marie-Eve Dumez
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - André Matagne
- Laboratoire d'Enzymologie, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Moreno Galleni
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Alain Jacquet
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
43
|
van Bilsen JHM, Sienkiewicz-Szłapka E, Lozano-Ojalvo D, Willemsen LEM, Antunes CM, Molina E, Smit JJ, Wróblewska B, Wichers HJ, Knol EF, Ladics GS, Pieters RHH, Denery-Papini S, Vissers YM, Bavaro SL, Larré C, Verhoeckx KCM, Roggen EL. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 2017; 7:13. [PMID: 28507730 PMCID: PMC5429547 DOI: 10.1186/s13601-017-0152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). MAIN BODY The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. CONCLUSION The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | | | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Harry J Wichers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Edward F Knol
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Simona L Bavaro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | | | | |
Collapse
|
44
|
Futamura K, Matsumoto K. Epicutaneous Sensitization in Patients with Atopic Dermatitis. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2016; 29:170-173. [PMID: 35923061 DOI: 10.1089/ped.2016.0716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic skin disorder among infants and young children. It is characterized by chronic relapsing eczema with itch and is caused by skin barrier dysfunction and immunological dysregulation. Scratching of the lesion site can damage the skin and increase epithelial permeability, thereby allowing large molecular weight antigens to be absorbed transcutaneously. However, a recent study demonstrated that Langerhans cells are localized close below the skin surface and extend dendrites vertically to penetrate the tight junctions (TJs) in erythematous lesions, even though the TJs were functionally intact. Therefore, epidermal barrier disruption per se is not critical for antigen uptake by Langerhans cells. In contrast, 2 critical damage-associated patterns-IL-33 and IL-1alpha-are reportedly released from damaged epithelial cells. Dendritic cells activated by IL-33 and thymic stromal lymphopoietin (TSLP) (induced by IL-1 alpha) express MHC class II and costimulatory molecules and facilitate naive T cell differentiation into IL-5- and IL-13-secreting Th2 cells. IL-33 and TSLP also activate type 2 innate lymphoid cells, induce large amounts of IL-5 and IL-13, and participate in the pathogenesis of AD. Primary prevention and proactive treatment of AD are critically important for preventing epicutaneous sensitization in AD patients. However, future studies are required to elucidate the most beneficial primary prevention strategies, including the indicated patient cohort and the timing and method of their application.
Collapse
Affiliation(s)
- Kyoko Futamura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
45
|
Oseroff C, Christensen LH, Westernberg L, Pham J, Lane J, Paul S, Greenbaum J, Stranzl T, Lund G, Hoof I, Holm J, Würtzen PA, Meno KH, Frazier A, Schulten V, Andersen PS, Peters B, Sette A. Immunoproteomic analysis of house dust mite antigens reveals distinct classes of dominant T cell antigens according to function and serological reactivity. Clin Exp Allergy 2016; 47:577-592. [PMID: 27684489 DOI: 10.1111/cea.12829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND House dust mite (HDM) allergens are a common cause of allergy and allergic asthma. A comprehensive analysis of proteins targeted by T cells, which are implicated in the development and regulation of allergic disease independent of their antibody reactivity, is still lacking. OBJECTIVE To comprehensively analyse the HDM-derived protein targets of T cell responses in HDM-allergic individuals, and investigate their correlation with IgE/IgG responses and protein function. METHODS Proteomic analysis (liquid chromatography-tandem mass spectrometry) of HDM extracts identified 90 distinct protein clusters, corresponding to 29 known allergens and 61 novel proteins. Peripheral blood mononuclear cells (PBMC) from 20 HDM-allergic individuals were stimulated with HDM extracts and assayed with a set of ~2500 peptides derived from these 90 protein clusters and predicted to bind the most common HLA class II types. 2D immunoblots were made in parallel to elucidate IgE and IgG reactivity, and putative function analyses were performed in silico according to Gene Ontology annotations. RESULTS Analysis of T cell reactivity revealed a large number of T cell epitopes. Overall response magnitude and frequency was comparable for known and novel proteins, with 15 antigens (nine of which were novel) dominating the total T cell response. Most of the known allergens that were dominant at the T cell level were also IgE reactive, as expected, while few novel dominant T cell antigens were IgE reactive. Among known allergens, hydrolase activity and detectable IgE/IgG reactivity are strongly correlated, while no protein function correlates with immunogenicity of novel proteins. A total of 106 epitopes accounted for half of the total T cell response, underlining the heterogeneity of T cell responses to HDM allergens. CONCLUSIONS AND CLINICAL RELEVANCE Herein, we define the T cell targets for both known allergens and novel proteins, which may inform future diagnostics and immunotherapeutics for allergy to HDM.
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Luise Westernberg
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - John Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Jerome Lane
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Gitte Lund
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | - Ilka Hoof
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | - Jens Holm
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | | | - Kåre H Meno
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | - April Frazier
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
46
|
Protein kinase Cθ controls type 2 innate lymphoid cell and T H2 responses to house dust mite allergen. J Allergy Clin Immunol 2016; 139:1650-1666. [PMID: 27746240 DOI: 10.1016/j.jaci.2016.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 07/14/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Protein kinase C (PKC) θ, a serine/threonine kinase, is involved in TH2 cell activation and proliferation. Type 2 innate lymphoid cells (ILC2s) resemble TH2 cells and produce the TH2 cytokines IL-5 and IL-13 but lack antigen-specific receptors. The mechanism by which PKC-θ drives innate immune cells to instruct TH2 responses in patients with allergic lung inflammation remains unknown. OBJECTIVES We hypothesized that PKC-θ contributes to ILC2 activation and might be necessary for ILC2s to instruct the TH2 response. METHODS PRKCQ gene expression was assessed in innate lymphoid cell subsets purified from human PBMCs and mouse lung ILC2s. ILC2 activation and eosinophil recruitment, TH2-related cytokine and chemokine production, lung histopathology, interferon regulatory factor 4 (IRF4) mRNA expression, and nuclear factor of activated T cells (NFAT1) protein expression were determined. Adoptive transfer of ILC2s from wild-type mice was performed in wild-type and PKC-θ-deficient (PKC-θ-/-) mice. RESULTS Here we report that PKC-θ is expressed in both human and mouse ILC2s. Mice lacking PKC-θ had reduced ILC2 numbers, TH2 cell numbers and activation, airway hyperresponsiveness, and expression of the transcription factors IRF4 and NFAT1. Importantly, adoptive transfer of ILC2s restored eosinophil influx and IL-4, IL-5 and IL-13 production in lung tissue, as well as TH2 cell activation. The pharmacologic PKC-θ inhibitor (Compound 20) administered during allergen challenge reduced ILC2 numbers and activation, as well as airway inflammation and IRF4 and NFAT1 expression. CONCLUSIONS Therefore our findings identify PKC-θ as a critical factor for ILC2 activation that contributes to TH2 cell differentiation, which is associated with IRF4 and NFAT1 expression in allergic lung inflammation.
Collapse
|
47
|
Shimura S, Takai T, Iida H, Maruyama N, Ochi H, Kamijo S, Nishioka I, Hara M, Matsuda A, Saito H, Nakae S, Ogawa H, Okumura K, Ikeda S. Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice. J Invest Dermatol 2016; 136:1408-1417. [DOI: 10.1016/j.jid.2016.02.810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 02/01/2023]
|
48
|
Nakano Y, Kidani Y, Goto K, Furue S, Tomita Y, Inagaki N, Tanaka H, Shichijo M. Role of Prostaglandin D2 and DP1 Receptor on Japanese Cedar Pollen-Induced Allergic Rhinitis in Mice. J Pharmacol Exp Ther 2016; 357:258-63. [PMID: 26945086 DOI: 10.1124/jpet.115.229799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023] Open
Abstract
Although we previously demonstrated the contribution of the DP1receptor in nasal obstruction using animals sensitized with ovalbumin in the presence of adjuvant, the contribution of the DP1receptor in sneezing is unclear. Here, we developed a mouse model of Japanese cedar (JC:Cryptomeria japonica) pollinosis to evaluate the symptoms of sneezing. To achieve this, we used JC pollen crude extract in the absence of adjuvant to sensitize mice to develop a model closer to the pathophysiology of human JC pollinosis. The immunologic and pharmacologic features of this model are highly similar to those observed in JC pollinosis in humans. Using this model, we found that DP1receptor antagonists suppressed JC pollen extract-induced sneezing and that a DP1receptor agonist induced sneezing. Moreover, JC pollen extract-induced sneezing was diminished in DP1receptor knockout mice. In conclusion, we developed a novel mouse model of allergic rhinitis that closely mimics human JC pollinosis. A strong contribution of DP1receptor signaling to sneezing was demonstrated using this model, suggesting that DP1receptor antagonists could suppress sneezing and nasal obstruction, and therefore these agents could be a new therapeutic option for allergic rhinitis.
Collapse
Affiliation(s)
- Yoshiyuki Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yujiro Kidani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Kumiko Goto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Shingo Furue
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yasuhiko Tomita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Naoki Inagaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Hiroyuki Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Michitaka Shichijo
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| |
Collapse
|
49
|
Tulic MK, Vivinus-Nébot M, Rekima A, Rabelo Medeiros S, Bonnart C, Shi H, Walker A, Dainese R, Boyer J, Vergnolle N, Piche T, Verhasselt V. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut 2016; 65:757-766. [PMID: 26646935 DOI: 10.1136/gutjnl-2015-310523] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/05/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Abnormal gut barrier function is the basis of gut inflammatory disease. It is known that house dust mite (HDM) aero-allergens induce inflammation in respiratory mucosa. We have recently reported allergen from Dermatophagoides pteronyssinus (Der p1) to be present in rodent gut. OBJECTIVE To examine whether Der p1 is present in human gut and to assess its effect on gut barrier function and inflammation. DESIGN Colonic biopsies, gut fluid, serum and stool were collected from healthy adults during endoscopy. Der p1 was measured by ELISA. Effect of HDM was assessed on gut permeability, tight-junction and mucin expression, and cytokine production, in presence or absence of cysteine protease inhibitors or serine protease inhibitors. In vivo effect of HDM was examined in mice given oral HDM or protease-neutralised HDM. Role of HDM in low-grade inflammation was studied in patients with IBS. RESULTS HDM Der p1 was detected in the human gut. In colonic biopsies from healthy patients, HDM increased epithelial permeability (p<0.001), reduced expression of tight-junction proteins and mucus barrier. These effects were associated with increased tumour necrosis factor (TNF)-α and interleukin (IL)-10 production and were abolished by cysteine-protease inhibitor (p<0.01). HDM effects did not require Th2 immunity. Results were confirmed in vivo in mice. In patients with IBS, HDM further deteriorated gut barrier function, induced TNF-α but failed to induce IL-10 secretion (p<0.001). CONCLUSIONS HDM, a ubiquitous environmental factor, is present in the human gut where it directly affects gut function through its proteolytic activity. HDM may be an important trigger of gut dysfunction and warrants further investigation.
Collapse
Affiliation(s)
- Meri K Tulic
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France The International Inflammation 'in-FLAME' Network, Worldwide Universities Network
| | - Mylene Vivinus-Nébot
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Immunology, Hôpital Archet 1, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Akila Rekima
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France
| | - Samara Rabelo Medeiros
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chrystelle Bonnart
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, Site Paul Sabatier (UPS), Toulouse, France
| | - Haining Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Raffaella Dainese
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Julien Boyer
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Nathalie Vergnolle
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, Site Paul Sabatier (UPS), Toulouse, France
| | - Thierry Piche
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Valérie Verhasselt
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France The International Inflammation 'in-FLAME' Network, Worldwide Universities Network
| |
Collapse
|
50
|
Grafetstätter C, Prossegger J, Braunschmid H, Sanovic R, Hahne P, Pichler C, Thalhamer J, Hartl A. No Concentration Decrease of House Dust Mite Allergens With Rising Altitude in Alpine Regions. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:312-8. [PMID: 27126724 PMCID: PMC4853508 DOI: 10.4168/aair.2016.8.4.312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
Abstract
Purpose Several studies over the past 4 decades have indicated a significant reduction in house dust mite (HDM) and HDM allergen concentration in areas higher than 1,500 m above sea level. These have served as basis of allergen avoidance therapies for HDM allergy and asthma. However, modern construction techniques used in the insulation, heating, and glazing of buildings as well as global warming have changed the environmental parameters for HDM living conditions. The present study revisits the paradigm of decreasing HDM allergen concentrations with increasing altitude in the alpine region of Germany and Austria. Methods A total of 122 dust samples from different abodes (hotels, privates and mountain huts) at different altitudes (400-2,600 m) were taken, and concentrations of HDM allergens were analyzed. Humidity and temperature conditions, and numerous indoor environmental parameters such as fine dust, type of flooring, age of building, and frequency of cleaning were determined. Results HDM allergen concentrations did not significantly change with increasing altitude or relative humidity. At the level of indoor parameters, correlations could be found for different flooring types and the concentration of HDM allergens. Conclusions In contrast to the widespread view of the relationship between altitude and HDM allergen concentrations, clinically relevant concentrations of HDM allergens could be detected in high-lying alpine regions in Austria and Germany. These results indicate that improvement in conditions of asthmatic patients sensitized against HDMs during a stay at high altitude can no longer be ascribed to decreased levels of HDM allergens, instead, other mechanisms may trigger the beneficial effect.
Collapse
Affiliation(s)
| | - Johanna Prossegger
- Institute of Ecomedicine, Paracelsus Medical University, Salzburg, Austria
| | | | - Renata Sanovic
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Penelope Hahne
- Institute of Ecomedicine, Paracelsus Medical University, Salzburg, Austria
| | - Christina Pichler
- Institute of Ecomedicine, Paracelsus Medical University, Salzburg, Austria
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Arnulf Hartl
- Institute of Ecomedicine, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|