1
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
2
|
Ganguly A, Ghosh S, Jin P, Wadehra M, Devaskar SU. Omega-3 reverses the metabolic and epigenetically regulated placental phenotype acquired from preconceptional and peri-conceptional exposure to air pollutants. J Nutr Biochem 2024; 134:109735. [PMID: 39122219 DOI: 10.1016/j.jnutbio.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Air pollution is detrimental to pregnancy adversely affecting maternal and child health. Our objective was to unravel epigenetic mechanisms mediating the effect of preconception, periconception, and gestational exposure to inhaled air pollutants (AP) upon the maternal and placental-fetal phenotype and explore the benefit of an omega-3 rich dietary intervention. To this end, we investigated intranasal instilled AP during 8 weeks of preconception, periconception, and gestation (G; D0 to 18) upon GD16-19 maternal mouse metabolic status, placental nutrient transporters, placental-fetal size, and placental morphology. Prepregnant mice were glucose intolerant and insulin resistant, while pregnant mice were glucose intolerant but displayed no major placental macro-nutrient transporter changes, except for an increase in CD36. Placentas revealed inflammatory cellular infiltration with cellular edema, necrosis, hemorrhage, and an increase in fetal body weight. Upon examination of placental genome-wide epigenetic processes of DNA sequence specific 5'-hydroxymethylation (5'-hmC) and 5'-methylation (5'-mC) upon RNA sequenced gene expression profiles, revealed changes in key metabolic, inflammatory, transcriptional, and cellular processing genes and pathways. An omega-3 rich anti-inflammatory diet from preconception (8 weeks) through periconception and gestation (GD0-18), ameliorated all these maternal and placental-fetal adverse effects. We conclude that preconceptional, periconceptional and gestational exposures to AP incite a maternal inflammatory response resulting in features of pre-existing maternal diabetes mellitus with injury to the placental-fetal unit. DNA 5'-mC more than 5'-hmC mediated AP induced maternal inflammatory and metabolic dysregulation which together alter placental gene expression and phenotype. A dietary intervention partially reversing these adversities provides possibilities for a novel nutrigenomic therapeutic strategy.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Madhuri Wadehra
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
3
|
Hansen CHF, Jozipovic D, Zachariassen LF, Nielsen DS, Hansen AK, Buschard K. Probiotic treatment with viable α-galactosylceramide-producing Bacteroides fragilis reduces diabetes incidence in female nonobese diabetic mice. J Diabetes 2024; 16:e13593. [PMID: 39136533 PMCID: PMC11320754 DOI: 10.1111/1753-0407.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND We aimed to investigate whether alpha-galactosylceramide (α-GalCer)-producing Bacteroides fragilis could induce natural killer T (NKT) cells in nonobese diabetic (NOD) mice and reduce their diabetes incidence. METHODS Five-week-old female NOD mice were treated orally with B. fragilis, and islet pathology and diabetes onset were monitored. Immune responses were analyzed by flow cytometry and multiplex technology. Effects of ultraviolet (UV)-killed α-GalCer-producing B. fragilis and their culture medium on invariant NKT (iNKT) cells were tested ex vivo on murine splenocytes, and the immunosuppressive capacity of splenocytes from B. fragilis-treated NOD mice were tested by adoptive transfer to nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. RESULTS B. fragilis reduced the diabetes incidence from 69% to 33% and the percent of islets with insulitis from 40% to 7%, which doubled the serum insulin level compared with the vehicle-treated control mice. Furthermore, the early treatment reduced proinflammatory mediators in the serum, whereas the proportion of CD4+ NKT cell population was increased by 33%. B. fragilis growth media stimulated iNKT cells and anti-inflammatory M2 macrophages ex vivo in contrast to UV-killed bacteria, which had no effect, strongly indicating an α-GalCer-mediated effect. Adoptive transfer of splenocytes from B. fragilis-treated NOD mice induced a similar diabetes incidence as splenocytes from untreated NOD mice. CONCLUSIONS B. fragilis induced iNKT cells and M2 macrophages and reduced type 1 diabetes in NOD mice. The protective effect seemed to be more centered on gut-pancreas interactions rather than a systemic immunosuppression. B. fragilis should be considered for probiotic use in individuals at risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- Camilla H. F. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Danica Jozipovic
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Line F. Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | - Axel K. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Karsten Buschard
- Department of PathologyThe Bartholin Institute, RigshospitaletCopenhagenDenmark
| |
Collapse
|
4
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
5
|
Oh SF, Jung DJ, Choi E. Gut Microbiota-Derived Unconventional T Cell Ligands: Contribution to Host Immune Modulation. Immunohorizons 2022; 6:476-487. [PMID: 35868838 PMCID: PMC9924074 DOI: 10.4049/immunohorizons.2200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023] Open
Abstract
Besides the prototypic innate and adaptive pathways, immune responses by innate-like lymphocytes have gained significant attention due to their unique roles. Among innate-like lymphocytes, unconventional T cells such as NKT cells and mucosal-associated invariant T (MAIT) cells recognize small nonpeptide molecules of specific chemical classes. Endogenous or microbial ligands are loaded to MHC class I-like molecule CD1d or MR1, and inducing immediate effector T cell and ligand structure is one of the key determinants of NKT/MAIT cell functions. Unconventional T cells are in close, constant contact with symbiotic microbes at the mucosal layer, and CD1d/MR1 can accommodate diverse metabolites produced by gut microbiota. There is a strong interest to identify novel immunoactive molecules of endobiotic (symbiont-produced) origin as new NKT/MAIT cell ligands, as well as new cognate Ags for previously uncharacterized unconventional T cell subsets. Further studies will open an possibility to explore basic biology as well as therapeutic potential.
Collapse
Affiliation(s)
- Sungwhan F. Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Da-Jung Jung
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Eungyo Choi
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
6
|
Leadbetter EA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev 2021; 299:93-107. [PMID: 33438287 DOI: 10.1111/imr.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.
Collapse
Affiliation(s)
- Elizabeth A Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Ye C, Low BE, Wiles MV, Brusko TM, Serreze DV, Driver JP. CD70 Inversely Regulates Regulatory T Cells and Invariant NKT Cells and Modulates Type 1 Diabetes in NOD Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:1763-1777. [PMID: 32868408 DOI: 10.4049/jimmunol.2000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022]
Abstract
The CD27-CD70 costimulatory pathway is essential for the full activation of T cells, but some studies show that blocking this pathway exacerbates certain autoimmune disorders. In this study, we report on the impact of CD27-CD70 signaling on disease progression in the NOD mouse model of type 1 diabetes (T1D). Specifically, our data demonstrate that CD70 ablation alters thymocyte selection and increases circulating T cell levels. CD27 signaling was particularly important for the thymic development and peripheral homeostasis of Foxp3+Helios+ regulatory T cells, which likely accounts for our finding that CD70-deficient NOD mice develop more-aggressive T1D onset. Interestingly, we found that CD27 signaling suppresses the thymic development and effector functions of T1D-protective invariant NKT cells. Thus, rather than providing costimulatory signals, the CD27-CD70 axis may represent a coinhibitory pathway for this immunoregulatory T cell population. Moreover, we showed that a CD27 agonist Ab reversed the effects of CD70 ablation, indicating that the phenotypes observed in CD70-deficient mice were likely due to a lack of CD27 signaling. Collectively, our results demonstrate that the CD27-CD70 costimulatory pathway regulates the differentiation program of multiple T cell subsets involved in T1D development and may be subject to therapeutic targeting.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | | | | | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | | | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611;
| |
Collapse
|
8
|
Tyagi RK, Li J, Jacobse J, Snapper SB, Shouval DS, Goettel JA. Humanized mouse models of genetic immune disorders and hematological malignancies. Biochem Pharmacol 2020; 174:113671. [PMID: 31634456 PMCID: PMC7050416 DOI: 10.1016/j.bcp.2019.113671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
The immune system is quite remarkable having both the ability to tolerate innocuous and self-antigens while possessing a robust capacity to recognize and eradicate infectious pathogens and foreign entities. The genetics that encode this delicate balancing act include multiple genes and specialized cell types. Over the past several years, whole exome and whole genome sequencing has uncovered the genetics driving many human immune-mediated diseases including monogenic disorders and hematological malignancies. With the advent of genome editing technologies, the ability to correct genetic immune defects in autologous cells holds great promise for a number of conditions. Since assessment of novel therapeutic strategies have been difficult in mice, in recent years, immunodeficient mice capable of engrafting human cells and tissue have been developed and utilized for a variety of research applications. In this review, we discuss immune-humanized mice as a research tool to study human immunobiology and genetic immune disorders in vivo and the promise of future applications.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Shahrabi S, Zayeri ZD, Ansari N, Hadad EH, Rajaei E. Flip-flops of natural killer cells in autoimmune diseases versus cancers: Immunologic axis. J Cell Physiol 2019; 234:16998-17010. [PMID: 30864163 DOI: 10.1002/jcp.28421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
Abstract
Natural killer (NK) cells play an essential role in the immune response to infections, inflammations, and malignancies. Recent studies suggest that NK cell surface receptors and cytokines are the key points of the disease development and protection. We hypothesized that the interactions between NK cell receptors and targeted cells construct an eventual niche, and this niche has an eventual profile in various autoimmune diseases and cancers. The NK cells preactivated with cytokines, such as interleukin-2 (IL-2), IL-12, IL-15, and IL-18 can have higher cytotoxicity; however, the toxic side effect of IL-2 should be considered. The vicissitudes of NK cell profile and its receptors obey the environmental communications and cell interactions. Our vision around the NK cells as an immune axis remained dual, and we still cannot judge the immune responses based on the NK cell flip-flop. A design of eventual niche to monitor the NK cell and targeted cell interaction is needed to strengthen our ability in diagnosis and treatment approaches based on the NK cells. Here, we have reviewed the shifts in the NK cells and their surface receptors in autoimmune diseases, solid tumors, and leukemia, and also discussed the effective chemokines that affect NK cell activation and proliferation. The main aim of this review is to present a broader vision of the NK cell changes in autoimmune disease and cancers.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zeinab D Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham H Hadad
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Wang H, Hogquist KA. How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets. Front Immunol 2018; 9:1450. [PMID: 29997620 PMCID: PMC6028555 DOI: 10.3389/fimmu.2018.01450] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
In contrast to peptide-recognizing T cells, invariant natural killer T (iNKT) cells express a semi-invariant T cell receptor that specifically recognizes self- or foreign-lipids presented by CD1d molecules. There are three major functionally distinct effector states for iNKT cells. Owning to these innate-like effector states, iNKT cells have been implicated in early protective immunity against pathogens. Yet, growing evidence suggests that iNKT cells play a role in tissue homeostasis as well. In this review, we discuss current knowledge about the underlying mechanisms that regulate the effector states of iNKT subsets, with a highlight on the roles of a variety of transcription factors and describe how each subset influences different facets of thymus homeostasis.
Collapse
Affiliation(s)
- Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Tuchscherr L, Korpos È, van de Vyver H, Findeisen C, Kherkheulidze S, Siegmund A, Deinhardt-Emmer S, Bach O, Rindert M, Mellmann A, Sunderkötter C, Peters G, Sorokin L, Löffler B. Staphylococcus aureus requires less virulence to establish an infection in diabetic hosts. Int J Med Microbiol 2018; 308:761-769. [PMID: 29843979 DOI: 10.1016/j.ijmm.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is the most frequent pathogen causing diabetic foot infections. Here, we investigated the degree of bacterial virulence required to establish invasive tissue infections in diabetic organisms. Staphylococcal isolates from diabetic and non-diabetic foot ulcers were tested for their virulence in in vitro functional assays of host cell invasion and cytotoxicity. Isolates from diabetes mellitus type I/II patients exhibited less virulence than isolates from non-diabetic patients, but were nevertheless able to establish severe infections. In some cases, non-invasive isolates were detected deep within diabetic wounds, even though the strains were non-pathogenic in cell culture models. Testing of defined isolates in murine footpad injection models revealed that both low- and high-virulent bacterial strains persisted in higher numbers in diabetic compared to non-diabetic hosts, suggesting that hyperglycemia favors bacterial survival. Additionally, the bacterial load was higher in NOD mice, which have a compromised immune system, compared to C57Bl/6 mice. Our results reveal that high as well as low-virulent staphylococcal strains are able to cause soft tissue infections and to persist in diabetic humans and mice, suggesting a reason for the frequent and endangering infections in patients with diabetes.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
| | - Èva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hélène van de Vyver
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Clais Findeisen
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Salome Kherkheulidze
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | | - Olaf Bach
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | - Martin Rindert
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | | | - Cord Sunderkötter
- Department of Translational Dermatoinfectiology, University of Muenster, Muenster and Department of Dermatology, University Hospital of Halle, Halle, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Racine JJ, Stewart I, Ratiu J, Christianson G, Lowell E, Helm K, Allocco J, Maser RS, Chen YG, Lutz CM, Roopenian D, Schloss J, DiLorenzo TP, Serreze DV. Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 2018; 67:923-935. [PMID: 29472249 PMCID: PMC5909999 DOI: 10.2337/db17-1467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/12/2018] [Indexed: 02/04/2023]
Abstract
Improved mouse models for type 1 diabetes (T1D) therapy development are needed. T1D susceptibility is restored to normally resistant NOD.β2m-/- mice transgenically expressing human disease-associated HLA-A*02:01 or HLA-B*39:06 class I molecules in place of their murine counterparts. T1D is dependent on pathogenic CD8+ T-cell responses mediated by these human class I variants. NOD.β2m-/--A2.1 mice were previously used to identify β-cell autoantigens presented by this human class I variant to pathogenic CD8+ T cells and for testing therapies to attenuate such effectors. However, NOD.β2m-/- mice also lack nonclassical MHC I family members, including FcRn, required for antigen presentation, and maintenance of serum IgG and albumin, precluding therapies dependent on these molecules. Hence, we used CRISPR/Cas9 to directly ablate the NOD H2-Kd and H2-Db classical class I variants either individually or in tandem (cMHCI-/-). Ablation of the H2-Ag7 class II variant in the latter stock created NOD mice totally lacking in classical murine MHC expression (cMHCI/II-/-). NOD-cMHCI-/- mice retained nonclassical MHC I molecule expression and FcRn activity. Transgenic expression of HLA-A2 or -B39 restored pathogenic CD8+ T-cell development and T1D susceptibility to NOD-cMHCI-/- mice. These next-generation HLA-humanized NOD models may provide improved platforms for T1D therapy development.
Collapse
|
13
|
Van Kaer L, Wu L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front Immunol 2018; 9:519. [PMID: 29593743 PMCID: PMC5859017 DOI: 10.3389/fimmu.2018.00519] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT) cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
14
|
Yu JS, Hamada M, Ohtsuka S, Yoh K, Takahashi S, Miaw SC. Differentiation of IL-17-Producing Invariant Natural Killer T Cells Requires Expression of the Transcription Factor c-Maf. Front Immunol 2017; 8:1399. [PMID: 29163480 PMCID: PMC5663684 DOI: 10.3389/fimmu.2017.01399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022] Open
Abstract
c-Maf belongs to the large Maf family of transcription factors and plays a key role in the regulation of cytokine production and differentiation of TH2, TH17, TFH, and Tr1 cells. Invariant natural killer T (iNKT) cells can rapidly produce large quantity of TH-related cytokines such as IFN-γ, IL-4, and IL-17A upon stimulation by glycolipid antigens, such as α-galactosylceramide (α-GalCer). However, the role of c-Maf in iNKT cells and iNKT cells-mediated diseases remains poorly understood. In this study, we demonstrate that α-GalCer-stimulated iNKT cells express c-Maf transcript and protein. By using c-Maf-deficient fetal liver cell-reconstituted mice, we further show that c-Maf-deficient iNKT cells produce less IL-17A than their wild-type counterparts after α-GalCer stimulation. While c-Maf deficiency does not affect the development and activation of iNKT cells, c-Maf is essential for the induction of IL-17-producing iNKT (iNKT17) cells by IL-6, TGF-β, and IL-1β, and the optimal expression of RORγt. Accordingly, c-Maf-deficient iNKT17 cells lose the ability to recruit neutrophils into the lungs. Taken together, c-Maf is a positive regulator for the expression of IL-17A and RORγt in iNKT17 cells. It is a potential therapeutic target in iNKT17 cell-mediated inflammatory disease.
Collapse
Affiliation(s)
- Jhang-Sian Yu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michito Hamada
- Faculty of Medicine, Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Shigeo Ohtsuka
- Department of Respiratory Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Keigyou Yoh
- Faculty of Medicine, Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Faculty of Medicine, Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Kaneko K, McDowell A, Ishii Y, Hook S. Liposomal α-galactosylceramide is taken up by gut-associated lymphoid tissue and stimulates local and systemic immune responses. J Pharm Pharmacol 2017; 69:1724-1735. [DOI: 10.1111/jphp.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
α-Galactosylceramide (α-GalCer), a synthetic glycosphingolipid that exhibits potent immunostimulatory effects through activation of natural killer T (NKT) cells, can be used to treat conditions such as atopy, cancer, infection and autoimmunity. Administration of therapeutics through the oral route has advantages such as patient convenience, safety and reduced cost; however, there has been little research to investigate whether oral delivery of α-GalCer is possible. The aim of this study was therefore to determine whether α-GalCer formulated in either DMSO/Tween 80 or in liposomes, could access lymphoid tissue and stimulate immune activation following oral administration.
Methods
Fluorescently labelled cationic liposomes incorporating α-GalCer were prepared, characterized and administered by oral gavage to fasted mice.
Key findings
Liposomes were detected inside the Peyer's patches (PPs), in the subepithelial dome just under the follicle-associated epithelium. CD11b+ cells and CD11c+ were shown to have taken up the formulation in a higher proportion compared to the total cell proportion in the PPs, suggesting that cells with these markers may be the prominent antigen-presenting cells involved in selective uptake. Finally, the liposomal formulation demonstrated a higher degree of immune stimulation compared to the DMSO/Tween 80 solubilized α-GalCer in the PPs, mesenteric lymph nodes and spleen as shown by the increased expression of IL-4 mRNA expression and increased proportion of NKT cells at 6 h and 3 days after administration.
Conclusions
These results show that oral delivery of a liposomal α-GalCer can stimulate local and systemic immune responses to a different degree compared to the non-liposomal form.
Collapse
Affiliation(s)
- Kan Kaneko
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Yasuyuki Ishii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Usero L, Sánchez A, Pizarro E, Xufré C, Martí M, Jaraquemada D, Roura-Mir C. Interleukin-13 Pathway Alterations Impair Invariant Natural Killer T-Cell-Mediated Regulation of Effector T Cells in Type 1 Diabetes. Diabetes 2016; 65:2356-66. [PMID: 27207542 DOI: 10.2337/db15-1350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/24/2016] [Indexed: 11/13/2022]
Abstract
Many studies have shown that human natural killer T (NKT) cells can promote immunity to pathogens, but their regulatory function is still being investigated. Invariant NKT (iNKT) cells have been shown to be effective in preventing type 1 diabetes in the NOD mouse model. Activation of plasmacytoid dendritic cells, modulation of B-cell responses, and immune deviation were proposed to be responsible for the suppressive effect of iNKT cells. We studied the regulatory capacity of human iNKT cells from control subjects and patients with type 1 diabetes (T1D) at disease clinical onset. We demonstrate that control iNKT cells suppress the proliferation of effector T cells (Teffs) through a cell contact-independent mechanism. Of note, suppression depended on the secretion of interleukin-13 (IL-13) by iNKT cells because an antibody blocking this cytokine resulted from the abrogation of Teff suppression; however, T1D-derived iNKT cells showed impaired regulation that could be attributed to the decrease in IL-13 secretion. Thus, alteration of the IL-13 pathway at disease onset may lead to the progression of the autoimmune response in T1D. Advances in the study of iNKT cells and the selection of agonists potentiating IL-13 secretion should permit new therapeutic strategies to prevent the development of T1D.
Collapse
Affiliation(s)
- Lorena Usero
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Sánchez
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduarda Pizarro
- Unitat d'Endocrinologia, Hospital de Mataró, Barcelona, Spain
| | - Cristina Xufré
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Martí
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolores Jaraquemada
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Roura-Mir
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Affiliation(s)
- Isabelle Nel
- INSERM U1016 and Centre National de la Recherche Scientifique UMR8104, Institut Cochin, and Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Agnes Lehuen
- INSERM U1016 and Centre National de la Recherche Scientifique UMR8104, Institut Cochin, and Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
18
|
Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J 2016; 38:484-95. [PMID: 27013448 PMCID: PMC6138260 DOI: 10.1016/j.bj.2015.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/24/2015] [Indexed: 01/02/2023] Open
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
- Celine Tard
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Ophelie Rouxel
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Agnes Lehuen
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
19
|
Walton EL. The two faces of invariant natural killer T cells. Biomed J 2015; 38:465-8. [PMID: 27013445 PMCID: PMC6138262 DOI: 10.1016/j.bj.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this issue of the Biomedical Journal, we take a look at some of the immune system's most peculiar cells, invariant natural killer T cells, which have features of both innate and adaptive cells. We also highlight a clinical study revealing that high serum phosphate levels could show that it's time to start dialysis in patients with chronic kidney diseases. Finally, this issue also includes some case reports, including an unusual case of aspergillosis related to long-term inhaler use.
Collapse
Affiliation(s)
- Emma L Walton
- Staff Writer at the Biomedical Journal, 56 Dronningens Gate, 7012 Trondheim, Norway.
| |
Collapse
|
20
|
Gottschalk C, Mettke E, Kurts C. The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8(+) T Cell Generation. Front Immunol 2015; 6:379. [PMID: 26284065 PMCID: PMC4517377 DOI: 10.3389/fimmu.2015.00379] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/11/2015] [Indexed: 12/23/2022] Open
Abstract
New vaccination strategies focus on achieving CD8+ T cell (CTL) immunity rather than on induction of protective antibody responses. While the requirement of CD4+ T (Th) cell help in dendritic cell (DC) activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help-independent manner. Invariant natural killer T cells (iNKT cells) can substitute for Th cell help and license DC as well. iNKT cells produce a broad spectrum of Th1 and Th2 cytokines, thereby inducing a similar set of costimulatory molecules and cytokines in DC. This form of licensing differs from Th cell help by inducing other chemokines, while Th cell-licensed DCs produce CCR5 ligands, iNKT cell-licensed DCs produce CCL17, which attracts CCR4+ CD8+ T cells for subsequent activation. It has recently been shown that iNKT cells do not only enhance immune responses against bacterial pathogens or parasites but also play a role in viral infections. The inclusion of iNKT cell ligands in influenza virus vaccines enhanced memory CTL generation and protective immunity in a mouse model. This review will focus on the role of iNKT cells in the cross-talk with cross-priming DC and memory CD8+ T cell formation.
Collapse
Affiliation(s)
- Catherine Gottschalk
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn , Bonn , Germany
| | - Elisabeth Mettke
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn , Bonn , Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn , Bonn , Germany
| |
Collapse
|
21
|
Magalhaes I, Kiaf B, Lehuen A. iNKT and MAIT Cell Alterations in Diabetes. Front Immunol 2015; 6:341. [PMID: 26191063 PMCID: PMC4489333 DOI: 10.3389/fimmu.2015.00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/18/2015] [Indexed: 12/29/2022] Open
Abstract
Type 1 diabetes (T1D) and type 2 diabetes (T2D) are multifactorial diseases with different etiologies in which chronic inflammation takes place. Defects in invariant natural killer T (iNKT) cell populations have been reported in both T1D and T2D patients, mouse models and our recent study revealed mucosal-associated invariant T (MAIT) cell defects in T2D and obese patients. Regarding iNKT cells many studies in non-obese diabetic mice demonstrated their protective role against T1D whereas their potential role in human T1D is still under debate. Studies in mouse models and patients suggest that iNKT cells present in adipose tissue (AT) could exert a regulatory role against obesity and associated metabolic disorders, such as T2D. Scarce data are yet available on MAIT cells; however, we recently described MAIT cell abnormalities in the blood and ATs from obese and T2D patients. These data show that a link between MAIT cells and metabolic disorders pave the way for further investigations on MAIT cells in T1D and T2D in humans and mouse models. Furthermore, we hypothesize that the gut microbiota alterations associated with T1D and T2D could modulate iNKT and MAIT cell frequency and functions. The potential role of iNKT and MAIT cells in the regulation of metabolic pathways and their cross-talk with microbiota represent exciting new lines of research.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Badr Kiaf
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Agnès Lehuen
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Département de Diabétologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris , Paris , France
| |
Collapse
|
22
|
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
| | | | - Agnes Lehuen
- Laboratory "Immunology of Diabetes" U1016 INSERM Institut Cochin; CNRS UMR8104; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité; DHU Authors, Hôpital Cochin, 75014, Paris, France
| |
Collapse
|
23
|
Versini M, Jeandel PY, Bashi T, Bizzaro G, Blank M, Shoenfeld Y. Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Med 2015; 13:81. [PMID: 25879741 PMCID: PMC4396177 DOI: 10.1186/s12916-015-0306-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Hygiene Hypothesis (HH) attributes the dramatic increase in autoimmune and allergic diseases observed in recent decades in Western countries to the reduced exposure to diverse immunoregulatory infectious agents. This theory has since largely been supported by strong epidemiological and experimental evidence. DISCUSSION The analysis of these data along with the evolution of the Western world's microbiome enable us to obtain greater insight into microorganisms involved in the HH, as well as their regulatory mechanisms on the immune system. Helminthes and their derivatives were shown to have a protective role. Helminthes' broad immunomodulatory properties have already begun to be exploited in clinical trials of autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. SUMMARY In this review, we will dissect the microbial actors thought to be involved in the HH as well as their immunomodulatory mechanisms as emphasized by experimental studies, with a particular attention on parasites. Thereafter, we will review the early clinical trials using helminthes' derivatives focusing on autoimmune diseases.
Collapse
Affiliation(s)
- Mathilde Versini
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
- Department of Internal Medicine, Archet-1 Hospital, University of Nice-Sophia-Antipolis, 151 Route de Saint Antoine de Ginestière, 06202, Nice, France.
| | - Pierre-Yves Jeandel
- Department of Internal Medicine, Archet-1 Hospital, University of Nice-Sophia-Antipolis, 151 Route de Saint Antoine de Ginestière, 06202, Nice, France.
| | - Tomer Bashi
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Giorgia Bizzaro
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Miri Blank
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
- The Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
24
|
Tsaih SW, Presa M, Khaja S, Ciecko AE, Serreze DV, Chen YG. A locus on mouse chromosome 13 inversely regulates CD1d expression and the development of invariant natural killer T-cells. Genes Immun 2015; 16:221-30. [PMID: 25654212 PMCID: PMC4409484 DOI: 10.1038/gene.2014.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T (iNKT)-cell development is controlled by many polymorphic genes present in commonly used mouse inbred strains. Development of type 1 diabetes (T1D) in NOD mice partly results from their production of fewer iNKT-cells compared to non-autoimmune prone control strains including ICR. We previously identified several iNKT-cell quantitative trait genetic loci co-localized with known mouse and human T1D regions in a (NOD × ICR)F2 cross. To further dissect the mechanisms underlying the impaired iNKT-cell compartment in NOD mice, we carried out a series of bone marrow transplantation as well as additional genetic mapping studies. We found that impaired iNKT-cell development in NOD mice was mainly due to the inability of their double-positive (DP) thymocytes to efficiently select this T-cell population. Interestingly, we observed higher levels of CD1d expression by NOD than ICR DP thymocytes. The genetic control of the inverse relationship between the CD1d expression level on DP thymocytes and the frequency of thymic iNKT-cells was further mapped to a region on Chromosome 13 between 60.12 Mb and 70.59 Mb. The NOD allele was found to promote CD1d expression and suppress iNKT-cell development. Our results indicate that genetically controlled physiological variation of CD1d expression levels modulates iNKT-cell development.
Collapse
Affiliation(s)
- S-W Tsaih
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Presa
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - S Khaja
- 1] Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA [2] Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A E Ciecko
- 1] Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA [2] Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Y-G Chen
- 1] Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA [2] Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Kumar V, Delovitch TL. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 2014; 142:321-36. [PMID: 24428389 DOI: 10.1111/imm.12247] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | | |
Collapse
|
26
|
Osolnik K, Rijavec M, Korosec P. Disposal of iNKT cell deficiency and an increase in expression of SLAM signaling factors characterizes sarcoidosis remission: a 4-year longitudinal study. Respir Res 2014; 15:91. [PMID: 25142143 PMCID: PMC4180863 DOI: 10.1186/s12931-014-0091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invariant NKT (iNKT) cells are regulatory lymphocytes that may be important in disorders with increased Th1 responses. We utilized a 4-year longitudinal observational study of iNKT cells and SLAM signaling pathway factors, which are important for iNKT development in patients with newly diagnosed sarcoidosis. METHODS Detailed clinical, functional, and radiographic evaluation and determination of iNKT peripheral blood cell counts and expression of SLAM signaling factors was carried out at presentation and after 3 months, 1 year, and 4 years of disease follow-up in 29 patients with pulmonary sarcoidosis. At presentation, we also evaluated the frequencies of pulmonary BALF iNKT cells. We also included 37 control subjects. RESULTS We demonstrated a marked deficiency of blood and lung iNKT cells and decreased expression of SLAM signaling factors in patients with newly diagnosed sarcoidosis. During 4 years of disease follow-up, there was a significant increase in blood iNKT cell numbers and in expression of SLAM signaling factors, mainly SLAMF1, SLAMF6, and FYN. This increase clearly correlated with improvement in patients' clinical symptoms. At the 4-year endpoint, the disease had gone into remission in the great majority of patients and thus also iNKT cell deficiency. Moreover, at the 4-year endpoint iNKT level reached the iNKT level of the control subjects. CONCLUSIONS Our longitudinal study showed that a disposal of iNKT deficiency in parallel with an increase in expression of SLAM signaling factors characterizes the clinical remission of sarcoidosis.
Collapse
|
27
|
Rhost S, Lofbom L, Mansson JE, Lehuen A, Blomqvist M, Cardell SL. Administration of sulfatide to ameliorate type I diabetes in non-obese diabetic mice. Scand J Immunol 2014; 79:260-6. [PMID: 24795987 DOI: 10.1111/sji.12157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The endogenous glycosphingolipid sulfatide is a ligand for CD1d-restricted type II natural killer T (NKT) lymphocytes. Through the action of these cells,sulfatide treatment has been shown to modulate the immune response in mouse models for autoimmune diseases, infections and tumour immunity. Sulfatide exists naturally in different organs including the pancreas, where sulfatide colocalizes with insulin within the Langerhans islet b-cells, targets for the immune destruction in type 1 diabetes (T1D). Human T1D patients, but not patients with type 2 diabetes nor healthy individuals, have autoantibodies against sulfatide in serum, suggesting that sulfatide induces an immune response in the natural course of T1D in humans. Here, we investigate sulfatide as an autoantigen and a modulator of autoimmune disease in the murine model forT1D, the non-obese diabetic (NOD) mice. We demonstrate that aged NOD mice displayed serum autoantibody reactivity to sulfatide; however, this reactivity did not correlate with onset of T1D. Repeated administration of sulfatide did not result in an increase in serum reactivity to sulfatide. Moreover, a multidose sulfatide treatment of female NOD mice initiated at an early (5 weeks of age),intermediate (8 weeks of age) or late (12 weeks of age) phase of T1D progression did not influence the incidence of disease. Thus, we demonstrate that a fraction of NOD mice develop autoantibody reactivity to sulfatide; however, we fail to demonstrate that sulfatide treatment reduces the incidence of T1D in this mouse strain.
Collapse
|
28
|
Li S, Joseph C, Becourt C, Klibi J, Luce S, Dubois-Laforgue D, Larger E, Boitard C, Benlagha K. Potential role of IL-17-producing iNKT cells in type 1 diabetes. PLoS One 2014; 9:e96151. [PMID: 24788601 PMCID: PMC4005752 DOI: 10.1371/journal.pone.0096151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/03/2014] [Indexed: 01/02/2023] Open
Abstract
We explored in this study the status and potential role of IL-17-producing iNKT cells (iNKT17) in type 1 diabetes (T1D) by analyzing these cells in patients with T1D, and in NOD mice, a mouse model for T1D. Our analysis in mice showed an increase of iNKT17 cells in NOD vs control C57BL/6 mice, partly due to a better survival of these cells in the periphery. We also found a higher frequency of these cells in autoimmune-targeted organs with the occurrence of diabetes, suggesting their implication in the disease development. In humans, though absent in fresh PMBCs, iNKT17 cells are detected in vitro with a higher frequency in T1D patients compared to control subjects in the presence of the proinflammatory cytokine IL-1β, known to contribute to diabetes occurrence. These IL-1β-stimulated iNKT cells from T1D patients keep their potential to produce IFN-γ, a cytokine that drives islet β-cell destruction, but not IL-4, with a reverse picture observed in healthy volunteers. On the whole, our results argue in favour of a potential role of IL-17-producing iNKT cells in T1D and suggest that inflammation in T1D patients could induce a Th1/Th17 cytokine secretion profile in iNKT cells promoting disease development.
Collapse
Affiliation(s)
- Shamin Li
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
| | - Claudine Joseph
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
| | - Chantal Becourt
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
| | - Jihene Klibi
- Département de Bactériologie, Institut Pasteur, Paris, France
| | - Sandrine Luce
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
| | - Daniele Dubois-Laforgue
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
- Service de Diabétologie, Hôtel Dieu, GH Cochin-Hôtel Dieu-Broca, APHP et Univ Paris Descartes, Paris, France
| | - Etienne Larger
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
- Service de Diabétologie, Hôtel Dieu, GH Cochin-Hôtel Dieu-Broca, APHP et Univ Paris Descartes, Paris, France
| | - Christian Boitard
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
- Service de Diabétologie, Hôtel Dieu, GH Cochin-Hôtel Dieu-Broca, APHP et Univ Paris Descartes, Paris, France
| | - Kamel Benlagha
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Van Kaer L. Role of invariant natural killer T cells in immune regulation and as potential therapeutic targets in autoimmune disease. Expert Rev Clin Immunol 2014; 2:745-57. [DOI: 10.1586/1744666x.2.5.745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
31
|
Bodin J, Bølling AK, Becher R, Kuper F, Løvik M, Nygaard UC. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 2013; 137:311-23. [PMID: 24189131 DOI: 10.1093/toxsci/kft242] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.
Collapse
Affiliation(s)
- Johanna Bodin
- * Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Han J, Rho SB, Lee JY, Bae J, Park SH, Lee SJ, Lee SY, Ahn C, Kim JY, Chun T. Human cytomegalovirus (HCMV) US2 protein interacts with human CD1d (hCD1d) and down-regulates invariant NKT (iNKT) cell activity. Mol Cells 2013; 36:455-64. [PMID: 24213674 PMCID: PMC3887943 DOI: 10.1007/s10059-013-0221-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/06/2023] Open
Abstract
To avoid host immune surveillance, human cytomegalovirus (HCMV) encoded endoplasmic reticulum (ER)-membrane glycoprotein US2, which interferes with antigen presenting mechanism of Major histocompatibility complex (MHC) class Ia and class II molecules. However, not many attempts have been made to study the effect of HCMV US2 on the expression of MHC class Ib molecules. In this study, we examined the effect of HCMV US2 on the expression and function of human CD1d (hCD1d), which presents glycolipid antigens to invariant NKT (iNKT) cells. Our results clearly showed that the physiological interaction between ER lumenal domain of HCMV US2 and α3 domain of hCD1d was observed within ER. Compared with mature form of hCD1d, immature form of hCD1d is more susceptible to ubiquitin-dependent proteasomal degradation mediated by HCMV US2. Moreover, the ectopic expression of HCMV US2 leads to the down-modulation of iNKT cell activity without significant change of hCD1d expression. These results will advance our understanding of the function of HCMV US2 in immune evasive mechanisms against anti-viral immunity of iNKT cells.
Collapse
Affiliation(s)
- Jihye Han
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | - Jae Yeon Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Joonbeom Bae
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Se Ho Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | - Taehoon Chun
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
33
|
Ghazarian L, Simoni Y, Pingris K, Beaudoin L, Lehuen A. [Regulatory role of NKT cells in the prevention of type 1 diabetes]. Med Sci (Paris) 2013; 29:722-8. [PMID: 24005626 DOI: 10.1051/medsci/2013298010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic β cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes.
Collapse
|
34
|
Genetic control of murine invariant natural killer T cells maps to multiple type 1 diabetes regions. Genes Immun 2013; 14:380-6. [PMID: 23719031 PMCID: PMC3766462 DOI: 10.1038/gene.2013.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 02/06/2023]
Abstract
Reduced frequency of invariant natural killer T (iNKT)-cells has been indicated as a contributing factor to type 1 diabetes (T1D) development in NOD mice. To further understand the genetic basis of the defect, we generated (NOD X ICR)F2 mice to map genes that control iNKT-cell development. We determined frequencies of thymic and splenic iNKT-cells as well as the ratio of CD4-positive and -negative subsets in the spleens of 209 F2 males. Quantitative trait loci (QTL) analysis revealed 5 loci that exceed the significant threshold for the frequency of thymic and/or splenic iNKT-cells on Chromosomes (Chr) 1, 5, 6, 12, and 17. Three significant loci on Chr 1, 4, and 5 were found for the ratio of CD4-positive and -negative splenic iNKT-cells. Comparisons to previously known mouse T1D susceptibility (Idd) loci revealed two significant QTL peak locations respectively mapped to Idd regions on Chr 4 and 6. The peak marker location of the significant Chr 12 iNKT QTL maps to within 0.5Mb of a syntenic human T1D locus. Collectively, our results reveal several novel loci controlling iNKT-cell development and provide additional information for future T1D genetic studies.
Collapse
|
35
|
Barcala Tabarrozzi AE, Castro CN, Dewey RA, Sogayar MC, Labriola L, Perone MJ. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin Exp Immunol 2013; 171:135-46. [PMID: 23286940 DOI: 10.1111/cei.12019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from death of insulin-secreting β cells mediated by self-immune cells, and the consequent inability of the body to maintain insulin levels for appropriate glucose homeostasis. Probably initiated by environmental factors, this disease takes place in genetically predisposed individuals. Given the autoimmune nature of T1DM, therapeutics targeting immune cells involved in disease progress have been explored over the last decade. Several high-cost trials have been attempted to prevent and/or reverse T1DM. Although a definitive solution to cure T1DM is not yet available, a large amount of information about its nature and development has contributed greatly to both the improvement of patient's health care and design of new treatments. In this study, we discuss the role of different types of immune cells involved in T1DM pathogenesis and their therapeutic potential as targets and/or modified tools to treat patients. Recently, encouraging results and new approaches to sustain remnant β cell mass and to increase β cell proliferation by different cell-based means have emerged. Results coming from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably proliferate in the next few years. Strategies under consideration include infusion of several types of stem cells, dendritic cells and regulatory T cells, either manipulated genetically ex vivo or non-manipulated. Their use in combination approaches is another therapeutic alternative. Cell-based interventions, without undesirable side effects, directed to block the uncontrollable autoimmune response may become a clinical reality in the next few years for the treatment of patients with T1DM.
Collapse
Affiliation(s)
- A E Barcala Tabarrozzi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires
| | | | | | | | | | | |
Collapse
|
36
|
Nakano M, Saeki C, Takahashi H, Homma S, Tajiri H, Zeniya M. Activated natural killer T cells producing interferon-gamma elicit promoting activity to murine dendritic cell-based autoimmune hepatic inflammation. Clin Exp Immunol 2013; 170:274-82. [PMID: 23121668 DOI: 10.1111/j.1365-2249.2012.04664.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As natural killer (NK) T cells play an important role in the development of autoimmune diseases, they should have significant roles for the pathogenesis of autoimmune liver disease. Implication of the NK T cells in the generation of autoimmune-related hepatic inflammation was investigated using a novel mouse model. Immunization of mice with dendritic cells (DCs) loaded with hepatocyte-mimicking hepatocellular carcinoma cells (DC/Hepa1-6) induces cytotoxic T lymphocytes (CTL) capable of killing hepatocytes. Subsequent administration of interleukin (IL)-12, a potent interferon-gamma (IFN-γ) inducer, to the immunized mice generates autoimmune hepatic inflammation (AHI), as reported previously. Upon onset of the AHI response, the number of intrahepatic CD3(+) NK1 · 1(+) NK T cells increased markedly, along with a decrease in the number of splenic NK T cells, augmented expression of CXCR6 on intrahepatic NK T cells and CXCL16 in hepatic tissue, suggesting that NK T cells were recruited into the inflamed liver. The NK T cells were strongly positive for CD69 and produced IFN-γ, but not IL-4. AHI activity was attenuated markedly in CD1d(-/-) NK T cell-deficient mice, indicating that NK T cells play a pivotal role in the development of AHI. Mice treated with DC/Hepa1-6 and alpha-galactosylceramide, a potent NK T cell activator, also exhibited similar hepatic inflammation, in which activated NK T cells producing IFN-γ and CD8(+) T cells cytotoxic to hepatocytes were induced in liver-infiltrating mononuclear cells. Activated NK T cells producing IFN-γ potentiate DC-based AHI in the mouse model.
Collapse
Affiliation(s)
- M Nakano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Wong FS, Wen L. Type 1 diabetes therapy beyond T cell targeting: monocytes, B cells, and innate lymphocytes. Rev Diabet Stud 2012; 9:289-304. [PMID: 23804267 DOI: 10.1900/rds.2012.9.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials, investigating type 1 diabetes (T1D), have focused mainly on newly diagnosed individuals who have developed diabetes. We need to continue our efforts to understand disease processes and to rationally design interventions that will be safe and specific for disease, but at the same time not induce undesirable immunosuppression. T cells are clearly involved in the pathogenesis of T1D, and have been a major focus for both antigen-specific and non-antigen-specific therapy, but thus far no single strategy has emerged as superior. As T1D is a multifactorial disease, in which multiple cell types are involved, some of these pathogenic and regulatory cell pathways may be important to consider. In this review, we examine evidence for whether monocytes, B cells, and innate lymphocytes, including natural killer cells, may be suitable targets for intervention.
Collapse
Affiliation(s)
- F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
38
|
Viale R, Ware R, Maricic I, Chaturvedi V, Kumar V. NKT Cell Subsets Can Exert Opposing Effects in Autoimmunity, Tumor Surveillance and Inflammation. ACTA ACUST UNITED AC 2012; 8:287-296. [PMID: 25288922 DOI: 10.2174/157339512804806224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The innate-like natural killer T (NKT) cells are essential regulators of immunity. These cells comprise at least two distinct subsets and recognize different lipid antigens presented by the MHC class I like molecules CD1d. The CD1d-dependent recognition pathway of NKT cells is highly conserved from mouse to humans. While most type I NKT cells can recognize αGalCer and express a semi-invariant T cell receptor (TCR), a major population of type II NKT cells reactive to sulfatide utilizes an oligoclonal TCR. Furthermore TCR recognition features of NKT subsets are also distinctive with almost parallel as opposed to perpendicular footprints on the CD1d molecules for the type I and type II NKT cells respectively. Here we present a view based upon the recent studies in different clinical and experimental settings that while type I NKT cells are more often pathogenic, they may also be regulatory. On the other hand, sulfatide-reactive type II NKT cells mostly play an inhibitory role in the control of autoimmune and inflammatory diseases. Since the activity and cytokine secretion profiles of NKT cell subsets can be modulated differently by lipid ligands or their analogs, novel immunotherapeutic strategies are being developed for their differential activation for potential intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Rachael Viale
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Randle Ware
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Varun Chaturvedi
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| |
Collapse
|
39
|
Girardi E, Zajonc DM. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 2012; 250:167-79. [PMID: 23046129 PMCID: PMC3471380 DOI: 10.1111/j.1600-065x.2012.01166.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids, presented by the non-classical CD1 family (CD1a-e). These molecules have evolved complex and diverse binding grooves in order to survey different cellular compartments for self and exogenous antigens, which are then presented for recognition to T-cell receptors (TCRs) on the surface of T cells. In particular, most CD1d-presented antigens are recognized by a population of lymphocytes denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential. Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical studies that have shed light on the molecular details of CD1d-mediated antigen recognition by type I and II NKT cells, which are in many aspects distinct from what has been observed for peptide major histocompatibility complex-reactive TCRs.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- Antigens, CD1d/chemistry
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Binding Sites
- Epitopes
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lipids/chemistry
- Lipids/immunology
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA, USA
| | | |
Collapse
|
40
|
Novak J, Novakova L. Prevention and treatment of type 1 diabetes mellitus by the manipulation of invariant natural killer T cells. Clin Exp Med 2012; 13:229-37. [PMID: 22825586 DOI: 10.1007/s10238-012-0199-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/04/2012] [Indexed: 01/11/2023]
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted T cells with regulatory functions. iNKT cells are numerically and functionally deficient in experimental models of type 1 diabetes mellitus (T1DM). Moreover, various experimental strategies correcting the defect of or stimulating iNKT cells prevent T1DM. Here, we review the data on the role of iNKT cells in the development of T1DM and discuss indications, obstacles and prospects of the use of iNKT cell manipulations in the prevention and treatment of human T1DM.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague 10, Czech Republic,
| | | |
Collapse
|
41
|
Jin Y, Purohit S, Chen X, Yi B, She JX. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4(+)CD25(+) regulatory T cells. Biochem Biophys Res Commun 2012; 424:669-74. [PMID: 22789848 DOI: 10.1016/j.bbrc.2012.06.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 01/07/2023]
Abstract
The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4(+) T cells and especially CD8(+) T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4(+) and CD8(+) T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-γ, TNF-α and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4(+)CD25(+) regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4(+)CD25(+) regulatory T cells.
Collapse
Affiliation(s)
- Yulan Jin
- Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA 30912, USA
| | | | | | | | | |
Collapse
|
42
|
Subramanian L, Blumenfeld H, Tohn R, Ly D, Aguilera C, Maricic I, Mansson JE, Buschard K, Kumar V, Delovitch TL. NKT cells stimulated by long fatty acyl chain sulfatides significantly reduce the incidence of type 1 diabetes in nonobese diabetic mice [corrected]. PLoS One 2012; 7:e37771. [PMID: 22649557 PMCID: PMC3359325 DOI: 10.1371/journal.pone.0037771] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/27/2012] [Indexed: 12/22/2022] Open
Abstract
Sulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer+ cells accumulate in the draining pancreatic lymph nodes, and that treatment of NOD mice with sulfatide or C24:0 was more efficient than C16:0 in stimulating the NKT cell-mediated transfer of a delay in onset from T1D into NOD.Scid recipients. Using NOD.CD1d−/− mice, we show that this delay of T1D is CD1d-dependent. Interestingly, the latter delay or protection from T1D is associated with the enhanced secretion of IL-10 rather than IFN-g by C24:0-treated CD4+ T cells and the deviation of the islet-reactive diabetogenic T cell response. Both C16:0 and C24:0 sulfatide isoforms are unable to activate and expand type I iNKT cells. Collectively, these data suggest that C24:0 stimulated type II NKT cells may regulate protection from T1D by activating DCs to secrete IL-10 and suppress the activation and expansion of type I iNKT cells and diabetogenic T cells. Our results raise the possibility that C24:0 may be used therapeutically to delay the onset and protect from T1D in humans.
Collapse
Affiliation(s)
- Lakshmimathy Subramanian
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Hartley Blumenfeld
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Robert Tohn
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Dalam Ly
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Carlos Aguilera
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Jan-Eric Mansson
- Department of Neuroscience, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
- * E-mail: (TLD); (VK)
| | - Terry L. Delovitch
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- * E-mail: (TLD); (VK)
| |
Collapse
|
43
|
El-Malky M, Nabih N, Heder M, Saudy N, El-Mahdy M. Helminth infections: therapeutic potential in autoimmune disorders. Parasite Immunol 2012; 33:589-93. [PMID: 21797885 DOI: 10.1111/j.1365-3024.2011.01324.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Knowledge of immunity enables us to predict that the reactions set in response to infection with helminth would prevent concomitant disease driven by an opposing spectrum of immune events. In another way, the immune response generated to combat the helminth infection could counteract the immunopathological reactions that drive autoimmune diseases. Rodent model systems recapitulate many aspects of human autoimmune diseases and have been enormously useful in defining mechanisms of immunopathology after infection. From this theoretical perspective, many researchers have proved that infection with a variety of helminth can ameliorate disease in murine model systems. Thus, helminth-evoked Th2 events were shown to improve disorders in which Th1 events predominated. This raised the question, 'Can this information be translated into therapies for autoimmune diseases in humans via actual infection, cell delivery or drug intervention?' In this review, we will present some experimental trails to treat autoimmune disorders through establishment of some parasitic infections.
Collapse
Affiliation(s)
- M El-Malky
- Departments of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
44
|
Subrahmanyam PB, Sun W, East JE, Li J, Webb TJ. Natural killer T cell based Immunotherapy. ACTA ACUST UNITED AC 2012; 3:144. [PMID: 24089657 DOI: 10.4172/2157-7560.1000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer T (NKT) cells play an important immunoregulatory role and are thought to bridge the innate and adaptive immune responses. Following activation through cognate interactions with lipid antigen presented in the context of CD1d molecules, NKT cells rapidly produce a plethora of cytokines and can also mediate cytotoxicity. Due to their potent effector functions, extensive research has been performed to increase our understanding on how to effectively modulate these cells. In fact, NKT cell agonists have been used as vaccine adjuvants to enhance antigen specific T and B cell responses to infections and malignancy. In this review, we will focus on recent advances in NKT cell-based vaccination strategies. Given the role that NKT cells play in autoimmune disease, infectious diseases, cancer, transplant immunology and dermatology, it is important to understand how to effectively guide their effector functions in order to develop novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine, the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
45
|
Blumenfeld HJ, Tohn R, Haeryfar SMM, Liu Y, Savage PB, Delovitch TL. Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice. Clin Exp Immunol 2011; 166:121-33. [PMID: 21910729 DOI: 10.1111/j.1365-2249.2011.04454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Because invariant natural killer T (iNK T) cells link innate and adaptive immunity, the structure-dependent design of iNK T cell agonists may have therapeutic value as vaccines for many indications, including autoimmune disease. Previously, we showed that treatment of non-obese diabetic (NOD) mice with the iNK T cell activating prototypic glycolipid α-galactosylceramide (α-GalCer) protects them from type 1 diabetes (T1D). However, α-GalCer is a strong agonist that can hyperactivate iNK T cells, elicit several side effects and has shown only limited success in clinical trials. Here, we used a structure-guided design approach to identify an iNK T cell agonist that optimally protects from T1D with minimal side effects. Analyses of the kinetics and function of a panel of synthetic α-GalCer fatty acyl chain derivatives (C8:0-C16:0) were performed in NOD mice. C16:0 elicited the highest protection from insulitis and T1D, which was associated with a higher frequency and survival of iNK T cells and enhanced activity of tolerogenic dendritic cells (DCs) in draining pancreatic lymph nodes (PLN), inability to transactivate NK cells and a more rapid kinetics of induction and recovery of iNK T cells from anergy. We conclude that the length and structure of the acyl chain of α-GalCer regulates the level of protection against T1D in mice, and propose that the extent of this protection depends on the relative capacity of the acyl chain to accommodate an endogenous spacer lipid of appropriate length and structure. Thus, our findings with the α-GalCer C16:0 derivative suggest strongly that it be considered as a lead glycolipid candidate in clinical trials of T1D.
Collapse
Affiliation(s)
- H J Blumenfeld
- Laboratory of Autoimmune Diabetes, Robarts Research Institute Department of Microbiology and Immunology, Dental Science Building, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Subleski JJ, Jiang Q, Weiss JM, Wiltrout RH. The split personality of NKT cells in malignancy, autoimmune and allergic disorders. Immunotherapy 2011; 3:1167-84. [PMID: 21995570 PMCID: PMC3230042 DOI: 10.2217/imt.11.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.
Collapse
Affiliation(s)
- Jeff J Subleski
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Qun Jiang
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Jonathan M Weiss
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Robert H Wiltrout
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| |
Collapse
|
47
|
Chen YG, Tsaih SW, Serreze DV. Genetic control of murine invariant natural killer T-cell development dynamically differs dependent on the examined tissue type. Genes Immun 2011; 13:164-74. [PMID: 21938016 DOI: 10.1038/gene.2011.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies using gene-targeted mutant mice revealed several molecules important for the development or function of invariant natural killer T (iNKT) cells. However, these gene knockout mice represent cases that are rare in humans. Thus, it remains unclear how naturally occurring allelic variants of these genes or others regulate the numerical and functional diversity of iNKT cells in both mice and humans. Studies in humans are mostly limited to iNKT cells in peripheral blood (PB). It is not known if the relative distribution of iNKT cells between PB and other lymphoid organs is correlated or under common genetic control. To initially address these questions, we analyzed iNKT cells in the spleen, thymus and PB of 38 inbred mouse strains. Percentages of iNKT cells in these three anatomical sites varied significantly in a strain-dependent manner. The correlation between PB and spleen was moderate, and none was observed between PB and thymus. Similarly, proportions of the CD4-expressing subset of iNKT cells differed significantly among inbred strains. The percentages of CD4-positive iNKT cells displayed a strong correlation between PB and spleen, although it remained poor between PB and thymus. Genome-wide association studies across strains identified only partially overlapping loci associated with variability of iNKT cell frequencies within and between differing anatomical sites.
Collapse
Affiliation(s)
- Y-G Chen
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | |
Collapse
|
48
|
Lee IF, van den Elzen P, Tan R, Priatel JJ. NKT cells are required for complete Freund's adjuvant-mediated protection from autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2011; 187:2898-904. [PMID: 21844383 DOI: 10.4049/jimmunol.1002551] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autoimmune diabetes in NOD mice can be prevented by application of Ags derived from Mycobacterium tuberculosis in the form of bacillus Calmette-Guérin or CFA. Disease protection by CFA is associated with a reduction in the numbers of pathogenic β-cell specific, self-reactive CTLs, a phenomenon dependent on the presence and function of NK cells. However, the mechanisms by which NK cells are activated and recruited by heat-killed M. tuberculosis within CFA are unclear. In this study, we report that CFA-mediated NK cell activation and mobilization is dependent on CD1d expression. The administration of M. tuberculosis from CFA results in rapid NKT cell activation and IFN-γ secretion both in vitro and in vivo. CFA-induced NKT cell activation is intact in MyD88(-/-) mice suggesting that the mechanism is independent of TLR signaling. Furthermore, CD1d expression was found to be essential for both M. tuberculosis-triggered NKT cell activation and CFA-mediated protection of NOD mice from diabetes. Collectively, these findings reveal hitherto previously unidentified roles for NKT cells in the adjuvant-promoting effects of CFA on innate and adaptive immunity.
Collapse
Affiliation(s)
- I-Fang Lee
- Child & Family Research Institute, Immunity in Health and Disease, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
49
|
Benam KH, Kok WL, McMichael AJ, Ho LP. Alternative spliced CD1d transcripts in human bronchial epithelial cells. PLoS One 2011; 6:e22726. [PMID: 21853044 PMCID: PMC3154910 DOI: 10.1371/journal.pone.0022726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/03/2011] [Indexed: 11/25/2022] Open
Abstract
CD1d is a MHC I like molecule which presents glycolipid to natural killer T (NKT) cells, a group of cells with diverse but critical immune regulatory functions in the immune system. These cells are required for optimal defence against bacterial, viral, protozoan, and fungal infections, and control of immune-pathology and autoimmune diseases. CD1d is expressed on antigen presenting cells but also found on some non-haematopoietic cells. However, it has not been observed on bronchial epithelium, a site of active host defence in the lungs. Here, we identify for the first time, CD1D mRNA variants and CD1d protein expression on human bronchial epithelial cells, describe six alternatively spliced transcripts of this gene in these cells; and show that these variants are specific to epithelial cells. These findings provide the basis for investigations into a role for CD1d in lung mucosal immunity.
Collapse
Affiliation(s)
- Kambez Hajipouran Benam
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wai Ling Kok
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Activation of natural killer T cells inhibits the development of induced regulatory T cells via IFNγ. Biochem Biophys Res Commun 2011; 411:599-606. [DOI: 10.1016/j.bbrc.2011.06.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 01/08/2023]
|