1
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Tamura T, Cheng C, Chen W, Merriam LT, Athar H, Kim YH, Manandhar R, Amir Sheikh MD, Pinilla-Vera M, Varon J, Hou PC, Lawler PR, Oldham WM, Seethala RR, Tesfaigzi Y, Weissman AJ, Baron RM, Ichinose F, Berg KM, Bohula EA, Morrow DA, Chen X, Kim EY. Single-cell transcriptomics reveal a hyperacute cytokine and immune checkpoint axis after cardiac arrest in patients with poor neurological outcome. MED 2023; 4:432-456.e6. [PMID: 37257452 PMCID: PMC10524451 DOI: 10.1016/j.medj.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Most patients hospitalized after cardiac arrest (CA) die because of neurological injury. The systemic inflammatory response after CA is associated with neurological injury and mortality but remains poorly defined. METHODS We determine the innate immune network induced by clinical CA at single-cell resolution. FINDINGS Immune cell states diverge as early as 6 h post-CA between patients with good or poor neurological outcomes 30 days after CA. Nectin-2+ monocyte and Tim-3+ natural killer (NK) cell subpopulations are associated with poor outcomes, and interactome analysis highlights their crosstalk via cytokines and immune checkpoints. Ex vivo studies of peripheral blood cells from CA patients demonstrate that immune checkpoints are a compensatory mechanism against inflammation after CA. Interferon γ (IFNγ)/interleukin-10 (IL-10) induced Nectin-2 on monocytes; in a negative feedback loop, Nectin-2 suppresses IFNγ production by NK cells. CONCLUSIONS The initial hours after CA may represent a window for therapeutic intervention in the resolution of inflammation via immune checkpoints. FUNDING This work was supported by funding from the American Heart Association, Brigham and Women's Hospital Department of Medicine, the Evergreen Innovation Fund, and the National Institutes of Health.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Humra Athar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yaunghyun H Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Reshmi Manandhar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Muhammad Dawood Amir Sheikh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mayra Pinilla-Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Peter C Hou
- Harvard Medical School, Boston, MA 02115, USA; Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON M5G 2N2, Canada; McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Raghu R Seethala
- Harvard Medical School, Boston, MA 02115, USA; Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra J Weissman
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Fumito Ichinose
- Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine M Berg
- Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Erin A Bohula
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David A Morrow
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Huntington KE, Louie AD, Srinivasan PR, Schorl C, Lu S, Silverberg D, Newhouse D, Wu Z, Zhou L, Borden BA, Giles FJ, Dooner M, Carneiro BA, El-Deiry WS. GSK-3 Inhibitor Elraglusib Enhances Tumor-Infiltrating Immune Cell Activation in Tumor Biopsies and Synergizes with Anti-PD-L1 in a Murine Model of Colorectal Cancer. Int J Mol Sci 2023; 24:10870. [PMID: 37446056 PMCID: PMC10342141 DOI: 10.3390/ijms241310870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that has been implicated in numerous oncogenic processes. GSK-3 inhibitor elraglusib (9-ING-41) has shown promising preclinical and clinical antitumor activity across multiple tumor types. Despite promising early-phase clinical trial results, there have been limited efforts to characterize the potential immunomodulatory properties of elraglusib. We report that elraglusib promotes immune cell-mediated tumor cell killing of microsatellite stable colorectal cancer (CRC) cells. Mechanistically, elraglusib sensitized CRC cells to immune-mediated cytotoxicity and enhanced immune cell effector function. Using western blots, we found that elraglusib decreased CRC cell expression of NF-κB p65 and several survival proteins. Using microarrays, we discovered that elraglusib upregulated the expression of proapoptotic and antiproliferative genes and downregulated the expression of cell proliferation, cell cycle progression, metastasis, TGFβ signaling, and anti-apoptotic genes in CRC cells. Elraglusib reduced CRC cell production of immunosuppressive molecules such as VEGF, GDF-15, and sPD-L1. Elraglusib increased immune cell IFN-γ secretion, which upregulated CRC cell gasdermin B expression to potentially enhance pyroptosis. Elraglusib enhanced immune effector function resulting in augmented granzyme B, IFN-γ, TNF-α, and TRAIL production. Using a syngeneic, immunocompetent murine model of microsatellite stable CRC, we evaluated elraglusib as a single agent or combined with immune checkpoint blockade (anti-PD-1/L1) and observed improved survival in the elraglusib and anti-PD-L1 group. Murine responders had increased tumor-infiltrating T cells, augmented granzyme B expression, and fewer regulatory T cells. Murine responders had reduced immunosuppressive (VEGF, VEGFR2) and elevated immunostimulatory (GM-CSF, IL-12p70) cytokine plasma concentrations. To determine the clinical significance, we then utilized elraglusib-treated patient plasma samples and found that reduced VEGF and BAFF and elevated IL-1 beta, CCL22, and CCL4 concentrations correlated with improved survival. Using paired tumor biopsies, we found that tumor-infiltrating immune cells had a reduced expression of inhibitory immune checkpoints (VISTA, PD-1, PD-L2) and an elevated expression of T-cell activation markers (CTLA-4, OX40L) after elraglusib treatment. These results address a significant gap in knowledge concerning the immunomodulatory mechanisms of GSK-3 inhibitor elraglusib, provide a rationale for the clinical evaluation of elraglusib in combination with immune checkpoint blockade, and are expected to have an impact on additional tumor types, besides CRC.
Collapse
Affiliation(s)
- Kelsey E. Huntington
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Lifespan Health System, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Brown University, Providence, RI 02903, USA
| | - Anna D. Louie
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Lifespan Health System, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Surgery, Lifespan Health System, Providence, RI 02903, USA
| | - Praveen R. Srinivasan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Lifespan Health System, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Christoph Schorl
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Genomics Core Facility, Brown University, Providence, RI 02903, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Lifespan Health System, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - David Silverberg
- Molecular Pathology Core Facility, Brown University, Providence, RI 02903, USA
| | | | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02903, USA
| | - Lanlan Zhou
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Lifespan Health System, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Brittany A. Borden
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | | | - Mark Dooner
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
| | - Benedito A. Carneiro
- The Joint Program in Cancer Biology, Lifespan Health System, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Lifespan Health System, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Brown University, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
| |
Collapse
|
4
|
Huntington KE, Louie AD, Srinivasan PR, Schorl C, Lu S, Silverberg D, Newhouse D, Wu Z, Zhou L, Borden BA, Giles FJ, Dooner M, Carneiro BA, El-Deiry WS. GSK-3 inhibitor elraglusib enhances tumor-infiltrating immune cell activation in tumor biopsies and synergizes with anti-PD-L1 in a murine model of colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527499. [PMID: 36798357 PMCID: PMC9934544 DOI: 10.1101/2023.02.07.527499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Inhibition of GSK-3 using small-molecule elraglusib has shown promising preclinical antitumor activity. Using in vitro systems, we found that elraglusib promotes immune cell-mediated tumor cell killing, enhances tumor cell pyroptosis, decreases tumor cell NF-κB-regulated survival protein expression, and increases immune cell effector molecule secretion. Using in vivo systems, we observed synergy between elraglusib and anti-PD-L1 in an immunocompetent murine model of colorectal cancer. Murine responders had more tumor-infiltrating T-cells, fewer tumor-infiltrating Tregs, lower tumorigenic circulating cytokine concentrations, and higher immunostimulatory circulating cytokine concentrations. To determine the clinical significance, we utilized human plasma samples from patients treated with elraglusib and correlated cytokine profiles with survival. Using paired tumor biopsies, we found that CD45+ tumor-infiltrating immune cells had lower expression of inhibitory immune checkpoints and higher expression of T-cell activation markers in post-elraglusib patient biopsies. These results introduce several immunomodulatory mechanisms of GSK-3 inhibition using elraglusib, providing a rationale for the clinical evaluation of elraglusib in combination with immunotherapy. Statement of significance Pharmacologic inhibition of GSK-3 using elraglusib sensitizes tumor cells, activates immune cells for increased anti-tumor immunity, and synergizes with anti-PD-L1 immune checkpoint blockade. These results introduce novel biomarkers for correlations with response to therapy which could provide significant clinical utility and suggest that elraglusib, and other GSK-3 inhibitors, should be evaluated in combination with immune checkpoint blockade.
Collapse
Affiliation(s)
- Kelsey E. Huntington
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Providence, Rhode Island, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Providence, Rhode Island, USA,Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Anna D. Louie
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Providence, Rhode Island, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Providence, Rhode Island, USA,Department of Surgery, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Praveen R. Srinivasan
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Providence, Rhode Island, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Providence, Rhode Island, USA,The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Christoph Schorl
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA,Genomics Core Facility, Brown University, Providence, Rhode Island, USA,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Providence, Rhode Island, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Providence, Rhode Island, USA,The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David Silverberg
- Molecular Pathology Core Facility, Providence, Rhode Island, USA
| | | | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Providence, Rhode Island, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Providence, Rhode Island, USA,The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Brittany A. Borden
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Mark Dooner
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, Rhode Island, USA
| | - Benedito A. Carneiro
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Providence, Rhode Island, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Providence, Rhode Island, USA,The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA,Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Providence, Rhode Island, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Providence, Rhode Island, USA,Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA,The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA,Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, Rhode Island, USA,Correspondence: ; 70 Ship Street, Box G-E5, Providence, RI; Phone Number: 401-863-9687; Fax Number: 401-863-9008
| |
Collapse
|
5
|
Holmberg R, Robinson M, Gilbert SF, Lujano-Olazaba O, Waters JA, Kogan E, Velasquez CLR, Stevenson D, Cruz LS, Alexander LJ, Lara J, Mu EM, Camillo JR, Bitler BG, Huxford T, House CD. TWEAK-Fn14-RelB Signaling Cascade Promotes Stem Cell-like Features that Contribute to Post-Chemotherapy Ovarian Cancer Relapse. Mol Cancer Res 2023; 21:170-186. [PMID: 36214671 PMCID: PMC9890141 DOI: 10.1158/1541-7786.mcr-22-0486] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 02/06/2023]
Abstract
Disease recurrence in high-grade serous ovarian cancer may be due to cancer stem-like cells (CSC) that are resistant to chemotherapy and capable of reestablishing heterogeneous tumors. The alternative NF-κB signaling pathway is implicated in this process; however, the mechanism is unknown. Here we show that TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are strong inducers of alternative NF-κB signaling and are enriched in ovarian tumors following chemotherapy treatment. We further show that TWEAK enhances spheroid formation ability, asymmetric division capacity, and expression of SOX2 and epithelial-to-mesenchymal transition genes VIM and ZEB1 in ovarian cancer cells, phenotypes that are enhanced when TWEAK is combined with carboplatin. Moreover, TWEAK in combination with chemotherapy induces expression of the CSC marker CD117 in CD117- cells. Blocking the TWEAK-Fn14-RelB signaling cascade with a small-molecule inhibitor of Fn14 prolongs survival following carboplatin chemotherapy in a mouse model of ovarian cancer. These data provide new insights into ovarian cancer CSC biology and highlight a signaling axis that should be explored for therapeutic development. IMPLICATIONS This study identifies a unique mechanism for the induction of ovarian cancer stem cells that may serve as a novel therapeutic target for preventing relapse.
Collapse
Affiliation(s)
- Ryne Holmberg
- Department of Chemistry, San Diego State University, San Diego, California
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California
| | - Samuel F. Gilbert
- Department of Biology, San Diego State University, San Diego, California
| | | | - Jennifer A. Waters
- Department of Biology, San Diego State University, San Diego, California
| | - Emily Kogan
- Department of Biology, San Diego State University, San Diego, California
| | | | - Denay Stevenson
- Department of Chemistry, San Diego State University, San Diego, California
| | - Luisjesus S. Cruz
- Department of Biology, San Diego State University, San Diego, California
| | - Logan J. Alexander
- Department of Biology, San Diego State University, San Diego, California
| | - Jacqueline Lara
- Department of Biology, San Diego State University, San Diego, California
| | - Emily M. Mu
- Department of Biology, San Diego State University, San Diego, California
| | | | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado
| | - Tom Huxford
- Department of Chemistry, San Diego State University, San Diego, California
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, California.,Moores Cancer Center, University of California San Diego, La Jolla, California.,Corresponding Author: Carrie D. House, Biology, San Diego State University, 5500 Campanile Drive, Shiley Bioscience Center 2104, San Diego, CA 92182. Phone: 619-594-3053; E-mail:
| |
Collapse
|
6
|
Extracellular Vesicle-Associated TWEAK Contributes to Vascular Inflammation and Remodeling During Acute Cellular Rejection. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Zaitseva O, Hoffmann A, Otto C, Wajant H. Targeting fibroblast growth factor (FGF)-inducible 14 (Fn14) for tumor therapy. Front Pharmacol 2022; 13:935086. [PMID: 36339601 PMCID: PMC9634131 DOI: 10.3389/fphar.2022.935086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) and is activated by its ligand TNF-like weak inducer of apoptosis (TWEAK). The latter occurs as a homotrimeric molecule in a soluble and a membrane-bound form. Soluble TWEAK (sTWEAK) activates the weakly inflammatory alternative NF-κB pathway and sensitizes for TNF-induced cell death while membrane TWEAK (memTWEAK) triggers additionally robust activation of the classical NF-κB pathway and various MAP kinase cascades. Fn14 expression is limited in adult organisms but becomes strongly induced in non-hematopoietic cells by a variety of growth factors, cytokines and physical stressors (e.g., hypoxia, irradiation). Since all these Fn14-inducing factors are frequently also present in the tumor microenvironment, Fn14 is regularly found to be expressed by non-hematopoietic cells of the tumor microenvironment and most solid tumor cells. In general, there are three possibilities how the tumor-Fn14 linkage could be taken into consideration for tumor therapy. First, by exploitation of the cancer associated expression of Fn14 to direct cytotoxic activities (antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxic payloads, CAR T-cells) to the tumor, second by blockade of potential protumoral activities of the TWEAK/Fn14 system, and third, by stimulation of Fn14 which not only triggers proinflammtory activities but also sensitizes cells for apoptotic and necroptotic cell death. Based on a brief description of the biology of the TWEAK/Fn14 system and Fn14 signaling, we discuss the features of the most relevant Fn14-targeting biologicals and review the preclinical data obtained with these reagents. In particular, we address problems and limitations which became evident in the preclinical studies with Fn14-targeting biologicals and debate possibilities how they could be overcome.
Collapse
Affiliation(s)
- Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Annett Hoffmann
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Harald Wajant,
| |
Collapse
|
8
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
9
|
Abós B, Pérez-Fernández E, Morel E, Perdiguero P, Tafalla C. Pro-Inflammatory and B Cell Regulating Capacities of TWEAK in Rainbow Trout ( Oncorhynchus mykiss). Front Immunol 2021; 12:748836. [PMID: 34659247 PMCID: PMC8517431 DOI: 10.3389/fimmu.2021.748836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis or TWEAK is a member of the TNF superfamily involved in the regulation of many biological processes. In mammals, TWEAK has been shown to play a role in some autoimmune or inflammatory conditions, but its immune role is not yet clearly defined. In teleost fish, although a few studies have identified homologues to mammalian TWEAK, their biological effects have never been investigated. In the current study, we have studied the transcriptional regulation of two TWEAK homologues (TWEAK 1 and 2) identified in rainbow trout (Oncorhynchus mykiss) throughout different tissues, in response to parasitic or viral infections, or in head kidney (HK) leukocytes stimulated with different stimuli. Although the transcription of both homologues was modulated when HK leukocytes were exposed to several immune stimuli, only TWEAK 1 was significantly modulated upon pathogenic exposure. Thus, we performed a characterization of the functions exerted by this cytokine in HK leukocytes. Recombinant TWEAK 1 strongly up-regulated the transcription of pro-inflammatory genes and antimicrobial peptides in HK leukocytes, with differential transcriptional effects in IgM+ B cells, IgM- lymphocytes and myeloid cells. TWEAK 1 also increased the survival and promoted the differentiation of B cells in HK leukocyte cultures. Our results demonstrate that in teleost fish, TWEAK 1 is involved in the response to different types of pathogens, through the modulation of antimicrobial and pro-inflammatory genes in different leukocytes subsets. Furthermore, a role for TWEAK as a B cell differentiation factor has also been established in rainbow trout.
Collapse
Affiliation(s)
- Beatriz Abós
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elena Pérez-Fernández
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro Perdiguero
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
10
|
Affandi AJ, Olesek K, Grabowska J, Nijen Twilhaar MK, Rodríguez E, Saris A, Zwart ES, Nossent EJ, Kalay H, de Kok M, Kazemier G, Stöckl J, van den Eertwegh AJM, de Gruijl TD, Garcia-Vallejo JJ, Storm G, van Kooyk Y, den Haan JMM. CD169 Defines Activated CD14 + Monocytes With Enhanced CD8 + T Cell Activation Capacity. Front Immunol 2021; 12:697840. [PMID: 34394090 PMCID: PMC8356644 DOI: 10.3389/fimmu.2021.697840] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Monocytes are antigen-presenting cells (APCs) that play diverse roles in promoting or regulating inflammatory responses, but their role in T cell stimulation is not well defined. In inflammatory conditions, monocytes frequently show increased expression of CD169/Siglec-1, a type-I interferon (IFN-I)-regulated protein. However, little is known about the phenotype and function of these CD169+ monocytes. Here, we have investigated the phenotype of human CD169+ monocytes in different diseases, their capacity to activate CD8+ T cells, and the potential for a targeted-vaccination approach. Using spectral flow cytometry, we detected CD169 expression by CD14+ CD16- classical and CD14+ CD16+ intermediate monocytes and unbiased analysis showed that they were distinct from dendritic cells, including the recently described CD14-expressing DC3. CD169+ monocytes expressed higher levels of co-stimulatory and HLA molecules, suggesting an increased activation state. IFNα treatment highly upregulated CD169 expression on CD14+ monocytes and boosted their capacity to cross-present antigen to CD8+ T cells. Furthermore, we observed CD169+ monocytes in virally-infected patients, including in the blood and bronchoalveolar lavage fluid of COVID-19 patients, as well as in the blood of patients with different types of cancers. Finally, we evaluated two CD169-targeting nanovaccine platforms, antibody-based and liposome-based, and we showed that CD169+ monocytes efficiently presented tumor-associated peptides gp100 and WT1 to antigen-specific CD8+ T cells. In conclusion, our data indicate that CD169+ monocytes are activated monocytes with enhanced CD8+ T cell stimulatory capacity and that they emerge as an interesting target in nanovaccine strategies, because of their presence in health and different diseases.
Collapse
Affiliation(s)
- Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Eline S Zwart
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michael de Kok
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Johannes Stöckl
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Eid A, Issa Y, Mohamed A, Badran F. Interleukin-9 and soluble tumor necrosis factor-like weak inducer of apoptosis in serum and suction blister fluid of nonsegmental vitiligo patients: Relation to disease severity. DERMATOL SIN 2021. [DOI: 10.4103/ds.ds_44_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Alvarez CA, Jones MB, Hambor J, Cobb BA. Characterization of Polysaccharide A Response Reveals Interferon Responsive Gene Signature and Immunomodulatory Marker Expression. Front Immunol 2020; 11:556813. [PMID: 33193325 PMCID: PMC7649347 DOI: 10.3389/fimmu.2020.556813] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Polysaccharide A (PSA), a capsular carbohydrate from the commensal gut bacteria Bacteroides fragilis, has been shown to possess both potent T cell-dependent pro- and anti-inflammatory properties. PSA is able to induce abscess and adhesion formation in sepsis models, but can also inhibit asthma, inflammatory bowel disease (IBD) and experimental autoimmune encephalomyelitis (EAE) through MHCII-dependent activation of CD4+ T cells. Yet, despite decades of study, the ability of PSA to balance both these pro- and anti-inflammatory responses remains poorly understood. Here, we utilized an unbiased systems immunology approach consisting of RNAseq transcriptomics, high-throughput flow cytometry, and Luminex analysis to characterize the full impact of PSA-mediated stimulation of CD4+ T cells. We found that exposure to PSA resulted in the upregulation and secretion of IFNγ, TNFα, IL-6, and CXCL10, consistent with an interferon responsive gene (IRG) signature. Importantly, PSA stimulation also led to expression of immune checkpoint markers Lag3, Tim3, and, especially, PD1, which were also enriched and sustained in the gut associated lymphoid tissue of PSA-exposed mice. Taken together, PSA responding cells display an unusual mixture of pro-inflammatory cytokines and anti-inflammatory surface receptors, consistent with the ability to both cause and inhibit inflammatory disease.
Collapse
Affiliation(s)
- Carlos A. Alvarez
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark B. Jones
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - John Hambor
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States
| | - Brian A. Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Pascoe AL, Johnston AJ, Murphy RM. Controversies in TWEAK-Fn14 signaling in skeletal muscle atrophy and regeneration. Cell Mol Life Sci 2020; 77:3369-3381. [PMID: 32200423 PMCID: PMC11104974 DOI: 10.1007/s00018-020-03495-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/27/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is one of the largest functional tissues in the human body; it is highly plastic and responds dramatically to anabolic and catabolic stimuli, including weight training and malnutrition, respectively. Excessive loss of muscle mass, or atrophy, is a common symptom of many disease states with severe impacts on prognosis and quality of life. TNF-like weak inducer of apoptosis (TWEAK) and its cognate receptor, fibroblast growth factor-inducible 14 (Fn14) are an emerging cytokine signaling pathway in the pathogenesis of muscle atrophy. Upregulation of TWEAK and Fn14 has been described in a number of atrophic and injured muscle states; however, it remains unclear whether they are contributing to the degenerative or regenerative aspect of muscle insults. The current review focuses on the expression and apparent downstream outcomes of both TWEAK and Fn14 in a range of catabolic and anabolic muscle models. Apparent changes in the signaling outcomes of TWEAK-Fn14 activation dependent on the relative expression of both the ligand and the receptor are discussed as a potential source of divergent TWEAK-Fn14 downstream effects. This review proposes both a physiological and pathological model of TWEAK-Fn14 signaling. Further research is needed on the switch between these states to develop therapeutic interventions for this pathway.
Collapse
Affiliation(s)
- Amy L Pascoe
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amelia J Johnston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
14
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK)/Fibroblast Growth Factor-Inducible 14 (Fn14) Axis in Cardiovascular Diseases: Progress and Challenges. Cells 2020; 9:cells9020405. [PMID: 32053869 PMCID: PMC7072601 DOI: 10.3390/cells9020405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality in Western countries. CVD include several pathologies, such as coronary artery disease, stroke, peripheral artery disease, and aortic aneurysm, among others. All of them are characterized by a pathological vascular remodeling in which inflammation plays a key role. Interaction between different members of the tumor necrosis factor superfamily and their cognate receptors induce several biological actions that may participate in CVD. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its functional receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed during pathological cardiovascular remodeling. The TWEAK/Fn14 axis controls a variety of cellular functions, such as proliferation, differentiation, and apoptosis, and has several biological functions, such as inflammation and fibrosis that are linked to CVD. It has been demonstrated that persistent TWEAK/Fn14 activation is involved in both vessel and heart remodeling associated with acute and chronic CVD. In this review, we summarized the role of the TWEAK/Fn14 axis during pathological cardiovascular remodeling, highlighting the cellular components and the signaling pathways that are involved in these processes.
Collapse
|
15
|
Ruffolo C, Toffolatti L, Massani M, Pozza A, Campo Dell'Orto M, Saadeh LM, Ferrara F, Benvenuti S, Dei Tos AP, Bassi N, Kotsafti A, Scarpa M. Interferon-Gamma and Tumor Necrosis Factor-Related Weak Inducer of Apoptosis Expression in Neoangiogenesis in Colorectal Polypoid Lesions. Eur Surg Res 2019; 60:186-195. [PMID: 31597147 DOI: 10.1159/000502786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 08/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Interferon gamma (IFNγ) and tumor necrosis factor-related weak inducer of apoptosis (TWEAK) molecules seem to have a potential effect on angiogenic factors such as vascular endothelial growth factor (VEGF). The aim of this study was to assess a possible interplay between IFNγ and TWEAK cytokines and VEGF machinery in the different steps of colorectal carcinogenesis. METHODS A total of 92 subjects with colonic adenoma or cancer who underwent screening colonoscopy or surgery were prospectively enrolled. Polypoid lesion tissue samples were collected and frozen. Real-time reverse transcription polymerase chain reaction for IFNγ, TWEAK, and VEGF-A mRNA expression was performed. Immunoassays for VEGF-A, VEGF-C, VEGFR-1, VEGFR-2, and VEGFR-3 were also performed. Nonparametric statistics, receiver operating characteristic curve analysis, and logistic multiple regression analysis were used. RESULTS IFNγ and TWEAK mRNA expression was higher in patients with T2 or more advanced colorectal cancer than in those with adenomas or T1 cancer (p < 0.001 and p = 0.01, respectively). IFNγ and TWEAK mRNA expression levels directly correlated with VEGF-A mRNA expression levels (rho = 0.44, p < 0.001 and rho = 0.29, p = 0.004, respectively). On the contrary, IFNγ and TWEAK mRNA expression levels inversely correlated with VEGF-C protein levels (rho = -0.29, p = 0.04 and rho = -0.31, p = 0.03, respectively). Similarly, IFNγ and TWEAK mRNA expression levels inversely correlated with VEGFR2 protein levels (rho = -0.38, p = 0.033 and rho = -0.40, p = 0.025, respectively). CONCLUSION This study showed that in colorectal polypoid lesions, IFNγ and TWEAK expressions are directly correlated to VEGF-A expression but inversely correlated with VEGFR2 levels, suggesting a possible feedback mechanism in the regulation of VEGF-A expression.
Collapse
Affiliation(s)
- Cesare Ruffolo
- General Surgery Unit, University Hospital of Padova, Padova, Italy
| | | | - Marco Massani
- Department of Surgery, Cà Foncello Regional Hospital, Treviso, Italy
| | - Anna Pozza
- Department of Surgery, Cà Foncello Regional Hospital, Treviso, Italy
| | | | - Luca M Saadeh
- General Surgery Unit, University Hospital of Padova, Padova, Italy
| | - Francesco Ferrara
- Gastroenterology Unit (IV), Cà Foncello Regional Hospital, Treviso, Italy
| | - Stefano Benvenuti
- Gastroenterology Unit (IV), Cà Foncello Regional Hospital, Treviso, Italy
| | | | - Nicolò Bassi
- Department of Surgery, Cà Foncello Regional Hospital, Treviso, Italy
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Marco Scarpa
- General Surgery Unit, University Hospital of Padova, Padova, Italy,
| |
Collapse
|
16
|
Soluble TNF-like weak inducer of apoptosis (TWEAK) enhances poly(I:C)-induced RIPK1-mediated necroptosis. Cell Death Dis 2018; 9:1084. [PMID: 30349023 PMCID: PMC6197222 DOI: 10.1038/s41419-018-1137-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
TNF-like weak inducer of apoptosis (TWEAK) and inhibition of protein synthesis with cycloheximide (CHX) sensitize for poly(I:C)-induced cell death. Notably, although CHX preferentially enhanced poly(I:C)-induced apoptosis, TWEAK enhanced primarily poly(I:C)-induced necroptosis. Both sensitizers of poly(I:C)-induced cell death, however, showed no major effect on proinflammatory poly(I:C) signaling. Analysis of a panel of HeLa-RIPK3 variants lacking TRADD, RIPK1, FADD, or caspase-8 expression revealed furthermore similarities and differences in the way how poly(I:C)/TWEAK, TNF, and TRAIL utilize these molecules for signaling. RIPK1 turned out to be essential for poly(I:C)/TWEAK-induced caspase-8-mediated apoptosis but was dispensable for this response in TNF and TRAIL signaling. TRADD-RIPK1-double deficiency differentially affected poly(I:C)-triggered gene induction but abrogated gene induction by TNF completely. FADD deficiency abrogated TRAIL- but not TNF- and poly(I:C)-induced necroptosis, whereas TRADD elicited protective activity against all three death inducers. A general protective activity against poly(I:C)-, TRAIL-, and TNF-induced cell death was also observed in FLIPL and FLIPS transfectrants.
Collapse
|
17
|
Visualization of T Cell-Regulated Monocyte Clusters Mediating Keratinocyte Death in Acquired Cutaneous Immunity. J Invest Dermatol 2018; 138:1328-1337. [DOI: 10.1016/j.jid.2018.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 01/22/2023]
|
18
|
Kim SY, Kim JD, Sol IS, Kim MJ, Kim MN, Hong JY, Kim HR, Kim YH, Lee YJ, Kim KW, Sohn MH. Sputum TWEAK expression correlates with severity and degree of control in non-eosinophilic childhood asthma. Pediatr Allergy Immunol 2018; 29:42-49. [PMID: 29068159 DOI: 10.1111/pai.12827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is known to play a role in the pathogenesis of various inflammatory diseases. However, no study has been performed on childhood asthma. METHODS Ninety-five children with asthma and 78 controls aged 5-18 years were included. Sputum induction, pulmonary function test (PFT), and methacholine challenge test were performed. The subjects were divided into the eosinophilic airway (EA) and non-EA (NEA) groups based on sputum analysis and into the high and low TWEAK groups according to the TWEAK cutoff level (263.0 pg/mL). TWEAK in induced sputum supernatant was measured through enzyme-linked immunosorbent assay. RESULTS Children with asthma had higher TWEAK levels than healthy controls (493.0 [157.1-904.3] vs 118.2 (67.5-345.5) pg/mL, P < .001). Sputum TWEAK levels were significantly correlated with PFT parameters reflecting airway obstruction. This association was particularly prominent in subjects with NEA inflammation. Significant differences in FEF25-75 (maximum mid-expiratory flow, % predicted; P = .017), AX (reactance area; P < .001), R5-R20 (difference between resistance at 5 and 20 Hz; P = .025), and X5 (reactance at 5 Hz, % predicted; P < .001) were noted between the high and low TWEAK groups within the NEA group. Sputum TWEAK level also showed significant positive correlations with asthma severity (r = .358, P = .001) and control status (r = .470, P < .001), distinctively in subjects with NEA inflammation. CONCLUSIONS Airway TWEAK may play a role in small airway inflammation especially in children with non-eosinophilic asthma.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Deok Kim
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
| | - In Suk Sol
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ran Kim
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Hee Kim
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ju Lee
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Institute of Allergy, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Boulamery A, Desplat-Jégo S. Regulation of Neuroinflammation: What Role for the Tumor Necrosis Factor-Like Weak Inducer of Apoptosis/Fn14 Pathway? Front Immunol 2017; 8:1534. [PMID: 29201025 PMCID: PMC5696327 DOI: 10.3389/fimmu.2017.01534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
Observed in many central nervous system diseases, neuroinflammation (NI) proceeds from peripheral immune cell infiltration into the parenchyma, from cytokine secretion and from oxidative stress. Astrocytes and microglia also get activated and proliferate. NI manifestations and consequences depend on its context and on the acute or chronic aspect of the disease. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 pathway has been involved in chronic human inflammatory pathologies such as neurodegenerative, autoimmune, or malignant diseases. New data now describe its regulatory effects in tissues or fluids from patients with neurological diseases. In this mini-review, we aim to highlight the role of TWEAK/Fn14 in modulating NI in multiple sclerosis, neuropsychiatric systemic lupus erythematosus, stroke, or glioma. TWEAK/Fn14 can modulate NI by activating canonical and non-canonical nuclear factor-κB pathways but also by stimulating mitogen-activated protein kinase signaling. These downstream activations are associated with (i) inflammatory cytokine, chemokine and adhesion molecule expression or release, involved in NI propagation, (ii) matrix-metalloproteinase 9 secretion, implicated in blood–brain barrier disruption and tissue remodeling, (iii) astrogliosis and microgliosis, and (iv) migration of tumor cells in glioma. In addition, we report several animal and human studies pointing to TWEAK as an attractive therapeutic target.
Collapse
Affiliation(s)
- Audrey Boulamery
- Aix-Marseille University, CNRS, NICN, Marseille, France.,AP-HM, Hôpital Sainte-Marguerite, Centre Antipoison et de Toxicovigilance, Marseille, France
| | - Sophie Desplat-Jégo
- Aix-Marseille University, CNRS, NICN, Marseille, France.,Service d'Immunologie, Hôpital de la Conception, Marseille, France
| |
Collapse
|
20
|
Songstad AE, Worthington KS, Chirco KR, Giacalone JC, Whitmore SS, Anfinson KR, Ochoa D, Cranston CM, Riker MJ, Neiman M, Stone EM, Mullins RF, Tucker BA. Connective Tissue Growth Factor Promotes Efficient Generation of Human Induced Pluripotent Stem Cell-Derived Choroidal Endothelium. Stem Cells Transl Med 2017; 6:1533-1546. [PMID: 28474838 PMCID: PMC5689757 DOI: 10.1002/sctm.16-0399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/20/2017] [Indexed: 12/24/2022] Open
Abstract
Age‐related macular degeneration (AMD) is a leading cause of irreversible blindness in the Western world. Although, the majority of stem cell research to date has focused on production of retinal pigment epithelial (RPE) and photoreceptor cells for the purpose of evaluating disease pathophysiology and cell replacement, there is strong evidence that the choroidal endothelial cells (CECs) that form the choriocapillaris vessels are the first to be lost in this disease. As such, to accurately evaluate disease pathophysiology and develop an effective treatment, production of patient‐specific, stem cell‐derived CECs will be required. In this study, we report for the first time a stepwise differentiation protocol suitable for generating human iPSC‐derived CEC‐like cells. RNA‐seq analysis of the monkey CEC line, RF/6A, combined with two statistical screens allowed us to develop media comprised of various protein combinations. In both screens, connective tissue growth factor (CTGF) was identified as the key component required for driving CEC development. A second factor tumor necrosis factor (TNF)‐related weak inducer of apoptosis receptor was also found to promote iPSC to CEC differentiation by inducing endogenous CTGF secretion. CTGF‐driven iPSC‐derived CEC‐like cells formed capillary tube‐like vascular networks, and expressed the EC‐specific markers CD31, ICAM1, PLVAP, vWF, and the CEC‐restricted marker CA4. In combination with RPE and photoreceptor cells, patient‐specific iPSC derived CEC‐like cells will enable scientists to accurately evaluate AMD pathophysiology and develop effective cell replacement therapies. Stem Cells Translational Medicine2017;6:1533–1546
Collapse
Affiliation(s)
- Allison E Songstad
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | | | - Kathleen R Chirco
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Joseph C Giacalone
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - S Scott Whitmore
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Kristin R Anfinson
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Dalyz Ochoa
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Cathryn M Cranston
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Megan J Riker
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Robert F Mullins
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Budd A Tucker
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| |
Collapse
|
21
|
Tanzer MC, Khan N, Rickard JA, Etemadi N, Lalaoui N, Spall SK, Hildebrand JM, Segal D, Miasari M, Chau D, Wong WL, McKinlay M, Chunduru SK, Benetatos CA, Condon SM, Vince JE, Herold MJ, Silke J. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ 2017; 24:481-491. [PMID: 28106882 DOI: 10.1038/cdd.2016.147] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Peptido-mimetic inhibitor of apoptosis protein (IAP) antagonists (Smac mimetics (SMs)) can kill tumour cells by depleting endogenous IAPs and thereby inducing tumour necrosis factor (TNF) production. We found that interferon-γ (IFNγ) synergises with SMs to kill cancer cells independently of TNF- and other cell death receptor signalling pathways. Surprisingly, CRISPR/Cas9 HT29 cells doubly deficient for caspase-8 and the necroptotic pathway mediators RIPK3 or MLKL were still sensitive to IFNγ/SM-induced killing. Triple CRISPR/Cas9-knockout HT29 cells lacking caspase-10 in addition to caspase-8 and RIPK3 or MLKL were resistant to IFNγ/SM killing. Caspase-8 and RIPK1 deficiency was, however, sufficient to protect cells from IFNγ/SM-induced cell death, implying a role for RIPK1 in the activation of caspase-10. These data show that RIPK1 and caspase-10 mediate cell death in HT29 cells when caspase-8-mediated apoptosis and necroptosis are blocked and help to clarify how SMs operate as chemotherapeutic agents.
Collapse
Affiliation(s)
- Maria C Tanzer
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nufail Khan
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - James A Rickard
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nima Etemadi
- Olivia Newton John Cancer Research Institute, Heidelberg, VIC 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Najoua Lalaoui
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Sukhdeep Kaur Spall
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Joanne M Hildebrand
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - David Segal
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Maria Miasari
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Diep Chau
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - WendyWei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Mark McKinlay
- TetraLogic Pharmaceuticals Corporation, Malvern, PA 19355, USA
| | | | | | | | - James E Vince
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Marco J Herold
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - John Silke
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
22
|
Characterisation of the Whole Blood mRNA Transcriptome in Holstein-Friesian and Jersey Calves in Response to Gradual Weaning. PLoS One 2016; 11:e0159707. [PMID: 27479136 PMCID: PMC4968839 DOI: 10.1371/journal.pone.0159707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Weaning of dairy calves is an early life husbandry management practice which involves the changeover from a liquid to a solid feed based diet. The objectives of the study were to use RNA-seq technology to examine the effect of (i) breed and (ii) gradual weaning, on the whole blood mRNA transcriptome of artificially reared Holstein-Friesian and Jersey calves. The calves were gradually weaned over 14 days (day (d) -13 to d 0) and mRNA transcription was examined one day before gradual weaning was initiated (d -14), one day after weaning (d 1), and 8 days after weaning (d 8). On d -14, 550 genes were differentially expressed between Holstein-Friesian and Jersey calves, while there were 490 differentially expressed genes (DEG) identified on d 1, and 411 DEG detected eight days after weaning (P < 0.05; FDR < 0.1). No genes were differentially expressed within breed, in response to gradual weaning (P > 0.05). The pathways, gene ontology terms, and biological functions consistently over-represented among the DEG between Holstein-Friesian and Jersey were associated with the immune response and immune cell signalling, specifically chemotaxis. Decreased transcription of several cytokines, chemokines, immunoglobulin-like genes, phagocytosis-promoting receptors and g-protein coupled receptors suggests decreased monocyte, natural killer cell, and T lymphocyte, chemotaxis and activation in Jersey compared to Holstein-Friesian calves. Knowledge of breed-specific immune responses could facilitate health management practices better tailored towards specific disease sensitivities of Holstein-Friesian and Jersey calves. Gradual weaning did not compromise the welfare of artificially-reared dairy calves, evidenced by the lack of alterations in the expression of any genes in response to gradual weaning.
Collapse
|
23
|
Soluble Fn14 Is Detected and Elevated in Mouse and Human Kidney Disease. PLoS One 2016; 11:e0155368. [PMID: 27171494 PMCID: PMC4865213 DOI: 10.1371/journal.pone.0155368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023] Open
Abstract
The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tissue injury to mediate local tissue responses including inflammation and tissue remodeling. We found that in various models of kidney disease, Fn14 expression (mRNA and protein) is upregulated in the kidney. These models include: lupus nephritis mouse models (Nephrotoxic serum Transfer Nephritis and MRL.Faslpr/lpr), acute kidney injury models (Ischemia reperfusion injury and Folic acid injury), and a ZSF-1 diabetic nephropathy rat model. Fn14 expression levels correlate with disease severity as measured by disease histology. We have also shown for the first time the detection of soluble Fn14 (sFn14) in the urine and serum of mice. Importantly, we found the sFn14 levels are markedly increased in the diseased mice and are correlated with disease biomarkers including proteinuria and MCP-1. We have also detected sFn14 in human plasma and urine. Moreover, sFn14 levels, in urine are significantly increased in DN patients and correlated with proteinuria and MCP-1 levels. Thus our data not only confirm the up-regulation of Fn14/TWEAK pathway in kidney diseases, but also suggest a novel mechanism for its regulation by the generation of sFn14. The correlation of sFn14 levels and disease severity suggest that sFn14 may serve as a potential biomarker for both acute and chronic kidney diseases.
Collapse
|
24
|
Galluppi GR, Wisniacki N, Stebbins C. Population pharmacokinetic and pharmacodynamic analysis of BIIB023, an anti-TNF-like weak inducer of apoptosis (anti-TWEAK) monoclonal antibody. Br J Clin Pharmacol 2016; 82:118-28. [PMID: 26896828 DOI: 10.1111/bcp.12914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/21/2022] Open
Abstract
AIMS Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is implicated in the pathogenesis of lupus nephritis. This study evaluated the pharmacokinetics, using the population approach, and pharmacodynamics of BIIB023, an anti-TWEAK monoclonal antibody, in healthy Chinese, Japanese and Caucasian volunteers. METHODS In this single-dose, randomized, double-blind, phase 1 study of BIIB023 in healthy volunteers, BIIB023 was administered by intravenous infusion (3 or 20 mg kg(-1) ) on Day 1; follow-up occurred through Day 71. BIIB023 serum concentration was measured using a validated enzyme-linked immunosorbent assay; BIIB023 concentration-time data were subjected to noncompartmental analysis. Population pharmacokinetic analysis was performed using data from this study and a prior phase 1 study of BIIB023 in subjects with rheumatoid arthritis. Soluble TWEAK and TWEAK BIIB023 complex were evaluated. RESULTS There were no differences in BIIB023 pharmacokinetics requiring dose adjustment among the three ethnic groups or between healthy volunteers and arthritis patients. BIIB023 central compartment volume (3050 ml) and clearance (7.42 ml h(-1) ) were comparable to those observed for other monoclonal antibody drugs. BIIB023 serum exposure increased in a dose-dependent manner in all groups, but not in direct proportion to dose level; at concentrations below ~10 μg ml(-1) , nonlinear clearance was observed. Soluble TWEAK levels decreased to below the level of quantitation after BIIB023 treatment, with concomitant changes in TWEAK BIIB023 complex levels. CONCLUSIONS No clinically meaningful differences were observed in BIIB023 pharmacokinetic and pharmacodynamic properties in healthy Chinese, Japanese and Caucasian volunteers; pharmacodynamic measures suggested target engagement. TWEAK may be an attractive therapeutic target for lupus nephritis treatment.
Collapse
Affiliation(s)
- Gerald R Galluppi
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, Massachusetts, USA
| | | | - Chris Stebbins
- Translational Sciences, Biogen, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Bueno-Silva B, Kawamoto D, Ando-Suguimoto ES, Alencar SM, Rosalen PL, Mayer MPA. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages. PLoS One 2015; 10:e0144954. [PMID: 26660901 PMCID: PMC4684384 DOI: 10.1371/journal.pone.0144954] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 12/16/2022] Open
Abstract
Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Severino M. Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), Piracicaba, SP, Brazil
| | - Pedro L. Rosalen
- Piracicaba Dental School, University of Campinas–UNICAMP, Department of Physiologic Sciences, Piracicaba, SP, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
26
|
Cheng H, Xu M, Liu X, Zou X, Zhan N, Xia Y. TWEAK/Fn14 activation induces keratinocyte proliferation under psoriatic inflammation. Exp Dermatol 2015; 25:32-7. [PMID: 26264384 DOI: 10.1111/exd.12820] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Hong Cheng
- Department of Medicine; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an China
- Department of Dermatology; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an China
| | - Meifeng Xu
- Department of Dermatology; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an China
| | - Xiaoming Liu
- Department of Dermatology; The Third Affiliated Hospital of Soochow University; Changzhou China
| | - Xiaoyan Zou
- Department of Dermatology; Hubei Maternity and Child Health Hospital; Wuhan China
| | - Na Zhan
- Department of Pathology; Renmin Hospital of Wuhan University; Wuhan China
| | - Yumin Xia
- Department of Dermatology; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
27
|
Haabeth OAW, Lorvik KB, Yagita H, Bogen B, Corthay A. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Oncoimmunology 2015; 5:e1039763. [PMID: 26942052 PMCID: PMC4760324 DOI: 10.1080/2162402x.2015.1039763] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
The role of inflammation in cancer is controversial as both tumor-promoting and tumor-suppressive aspects of inflammation have been reported. In particular, it has been shown that pro-inflammatory cytokines, like interleukin-1α (IL-1α), IL-1β, IL-6, and tumor necrosis factor α (TNFα), may either promote or suppress cancer. However, the cellular and molecular basis underlying these opposing outcomes remains enigmatic. Using mouse models for myeloma and lymphoma, we have recently reported that inflammation driven by tumor-specific T helper 1 (Th1) cells conferred protection against B-cell cancer and that interferon-γ (IFN-γ) was essential for this process. Here, we have investigated the contribution of several inflammatory mediators. Myeloma eradication by Th1 cells was not affected by inhibition of TNF-α, TNF-related weak inducer of apoptosis (TWEAK), or TNF-related apoptosis-inducing ligand (TRAIL). In contrast, cancer elimination by tumor-specific Th1 cells was severely impaired by the in vivo neutralization of both IL-1α and IL-1β (collectively named IL-1) with IL-1 receptor antagonist (IL-1Ra). The antitumor functions of tumor-specific Th1 cells and tumor-infiltrating macrophages were both affected by IL-1 neutralization. Secretion of the Th1-derived cytokines IL-2 and IFN-γ at the incipient tumor site was severely reduced by IL-1 blockade. Moreover, IL-1 was shown to synergize with IFN-γ for induction of tumoricidal activity in tumor-infiltrating macrophages. This synergy between IL-1 and IFN-γ may explain how inflammation, when driven by tumor-specific Th1 cells, represses rather than promotes cancer. Collectively, the data reveal a central role of inflammation, and more specifically of the canonical pro-inflammatory cytokine IL-1, in enhancing Th1-mediated immunity against cancer.
Collapse
Affiliation(s)
- Ole Audun Werner Haabeth
- Centre for Immune Regulation; University of Oslo and Oslo University Hospital Rikshospitalet ; Oslo, Norway
| | - Kristina Berg Lorvik
- Centre for Immune Regulation; University of Oslo and Oslo University Hospital Rikshospitalet ; Oslo, Norway
| | - Hideo Yagita
- Department of Immunology; Juntendo University School of Medicine ; Tokyo, Japan
| | - Bjarne Bogen
- Centre for Immune Regulation; University of Oslo and Oslo University Hospital Rikshospitalet; Oslo, Norway; K.G. Jebsen Centre for Influenza Vaccine Research; University of Oslo; Oslo, Norway
| | - Alexandre Corthay
- Centre for Immune Regulation; University of Oslo and Oslo University Hospital Rikshospitalet ; Oslo, Norway
| |
Collapse
|
28
|
Doerner JL, Wen J, Xia Y, Paz KB, Schairer D, Wu L, Chalmers SA, Izmirly P, Michaelson JS, Burkly LC, Friedman AJ, Putterman C. TWEAK/Fn14 Signaling Involvement in the Pathogenesis of Cutaneous Disease in the MRL/lpr Model of Spontaneous Lupus. J Invest Dermatol 2015; 135:1986-1995. [PMID: 25826425 PMCID: PMC4504782 DOI: 10.1038/jid.2015.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK, TNFSF12) and its sole receptor Fn14, belonging to the TNF ligand and receptor superfamilies respectively, are involved in cell survival and cytokine production. The role of TWEAK/Fn14 interactions in the pathogenesis of cutaneous lupus has not been explored. TWEAK treatment of murine PAM212 keratinocytes stimulated the secretion of RANTES via Fn14 and promoted apoptosis. Parthenolide, but not wortmanin or the MAPK inhibitor PD98059, significantly decreased production of RANTES, indicating that this effect of TWEAK is mediated via NF-κB signaling. UVB irradiation significantly upregulated the expression of Fn14 on keratinocytes in vitro and in vivo and increased RANTES production. MRL/lpr Fn14 knockout (KO) lupus mice were compared with MRL/lpr Fn14 wild-type (WT) mice to evaluate for any possible differences in the severity of cutaneous lesions and the presence of infiltrating immune cells. MRL/lpr Fn14 KO mice had markedly attenuated cutaneous disease as compared with their Fn14 WT littermates, as evidenced by the well-maintained architecture of the skin and significantly decreased skin infiltration of T cells and macrophages. Our data strongly implicate TWEAK/Fn14 signaling in the pathogenesis of the cutaneous manifestations in the MRL/lpr model of spontaneous lupus and suggest a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica L Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jing Wen
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yumin Xia
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Karin Blecher Paz
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Schairer
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lan Wu
- Biogen Idec, Cambridge, Massachusetts, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Peter Izmirly
- Division of Rheumatology, NYU-Langone Medical Center, New York, USA
| | | | | | - Adam J Friedman
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
29
|
Bowerman M, Salsac C, Coque E, Eiselt E, Deschaumes RG, Brodovitch A, Burkly LC, Scamps F, Raoul C. Tweak regulates astrogliosis, microgliosis and skeletal muscle atrophy in a mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 2015; 24:3440-56. [DOI: 10.1093/hmg/ddv094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 11/12/2022] Open
|
30
|
Sanz AB, Izquierdo MC, Sanchez-Niño MD, Ucero AC, Egido J, Ruiz-Ortega M, Ramos AM, Putterman C, Ortiz A. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant 2014; 29 Suppl 1:i54-i62. [PMID: 24493870 DOI: 10.1093/ndt/gft342] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) activates the fibroblast growth factor-inducible-14 (Fn14) receptor. TWEAK has actions on intrinsic kidney cells and on inflammatory cells of potential pathophysiological relevance. The effects of TWEAK in tubular cells have been explored in most detail. In cultured murine tubular cells TWEAK induces the expression of inflammatory cytokines, downregulates the expression of Klotho, is mitogenic, and in the presence of sensitizing agents promotes apoptosis. Similar actions were observed on glomerular mesangial cells. In vivo TWEAK actions on healthy kidneys mimic cell culture observations. Increased expression of TWEAK and Fn14 was reported in human and experimental acute and chronic kidney injury. The role of TWEAK/Fn14 in kidney injury has been demonstrated in non-inflammatory compensatory renal growth, acute kidney injury and chronic kidney disease of immune and non-immune origin, including hyperlipidaemic nephropathy, lupus nephritis (LN) and anti-GBM nephritis. The nephroprotective effect of TWEAK or Fn14 targeting in immune-mediated kidney injury is the result of protection from TWEAK-induced injury of renal intrinsic cells, not from interference with the immune response. A phase I dose-ranging clinical trial demonstrated the safety of anti-TWEAK antibodies in humans. A phase II randomized placebo-controlled clinical trial exploring the efficacy, safety and tolerability of neutralizing anti-TWEAK antibodies as a tissue protection strategy in LN is ongoing. The eventual success of this trial may expand the range of kidney diseases in which TWEAK targeting should be explored.
Collapse
Affiliation(s)
- Ana B Sanz
- Dialysis Unit, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Tumor necrosis factor-related apoptosis-inducing ligand on NK cells protects from hepatic ischemia-reperfusion injury. Transplantation 2014; 97:1102-9. [PMID: 24804996 DOI: 10.1097/tp.0000000000000101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) significantly contributes to graft dysfunction after liver transplantation. Natural killer (NK) cells are crucial innate effector cells in the liver and express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of hepatocyte cell death. Here, we investigated if TRAIL expression on NK cells contributes to hepatic IRI. METHODS The outcome after partial hepatic IRI was assessed in TRAIL-null mice and contrasted to C57BL/6J wild-type mice and after NK cell adoptive transfer in RAG2/common gamma-null mice that lack T, B, and NK cells. Liver IRI was assessed by histological analysis, alanine aminotransferase, hepatic neutrophil activation by myeloperoxidase activity, and cytokine secretion at specific time points. NK cell cytotoxicity and differentiation were assessed in vivo and in vitro. RESULTS Twenty-four hours after reperfusion, TRAIL-null mice exhibited significantly higher serum transaminases, histological signs of necrosis, neutrophil infiltration, and serum levels of interleukin-6 compared to wild-type animals. Adoptive transfer of TRAIL-null NK cells into immunodeficient RAG2/common gamma-null mice was associated with significantly elevated liver damage compared to transfer of wild-type NK cells. In TRAIL-null mice, NK cells exhibit higher cytotoxicity and decreased differentiation compared to wild-type mice. In vitro, cytotoxicity against YAC-1 and secretion of interferon gamma by TRAIL-null NK cells were significantly increased compared to wild-type controls. CONCLUSIONS These experiments reveal that expression of TRAIL on NK cells is protective in a murine model of hepatic IRI through modulation of NK cell cytotoxicity and NK cell differentiation.
Collapse
|
33
|
Burkly LC. TWEAK/Fn14 axis: The current paradigm of tissue injury-inducible function in the midst of complexities. Semin Immunol 2014; 26:229-36. [DOI: 10.1016/j.smim.2014.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
34
|
Gurunathan S, Winkles JA, Ghosh S, Hayden MS. Regulation of fibroblast growth factor-inducible 14 (Fn14) expression levels via ligand-independent lysosomal degradation. J Biol Chem 2014; 289:12976-88. [PMID: 24652288 DOI: 10.1074/jbc.m114.563478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a highly inducible cytokine receptor that engages multiple intracellular signaling pathways, including nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Fn14 expression is regulated by several cytokines and growth factors, and Fn14 is transiently up-regulated after injury. In contrast, in states of chronic inflammatory disease and in some solid tumors, Fn14 is persistently up-regulated. However, the post-translational regulation of Fn14 expression has not been directly investigated. Thus, we examined Fn14 proteostasis in the presence and absence of the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK). Similar to other TNF receptor superfamily members, we found that TWEAK induces Fn14 internalization and degradation. Surprisingly, we also observed rapid, TWEAK-independent, constitutive Fn14 internalization and turnover. Fn14 levels are maintained in cell culture by ongoing synthesis and trafficking of the receptor, leading to subsequent down-regulation by lysosomal degradation. Unexpectedly, the extracellular domain of Fn14 is necessary and sufficient for constitutive turnover. Based on these findings, we propose a model in which constitutive down-regulation of Fn14 facilitates dynamic regulation of Fn14 protein levels and prevents spontaneous or inappropriate receptor signaling.
Collapse
|
35
|
Anuranjani, Bala M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage. Redox Biol 2014; 2:832-46. [PMID: 25009785 PMCID: PMC4085347 DOI: 10.1016/j.redox.2014.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. Exposure to low linear energy transfer (LET) ionizing radiation (IR) causes intracellular oxidative stress and activate the Nrf2-ARE antioxidant pathway. Irradiation also causes inflammation and DNA damage which affect other pathways related to MRN complex and HMGB1 proteins. The antioxidant Keap1-Nrf2-ARE pathway most importantly regulates intracellular oxidative stress. The interaction of Keap1-Nrf2-ARE pathway with HMGB1 regulated inflammation; MRN complex regulated DNA repair is reviewed.
Collapse
Key Words
- .OH, hydroxyl radical
- AP1, activator protein-1
- ARE, antioxidant response element
- ATM, ataxia telangiectasia mutagenesis
- Bcl-2, B cell lymphoma-2 protein
- CBP, CREB-binding protein
- Chk-2, checkpoint kinase-2 protein
- DAMP, death associated molecular pattern
- DDR, DNA damage response
- DGR, double glycine repeats
- DSB, double strands break
- FGF, fibroblast growth factor
- FGF2, fibroblast growth factor-2
- GM-CSF, granulocytes macrophages colony stimulating factor
- GPx, glutathione peroxidase
- GSH, glutathione (reduced)
- GSK-3ß, glycogen synthase kinase 3 beta
- HMGB1
- HMGB1, high mobility group Box 1
- HR, homologous recombination
- IR, ionizing radiation
- Keap1, Kelch like ECH associated protein 1
- LET, linear energy transfer
- MDA, malondialdehyde
- MIP, macrophages inflammatory proteins
- MRN complex
- MRN, Mre11, Rad50 and Nbs1 subunits
- MRP, multidrug resistance protein
- NADPH, nicotinamide adenine dinucleotide phosphate
- NES, nuclear export sequence
- NHEJ, non-homologous end joining
- NLS, nuclear localization sequence
- Nrf2-ARE pathway
- PKC, protein kinase C
- RAGE, receptor for advance glycation end products
- RIF, radiation induced foci
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Radio-modification
- SOD, superoxide dismutase
- SSBs, single strand DNA breaks
- TRAIL, TNF related apoptosis inducing ligand
- TWEAK
- TWEAK, tumour necrosis factor weak inducer of apoptosis
- VEGF, vascular endothelial growth factor
- VSMC, vascular smooth muscle cells
- bFGF, basal fibroblast growth factor
- t-BHQ, tert butyl hydroquinone
Collapse
Affiliation(s)
- Anuranjani
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| | - Madhu Bala
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| |
Collapse
|
36
|
Carmona Arana JA, Seher A, Neumann M, Lang I, Siegmund D, Wajant H. TNF Receptor-Associated Factor 1 is a Major Target of Soluble TWEAK. Front Immunol 2014; 5:63. [PMID: 24600451 PMCID: PMC3927163 DOI: 10.3389/fimmu.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), in contrast to membrane TWEAK and TNF, is only a weak activator of the classical NFκB pathway. We observed that soluble TWEAK was regularly more potent than TNF with respect to the induction of TNF receptor-associated factor 1 (TRAF1), a NFκB-controlled signaling protein involved in the regulation of inflammatory signaling pathways. TNF-induced TRAF1 expression was efficiently blocked by inhibition of the classical NFκB pathway using the IKK2 inhibitor, TPCA1. In contrast, in some cell lines, TWEAK-induced TRAF1 production was only partly inhibited by TPCA1. The NEDD8-activating enzyme inhibitor MLN4924, however, which inhibits classical and alternative NFκB signaling, blocked TNF- and TWEAK-induced TRAF1 expression. This suggests that TRAF1 induction by soluble TWEAK is based on the cooperative activity of the two NFκB signaling pathways. We have previously shown that oligomerization of soluble TWEAK results in ligand complexes with membrane TWEAK-like activity. Oligomerization of soluble TWEAK showed no effect on the dose response of TRAF1 induction, but potentiated the ability of soluble TWEAK to trigger production of the classical NFκB-regulated cytokine IL8. Transfectants expressing soluble TWEAK and membrane TWEAK showed similar induction of TRAF1 while only the membrane TWEAK expressing cells robustly stimulated IL8 production. These data indicate that soluble TWEAK may efficiently induce a distinct subset of the membrane TWEAK-targeted genes and argue again for a crucial role of classical NFκB pathway-independent signaling in TWEAK-induced TRAF1 expression. Other TWEAK targets, which can be equally well induced by soluble and membrane TWEAK, remain to be identified and the relevance of the ability of soluble TWEAK to induce such a distinct subset of membrane TWEAK-targeted genes for TWEAK biology will have to be clarified in future studies.
Collapse
Affiliation(s)
- José Antonio Carmona Arana
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg , Würzburg , Germany
| | - Manfred Neumann
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
37
|
Blanco-Colio LM. TWEAK/Fn14 Axis: A Promising Target for the Treatment of Cardiovascular Diseases. Front Immunol 2014; 5:3. [PMID: 24478772 PMCID: PMC3895871 DOI: 10.3389/fimmu.2014.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases (CVD) are the first cause of mortality in Western countries. CVD include several pathologies such as coronary heart disease, stroke or cerebrovascular accident, congestive heart failure, peripheral arterial disease, and aortic aneurysm, among others. Interaction between members of the tumor necrosis factor (TNF) superfamily and their receptors elicits several biological actions that could participate in CVD. TNF-like weak inducer of apoptosis (TWEAK) and its functional receptor and fibroblast growth factor-inducible molecule 14 (Fn14) are two proteins belonging to the TNF superfamily that activate NF-κB by both canonical and non-canonical pathways and regulate several cell functions such as proliferation, migration, differentiation, cell death, inflammation, and angiogenesis. TWEAK/Fn14 axis plays a beneficial role in tissue repair after acute injury. However, persistent TWEAK/Fn14 activation mediated by blocking experiments or overexpression experiments in animal models has shown an important role of this axis in the pathological remodeling underlying CVD. In this review, we summarize the role of TWEAK/Fn14 pathway in the development of CVD, focusing on atherosclerosis and stroke and the molecular mechanisms by which TWEAK/Fn14 interaction participates in these pathologies. We also review the role of the soluble form of TWEAK as a biomarker for the diagnosis and prognosis of CVD. Finally, we highlight the results obtained with other members of the TNF superfamily that also activate canonical and non-canonical NF-κB pathway.
Collapse
|
38
|
Bertin D, Stephan D, Khrestchatisky M, Desplat-Jégo S. Is TWEAK a Biomarker for Autoimmune/Chronic Inflammatory Diseases? Front Immunol 2013; 4:489. [PMID: 24409182 PMCID: PMC3873518 DOI: 10.3389/fimmu.2013.00489] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023] Open
Abstract
The TWEAK/Fn14 pathway is now well-known for its involvement in the modulation of inflammation in various human autoimmune/chronic inflammatory diseases (AICID) including lupus, rheumatoid arthritis, and multiple sclerosis. A panel of data is now available concerning TWEAK expression in tissues or biological fluids of patients suffering from AICID, suggesting that it could be a promising biological marker in these diseases. Evidences from several teams support the hypothesis that blocking TWEAK/Fn14 pathway is an attractive new therapeutic lead in such diseases and clinical trials with anti-TWEAK-blocking antibodies are in progress. In this mini-review we discuss the potential use of TWEAK quantification in AICD management in routine practice and highlight the challenge of standardizing data collection to better estimate the clinical utility of such a biological parameter.
Collapse
Affiliation(s)
- Daniel Bertin
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France ; Service d'Immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille , Marseille , France
| | - Delphine Stephan
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France
| | | | - Sophie Desplat-Jégo
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France ; Service d'Immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille , Marseille , France
| |
Collapse
|
39
|
Pelekanou V, Notas G, Kampa M, Tsentelierou E, Stathopoulos EN, Tsapis A, Castanas E. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis. PLoS One 2013; 8:e83250. [PMID: 24376672 PMCID: PMC3869762 DOI: 10.1371/journal.pone.0083250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022] Open
Abstract
Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype.
Collapse
Affiliation(s)
- Vassiliki Pelekanou
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- Laboratories of Pathology, University of Crete, School of Medicine, Heraklion, Greece
| | - George Notas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | - Andreas Tsapis
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- INSERM U976, Hôpital Saint Louis, Paris, France; (4) Université Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
40
|
Poveda J, Tabara LC, Fernandez-Fernandez B, Martin-Cleary C, Sanz AB, Selgas R, Ortiz A, Sanchez-Niño MD. TWEAK/Fn14 and Non-Canonical NF-kappaB Signaling in Kidney Disease. Front Immunol 2013; 4:447. [PMID: 24339827 PMCID: PMC3857575 DOI: 10.3389/fimmu.2013.00447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/26/2013] [Indexed: 12/27/2022] Open
Abstract
The incidence of acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing. However, there is no effective therapy for AKI and current approaches only slow down, but do not prevent progression of CKD. TWEAK is a TNF superfamily cytokine. A solid base of preclinical data suggests a role of therapies targeting the TWEAK or its receptor Fn14 in AKI and CKD. In particular TWEAK/Fn14 targeting may preserve renal function and decrease cell death, inflammation, proteinuria, and fibrosis in mouse animal models. Furthermore there is clinical evidence for a role of TWEAK in human kidney injury including increased tissue and/or urinary levels of TWEAK and parenchymal renal cell expression of the receptor Fn14. In this regard, clinical trials of TWEAK targeting are ongoing in lupus nephritis. Nuclear factor-kappa B (NF-κB) activation plays a key role in TWEAK-elicited inflammatory responses. Activation of the non-canonical NF-κB pathway is a critical difference between TWEAK and TNF. TWEAK activation of the non-canonical NF-κB pathways promotes inflammatory responses in tubular cells. However, there is an incomplete understanding of the role of non-canonical NF-κB activation in kidney disease and on its contribution to TWEAK actions in vivo.
Collapse
Affiliation(s)
- Jonay Poveda
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid and IRSIN , Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tel J, Anguille S, Waterborg CEJ, Smits EL, Figdor CG, de Vries IJM. Tumoricidal activity of human dendritic cells. Trends Immunol 2013; 35:38-46. [PMID: 24262387 PMCID: PMC7106406 DOI: 10.1016/j.it.2013.10.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
Human DC subsets can exert tumoricidal activity. Killer DCs exploit several mechanisms for direct killing of target cells, including TRAIL and granzyme B. Antigen presentation and/or IFN production are important additional effector functions. Killer DCs are promising targets for immunotherapeutic strategies.
Dendritic cells (DCs) are a family of professional antigen-presenting cells (APCs) that are able to initiate innate and adaptive immune responses against pathogens and tumor cells. The DC family is heterogeneous and is classically divided into two main subsets, each with its unique phenotypic and functional characteristics: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Recent results have provided intriguing evidence that both DC subsets can also function as direct cytotoxic effector cells; in particular, against cancer cells. In this review, we delve into this understudied function of human DCs and discuss why these so-called killer DCs might become important tools in future cancer immunotherapies.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Claire E J Waterborg
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
42
|
Li M, Chen T, Guo Z, Li J, Cao N. Tumor necrosis factor-like weak inducer of apoptosis and its receptor fibroblast growth factor-inducible 14 are expressed in urticarial vasculitis. J Dermatol 2013; 40:891-5. [PMID: 23968277 DOI: 10.1111/1346-8138.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/27/2013] [Indexed: 02/05/2023]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, has been implicated as a pro-inflammatory cytokine in many types of autoimmune and infectious diseases. However, information about TWEAK in dermatological diseases is limited. To date, no studies have investigated the roles of TWEAK in patients with urticarial vasculitis (UV). This study aimed to assess serum TWEAK levels, together with TWEAK and fibroblast growth factor-inducible 14 (Fn14) expressions of skin lesions in patients with UV. Serum TWEAK levels in patients with UV, together with patients with cutaneous leukocytoclastic angiitis (CLA) and healthy controls were detected by enzyme-linked immunosorbent assay; TWEAK and Fn14 expressions of skin lesions were analyzed by immunohistochemistry. Results showed that TWEAK and Fn14 were abundantly expressed in the dermal vessel wall of lesional skin in patients with UV but not healthy controls. Serum TWEAK levels in the acute stage in patients with UV were significantly higher than those in the convalescent stage and healthy controls. Serum TWEAK levels were elevated significantly in patients with CLA compared with those in healthy controls. Our previous study indicated that TWEAK may be an important mediator for the development of vascular inflammation in skin. In addition, we also found that TWEAK blockade substantially reduced vascular damage and perivascular leukocyte infiltrates in lipopolysaccharide-induced cutaneous vasculitis. Our study shows that TWEAK may be associated with the pathogenesis of UV; it is therefore suggested that TWEAK may be a potential therapeutic target for UV and other types of cutaneous vasculitis.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
43
|
Nazeri A, Heydarpour P, Sadaghiani S, Sahraian MA, Burkly LC, Bar-Or A. A further TWEAK to multiple sclerosis pathophysiology. Mol Neurobiol 2013; 49:78-87. [PMID: 23873135 DOI: 10.1007/s12035-013-8490-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF super family that controls many cellular activities including proliferation, migration, differentiation, apoptosis, and inflammation by binding to fibroblast growth factor-inducible 14 (Fn14), a highly inducible cell surface receptor. Recent studies have indicated that TWEAK-Fn14 axis signaling may contribute to chronic autoimmune diseases. TWEAK expression via microglia in cortical lesions, presence of TWEAK(+) macrophages in inflamed leptomeninges, and absence of TWEAK/Fn14 expression in healthy brain implicates importance of this pathway in pathogenesis of multiple sclerosis lesions. TWEAK-Fn14 axis blockade has also shown promise in various multiple sclerosis animal models. Stimulation of the TWEAK/Fn14 pathway can result in activation of both canonical and noncanonical NF-κB signaling and could also stimulate mitogen-activated protein kinase (MAPK) signaling pathways. Here, we have reviewed evidence of the possible role of TWEAK-Fn14 axis in pathophysiology of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) via neuroinflammation, tissue remodeling, blood-brain barrier (BBB) disruption, neurodegeneration, and astrogliosis.
Collapse
Affiliation(s)
- Arash Nazeri
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
44
|
Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci U S A 2013; 110:5127-32. [PMID: 23493554 DOI: 10.1073/pnas.1221211110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the TNF family of proteins have been associated with inherited forms of immune deficiency. Using an array-based sequencing assay, we identified an autosomal-dominant deficiency in TNF-like weak inducer of apoptosis (TWEAK; TNFSF12) in a kindred with recurrent infection and impaired antibody responses to protein and polysaccharide vaccines. This mutation occurs in the sixth exon of TWEAK and results in the amino acid substitution R145C within the conserved TNF-homology domain of the full-length protein. TWEAK mutant protein formed high molecular weight aggregates under nonreducing conditions, suggesting an increased propensity for intermolecular interactions. As a result, mutant TWEAK associated with B-cell-activating factor (BAFF) protein and down-regulated the BAFF-mediated activation of the noncanonical NF-κB pathway through inhibition of p100 processing to p52, resulting in inhibition of BAFF-dependent B-cell survival and proliferation. As BAFF mediates T-cell-independent isotype switching and B-cell survival, our data implicate TWEAK as a disease-susceptibility gene for a humoral immunodeficiency.
Collapse
|
45
|
Amelioration of autoimmune neuroinflammation by the fusion molecule Fn14·TRAIL. J Neuroinflammation 2013; 10:36. [PMID: 23497038 PMCID: PMC3599748 DOI: 10.1186/1742-2094-10-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background Multiple sclerosis (MS) is a, T cell-mediated autoimmune disease, the management of which remains challenging. The recently described fusion protein, Fn14·TRAIL, combining the extracellular domain of Fn14 (capable of blocking the pro-inflammatory TWEAK ligand) fused to the extracellular domain of the TRAIL ligand (capable of sending apoptotic signals through its receptors on activated inflammatory cells) was designed to modulate the immune system as an anti-inflammatory agent. The present study explores the efficacy of this purified protein as an anti-inflammatory agent, using the animal model of MS - experimental autoimmune encephalomyelitis (EAE). Methods EAE was induced by myelin oligodendrocyte glycoprotein (MOG). Fn14·TRAIL or vehicle were injected daily for 4 to 16 days, at different time points after disease induction. Animals were examined daily and evaluated for EAE clinical signs. Lymphocytes were analyzed for ex vivo re-stimulation, cytokine secretion, transcription factor expression and subtype cell analysis. Spinal cords were checked for inflammatory foci. The Mann- Whitney rank sum test, Student’s t-test or ANOVA were used for statistical analysis. Results Significant improvement of EAE in the group treated with Fn14·TRAIL was noted from day 6 of disease onset and lasted until the end of follow-up (day 40 from disease induction), even in animals treated for 4 days only. Clinical improvement was linked to decreased lymphocyte infiltrates in the central nervous system (CNS) and to decreased Th1 and Th17 responses and to increased number of T- regulatory in the treated mice. No liver or kidney toxicity was evident. In vitro assays established the ability of Fn14·TRAIL to induce apoptosis of T cell lines expressing TRAIL receptors and TWEAK. Conclusions In this study we established the potency of Fn14·TRAIL, a unique fusion protein combining two potentially functional domains, in inhibiting the clinical course of EAE, even when given for a short time, without apparent toxicity. These findings make Fn14·TRAIL a highly promising agent to be used for targeted amelioration of neuro-inflammatory processes, as well as other autoimmune pathologies.
Collapse
|
46
|
Gu L, Dai L, Cao C, Zhu J, Ding C, Xu HB, Qiu L, Di W. Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention. PLoS One 2013; 8:e57436. [PMID: 23469193 PMCID: PMC3587594 DOI: 10.1371/journal.pone.0057436] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) in human malignant ovarian tumors, and test TWEAK’s potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC), we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%). Similarly, 35 out of 41 (85.37%) malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients’ clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α), whereas either TWEAK or TNF-α alone didn’t affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1) production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.
Collapse
Affiliation(s)
- Liying Gu
- Department of Gynecology and Obstetrics, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, P.R. China
| | - Lan Dai
- Department of Gynecology and Obstetrics, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, P.R. China
| | - Cong Cao
- The 2 Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Jing Zhu
- Department of Gynecology and Obstetrics, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, P.R. China
| | - Chuanwei Ding
- Department of Gynecology and Obstetrics, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, P.R. China
| | - Hai-bo Xu
- Gynecologic Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, P.R. China
| | - Lihua Qiu
- Department of Gynecology and Obstetrics, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, P.R. China
- * E-mail: (LQ); (WD)
| | - Wen Di
- Department of Gynecology and Obstetrics, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, P.R. China
- * E-mail: (LQ); (WD)
| |
Collapse
|
47
|
Chen T, Guo ZP, Li L, Li MM, Wang TT, Jia RZ, Cao N, Li JY. TWEAK enhances E-selectin and ICAM-1 expression, and may contribute to the development of cutaneous vasculitis. PLoS One 2013; 8:e56830. [PMID: 23457623 PMCID: PMC3574067 DOI: 10.1371/journal.pone.0056830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/15/2013] [Indexed: 02/05/2023] Open
Abstract
Our previous work indicated that TWEAK is associated with various types of cutaneous vasculitis (CV). Herein, we investigate the effects of TWEAK on vascular injury and adhesion molecule expression in CV mice. We showed that TWEAK priming in mice induced a local CV. Furthermore, TWEAK priming also increased the extravasation of FITC-BSA, myeloperoxidase activity and the expression of E-selectin and ICAM-1. Conversely, TWEAK blockade ameliorated the LPS-induced vascular damage, leukocyte infiltrates and adhesion molecules expression in LPS-induced CV. In addition, TWEAK treatment of HDMECs up-regulated E-selectin and ICAM-1 expression at both mRNA and protein levels. TWEAK also enhanced the adhesion of PMNs to HDMECs. Finally, western blot data revealed that TWEAK can induce phosphorylation of p38, JNK and ERK in HDMECs. These data suggest that TWEAK acted as an inducer of E-selectin and ICAM-1 expression in CV mice and HDMECs, may contribute to the development of CV.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Adhesion/drug effects
- Cytokine TWEAK
- E-Selectin/genetics
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Enzyme Activation/drug effects
- Gene Expression Regulation/drug effects
- Humans
- Intercellular Adhesion Molecule-1/genetics
- Intracellular Space/drug effects
- Intracellular Space/metabolism
- Leukocytes/cytology
- Leukocytes/drug effects
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Peroxidase/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor/blood
- TWEAK Receptor
- Tumor Necrosis Factors/blood
- Tumor Necrosis Factors/immunology
- Tumor Necrosis Factors/metabolism
- Tumor Necrosis Factors/pharmacology
- Up-Regulation/drug effects
- Vasculitis, Leukocytoclastic, Cutaneous/chemically induced
- Vasculitis, Leukocytoclastic, Cutaneous/genetics
- Vasculitis, Leukocytoclastic, Cutaneous/metabolism
- Vasculitis, Leukocytoclastic, Cutaneous/pathology
Collapse
Affiliation(s)
- Tao Chen
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zai-pei Guo
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- * E-mail: .
| | - Li Li
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meng-meng Li
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting-ting Wang
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui-zhen Jia
- Open Laboratory, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Na Cao
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing-yi Li
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Pettersen I, Baryawno N, Abel F, Bakkelund WH, Zykova SN, Winberg JO, Moens U, Rasmuson A, Kogner P, Johnsen JI, Sveinbjörnsson B. Expression of TWEAK/Fn14 in neuroblastoma: implications in tumorigenesis. Int J Oncol 2013; 42:1239-48. [PMID: 23443741 DOI: 10.3892/ijo.2013.1800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/30/2012] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor (TNF) family of cytokines, acts on responsive cells via binding to a cell surface receptor called Fn14. TWEAK binding to an Fn14 receptor or constitutive Fn14 overexpression has been shown to activate nuclear factor κB signaling which is important in tumorigenesis and cancer therapy resistance. In the present study, we demonstrate that TWEAK and Fn14 are expressed in neuroblastoma cell lines and primary tumors, and both are observed at increased levels in high-stage tumors. The treatment of neuroblastoma cell lines with recombinant TWEAK in vitro causes increased survival, and this effect is partially due to the activation of NF-κB signaling. Moreover, TWEAK induces the release of matrix metalloprotease-9 (MMP-9) in neuroblastoma cells, suggesting that TWEAK may play a role in the invasive phase of neuroblastoma tumorigenesis. TWEAK-induced cell survival was significantly reduced by silencing the TWEAK and Fn14 gene functions by siRNA. Thus, the expression of TWEAK and Fn14 in neuroblastoma suggests that TWEAK functions as an important regulator of primary neuroblastoma growth, invasion and survival and that the therapeutic intervention of the TWEAK/Fn14 pathway may be an important clinical strategy in neuroblastoma therapy.
Collapse
Affiliation(s)
- Ingvild Pettersen
- Translational Cancer Research Group, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhi-Chun L, Qiao-Ling Z, Zhi-Qin L, Xiao-Zhao L, Xiao-xia Z, Rong T. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) mediates p38 mitogen-activated protein kinase activation and signal transduction in peripheral blood mononuclear cells from patients with lupus nephritis. Inflammation 2012; 35:935-43. [PMID: 22009442 DOI: 10.1007/s10753-011-9396-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Forty-two patients with systemic lupus erythematosus (SLE), including 26 patients with renal damage and 16 without, and 20 healthy controls were included in the study. The isolated peripheral blood mononuclear cells (PBMCs) were treated with a p38 inhibitor (SB203580) or anti-tumor necrosis factor-like weak inducer of apoptosis (TWEAK) mAb, with or without phytohemagglutinin/phorbol myristate acetate (PHA/PMA) stimulation. Western blot experiments were used to evaluate the protein expression of TWEAK and p38 MAPK in PBMCs .Next, the contents of interleukin-10 (IL-10) and monocyte chemoattractant protein-1 (MCP-1) in the supernatant were measured by ELISA. The results showed that expression of TWEAK protein in PBMCs from lupus nephritis patients was significantly higher than that from SLE patients without renal damage and healthy controls. PHA/PMA simulation could upregulate the productions of TWEAK and p-p38MAPK in PBMCs from patients with SLE. Anti-TWEAK mAb treatment downregulated both TWEAK and p-p38 MAPK expression in PBMCs, as well as IL-10 and MCP-1 in the supernatant; SB203580 had the same effect on cytokine production in PBMC, but had no effect on the expression of TWEAK. Our results suggested that TWEAK-p38 MAPK-IL-10, MCP-1 signaling pathway in PBMC played an important pathogenic role in lupus nephritis.
Collapse
Affiliation(s)
- Liu Zhi-Chun
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Dohi T, Burkly LC. The TWEAK/Fn14 pathway as an aggravating and perpetuating factor in inflammatory diseases; focus on inflammatory bowel diseases. J Leukoc Biol 2012; 92:265-79. [DOI: 10.1189/jlb.0112042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Taeko Dohi
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Linda C. Burkly
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts, USA
| |
Collapse
|