1
|
Singh K, Vashishtha S, Chakraborty A, Kumar A, Thakur S, Kundu B. The Salmonella typhi Cell Division Activator Protein StCAP Impacts Pathogenesis by Influencing Critical Molecular Events. ACS Infect Dis 2024; 10:1990-2001. [PMID: 38815059 DOI: 10.1021/acsinfecdis.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 μM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 μM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.
Collapse
Affiliation(s)
- Kritika Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Bourne CM, Taabazuing CY. Harnessing Pyroptosis for Cancer Immunotherapy. Cells 2024; 13:346. [PMID: 38391959 PMCID: PMC10886719 DOI: 10.3390/cells13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cancer immunotherapy is a novel pillar of cancer treatment that harnesses the immune system to fight tumors and generally results in robust antitumor immunity. Although immunotherapy has achieved remarkable clinical success for some patients, many patients do not respond, underscoring the need to develop new strategies to promote antitumor immunity. Pyroptosis is an immunostimulatory type of regulated cell death that activates the innate immune system. A hallmark of pyroptosis is the release of intracellular contents such as cytokines, alarmins, and chemokines that can stimulate adaptive immune activation. Recent studies suggest that pyroptosis promotes antitumor immunity. Here, we review the mechanisms by which pyroptosis can be induced and highlight new strategies to induce pyroptosis in cancer cells for antitumor defense. We discuss how pyroptosis modulates the tumor microenvironment to stimulate adaptive immunity and promote antitumor immunity. We also suggest research areas to focus on for continued development of pyroptosis as an anticancer treatment. Pyroptosis-based anticancer therapies offer a promising new avenue for treating immunologically 'cold' tumors.
Collapse
Affiliation(s)
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Zigdon M, Sawaed J, Zelik L, Binyamin D, Ben-Simon S, Asulin N, Levin R, Modilevsky S, Naama M, Telpaz S, Rubin E, Awad A, Sawaed W, Harshuk-Shabso S, Nuriel-Ohayon M, Krishnamohan M, Werbner M, Koren O, Winter SE, Apte RN, Voronov E, Bel S. Salmonella manipulates the host to drive pathogenicity via induction of interleukin 1β. PLoS Biol 2024; 22:e3002486. [PMID: 38236896 PMCID: PMC10826948 DOI: 10.1371/journal.pbio.3002486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
Acute gastrointestinal infection with intracellular pathogens like Salmonella Typhimurium triggers the release of the proinflammatory cytokine interleukin 1β (IL-1β). However, the role of IL-1β in intestinal defense against Salmonella remains unclear. Here, we show that IL-1β production is detrimental during Salmonella infection. Mice lacking IL-1β (IL-1β -/-) failed to recruit neutrophils to the gut during infection, which reduced tissue damage and prevented depletion of short-chain fatty acid (SCFA)-producing commensals. Changes in epithelial cell metabolism that typically support pathogen expansion, such as switching energy production from fatty acid oxidation to fermentation, were absent in infected IL-1β -/- mice which inhibited Salmonella expansion. Additionally, we found that IL-1β induces expression of complement anaphylatoxins and suppresses the complement-inactivator carboxypeptidase N (CPN1). Disrupting this process via IL-1β loss prevented mortality in Salmonella-infected IL-1β -/- mice. Finally, we found that IL-1β expression correlates with expression of the complement receptor in patients suffering from sepsis, but not uninfected patients and healthy individuals. Thus, Salmonella exploits IL-1β signaling to outcompete commensal microbes and establish gut colonization. Moreover, our findings identify the intersection of IL-1β signaling and the complement system as key host factors involved in controlling mortality during invasive Salmonellosis.
Collapse
Affiliation(s)
- Mor Zigdon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Jasmin Sawaed
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lilach Zelik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dana Binyamin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shira Ben-Simon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nofar Asulin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Maria Naama
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shahar Telpaz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Elad Rubin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Aya Awad
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Wisal Sawaed
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | - Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Werbner
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sebastian E. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, California, United States of America
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shai Bel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
4
|
Siracusa F, Schaltenberg N, Kumar Y, Lesker TR, Steglich B, Liwinski T, Cortesi F, Frommann L, Diercks BP, Bönisch F, Fischer AW, Scognamiglio P, Pauly MJ, Casar C, Cohen Y, Pelczar P, Agalioti T, Delfs F, Worthmann A, Wahib R, Jagemann B, Mittrücker HW, Kretz O, Guse AH, Izbicki JR, Lassen KG, Strowig T, Schweizer M, Villablanca EJ, Elinav E, Huber S, Heeren J, Gagliani N. Short-term dietary changes can result in mucosal and systemic immune depression. Nat Immunol 2023; 24:1473-1486. [PMID: 37580603 PMCID: PMC10457203 DOI: 10.1038/s41590-023-01587-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.
Collapse
Affiliation(s)
- Francesco Siracusa
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Nicola Schaltenberg
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Kumar
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Liwinski
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Filippo Cortesi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Frommann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Phillip Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedericke Bönisch
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mira J Pauly
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Flemming Delfs
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bettina Jagemann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Health Service Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kara G Lassen
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
5
|
Mikolajczyk-Martinez A, Ugorski M. Unraveling the role of type 1 fimbriae in Salmonella pathogenesis: insights from a comparative analysis of Salmonella Enteritidis and Salmonella Gallinarum. Poult Sci 2023; 102:102833. [PMID: 37356296 PMCID: PMC10404763 DOI: 10.1016/j.psj.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Significant differences in pathogenicity between Salmonella Enteritidis and Salmonella Gallinarum exist despite the fact that S. Gallinarum is a direct descendant of S. Enteritidis. It was hypothesized that such various properties may be in part the result of differences in structure and functions of type 1 fimbriae (T1Fs). In S. Enteritidis, T1Fs bind to oligomannosidic structures carried by host cell glycoproteins and are called mannose-sensitive T1Fs (MST1F). In S. Gallinarum, T1Fs lost ability to bind such carbohydrate chains, and were named mannose-resistant MRT1Fs (MRT1F). Therefore, the present study was undertaken to evaluate the role of MST1Fs and MRT1Fs in the adhesion, invasion, intracellular survival and cytotoxicity of S. Enteritidis and S. Gallinarum toward chicken intestinal CHIC8-E11cells and macrophage-like HD11 cells. Using mutant strains: S. Enteritidis fimH::kan and S. Gallinarum fimH::kan devoid of T1Fs and in vitro assays the following observations were made. MST1Fs have a significant impact on the chicken cell invasion by S. Enteritidis as MST1F-mediated adhesion facilitates direct and stable contact of bacteria with host cells, in contrast to MRT1Fs expressed by S. Gallinarum. MST1Fs as well as MRT1Fs did not affected intracellular viability of S. Enteritidis and S. Gallinarum. However, absolute numbers of intracellular viable wild-type S. Enteritidis were significantly higher than S. Enteritidis fimH::kan mutant and wild-type S. Gallinarum and S. Gallinarum fimH::kan mutant. These differences, reflecting the numbers of adherent and invading bacteria, underline the importance of MST1Fs in the pathogenicity of S. Enteritidis infections. The cytotoxicity of wild-type S. Enteritidis and its mutant devoid of MST1Fs to HD11 cells was essentially the same, despite the fact that the number of viable intracellular bacteria was significantly lower in the mutated strain. Using HD11 cells with similar number of intracellular wild-type S. Enteritidis and S. Enteritidis fimH::kan mutant, it was found that the lack of MST1Fs did not affect directly the cytotoxicity, suggesting that the increase in cytotoxicity of S. Enteritidis devoid of MST1Fs may be associated with crosstalk between T1Fs and other virulence factors.
Collapse
Affiliation(s)
- Agata Mikolajczyk-Martinez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
6
|
Khan M, Shamim S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022; 10:2006. [PMID: 36296282 PMCID: PMC9606911 DOI: 10.3390/microorganisms10102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is a Gram-negative pathogen that causes typhoid fever in humans. Though many serotypes of Salmonella spp. are capable of causing disease in both humans and animals alike, S. Typhi and S. Paratyphi are common in human hosts only. The global burden of typhoid fever is attributable to more than 27 million cases each year and approximately 200,000 deaths worldwide, with many regions such as Africa, South and Southeast Asia being the most affected in the world. The pathogen is able to cause disease in hosts by evading defense systems, adhesion to epithelial cells, and survival in host cells in the presence of several virulence factors, mediated by virulence plasmids and genes clustered in distinct regions known as Salmonella pathogenicity islands (SPIs). These factors, coupled with plasmid-mediated antimicrobial resistance genes, enable the bacterium to become resistant to various broad-spectrum antibiotics used in the treatment of typhoid fever and other infections caused by Salmonella spp. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains in many countries of the world has raised great concern over the rise of antibiotic resistance in pathogens such as S. Typhi. In order to identify the key virulence factors involved in S. Typhi pathogenesis and infection, this review delves into various mechanisms of virulence, pathogenicity, and antimicrobial resistance to reinforce efficacious disease management.
Collapse
Affiliation(s)
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
8
|
Mechanisms for the Invasion and Dissemination of Salmonella. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:2655801. [PMID: 35722038 PMCID: PMC9203224 DOI: 10.1155/2022/2655801] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Salmonella enterica is a gastroenteric Gram-negative bacterium that can infect both humans and animals and causes millions of illnesses per year around the world. Salmonella infections usually occur after the consumption of contaminated food or water. Infections with Salmonella species can cause diseases ranging from enterocolitis to typhoid fever. Salmonella has developed multiple strategies to invade and establish a systemic infection in the host. Different cell types, including epithelial cells, macrophages, dendritic cells, and M cells, are important in the infection process of Salmonella. Dissemination throughout the body and colonization of remote organs are hallmarks of Salmonella infection. There are several routes for the dissemination of Salmonella typhimurium. This review summarizes the current understanding of the infection mechanisms of Salmonella. Additionally, different routes of Salmonella infection will be discussed. In this review, the strategies used by Salmonella enterica to establish persistent infection will be discussed. Understanding both the bacterial and host factors leading to the successful colonization of Salmonella enterica may enable the rational design of effective therapeutic strategies.
Collapse
|
9
|
Gasdermin D and Beyond - Gasdermin-mediated Pyroptosis in Bacterial Infections. J Mol Biol 2021; 434:167409. [PMID: 34929200 DOI: 10.1016/j.jmb.2021.167409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
The discovery of pyroptosis and its subsequent implications in infection and immunity has uncovered a new angle of host-defence against pathogen assault. At its most simple, gasdermin-mediated pyroptosis in bacterial infection would be expected to remove pathogens from the relative safety of the cytosol or pathogen containing vacuole/phagosome whilst inducing a rapid and effective immune response. Differences in gasdermin-mediated pyroptosis between cell types, stimulation conditions, pathogen and even animal species, however, make things more complex. The excessive inflammation associated with the pathogen-induced gasdermin-mediated pyroptosis contributes to a downward spiral in sepsis. With no currently approved effective treatment options for sepsis understanding how gasdermin-mediated pyroptotic pathways are regulated provides an opportunity to identify novel therapeutic candidates against this complex disease. In this review we cover recent advances in the field of gasdermin-mediated pyroptosis with a focus on bacterial infection and sepsis models in the context of humans and other animal species. Importantly we also consider why there is considerable redundancy set into these ancient immune pathways.
Collapse
|
10
|
Dong T, Wang W, Xia M, Liang S, Hu G, Ye H, Cao Q, Dong Z, Zhang C, Feng D, Zuo J. Involvement of the Heat Shock Protein HtpG of Salmonella Typhimurium in Infection and Proliferation in Hosts. Front Cell Infect Microbiol 2021; 11:758898. [PMID: 34869065 PMCID: PMC8635147 DOI: 10.3389/fcimb.2021.758898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Salmonella Typhimurium is a common pathogen infecting the gastrointestinal tract of humans and animals, causing host gastroenteritis and typhoid fever. Heat shock protein (HtpG) as a molecular chaperone is involved in the various cellular processes of bacteria, especially under environmental stress. However, the potential association of HtpG with S. Typhimurium infection remains unknown. In this study, we clarified that HtpG could also play a role as an effector in S. Typhimurium infection. RNA-seq indicated that the flagellar assembly pathway, infection pathway, and chemotaxis pathway genes of S. Typhimurium were downregulated after the mutation of HtpG, which resulted in compromises of S. Typhimurium motility, biofilm formation, adhesion, invasion, and inflammation-inducing ability. In addition, HtpG recombinant protein was capable of promoting the proliferation of S. Typhimurium in host cells and the resultant inflammation. Collectively, our results illustrated an important role of HtpG in S. Typhimurium infection.
Collapse
Affiliation(s)
- Tao Dong
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Weiwei Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Minhao Xia
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Shujie Liang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Guangzhong Hu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Hui Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Qingyun Cao
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Zemin Dong
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Changming Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Dingyuan Feng
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Jianjun Zuo
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| |
Collapse
|
11
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Cai J, Yi M, Tan Y, Li X, Li G, Zeng Z, Xiong W, Xiang B. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:190. [PMID: 34108030 PMCID: PMC8188724 DOI: 10.1186/s13046-021-01995-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Background Pyroptosis is a lytic cell death form executed by gasdermins family proteins. Induction of tumor pyroptosis promotes anti-tumor immunity and is a potential cancer treatment strategy. Triptolide (TPL) is a natural product isolated from the traditional Chinese herb which possesses potent anti-tumor activity in human cancers. However, its role in pyroptosis remains to be elucidated. Methods Cell survival was measured by colony formation assay. Cell apoptosis was determined by Annexin V assay. Pyroptosis was evaluated by morphological features and release of interleukin 1β and lactate dehydrogenase A (LDHA). Immunofluorescence staining was employed to measure subcellular localization of proteins. Tumorigenicity was assessed by a xenograft tumor model. Expression levels of mRNAs or proteins were determined by qPCR or western blot assay, respectively. Results Triptolide eliminates head and neck cancer cells through inducing gasdermin E (GSDME) mediated pyroptosis. Silencing GSDME attenuates the cytotoxicity of TPL against cancer cells. TPL treatment suppresses expression of c-myc and mitochondrial hexokinase II (HK-II) in cancer cells, leading to activation of the BAD/BAX-caspase 3 cascade and cleavage of GSDME by active caspase 3. Silencing HK-II sensitizes cancer cells to TPL induced pyroptosis, whereas enforced expression of HK-II prevents TPL induced pyroptosis. Mechanistically, HK-II prevents mitochondrial translocation of BAD, BAX proteins and activation of caspase 3, thus attenuating cleavage of GSDME and pyroptosis upon TPL treatment. Furthermore, TPL treatment suppresses NRF2/SLC7A11 (also known as xCT) axis and induces reactive oxygen species (ROS) accumulation, regardless of the status of GSDME. Combination of TPL with erastin, an inhibitor of SLC7A11, exerts robust synergistic effect in suppression of tumor survival in vitro and in a nude mice model. Conclusions This study not only provides a new paradigm of TPL in cancer therapy, but also highlights a crucial role of mitochondrial HK-II in linking glucose metabolism with pyroptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01995-7.
Collapse
Affiliation(s)
- Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenetics, The Central South University, Changsha, 410011, Hunan, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
13
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Rao S, Xu T, Xia Y, Zhang H. Salmonella and S. aureus Escape From the Clearance of Macrophages via Controlling TFEB. Front Microbiol 2020; 11:573844. [PMID: 33324360 PMCID: PMC7726115 DOI: 10.3389/fmicb.2020.573844] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Phagosome- and xenophagosome-lysosome systems play a critical role in the defense of pathogenic bacteria, such as Salmonella and S. aureus, in macrophages. A great part of the bacteria escapes from the digestion and can survive through some mechanisms that are still poorly understood and which require further exploration. Here we identified that Salmonella inhibited the expression and activation of TFEB to blunt the functions of lysosomes and defense of clearance by activating caspase-1. The expression and activation of TFEB were enhanced early under the infection of S. aureus, which was followed by shrinkage to weaken lysosomal functions due to the delayed activation of ERK, mTOR, and STAT3. Thus, we have identified novel escape mechanisms for Salmonella and S. aureus to deepen and strengthen our strategies fighting with pathogens.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Pathology, Wuhan Central Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Zhang
- Department of Pathology, Wuhan Central Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Lin HH, Chen HL, Weng CC, Janapatla RP, Chen CL, Chiu CH. Activation of apoptosis by Salmonella pathogenicity island-1 effectors through both intrinsic and extrinsic pathways in Salmonella-infected macrophages. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:616-626. [PMID: 32127288 DOI: 10.1016/j.jmii.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Salmonella enterica serovar Typhimurium, a non-typhoidal food-borne pathogen, causes acute enterocolitis, bacteremia, extraintestinal focal infections in humans. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) contribute to invading into host cellular cytosol, residing in Salmonella-containing vacuoles for intracellular survival, and inducing cellular apoptosis. This study aimed to better understand the mechanism underlying apoptosis in Salmonella-infected macrophages. METHODS S. Typhimurium SL1344 was used to evaluate extrinsic and intrinsic apoptosis pathways in THP-1 monocyte-derived macrophages in response to Salmonella infection. RESULTS Activated caspase-3-induced apoptosis pathways, including extrinsic (caspase-8-mediated) and intrinsic (caspase-9-mediated) pathways, in Salmonella-infected macrophages were verified. THP-1 cells with dysfunction of TLR-4 and TLR-5 and Salmonella SPI-1 and SPI-2 mutants were constructed to identify the roles of the genes associated with programmed cell death in the macrophages. Caspase-3 activation in THP-1 macrophages was induced by Salmonella through TLR-4 and TLR-5 signaling pathways. We also identified that SPI-1 structure protein PrgH and effectors SipB and SipD, but not SPI-2 structure protein SsaV, could induce apoptosis via caspase-3 activation and reduce the secretion of inflammation marker TNF-α in the Salmonella-infected cells. The two effectors also reduced the translocation of the p65 subunit of NF-κB into the nucleus and the expression of TNF-α, and then inflammation was diminished. CONCLUSION Non-typhoid Salmonella induced apoptosis of macrophages and thereby reduced inflammatory cytokine production through the expression of SPI-1. This mechanism in host-pathogen interaction may explain why Salmonella usually manifests as occult bacteremia with less systemic inflammatory response syndrome in the bloodstream infection of children.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chang-Ching Weng
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Lacey CA, Miao EA. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036459. [PMID: 31501197 DOI: 10.1101/cshperspect.a036459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune sensors can recognize when host cells are irrevocably compromised by pathogens, and in response can trigger programmed cell death (pyroptosis, apoptosis, and necroptosis). Innate sensors can directly bind microbial ligands; for example, NAIP/NLRC4 detects flagellin/rod/needle, whereas caspase-11 detects lipopolysaccharide. Other sensors are guards that monitor normal function of cellular proteins; for instance, pyrin monitors Rho GTPases, whereas caspase-8 and receptor-interacting protein kinase (RIPK)3 guards RIPK1 transcriptional signaling. Some proteins that need to be guarded can be duplicated as decoy domains, as seen in the integrated decoy domains within NLRP1 that watch for microbial attack. Here, we discuss the evolutionary battle between pathogens and host innate immune sensors/guards, illustrated by the Red Queen hypothesis. We discuss in depth four pathogens, and how they either fail in this evolutionary race (Chromobacterium violaceum, Burkholderia thailandensis), or how the evolutionary race generates increasingly complex virulence factors and host innate immune signaling pathways (Yersinia species, and enteropathogenic Escherichia coli [EPEC]).
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
17
|
Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, Ma P, Potts DE, Chen Z, Paik D, Soualhi S, Yan Y, Misra A, Goldstein K, Lagomarsino VN, Nordstrom A, Sivanathan KN, Wallrapp A, Kuchroo VK, Nowarski R, Starnbach MN, Shi H, Surana NK, An D, Wu C, Huh JR, Rao M, Chiu IM. Gut-Innervating Nociceptor Neurons Regulate Peyer's Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell 2020; 180:33-49.e22. [PMID: 31813624 PMCID: PMC6954329 DOI: 10.1016/j.cell.2019.11.014] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.
Collapse
Affiliation(s)
- Nicole Y Lai
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa A Musser
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Pankaj Baral
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Jacobson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Pingchuan Ma
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Potts
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Zuojia Chen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donggi Paik
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yiqing Yan
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlin Goldstein
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anja Nordstrom
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Hailian Shi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Neeraj K Surana
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chuan Wu
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun R Huh
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 2020; 13:530-544. [PMID: 31953493 PMCID: PMC7181392 DOI: 10.1038/s41385-019-0247-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes can prevent systemic dissemination of enteropathogenic bacteria. As adapted pathogens including Salmonella Typhimurium (S. Tm) have evolved evasion strategies, it has remained unclear when and where inflammasomes restrict their dissemination. Bacterial population dynamics establish that the NAIP/NLRC4 inflammasome specifically restricts S. Tm migration from the gut to draining lymph nodes. This is solely attributable to NAIP/NLRC4 within intestinal epithelial cells (IECs), while S. Tm evades restriction by phagocyte NAIP/NLRC4. NLRP3 and Caspase-11 also fail to restrict S. Tm mucosa traversal, migration to lymph nodes, and systemic pathogen growth. The ability of IECs (not phagocytes) to mount a NAIP/NLRC4 defense in vivo is explained by particularly high NAIP/NLRC4 expression in IECs and the necessity for epithelium-invading S. Tm to express the NAIP1-6 ligands-flagella and type-III-secretion-system-1. Imaging reveals both ligands to be promptly downregulated following IEC-traversal. These results highlight the importance of intestinal epithelial NAIP/NLRC4 in blocking bacterial dissemination in vivo, and explain why this constitutes a uniquely evasion-proof defense against the adapted enteropathogen S. Tm.
Collapse
|
19
|
Benaoudia S, Martin A, Puig Gamez M, Gay G, Lagrange B, Cornut M, Krasnykov K, Claude J, Bourgeois CF, Hughes S, Gillet B, Allatif O, Corbin A, Ricci R, Henry T. A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. EMBO Rep 2019; 20:e48235. [PMID: 31353801 PMCID: PMC6727027 DOI: 10.15252/embr.201948235] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Caspase-4, the cytosolic LPS sensor, and gasdermin D, its downstream effector, constitute the non-canonical inflammasome, which drives inflammatory responses during Gram-negative bacterial infections. It remains unclear whether other proteins regulate cytosolic LPS sensing, particularly in human cells. Here, we conduct a genome-wide CRISPR/Cas9 screen in a human monocyte cell line to identify genes controlling cytosolic LPS-mediated pyroptosis. We find that the transcription factor, IRF2, is required for pyroptosis following cytosolic LPS delivery and functions by directly regulating caspase-4 levels in human monocytes and iPSC-derived monocytes. CASP4, GSDMD, and IRF2 are the only genes identified with high significance in this screen highlighting the simplicity of the non-canonical inflammasome. Upon IFN-γ priming, IRF1 induction compensates IRF2 deficiency, leading to robust caspase-4 expression. Deficiency in IRF2 results in dampened inflammasome responses upon infection with Gram-negative bacteria. This study emphasizes the central role of IRF family members as specific regulators of the non-canonical inflammasome.
Collapse
Affiliation(s)
- Sacha Benaoudia
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Amandine Martin
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Marta Puig Gamez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Centre National de la Recherche Scientifique, UMR 7104Institut National de la Santé et de la Recherche Médicale U964Université de StrasbourgIllkirchFrance
- Laboratoire de Biochimie et de Biologie MoléculaireNouvel Hôpital CivilStrasbourgFrance
- Université de StrasbourgStrasbourgFrance
- INGESTEM National iPSC InfrastructureVillejuifFrance
| | - Gabrielle Gay
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Brice Lagrange
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Maxence Cornut
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Kyrylo Krasnykov
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Jean‐Baptiste Claude
- LBMC, Laboratoire de Biologie et Modélisation de la celluleUniversité Claude Bernard Lyon 1INSERM U1210, CNRS, UMR5239École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Cyril F Bourgeois
- LBMC, Laboratoire de Biologie et Modélisation de la celluleUniversité Claude Bernard Lyon 1INSERM U1210, CNRS, UMR5239École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Sandrine Hughes
- Sequencing PlatformInstitut de Génomique Fonctionnelle de Lyon (IGFL)Université Claude Bernard Lyon 1, CNRS, UMR5242École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Benjamin Gillet
- Sequencing PlatformInstitut de Génomique Fonctionnelle de Lyon (IGFL)Université Claude Bernard Lyon 1, CNRS, UMR5242École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Omran Allatif
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
- BIBS, Bioinformatic and Biostatic ServicesCIRILyonFrance
| | - Antoine Corbin
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
- BIBS, Bioinformatic and Biostatic ServicesCIRILyonFrance
| | - Romeo Ricci
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Centre National de la Recherche Scientifique, UMR 7104Institut National de la Santé et de la Recherche Médicale U964Université de StrasbourgIllkirchFrance
- Laboratoire de Biochimie et de Biologie MoléculaireNouvel Hôpital CivilStrasbourgFrance
- Université de StrasbourgStrasbourgFrance
- INGESTEM National iPSC InfrastructureVillejuifFrance
| | - Thomas Henry
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| |
Collapse
|
20
|
Liu J, Gu Z, Zhang H, Zhao J, Chen W. Preventive effects of Lactobacillus plantarum ST-III against Salmonella infection. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Zitnan R, Albrecht E, Kalbe C, Miersch C, Revajova V, Levkut M, Röntgen M. Muscle characteristics in chicks challenged with Salmonella Enteritidis and the effect of preventive application of the probiotic Enterococcus faecium. Poult Sci 2019; 98:2014-2025. [PMID: 30590796 PMCID: PMC6448134 DOI: 10.3382/ps/pey561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to assess the effects of the probiotic Enterococcus faecium AL41 (EF) and of the enteric pathogen Salmonella Enteritidis PT4 (SE) on the development of posthatch pectoralis major muscle (PM) of broiler chicks. The four experimental groups were control (CON), EF, SE, and EF+SE (EFSE). EF and SE were given per os from days 1 to 7 and at day 4 posthatch, respectively. Muscle samples from 6 chicks per group were taken at day 8 (D8) and day 11 (D11) to evaluate PM myofiber growth, capillarization, DNA, RNA, and protein content, as well as enzyme activities (isocitrate dehydrogenase, lactate dehydrogenase, creatine kinase). PM growth rate was 7.45 ± 2.7 g/d in non-SE groups (CON, EF) and 5.10 ± 1.82 g/d in SE-infected groups (P < 0.02). Compared with group CON, application of bacteria (groups EF and SE) reduced the fiber cross-sectional area (246 and 262 vs. 347 ± 19 μm2) and the number of myonuclei per fiber (0.66 and 0.64 vs. 0.79 ± 0.03). At D11, hypertrophic myofiber growth normalized in the EF group, but negative effects persisted in SE and EFSE birds contributing to lower daily PM gain. In addition, SE infection strongly disturbed PM capillarization. Negative effects on capillary cross-sectional area and on the area (%) covered by capillaries persisted until D11 in the SE group, whereas pre-feeding of EF restored capillarization in the EFSE group to control levels. We conclude that supplementation of the probiotic bacteria EF AL41 had positive effects on PM capillarization and, thus, on delivery of O2, supply of nutrients, and removal of metabolites. Supplementation of probiotic bacteria might therefore reduce energetic stress and improve muscle health and meat quality during SE infection.
Collapse
Affiliation(s)
- R Zitnan
- National Agriculture and Food Centre, Research Institute of Animal Production, Nitra, Kosice, Slovakia
| | - E Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Miersch
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - V Revajova
- Department of Pathological Anatomy, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - M Levkut
- Department of Pathological Anatomy, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - M Röntgen
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
22
|
Nascimento DDO, Vieira-de-Abreu A, Arcanjo AF, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin α Dβ 2 (CD11d/CD18) Modulates Leukocyte Accumulation, Pathogen Clearance, and Pyroptosis in Experimental Salmonella Typhimurium Infection. Front Immunol 2018; 9:1128. [PMID: 29881383 PMCID: PMC5977906 DOI: 10.3389/fimmu.2018.01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
β2 integrins are critical in host defense responses to invading pathogens and inflammation. Previously, we reported that genetic deficiency of integrin αDβ2 in mice altered outcomes in experimental systemic infections including accelerated mortality in animals infected with Salmonella enterica serovar Typhimurium. Here, we show that deficiency of αDβ2 results in impaired accumulation of leukocytes in response to peritoneal infection by S. Typhimurium, impaired pathogen clearance in vivo, defective bacterial elimination by cultured peritoneal macrophages, and enhanced pyroptosis, a cell death process triggered by Salmonella. Salmonella-infected animals deficient in αDβ2 had increased levels of peritoneal cytokines in addition to other markers of pyroptosis, which may contribute to inflammatory injury and increased mortality in the context of impaired bacterial killing. These observations indicate important contributions of leukocyte integrins to the host response in experimental Salmonella infection and reveal previous activities of αDβ2 in bacterial infection.
Collapse
Affiliation(s)
| | - Adriana Vieira-de-Abreu
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Angélica F Arcanjo
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patricia Torres Bozza
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | | |
Collapse
|
23
|
Alturki NA, McComb S, Ariana A, Rijal D, Korneluk RG, Sun SC, Alnemri E, Sad S. Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis. Cell Death Dis 2018; 9:592. [PMID: 29789521 PMCID: PMC5964080 DOI: 10.1038/s41419-018-0672-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses.
Collapse
Affiliation(s)
- Norah A Alturki
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Applied Medical science, King Saud University, Riyadh, Saudi Arabia
| | - Scott McComb
- Human Health and Therapeutics, National Research Council of Canada, Ottawa, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Dikchha Rijal
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert G Korneluk
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ontario, Canada
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emad Alnemri
- Thomas Jefferson University, Philadelphia, PA, USA
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada. .,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ontario, Canada.
| |
Collapse
|
24
|
Wang J, Ren H, Yuan X, Ma H, Shi X, Ding Y. Interleukin-10 secreted by mesenchymal stem cells attenuates acute liver failure through inhibiting pyroptosis. Hepatol Res 2018; 48:E194-E202. [PMID: 28833919 DOI: 10.1111/hepr.12969] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022]
Abstract
AIM Recently, the benefit of mesenchymal stem cells (MSCs) as a cell-based therapy for acute liver failure (ALF) has gained much attention, although the mechanism of action of MSCs in the treatment of ALF remains elusive. Pyroptosis is a novel form of programmed cell death with an intense inflammatory response. The aim of the present study was to explore the soluble cytokines secreted by MSCs and their therapeutic effects through inhibiting pyroptosis in ALF. METHODS Mesenchymal stem cells obtained from C57BL/6 mice were isolated and cultured according to an established protocol. The MSCs were transplanted into mice with D-galactosamine (D-Gal)-induced ALF. Liver function, survival rate, histology, and inflammatory factors were determined. Exogenous recombinant rat interleukin (IL)-10, ShIL-RNA, and MCC950 (NLRP3 inhibitor) were given to the mice to explore the therapeutic mechanism of MSCs. Statistical analyses were carried out with spss version 19.0, and all data were analyzed by independent-samples t-test. RESULTS Injection of IL-10 or MSC transplantation ameliorated D-Gal-induced increase in alanine aminotransferase, aspartate aminotransferase, total bilirubin, NH3, and inflammatory cytokines. Blockage of IL-10 confirmed the therapeutic significance of this cytokine. CONCLUSION Pyroptosis was inhibited after IL-10 infusion and inhibition of NLRP3 by MCC950 reversed liver dysfunction.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xianwen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hucheng Ma
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
25
|
Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Sci Rep 2018; 8:1190. [PMID: 29352134 PMCID: PMC5775203 DOI: 10.1038/s41598-018-19536-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022] Open
Abstract
In order to exploit the rich reservoir of marine cold-adapted bacteria as a source of bioactive metabolites, ethyl acetate crude extracts of thirteen polar marine bacteria were tested for their antiproliferative activity on A549 lung epithelial cancer cells. The crude extract from Pseudoalteromonas haloplanktis TAC125 was the most active in inhibiting cell proliferation. Extensive bioassay-guided purification and mass spectrometric characterization allowed the identification of 4-hydroxybenzoic acid (4-HBA) as the molecule responsible for this bioactivity. We further demonstrate that 4-HBA inhibits A549 cancer cell proliferation with an IC50 value ≤ 1 μg ml-1, and that the effect is specific, since the other two HBA isomers (i.e. 2-HBA and 3-HBA) were unable to inhibit cell proliferation. The effect of 4-HBA is also selective since treatment of normal lung epithelial cells (WI-38) with 4-HBA did not affect cell viability. Finally, we show that 4-HBA is able to activate, at the gene and protein levels, a specific cell death signaling pathway named pyroptosis. Accordingly, the treatment of A549 cells with 4-HBA induces the transcription of (amongst others) caspase-1, IL1β, and IL18 encoding genes. Studies needed for the elucidation of mode of action of 4-HBA will be instrumental in depicting novel details of pyroptosis.
Collapse
|
26
|
Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell Host Microbe 2017; 21:182-194. [PMID: 28182950 DOI: 10.1016/j.chom.2017.01.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 12/23/2022]
Abstract
Genome degradation correlates with host adaptation and systemic disease in Salmonella. Most lineages of the S. enterica subspecies Typhimurium cause gastroenteritis in humans; however, the recently emerged ST313 lineage II pathovar commonly causes systemic bacteremia in sub-Saharan Africa. ST313 lineage II displays genome degradation compared to gastroenteritis-associated lineages; yet, the mechanisms and causal genetic differences mediating these infection phenotypes are largely unknown. We find that the ST313 isolate D23580 hyperdisseminates from the gut to systemic sites, such as the mesenteric lymph nodes (MLNs), via CD11b+ migratory dendritic cells (DCs). This hyperdissemination was facilitated by the loss of sseI, which encodes an effector that inhibits DC migration in gastroenteritis-associated isolates. Expressing functional SseI in D23580 reduced the number of infected migratory DCs and bacteria in the MLN. Our study reveals a mechanism linking pseudogenization of effectors with the evolution of niche adaptation in a bacterial pathogen.
Collapse
|
27
|
Palmer AD, Slauch JM. Mechanisms of Salmonella pathogenesis in animal models. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2017; 23:1877-1892. [PMID: 31031557 PMCID: PMC6484827 DOI: 10.1080/10807039.2017.1353903] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Animal models play an important role in understanding the mechanisms of bacterial pathogenesis. Here we review recent studies of Salmonella infection in various animal models. Although mice are a classic animal model for Salmonella, mice do not normally get diarrhea, raising the question of how well the model represents normal human infection. However, pretreatment of mice with oral streptomycin, which apparently reduces the normal microbiota, leads to an inflammatory diarrheal response upon oral infection with Salmonella. This has led to a re-evaluation of the role of various Salmonella virulence factors in colonization of the intestine and induction of diarrhea. Indeed, it is now clear that Salmonella purposefully induces inflammation, which leads to the production of both carbon sources and terminal electron acceptors by the host that allow Salmonella to outgrow the normal intestinal microbiota. Overall use of this modified mouse model provides a more nuanced understanding of Salmonella intestinal infection in the context of the microbiota with implications for the ability to predict human risk.
Collapse
Affiliation(s)
- Alexander D Palmer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
28
|
Schultz BM, Paduro CA, Salazar GA, Salazar-Echegarai FJ, Sebastián VP, Riedel CA, Kalergis AM, Alvarez-Lobos M, Bueno SM. A Potential Role of Salmonella Infection in the Onset of Inflammatory Bowel Diseases. Front Immunol 2017; 8:191. [PMID: 28293241 PMCID: PMC5329042 DOI: 10.3389/fimmu.2017.00191] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes a set of pathologies that result from a deregulated immune response that may affect any portion of the gastrointestinal tract. The most prevalent and defined forms of IBD are Crohn’s disease and ulcerative colitis. Although the etiology of IBD is not well defined, it has been suggested that environmental and genetic factors contribute to disease development and that the interaction between these two factors can trigger the pathology. Diet, medication use, vitamin D status, smoking, and bacterial infections have been proposed to influence or contribute to the onset or development of the disease in susceptible individuals. The infection with pathogenic bacteria is a key factor that can influence the development and severity of this disease. Here, we present a comprehensive review of studies performed in human and mice susceptible to IBD, which supports the notion that infection with bacterial pathogens, such as Salmonella, could promote the onset of IBD due to permanent changes in the intestinal microbiota, disruption of the epithelial barrier and alterations of the intestinal immune response after infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Carolina A Paduro
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Geraldyne A Salazar
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Francisco J Salazar-Echegarai
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Valentina P Sebastián
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- Facultad de Ciencias Biológicas y Facultad de Medicina, Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello , Santiago , Chile
| | - Alexis M Kalergis
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile; Facultad de Medicina, Departamento de Endocrinología, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| | - Manuel Alvarez-Lobos
- Facultad de Medicina, Departamento de Gastroenterología, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| |
Collapse
|
29
|
Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 2016; 40:592-609. [PMID: 27476076 DOI: 10.1093/femsre/fuw022] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial virulence relies on a delicate balance of signals interchanged between the invading microbe and the host. This communication has been extensively perceived as a battle involving harmful molecules produced by the pathogen and host defenses. In this review, we focus on a largely unexplored element of this dialogue, as are toxin-antitoxin (TA) systems of the pathogen. TA systems are reported to respond to stresses that are also found in the host and, as a consequence, could modulate the physiology of the intruder microbe. This view is consistent with recent studies that demonstrate a contribution of distinct TA systems to virulence since their absence alters the course of the infection. TA loci are stress response modules that, therefore, could readjust pathogen metabolism to favor the generation of slow-growing or quiescent cells 'before' host defenses irreversibly block essential pathogen activities. Some toxins of these TA modules have been proposed as potential weapons used by the pathogen to act on host targets. We discuss all these aspects based on studies that support some TA modules as important regulators in the pathogen-host interface.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco García-Del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
30
|
Maltez VI, Miao EA. Reassessing the Evolutionary Importance of Inflammasomes. THE JOURNAL OF IMMUNOLOGY 2016; 196:956-62. [PMID: 26802061 DOI: 10.4049/jimmunol.1502060] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammasomes monitor the cytosol for microbial contamination or perturbation and, thus, are predicted to provide potent defense against infection. However, the compendium of data from murine infection models suggests that inflammasomes merely delay the course of disease, allowing the host time to mount an adaptive response. Interpretations of such results are confounded by inflammasome-evasion strategies of vertebrate-adapted pathogens. Conversely, environmental opportunistic pathogens have not evolved in the context of inflammasomes and, therefore, are less likely to evade them. Indeed, opportunistic pathogens do not normally cause disease in wild-type animals. Accordantly, the extreme virulence of two opportunistic bacterial pathogens, Burkholderia thailandensis and Chromobacterium violaceum, is fully counteracted by inflammasomes in murine models. This leads us to propose a new hypothesis: perhaps animals maintain inflammasomes over evolutionary time not to defend against vertebrate-adapted pathogens but instead to counteract infection by a plethora of undiscovered opportunistic pathogens residing in the environment.
Collapse
Affiliation(s)
- Vivien I Maltez
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Edward A Miao
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
31
|
Lei L, Wang W, Xia C, Liu F. Salmonella Virulence Factor SsrAB Regulated Factor Modulates Inflammatory Responses by Enhancing the Activation of NF-κB Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 196:792-802. [PMID: 26673132 DOI: 10.4049/jimmunol.1500679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022]
Abstract
Effector proteins encoded by Salmonella pathogenicity islands play a key role in promoting bacterial intracellular survival, colonization, and pathogenesis. In this study, we investigated the function of the virulence-associated effector SrfA (SsrAB regulated factor) both in macrophages in vitro and in infected mice in vivo. SrfA was secreted into the cytoplasm during S. Typhimurium infection and disassociated IL-1R-associated kinase-1 (IRAK-1) from the IRAK-1-Toll interacting protein (Tollip) complex by interacting with Tollip. The released IRAK-1 was phosphorylated and subsequently activated the NF-κB signaling pathway, which enhanced the LPS-induced expression of inflammatory cytokines, such as IL-8, IL-1β, and TNF-α. The coupling of ubiquitin to endoplasmic reticulum degradation aa 183-219 domain of Tollip is the binding region for SrfA, and both the MDaa207-226 and CTaa357-377 regions of SrfA mediate binding to Tollip and NF-κB signaling activation. Deletion of SrfA in S. Typhimurium had no notable effects on its replication but impaired the induction of NF-κB activation in infected macrophages. The mice infected with srfA-deficient bacteria exhibited a decreased inflammatory response and an increased survival rate compared with those infected with wild-type S. Typhimurium. We conclude that SrfA is a novel Salmonella virulence effector that helps modulate host inflammatory responses by promoting NF-κB signaling activation.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and
| | - Wenbiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and
| | - Chuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
32
|
Isaac DT, Berkes CA, English BC, Murray DH, Lee YN, Coady A, Sil A. Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection. Mol Microbiol 2015; 98:910-929. [PMID: 26288377 PMCID: PMC5002445 DOI: 10.1111/mmi.13168] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 01/10/2023]
Abstract
Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally, Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis.
Collapse
Affiliation(s)
- Dervla T. Isaac
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Charlotte A. Berkes
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
- Department of Biology, Merrimack College, North Andover, MA
| | - Bevin C. English
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Davina Hocking Murray
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Young Nam Lee
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Alison Coady
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414
- Howard Hughes Medical Institute, San Francisco, CA
| |
Collapse
|
33
|
Kamble NM, Nandre RM, Lee JH. Inhibition of Salmonella-induced apoptosis as a marker of the protective efficacy of virulence gene-deleted live attenuated vaccine. Vet Immunol Immunopathol 2015; 169:96-101. [PMID: 26651227 DOI: 10.1016/j.vetimm.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/04/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023]
Abstract
Vaccination is one of the best protection strategies against Salmonella infection in humans and chickens. Salmonella bacteria must induce apoptosis prior to initiating infection, pathogenesis and evasion of host immune responses. In this study, we evaluated the efficacy of vaccinating chickens against Salmonella Enteritidis (SE) using a vaccine candidate strain (JOL919), constructed by deleting the lon and cpxR genes from a wild-type SE using an allelic exchange method. In present study day old chickens were inoculated with 1×10(7)cfu (colony forming unit) of JOL919 per os. We measured cell-mediated immunity, protective efficacy and extent of apoptosis induction in splenocytes. Seven days post-immunization, the number of CD3+CD4+ and CD3+ CD8+ T cells was significantly higher in the immunized group compared to the control group, indicating a significant augmentation of systemic immune response. The internal organs of chickens immunized with JOL919 had a significantly lower challenge-strain recovery, indicating effective protection and clearance of the challenge strain. Post-challenge, the number of apoptotic cells in the immunized group was significantly lower than in the control group. Additionally, AV/PI (Annexin V/propidium iodide) staining was performed to differentiate between apoptotic cells and necrotic cells, which corroborated TUNEL-assay (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling) results. The proportions of AV+/PI- and AV+/PI+ cells, which represent the proportions of early apoptotic and late apoptotic/early necrotic cells present, respectively, were significantly lower in the immunized group. Our findings suggest that the apoptotic splenocytes in immunized chickens significantly decreased in number, which occurred concomitantly with a significant rise in systemic immune response and bacterial clearance. This suggests that inhibition of apoptosis may be a marker of protection efficacy in immunized chickens.
Collapse
Affiliation(s)
- Nitin M Kamble
- College of Veterinary Medicine, Chonbuk National University, Jeonbuk 570-752, South Korea
| | - Rahul M Nandre
- College of Veterinary Medicine, Chonbuk National University, Jeonbuk 570-752, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Jeonbuk 570-752, South Korea.
| |
Collapse
|
34
|
Kinnear CL, Strugnell RA. Vaccination Method Affects Immune Response and Bacterial Growth but Not Protection in the Salmonella Typhimurium Animal Model of Typhoid. PLoS One 2015; 10:e0141356. [PMID: 26509599 PMCID: PMC4625024 DOI: 10.1371/journal.pone.0141356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/07/2015] [Indexed: 01/22/2023] Open
Abstract
Understanding immune responses elicited by vaccines, together with immune responses required for protection, is fundamental to designing effective vaccines and immunisation programs. This study examines the effects of the route of administration of a live attenuated vaccine on its interactions with, and stimulation of, the murine immune system as well as its ability to increase survival and provide protection from colonisation by a virulent challenge strain. We assess the effect of administration method using the murine model for typhoid, where animals are infected with S. Typhimurium. Mice were vaccinated either intravenously or orally with the same live attenuated S. Typhimurium strain and data were collected on vaccine strain growth, shedding and stimulation of antibodies and cytokines. Following vaccination, mice were challenged with a virulent strain of S. Typhimurium and the protection conferred by the different vaccination routes was measured in terms of challenge suppression and animal survival. The main difference in immune stimulation found in this study was the development of a secretory IgA response in orally-vaccinated mice, which was absent in IV vaccinated mice. While both strains showed similar protection in terms of challenge suppression in systemic organs (spleen and liver) as well as survival, they differed in terms of challenge suppression of virulent pathogens in gut-associated organs. This difference in gut colonisation presents important questions around the ability of vaccines to prevent shedding and transmission. These findings demonstrate that while protection conferred by two vaccines can appear to be the same, the mechanisms controlling the protection can differ and have important implications for infection dynamics within a population.
Collapse
Affiliation(s)
- Clare L. Kinnear
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Abstract
The best-characterized mucosa-associated lymphoid tissue (MALT), and also the most relevant for this review, is the gastrointestinal-associated lymphoid tissue (GALT). The review reviews our understanding of the importance of mucosal immune responses in resisting infections caused by E. coli and Salmonella spp. It focuses on the major human E. coli infections and discusses whether antigen-specific mucosal immune responses are important for resistance against primary infection or reinfection by pathogenic E. coli. It analyzes human data on mucosal immunity against E. coli, a growing body of data of mucosal responses in food production animals and other natural hosts of E. coli, and more recent experimental studies in mice carrying defined deletions in genes encoding specific immunological effectors, to show that there may be considerable conservation of the effective host mucosal immune response against this pathogen. The species Salmonella enterica contains a number of serovars that include pathogens of both humans and animals; these bacteria are frequently host specific and may cause different diseases in different hosts. Ingestion of various Salmonella serovars, such as Typhimurium, results in localized infections of the small intestine leading to gastroenteritis in humans, whereas ingestion of serovar Typhi results in systemic infection and enteric fever. Serovar Typhi infects only humans, and the review discusses the mucosal immune responses against serovar Typhi, focusing on the responses in humans and in the mouse typhoid fever model.
Collapse
|
36
|
Bridge DR, Whitmire JM, Gilbreath JJ, Metcalf ES, Merrell DS. An enterobacterial common antigen mutant of Salmonella enterica serovar Typhimurium as a vaccine candidate. Int J Med Microbiol 2015; 305:511-22. [PMID: 26070977 DOI: 10.1016/j.ijmm.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022] Open
Abstract
Due to increasing rates of invasive Salmonella enterica serovar Typhimurium infection, there is a need for an effective vaccine to prevent this disease. Previous studies showed that a mutation in the first gene of the Enterobacterial common antigen biosynthetic pathway, wecA, resulted in attenuation of S. Typhimurium in a murine model of salmonellosis. Furthermore, immunization with a wecA(-) strain protected against lethal challenge with the parental wild type S. Typhimurium strain. Herein, we examined whether the S. Typhimurium wecA(-) strain could also provide cross-protection against non-parental strains of S. Typhimurium and S. Enteritidis. We found that intraperitoneal immunization (IP) with S. Typhimurium SL1344 wecA(-) resulted in a significant increase in survival compared to control mice for all Salmonella challenge strains tested. Oral immunization with SL1344 wecA(-) also resulted in increased survival; however, protection was less significant than with intraperitoneal immunization. The increase in survival of SL1344 wecA(-) immunized mice was associated with a Salmonella-specific IgG antibody response. Furthermore, analysis of sera from IP and orally immunized animals revealed cross-reactive antibodies to numerous Salmonella isolates. Functional analysis of antibodies found within the sera from IP immunized animals revealed agglutination and opsonophagocytic activity against all tested O:4 Salmonella serovars. Together these results indicate that immunization with a S. Typhimurium wecA(-) strain confers protection against lethal challenge with wild type S. Typhimurium and S. Enteritidis and that immunization correlates with functional antibody production.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Eleanor S Metcalf
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - D Scott Merrell
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
37
|
Lai XH, Xu Y, Chen XM, Ren Y. Macrophage cell death upon intracellular bacterial infection. ACTA ACUST UNITED AC 2015; 2:e779. [PMID: 26690967 DOI: 10.14800/macrophage.779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review.
Collapse
Affiliation(s)
- Xin-He Lai
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Dermato-venerology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Ren
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA)
| |
Collapse
|
38
|
The flagellar regulator TviA reduces pyroptosis by Salmonella enterica serovar Typhi. Infect Immun 2015; 83:1546-55. [PMID: 25644011 DOI: 10.1128/iai.02803-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To discern virulent from innocuous microbes, the innate immune system senses events associated with bacterial access to immunoprivileged sites such as the host cell cytosol. One such pathway is triggered by the cytosolic delivery of flagellin, the major subunit of the flagellum, by bacterial secretion systems. This leads to inflammasome activation and subsequent proinflammatory cell death (pyroptosis) of the infected phagocyte. In this study, we demonstrate that the causative agent of typhoid fever, Salmonella enterica serovar Typhi, can partially subvert this critical innate immune recognition event. The transcriptional regulator TviA, which is absent from Salmonella serovars associated with human gastroenteritis, repressed the expression of flagellin during infection of human macrophage-like (THP-1) cells. This mechanism allowed S. Typhi to dampen inflammasome activation, leading to reduced interleukin-1β (IL-1β) secretion and diminished cell death. Likewise, the introduction of the tviA gene in nontyphoidal Salmonella enterica serovar Typhimurium reduced flagellin-induced pyroptosis. These data suggest that gene regulation of virulence factors enables S. Typhi to evade innate immune recognition by concealing a pathogen-induced process from being sensed by the inflammasome.
Collapse
|
39
|
Lupfer CR, Anand PK, Liu Z, Stokes KL, Vogel P, Lamkanfi M, Kanneganti TD. Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS Pathog 2014; 10:e1004410. [PMID: 25254654 PMCID: PMC4178001 DOI: 10.1371/journal.ppat.1004410] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/19/2014] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic and enterohemorrhagic bacterial infections in humans are a severe cause of morbidity and mortality. Although NOD-like receptors (NLRs) NOD2 and NLRP3 have important roles in the generation of protective immune responses to enteric pathogens, whether there is crosstalk among NLRs to regulate immune signaling is not known. Here, we show that mice and macrophages deficient in NOD2, or the downstream adaptor RIP2, have enhanced NLRP3- and caspases-11-dependent non-canonical inflammasome activation in a mouse model of enteropathogenic Citrobacter rodentium infection. Mechanistically, NOD2 and RIP2 regulate reactive oxygen species (ROS) production. Increased ROS in Rip2-deficient macrophages subsequently enhances c-Jun N-terminal kinase (JNK) signaling resulting in increased caspase-11 expression and activation, and more non-canonical NLRP3-dependant inflammasome activation. Intriguingly, this leads to protection of the colon epithelium for up to 10 days in Rip2-deficient mice infected with C. rodentium. Our findings designate NOD2 and RIP2 as key regulators of cellular ROS homeostasis and demonstrate for the first time that ROS regulates caspase-11 expression and non-canonical NLRP3 inflammasome activation through the JNK pathway. Caspase-11 is required for NLRP3 inflammasome activation and cell death in response to certain gram-negative bacterial infections like Citrobacter rodentium. However, how C. rodentium drives caspase-11 expression and activation is not well understood. Here, we demonstrate that the NOD2-RIP2 pathway regulates reactive oxygen species production and c-Jun N-terminal kinase signaling to control caspase-11 expression and subsequent activation of caspase-11 and the NLRP3 inflammasome during C. rodentium infection. In the absence of NOD2-RIP2 signaling, increased inflammasome activation results in lower bacteria numbers in the colon and less tissue damage during the early stages of infection.
Collapse
Affiliation(s)
- Christopher R. Lupfer
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Paras K. Anand
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Zhiping Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kate L. Stokes
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Veterinary Pathology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent reports of C. albicans mutants that form hyphae of wild-type morphology but are defective in killing macrophages. We show that C. albicans causes macrophage cell death by at least two mechanisms. Phase 1 killing (first 6 to 8 h) depends on the activation of the pyroptotic programmed host cell death by fungal hyphae. Phase 2 (up to 24 h) is rapid and depends on robust hyphal formation but is independent of pyroptosis. Our data provide a new model for how the interplay between fungal morphogenesis and activation of a host cell death pathway mediates macrophage killing by C. albicans hyphae.
Collapse
|
41
|
Maciel BM, Sriranganathan N, Romano CC, Santos TFD, Dias JCT, Gross E, Rezende RP. Infection cycle of Salmonella enterica serovar Enteritidis in latent carrier mice 1The work was carried out at the Microbial Biotechnology Laboratory of Universidade Estadual de Santa Cruz, Ilhéus, Bahia State, Brazil. Can J Microbiol 2012; 58:1389-95. [DOI: 10.1139/cjm-2012-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work reports the distribution of an oral dose of Salmonella enterica serovar Enteritidis (SE) in C57Bl/6-Bcgr mice, to study its pathogenesis in a latent carrier animal. Mice orally inoculated with a high dose of SE developed a latent infection characterized by the absence of clinical symptoms in which the cecum is functioning as a “strategic site” of SE proliferation, releasing bacteria into feces intermittently over the 4-week study. A sequence of disruptions occurred in the small intestine at 1 day postinculation (PI). The microvilli exhibited different degrees of degeneration, which were reversible as the cells became vacuolated. From 2 days PI, SE was detected in the mononuclear phagocytic system, and an exponential growth of the remaining bacteria in tissues was observed until 4 days PI. The production of interferon gamma from 3 days PI is restricting the SE growth, and a plateau phase was observed from 4 to 15 days PI. A recurrence of the bacterial growth in tissue occurred from 15 to 28 days PI, especially in the cecum. Increasing our knowledge about the host–pathogen interaction of adapted pathogens with the ability to develop latency is essential for the development of an efficient strategy for Salmonella control.
Collapse
Affiliation(s)
- Bianca Mendes Maciel
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Center for Molecular Medicine and Infectious Diseases, 1410 Prices Fork Road (0342) Blacksburg, VA 24061, USA
| | - Carla Cristina Romano
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - Thalis Ferreira dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - João Carlos Teixeira Dias
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - Eduardo Gross
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 45662-900, Brazil
| | - Rachel Passos Rezende
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| |
Collapse
|
42
|
Bueno SM, Riquelme S, Riedel CA, Kalergis AM. Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 2012; 137:28-36. [PMID: 22703384 DOI: 10.1111/j.1365-2567.2012.03614.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Innate and adaptive immunity are inter-related by dendritic cells (DCs), which directly recognize bacteria through the binding of pathogen-associated molecular patterns (PAMPs) to specialized receptors on their surface. After capturing and degrading bacteria, DCs present their antigens as small peptides bound to MHC molecules and prime naive bacteria-specific T cells. In response to PAMP recognition DCs undergo maturation, which is a phenotypic change that increases their immunogenicity and promotes the activation of naive T cells. As a result, a specific immune response that targets bacteria-derived antigens is initiated. Therefore, the characterization of DC-bacteria interactions is important to understand the mechanisms used by virulent bacteria to avoid adaptive immunity. Furthermore, any impairment of DC function might contribute to bacterial survival and dissemination inside the host. An example of a bacterial pathogen capable of interfering with DC function is Salmonella enterica serovar Typhimurium (S. Typhimurium). Virulent strains of this bacterium are able to differentially modulate the entrance to DCs, avoid lysosomal degradation and prevent antigen presentation on MHC molecules. These features of virulent S. Typhimurium are controlled by virulence proteins, which are encoded by pathogenicity islands. Modulation of DC functions by these gene products is supported by several studies showing that pathogenesis might depend on this attribute of virulent S. Typhimurium. Here we discuss some of the recent data reported by the literature showing that several virulence proteins from Salmonella are required to modulate DC function and the activation of host adaptive immunity.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genetica Molecular y Microbiologia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
43
|
Aporta A, Arbues A, Aguilo JI, Monzon M, Badiola JJ, de Martino A, Ferrer N, Marinova D, Anel A, Martin C, Pardo J. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death. PLoS One 2012; 7:e45213. [PMID: 23028853 PMCID: PMC3446966 DOI: 10.1371/journal.pone.0045213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG) were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.
Collapse
Affiliation(s)
- Adriana Aporta
- Grupo Apoptosis, Inmunidad y Cáncer, Dpto. Bioquímica y Biología Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Ainhoa Arbues
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Fac. Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan I. Aguilo
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Fac. Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monzon
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan J. Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Nadia Ferrer
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Fac. Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Fac. Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Anel
- Grupo Apoptosis, Inmunidad y Cáncer, Dpto. Bioquímica y Biología Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Fac. Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Julian Pardo
- Fundación Aragón I+D (ARAID), Gobierno de Aragón, Zaragoza, Spain
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, Spain
- Grupo Inmunidad Celular Efectora (ICE), Dpto. Bioquímica y Biología Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza/IIS Aragón, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
44
|
Sotolongo J, Kanagavelu S, Hyun J, Ruiz J, Fukata M. TRIF mobilizes unique primary defense against Gram-negative bacteria in intestinal interface. Gut Microbes 2012; 3:437-41. [PMID: 22713267 PMCID: PMC3679230 DOI: 10.4161/gmic.20873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body. It houses diverse microorganisms that collectively form the commensal microbial community. The security of this community is kept by host-microbial interactions and is violated by foreign pathogens that induce local as well as systemic pathology. In most cases, gastrointestinal infections are caused by Gram-negative enteropathogens, which trigger host immune responses through the TLR4 signaling pathways. Although TRIF is one of the major pathways downstream of TLR4, very little is known about how the TRIF pathway contributes to intestinal defense against pathogenic infection. Recently, we reported a unique role of TRIF signaling in host response to an enterophathogen Yersinia enterocolitica, which consisted of IFN-β induction from regional macrophages followed by activation of NK cells in the mesenteric lymph nodes. In this addendum, we show distinct roles for TRIF-dependent host response in intestinal vs. systemic infection with Gram-negative enterophathogens.
Collapse
|
45
|
Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 2012; 13:954-62. [PMID: 22922364 DOI: 10.1038/ni.2397] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/16/2012] [Indexed: 01/04/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1(-/-) mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1(-/-) macrophages, they were highly resistant to S. Typhimurium-induced cell death. Specific inhibition of the kinase RIP1 or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response.
Collapse
|
46
|
Abstract
Pathogens frequently exist in an immunological balancing act with their host. Pathogens must not only replicate within a host but also transmit effectively between hosts to perpetuate their species. On the other hand, the host seeks to maintain homeostasis by clearing pathogens. The inflammasome is a multi-protein complex that can induce cell death and processes IL-1β and additional proinflammatory substrates. In this review we discuss the pathogen specific modulation of inflammasome activation and the role this plays in virulence and disease pathology.
Collapse
Affiliation(s)
- Christopher R Lupfer
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
47
|
Rosales-Reyes R, Pérez-López A, Sánchez-Gómez C, Hernández-Mote RR, Castro-Eguiluz D, Ortiz-Navarrete V, Alpuche-Aranda CM. Salmonella infects B cells by macropinocytosis and formation of spacious phagosomes but does not induce pyroptosis in favor of its survival. Microb Pathog 2012; 52:367-74. [PMID: 22475626 DOI: 10.1016/j.micpath.2012.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
Abstract
We have previously reported that Salmonella infects B cells and survives within endosomal-lysosomal compartments. However, the mechanisms used by Salmonella to enter B cells remain unknown. In this study, we have shown that Salmonella induces its own entry by the induction of localized ruffling, macropinocytosis, and spacious phagosome formation. These events were associated with the rearrangement of actin and microtubule networks. The Salmonella pathogenesis island 1 (SPI-1) was necessary to invade B cells. In contrast to macrophages, B cells were highly resistant to cell death induced by Salmonella. These data demonstrate the ability of Salmonella to infect these non-professional phagocytic cells, where the bacterium can find an ideal intracellular niche to support persistence and the possible dissemination of infection.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | | | |
Collapse
|
48
|
Ruby T, McLaughlin L, Gopinath S, Monack D. Salmonella's long-term relationship with its host. FEMS Microbiol Rev 2012; 36:600-15. [PMID: 22335190 DOI: 10.1111/j.1574-6976.2012.00332.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 12/23/2022] Open
Abstract
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time and pose significant public-health problems. Multidrug-resistant S. enterica serovar Typhi (S. Typhi) and nontyphoidal Salmonella (NTS) are on the increase and are often associated with HIV infection. Chronically infected hosts are often asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. Salmonella utilizes multiple ways to evade and modulate host innate and adaptive immune responses in order to persist in the presence of a robust immune response. Survival in macrophages and modulation of immune cells migration allow Salmonella to evade various immune responses. The ability of Salmonella to persist depends on a balance between immune responses that lead to the clearance of the pathogen and avoidance of damage to host tissues.
Collapse
Affiliation(s)
- Thomas Ruby
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
49
|
An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A 2012; 109:1275-80. [PMID: 22232685 DOI: 10.1073/pnas.1109285109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The rhs genes are a family of enigmatic composite genes, widespread among Gram-negative bacteria. In this study, we characterized rhsT, a Pseudomonas aeruginosa rhs gene that encodes a toxic protein. Expression of rhsT was induced upon contact with phagocytic cells. The RhsT protein was exposed on the bacterial surface and translocated into phagocytic cells; these cells subsequently underwent inflammasome-mediated death. Moreover, RhsT enhanced host secretion of the potent proinflammatory cytokines IL-1β and IL-18 in an inflammasome-dependent manner. In a mouse model of acute pneumonia, infection with a P. aeruginosa strain lacking rhsT was associated with less IL-18 production, fewer recruited leukocytes, reduced pulmonary bacterial load, and enhanced animal survival. Thus, rhsT encodes a virulence determinant that activates the inflammasome.
Collapse
|
50
|
Abstract
Salmonella enterica is an invasive, facultative intracellular gastrointestinal pathogen causing human diseases such as gastroenteritis and typhoid fever. Virulence-attenuated strains of this pathogen have interesting capacities for the generation of live vaccines. Attenuated live typhoidal and nontyphoidal Salmonella strains can be used for vaccination against Salmonella infections and to target tumor tissue. Such strains may also serve as live carriers for the development of vaccination strategies against other bacterial, viral or parasitic pathogens. Various strategies have been developed to deploy regulatory circuits and protein secretion systems for efficient expression and delivery of foreign antigens by Salmonella carrier strains. One prominent example is the use of type III secretion systems to translocate recombinant antigens into antigen presenting cells. In this review, we will describe the recent developments in strategies that utilize live attenuated Salmonella as vaccine carriers for prophylactic vaccination against infectious diseases and therapeutic vaccination against tumors. Considerations for generating safe, attenuated carrier strains, designing stable expression systems and the use of adjuvants for live carrier strategies are discussed.
Collapse
Affiliation(s)
- Wael Abdel Halim Hegazy
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück Barbarastrasse 11, 49076 Osnabrück, Germany
| | | |
Collapse
|