1
|
Cimons JM, DeGolier KR, Burciaga SD, Yarnell MC, Novak AJ, Rivera-Reyes AM, Kohler ME, Fry TJ. T-bet overexpression enhances CAR T cell effector functions and antigen sensitivity. J Immunother Cancer 2025; 13:e010962. [PMID: 40246581 PMCID: PMC12007057 DOI: 10.1136/jitc-2024-010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND T cells modified to express a chimeric antigen receptor (CAR) are successful against B-lineage malignancies but fail to induce durable remissions in up to half of patients and have shown limited efficacy against other types of cancer. Strategies to improve CAR T cell potency and responses to low antigen densities without inducing CAR T cell dysfunction or limiting persistence are necessary to expand durability of remissions. METHODS We overexpressed T-bet in human and mouse CAR T cells to mimic exposure to signal 3 cytokines during T cell priming to promote T helper cell 1 (Th1) polarization of CD4+CAR T cells with the goal of enhancing antitumor activity. Using human CAR T cells and xenograft models we interrogated the impact of T-bet overexpression on CAR T cell antitumor activity in vitro and in vivo. We also used a syngeneic murine CAR T cell model to study the impact of T-bet overexpression on long-term persistence and secondary responses to tumor rechallenge. RESULTS T-bet overexpression reduced expression of the Th2 cytokine interleukin 4 and promoted polyfunctional production of Th1-associated cytokines in response to CAR stimulation. T-bet overexpression enhanced some effector functions in vitro but did not improve CAR T cell-mediated control of leukemia expressing high levels of antigen in vivo. T-bet overexpression also improved effector function of murine CD19 CAR T cells with no impairment to the persistence or ability of persistent CAR T cells to re-expand and clear a secondary leukemia challenge. Finally, T-bet overexpression promoted enhanced in vitro function against leukemia expressing low levels of CD19, which translated to improved control of CD19lo leukemia in vivo by human C19 CAR T cells containing a 4-1BB costimulatory domain. CONCLUSIONS Together, our data demonstrate that T-bet overexpression induces a reduction in Th2 cytokine production, an increase in polyfunctional Th1 cytokine production and enhances 4-1BB CAR T cell activity against cancers expressing low levels of target antigen without promoting a loss in functional CAR T cell persistence.
Collapse
Affiliation(s)
- Jennifer M Cimons
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Kole R DeGolier
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Samuel D Burciaga
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Michael C Yarnell
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Amanda J Novak
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Amalia M Rivera-Reyes
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - M Eric Kohler
- Pediatrics Hematolgy/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
- Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Terry J Fry
- University of Colorado Denver Children's Hospital Colorado Research Institute, Aurora, Colorado, USA
| |
Collapse
|
2
|
Zandhuis ND, Bradarić A, van der Zwaan C, Hoogendijk AJ, Popović B, Wolkers MC. Combined Deletion of ZFP36L1 and ZFP36L2 Drives Superior Cytokine Production in T Cells at the Cost of Cell Fitness. Eur J Immunol 2025; 55:e202451641. [PMID: 40249077 PMCID: PMC12007392 DOI: 10.1002/eji.202451641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/19/2025]
Abstract
A key feature of cytotoxic CD8+ T cells for eliminating pathogens and malignant cells is their capacity to produce proinflammatory cytokines, which include TNF and IFNγ. Provided that these cytokines are highly toxic, a tight control of their production is imperative. RNA-binding proteins (RBPs) are essential for the fine-tuning of cytokine production. The role of the RBP ZFP36L1 and its sister protein ZFP36L2 herein has been established, but their relative contribution to cytokine production is not well understood. We here compared the effect of ZFP36L1 and ZFP36L2 single and double deficiency in murine effector CD8+ T cells. Whereas single deficient T cells significantly increased cytokine production, double deficiency completely unleashed the cytokine production. Not only the TNF production was substantially prolonged in double-deficient T cells. Also, the production of IFNγ reached unprecedented levels with >90% IFNγ-producing T cells compared with 3% in WT T cells after 3 days of continuous activation. This continuous cytokine production by double-deficient T cells was also observed in tumor-infiltrating lymphocytes in vivo, however, with no effect on tumor growth. ZFP36L1 and ZFP36L2 double deficiency resulted in decreased cell viability, impaired STAT5 signaling, and dysregulated cell cycle progression. In conclusion, while combined deletion in ZFP36L1 and ZFP36L2 can drive continuous cytokine production even upon chronic activation, safeguards are in place to counteract such super-cytokine producers.
Collapse
Affiliation(s)
- Nordin D. Zandhuis
- Department of ResearchT Cell Differentiation LabSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Amsterdam UMC Landsteiner Laboratory University of Amsterdam Cancer Center Amsterdam Cancer Immunologyand Amsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Antonia Bradarić
- Department of ResearchT Cell Differentiation LabSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Amsterdam UMC Landsteiner Laboratory University of Amsterdam Cancer Center Amsterdam Cancer Immunologyand Amsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Carmen van der Zwaan
- Amsterdam UMC Landsteiner Laboratory University of Amsterdam Cancer Center Amsterdam Cancer Immunologyand Amsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
- Department of ResearchBleeding & HemostasisSanquin Blood Supply FoundationAmsterdamThe Netherlands
| | - Arie J. Hoogendijk
- Amsterdam UMC Landsteiner Laboratory University of Amsterdam Cancer Center Amsterdam Cancer Immunologyand Amsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
- Department of ResearchBleeding & HemostasisSanquin Blood Supply FoundationAmsterdamThe Netherlands
| | - Branka Popović
- Department of ResearchT Cell Differentiation LabSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Amsterdam UMC Landsteiner Laboratory University of Amsterdam Cancer Center Amsterdam Cancer Immunologyand Amsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of ResearchT Cell Differentiation LabSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Amsterdam UMC Landsteiner Laboratory University of Amsterdam Cancer Center Amsterdam Cancer Immunologyand Amsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
3
|
Guan GF, Fu ZM, Zhang DJ, Guo YY, Guo F, Wan YN, Bai J, Zhao Y. Interferon Gamma Receptor 2 Collaborates With Circular RNA/MicroRNA to Modulate Programmed Cell Death-Ligand 1 Levels in Nasopharyngeal Carcinoma. World J Oncol 2024; 15:929-941. [PMID: 39697423 PMCID: PMC11650609 DOI: 10.14740/wjon1994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Background The effectiveness of immune checkpoint therapy highlights the need to understand abnormal programmed cell death protein-1 (PD-1) expression in nasopharyngeal carcinoma (NPC), especially when treatments fail, or resistance develops. Interferon gamma (IFN-γ) signaling is crucial for regulating programmed cell death-ligand 1 (PD-L1) expression. Our study focuses on interferon gamma receptor 2 (IFNGR2), an essential part of the IFN-γ pathway, and its impact on malignant traits in NPC. Methods The expression levels of IFNGR2 and PD-L1 were accessed using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). To understand the cellular phenotypic effects, small interfering RNA (siRNA)/short hairpin RNA (shRNA) knockdown techniques were used to evaluate cell viability, clonogenic survival, migration and invasion, immunohistochemistry, and tumor formation assays. The relationship between IFNGR2 and microRNAs (miRNAs)/circular RNAs (circRNAs) will be verified using methods such as circRNA stability assay, rescue, and dual-luciferase reporter assay. Results IFNGR2 was significantly overexpressed in NPC, and its expression positively correlated with PD-L1 levels. This overexpression contributed to increased cell proliferation, migration, invasion, clonogenicity, and tumor growth. Additionally, we identified an oncogenic circular RNA, circ_001377, and uncovered a novel mechanism by which upregulation of circ_001377 competitively bound to miR-498-3p. This interaction reduced miR-498-3p's ability to target IFNGR2. As a result, the diminished miR-498-3p led to increased IFNGR2 expression, which subsequently activated the IFN-γ signaling pathway and drove abnormal PD-L1 expression. Conclusions IFNGR2 is an oncogenic factor in NPC. The circ_001377/miR-498-3p interaction drives IFNGR2 upregulation and PD-L1 overexpression, suggesting that targeting this axis could improve therapeutic outcomes.
Collapse
Affiliation(s)
- Guo Fang Guan
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ze Ming Fu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - De Jun Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ying Yuan Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Fang Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yi Ning Wan
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jie Bai
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ying Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
4
|
Shen H, Ojo OA, Ding H, Mullen LJ, Xing C, Hossain MI, Yassin A, Shi VY, Lewis Z, Podgorska E, Andrabi SA, Antoniewicz MR, Bonner JA, Shi LZ. HIF1α-regulated glycolysis promotes activation-induced cell death and IFN-γ induction in hypoxic T cells. Nat Commun 2024; 15:9394. [PMID: 39477954 PMCID: PMC11526104 DOI: 10.1038/s41467-024-53593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Hypoxia is a common feature in various pathophysiological contexts, including tumor microenvironment, and IFN-γ is instrumental for anti-tumor immunity. HIF1α has long been known as a primary regulator of cellular adaptive responses to hypoxia, but its role in IFN-γ induction in hypoxic T cells is unknown. Here, we show that the HIF1α-glycolysis axis controls IFN-γ induction in both human and mouse T cells, activated under hypoxia. Specific deletion of HIF1α in T cells (Hif1α-/-) and glycolytic inhibition suppresses IFN-γ induction. Conversely, HIF1α stabilization by hypoxia and VHL deletion in T cells (Vhl-/-) increases IFN-γ production. Hypoxic Hif1α-/- T cells are less able to kill tumor cells in vitro, and tumor-bearing Hif1α-/- mice are not responsive to immune checkpoint blockade (ICB) therapy in vivo. Mechanistically, loss of HIF1α greatly diminishes glycolytic activity in hypoxic T cells, resulting in depleted intracellular acetyl-CoA and attenuated activation-induced cell death (AICD). Restoration of intracellular acetyl-CoA by acetate supplementation re-engages AICD, rescuing IFN-γ production in hypoxic Hif1α-/- T cells and re-sensitizing Hif1α-/- tumor-bearing mice to ICB. In summary, we identify HIF1α-regulated glycolysis as a key metabolic control of IFN-γ production in hypoxic T cells and ICB response.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Haitao Ding
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Logan J Mullen
- Genomics Core Laboratory, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Chuan Xing
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - M Iqbal Hossain
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA
| | - Abdelrahman Yassin
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Vivian Y Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Zach Lewis
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Ewa Podgorska
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA
| | | | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
- Department of Microbiology and Immunology Institute, UAB-SOM, Birmingham, AL, USA.
| |
Collapse
|
5
|
Zandhuis ND, Guislain A, Popalzij A, Engels S, Popović B, Turner M, Wolkers MC. Regulation of IFN-γ production by ZFP36L2 in T cells is time-dependent. Eur J Immunol 2024; 54:e2451018. [PMID: 38980256 DOI: 10.1002/eji.202451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
CD8+ T cells kill target cells by releasing cytotoxic molecules and proinflammatory cytokines, such as TNF and IFN-γ. The magnitude and duration of cytokine production are defined by posttranscriptional regulation, and critical regulator herein are RNA-binding proteins (RBPs). Although the functional importance of RBPs in regulating cytokine production is established, the kinetics and mode of action through which RBPs control cytokine production are not well understood. Previously, we showed that the RBP ZFP36L2 blocks the translation of preformed cytokine encoding mRNA in quiescent memory T cells. Here, we uncover that ZFP36L2 regulates cytokine production in a time-dependent manner. T cell-specific deletion of ZFP36L2 (CD4-cre) had no effect on T-cell development or cytokine production during early time points (2-6 h) of T-cell activation. In contrast, ZFP36L2 specifically dampened the production of IFN-γ during prolonged T-cell activation (20-48 h). ZFP36L2 deficiency also resulted in increased production of IFN-γ production in tumor-infiltrating T cells that are chronically exposed to antigens. Mechanistically, ZFP36L2 regulates IFN-γ production at late time points of activation by destabilizing Ifng mRNA in an AU-rich element-dependent manner. Together, our results reveal that ZFP36L2 employs different regulatory nodules in effector and memory T cells to regulate cytokine production.
Collapse
Affiliation(s)
- Nordin D Zandhuis
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Abeera Popalzij
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander Engels
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Branka Popović
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
6
|
Rizvi ZA, Sadhu S, Dandotiya J, Sharma P, Binayke A, Singh V, Das V, Khatri R, Kumar R, Samal S, Kalia M, Awasthi A. SARS-CoV-2 infection induces thymic atrophy mediated by IFN-γ in hACE2 transgenic mice. Eur J Immunol 2024; 54:e2350624. [PMID: 38655818 DOI: 10.1002/eji.202350624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Puja Sharma
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
7
|
Zhuang C, Yang S, Gonzalez CG, Ainsworth RI, Li S, Kobayashi MT, Wierzbicki I, Rossitto LAM, Wen Y, Peti W, Stanford SM, Gonzalez DJ, Murali R, Santelli E, Bottini N. A novel gain-of-function phosphorylation site modulates PTPN22 inhibition of TCR signaling. J Biol Chem 2024; 300:107393. [PMID: 38777143 PMCID: PMC11237943 DOI: 10.1016/j.jbc.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser325 situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function. In human T cells, Ser325 is phosphorylated by glycogen synthase kinase-3 (GSK3) following TCR stimulation, which promotes its TCR-inhibitory activity. Signaling through the major TCR-dependent pathway under PTPN22 control was enhanced by CRISPR/Cas9-mediated suppression of Ser325 phosphorylation and inhibited by mimicking it via glutamic acid substitution. Global phospho-mass spectrometry showed Ser325 phosphorylation state alters downstream transcriptional activity through enrichment of Swi3p, Rsc8p, and Moira domain binding proteins, and next-generation sequencing revealed it differentially regulates the expression of chemokines and T cell activation pathways. Moreover, in vitro kinetic data suggest the modulation of activity depends on a cellular context. Finally, we begin to address the structural and mechanistic basis for the influence of Ser325 phosphorylation on the protein's properties by deuterium exchange mass spectrometry and NMR spectroscopy. In conclusion, this study explores the function of a novel phosphorylation site of PTPN22 that is involved in complex regulation of TCR signaling and provides details that might inform the future development of allosteric modulators of PTPN22.
Collapse
Affiliation(s)
- Chuling Zhuang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Shen Yang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carlos G Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Richard I Ainsworth
- Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, California, USA
| | - Masumi Takayama Kobayashi
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Igor Wierzbicki
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Leigh-Ana M Rossitto
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Yutao Wen
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Stephanie M Stanford
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eugenio Santelli
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nunzio Bottini
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
8
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
9
|
Shen H, Mullen L, Ojo OA, Xing C, Yassin A, Lewis Z, Bonner JA, Shi LZ. HIF1α-glycolysis engages activation-induced cell death to drive IFN-γ induction in hypoxic T cells. RESEARCH SQUARE 2024:rs.3.rs-3830704. [PMID: 38260594 PMCID: PMC10802708 DOI: 10.21203/rs.3.rs-3830704/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The role of HIF1α-glycolysis in regulating IFN-γ induction in hypoxic T cells is unknown. Given that hypoxia is a common feature in a wide array of pathophysiological contexts such as tumor and that IFN-γ is instrumental for protective immunity, it is of great significance to gain a clear idea on this. Combining pharmacological and genetic gain-of-function and loss-of-function approaches, we find that HIF1α-glycolysis controls IFN-γ induction in both human and mouse T cells activated under hypoxia. Specific deletion of HIF1α in T cells (HIF1α-/-) and glycolytic inhibition significantly abrogate IFN-γ induction. Conversely, HIF1α stabilization in T cells by hypoxia and VHL deletion (VHL-/-) promotes IFN-γ production. Mechanistically, reduced IFN-γ production in hypoxic HIF1α-/- T cells is due to attenuated activation-induced cell death but not proliferative defect. We further show that depletion of intracellular acetyl-CoA is a key metabolic underlying mechanism. Hypoxic HIF1α-/- T cells are less able to kill tumor cells, and HIF1α-/- tumor-bearing mice are not responsive to immune checkpoint blockade (ICB) therapy, indicating loss of HIF1α in T cells is a major mechanism of therapeutic resistance to ICBs. Importantly, acetate supplementation restores IFN-γ production in hypoxic HIF1α-/- T cells and re-sensitizes HIF1α-/- tumor-bearing mice to ICBs, providing an effective strategy to overcome ICB resistance. Taken together, our results highlight T cell HIF1α-anaerobic glycolysis as a principal mediator of IFN-γ induction and anti-tumor immunity. Considering that acetate supplementation (i.e., glycerol triacetate (GTA)) is approved to treat infants with Canavan disease, we envision a rapid translation of our findings, justifying further testing of GTA as a repurposed medicine for ICB resistance, a pressing unmet medical need.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL 35233, USA
| | - Logan Mullen
- Genomics Core Laboratory, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| | - Oluwagbemiga A. Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL 35233, USA
| | - Chuan Xing
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL 35233, USA
| | - Abdelrahman Yassin
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL 35233, USA
| | - Zach Lewis
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL 35233, USA
| | - James A. Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, UAB-SOM, USA
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, UAB-SOM, USA
- Department of Microbiology and Immunology Institute, UAB-SOM, USA
- Department of Pharmacology and Toxicology, UAB-SOM, USA
- Immunology Institute, UAB-SOM, USA
| |
Collapse
|
10
|
Wu S, Zhang X, Hu C, Zhong Y, Chen J, Chong WP. CD8 + T cells reduce neuroretina inflammation in mouse by regulating autoreactive Th1 and Th17 cells through IFN-γ. Eur J Immunol 2023; 53:e2350574. [PMID: 37689974 DOI: 10.1002/eji.202350574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Various regulatory CD8+ T-cell subsets have been proposed for immune tolerance and have been implicated in controlling autoimmune diseases. However, their phenotypic identities and suppression mechanisms are not yet understood. This study found that coculture of T-cell receptor (TCR)- or interferon (IFN)-β-activated CD8+ T cells significantly suppressed the cytokine production of Th1 and Th17 cells. By experimenting with the experimental autoimmune uveitis (EAU), we found that adoptive transfer of TCR or IFN-β-activated CD8+ T cells significantly lessened disease development in an IFN-γ-dependent manner with a decreased uveitogenic Th1 and Th17 response. Interestingly, after adoptive transfer into the EAU mice, the IFN-γ+ CD8+ T cells were recruited more efficiently into the secondary lymphoid organs during the disease-priming phase. This recruitment depends on the IFN-γ-inducible chemokine receptor CXCR3; knocking out CXCR3 abolishes the protective effect of CD8+ T cells in EAU. In conclusion, we identified the critical role of IFN-γ for CD8+ T cells to inhibit Th1 and Th17 responses and ameliorate EAU. CXCR3 is necessary to recruit IFN-γ+ CD8+ T cells to the secondary lymphoid organ for the regulation of autoreactive Th1 and Th17 cells.
Collapse
Affiliation(s)
- Sihan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Cuiping Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yajie Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
11
|
Zeki J, Yavuz B, Wood L, Shimada H, Kaplan DL, Chiu B. Concurrent application of interferon-gamma and vincristine inhibits tumor growth in an orthotopic neuroblastoma mouse model. Pediatr Surg Int 2023; 39:241. [PMID: 37500800 DOI: 10.1007/s00383-023-05523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Tumor-associated macrophages are present within neuroblastoma, and interferon-gamma (IFN-γ) can polarize macrophages into cancer-inhibiting M1 type. We hypothesize that treating neuroblastoma with interferon-gamma (IFN-γ) can suppress tumor growth, and the concurrent treatment with IFN-γ and vincristine can lead to enhanced tumor killing as compared to vincristine alone. METHODS We loaded IFN-γ or vincristine into silk biomaterials and recorded the amount released over time. Orthotopic, syngeneic neuroblastoma xenografts were generated by injecting 9464D cells into adrenal gland of C57BL/6 mice, and IFN-γ-loaded and/or vincristine-loaded silk biomaterials were implanted into the tumor once the tumors reached 100 mm3. Drug release at different timepoints was measured and tumor growth after different treatments were compared. RESULTS 1-2% of IFN-γ and 70% of vincristine were released from the biomaterials by the fifth day. Combining IFN-γ and vincristine significantly slowed tumor growth as compared to the controls (12.2 ± 2.7 days to reach 800 mm3 versus 5.7 ± 1.2 days, p = 0.01), and IFN-γ alone also delayed tumor growth as compared to the controls (10.9 ± 1.5 days versus 5.7 ± 1.2 days, p = 0.001). Hematoxylin and eosin staining demonstrated tumor necrosis adjacent to the drug-loaded silk biomaterials. CONCLUSION Local delivery of sustained release IFN-γ can inhibit neuroblastoma tumor growth by itself and in combination with vincristine.
Collapse
Affiliation(s)
- Jasmine Zeki
- Department of Surgery, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Lauren Wood
- Department of Surgery, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| | - Bill Chiu
- Department of Surgery, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
12
|
Albeituni S, Oak N, Tillman HS, Stroh A, Keenan C, Bloom M, Nichols KE. Cellular and transcriptional impacts of Janus kinase and/or IFN-gamma inhibition in a mouse model of primary hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1137037. [PMID: 37228616 PMCID: PMC10204641 DOI: 10.3389/fimmu.2023.1137037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background Primary hemophagocytic lymphohistiocytosis (pHLH) is an inherited inflammatory syndrome driven by the exuberant activation of interferon-gamma (IFNg)-producing CD8 T cells. Towards this end, ruxolitinib treatment or IFNg neutralization (aIFNg) lessens immunopathology in a model of pHLH in which perforin-deficient mice (Prf1-/-) are infected with Lymphocytic Choriomeningitis virus (LCMV). However, neither agent completely eradicates inflammation. Two studies combining ruxolitinib with aIFNg report conflicting results with one demonstrating improvement and the other worsening of disease manifestations. As these studies used differing doses of drugs and varying LCMV strains, it remained unclear whether combination therapy is safe and effective. Methods We previously showed that a ruxolitinib dose of 90 mg/kg lessens inflammation in Prf1-/- mice infected with LCMV-Armstrong. To determine whether this dose controls inflammation induced by a different LCMV strain, we administered ruxolitinib at 90mg/kg to Prf1-/- mice infected with LCMV-WE. To elucidate the impacts of single agent versus combination therapy, Prf1-/- animals were infected with LCMV, treated or not with ruxolitinib, aIFNg or both agents, and analyzed for disease features and the transcriptional impacts of therapy within purified CD8 T cells. Results Ruxolitinib is well-tolerated and controls disease regardless of the viral strain used. aIFNg, administered alone or with ruxolitinib, is most effective at reversing anemia and reducing serum IFNg levels. In contrast, ruxolitinib appears better than aIFNg, and equally or more effective than combination therapy, at lessening immune cell expansion and cytokine production. Each treatment targets distinct gene expression pathways with aIFNg downregulating IFNg, IFNa, and IL-6-STAT3 pathways, and ruxolitinib downregulating IL-6-STAT3, glycolysis, and reactive oxygen species pathways. Unexpectedly, combination therapy is associated with upregulation of genes driving cell survival and proliferation. Conclusions Ruxolitinib is tolerated and curtails inflammation regardless of the inciting viral strain and whether it is given alone or in combination with aIFNg. When administered at the doses used in this study, the combination of ruxolitinb and aIFNg appears no better than treatment with either drug alone in lessening inflammation. Further studies are warranted to elucidate the optimal doses, schedules, and combinations of these agents for the treatment of patients with pHLH.
Collapse
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Heather S. Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alexa Stroh
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Camille Keenan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Mackenzie Bloom
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
13
|
Mohammadpour H, Tsuji T, MacDonald CR, Sarow JL, Rosenheck H, Daneshmandi S, Choi JE, Qiu J, Matsuzaki J, Witkiewicz AK, Attwood K, Blazar BR, Odunsi K, Repasky EA, McCarthy PL. Galectin-3 expression in donor T cells reduces GvHD severity and lethality after allogeneic hematopoietic cell transplantation. Cell Rep 2023; 42:112250. [PMID: 36924493 PMCID: PMC10116561 DOI: 10.1016/j.celrep.2023.112250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/05/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Abundant donor cytotoxic T cells that attack normal host organs remain a major problem for patients receiving allogeneic hematopoietic cell transplantation (allo-HCT). Despite an increase in our knowledge of the pathobiology of acute graft versus host disease (aGvHD), the mechanisms regulating the proliferation and function of donor T cells remain unclear. Here, we show that activated donor T cells express galectin-3 (Gal-3) after allo-HCT. In both major and minor histocompatibility-mismatched models of murine aGvHD, expression of Gal-3 is associated with decreased T cell activation and suppression of the secretion of effector cytokines, including IFN-γ and GM-CSF. Mechanistically, Gal-3 results in activation of NFAT signaling, which can induce T cell exhaustion. Gal-3 overexpression in human T cells prevents severe disease by suppressing cytotoxic T cells in xenogeneic aGvHD models. Together, these data identify the Gal-3-dependent regulatory pathway in donor T cells as a critical component of inflammation in aGvHD.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph L Sarow
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hanna Rosenheck
- Department of Medicine, Transplant and Cellular Therapy Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Saeed Daneshmandi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jee Eun Choi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jingxin Qiu
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Junko Matsuzaki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Philip L McCarthy
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
14
|
Shi L, Gu H. Cell membrane-camouflaged liposomes and neopeptide-loaded liposomes with TLR agonist R848 provides a prime and boost strategy for efficient personalized cancer vaccine therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102648. [PMID: 36584738 DOI: 10.1016/j.nano.2022.102648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Recent advances in bioinformatics and nanotechnology offer great opportunities for personalized cancer vaccine development. However, the timely identification of neoantigens and unsatisfactory efficacy of therapeutic cancer vaccines remain two obstacles for clinical transformation. We propose a "prime and boost" strategy to facilitate neoantigen-based immunotherapy. To prime the immune system, we first constructed personalized liposomes with cancer cell membranes and adjuvant R848 to provide immunostimulatory efficacy and time for identifying tumor antigens. Liposomes loaded with personalized neopeptides and adjuvants were used to boost the immune response. In vitro experiments verified potent immune responses, including macrophage polarization, dendritic cell maturation, and T lymphocyte activation. In vivo B16F10 and TC-1 cancer model were used to investigate efficient tumor growth suppression. Liposomal vaccines with neopeptides could stimulate human dendritic cells and T lymphocytes in vitro. These results demonstrate that the "prime and boost" strategy provides simple, quick, and efficient personalized vaccines for cancer therapy.
Collapse
Affiliation(s)
- Lu Shi
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongchen Gu
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
15
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Stinson WA, Miner CA, Zhao FR, Lundgren AJ, Poddar S, Miner JJ. The IFN-γ receptor promotes immune dysregulation and disease in STING gain-of-function mice. JCI Insight 2022; 7:155250. [PMID: 36073546 PMCID: PMC9536275 DOI: 10.1172/jci.insight.155250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αβ T cell–dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ–induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-β, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.
Collapse
Affiliation(s)
- W Alexander Stinson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cathrine A Miner
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Annena Jane Lundgren
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Subhajit Poddar
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.,Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
17
|
Ferguson N, Cogswell A, Barker E. Contribution of Innate Lymphoid Cells in Supplementing Cytokines Produced by CD4 + T Cells During Acute and Chronic SIV Infection of the Colon. AIDS Res Hum Retroviruses 2022; 38:709-725. [PMID: 35459417 PMCID: PMC9514600 DOI: 10.1089/aid.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HIV/SIV (simian immunodeficiency virus) infection leads to a loss of CD4+ T helper (Th) cells in number and function that begins during the acute phase and persists through the chronic phase of infection. In particular, there is a drastic decrease of Th17 and Th22 cells in the HIV/SIV-infected gastrointestinal (GI) tract as a source of interleukin (IL)-17 and IL-22. These cytokines are vital in the immune response to extracellular pathogens and maintenance of the GI tract. However, innate lymphoid cells (ILCs) are a source of IL-17 and IL-22 during the early stages of an immune response in mucosal tissue and remain vital cytokine producers when the immune response is persistent. Here, we wanted to determine whether ILCs are a source of IL-17 and IL-22 in the SIV-infected colon and could compensate for the loss of Th17 and Th22 cells. As a control, we evaluated the frequency and number of ILCs expressing interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα). We determined the frequency and number of cytokine expressing ILC subsets and T cell subsets within leukocytes from the colons of uninfected as well as acute and chronic SIV-infected colons without in vitro mitogenic stimulation. In the present study, we find that: (1) the frequency of IL-22, IFNγ, and TNFα but not IL-17 producing ILCs is increased in the acutely infected colon and remains high during the chronically infected colon relative to cytokine expressing ILCs in the uninfected colon, (2) ILCs are a significant source of IL-22, IFNγ, and TNFα but not IL-17 when CD4+ T lymphocytes in the gut lose their capacity to secrete these cytokines during SIV infection, and (3) the changes in the cytokines expressed by ILCs relative to CD4+ T cells in the infected colon were not due to increases in the frequency or number of ILCs in relation to T lymphocytes found in the tissue.
Collapse
Affiliation(s)
- Natasha Ferguson
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Andrew Cogswell
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
Lee KM, Fu Q, Huai G, Deng K, Lei J, Kojima L, Agarwal D, Van Galen P, Kimura S, Tanimine N, Washburn L, Yeh H, Naji A, Rickert CG, LeGuern C, Markmann JF. Suppression of allograft rejection by regulatory B cells generated via toll-like receptor signaling. JCI Insight 2022; 7:152213. [PMID: 35943811 PMCID: PMC9536278 DOI: 10.1172/jci.insight.152213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes have long been recognized for their critical contributions to adaptive immunity, providing defense against pathogens through cognate antigen presentation to T cells and Ab production. More recently appreciated is that B cells are also integral in securing self-tolerance; this has led to interest in their therapeutic application to downregulate unwanted immune responses, such as transplant rejection. In this study, we found that PMA- and ionomycin-activated mouse B cells acquire regulatory properties following stimulation through TLR4/TLR9 receptors (Bregs-TLR). Bregs-TLR efficiently inhibited T cell proliferation in vitro and prevented allograft rejection. Unlike most reported Breg activities, the inhibition of alloimmune responses by Bregs-TLR relied on the expression of TGF-β and not IL-10. In vivo, Bregs-TLR interrupted donor-specific T cell expansion and induced Tregs in a TGF-β–dependent manner. RNA-Seq analyses corroborated the involvement of TGF-β pathways in Breg-TLR function, identified potential gene pathways implicated in preventing graft rejection, and suggested targets to foster Breg regulation.
Collapse
Affiliation(s)
- Kang Mi Lee
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Qiang Fu
- Organ Transplantation Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoli Huai
- Organ Transplantation Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Kevin Deng
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Ji Lei
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Lisa Kojima
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Divyansh Agarwal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, United States of America
| | - Peter Van Galen
- Division of Hematology, Brigham & Womans Hospital, Harvard Medical School, Boston, United States of America
| | - Shoko Kimura
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Naoki Tanimine
- Department of Gastroenterological and Transplantation Surgery, Hiroshima University, Hiroshima, Japan
| | - Laura Washburn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, United States of America
| | - Charles G Rickert
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Christian LeGuern
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - James F Markmann
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
19
|
Qu S, Jiao Z, Lu G, Xu J, Yao B, Wang T, Wang J, Yao Y, Yan X, Wang T, Liang H, Zen K. Human lung adenocarcinoma CD47 is upregulated by interferon-γ and promotes tumor metastasis. Mol Ther Oncolytics 2022; 25:276-287. [PMID: 35663227 PMCID: PMC9127120 DOI: 10.1016/j.omto.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor cells can evade attack by phagocytes by upregulating the self-marker CD47. The mechanisms underlying tumor CD47 upregulation, however, remain unclear. Here, we report that human lung adenocarcinoma CD47 is upregulated by interferon-γ (IFN-γ), the level in the tumor microenvironment of which is markedly increased after tumor metastasis and chemotherapy. The IFN-γ receptor is expressed in various human lung adenocarcinoma tissues regardless of the CD47 protein expression, and lung adenocarcinoma CD47 expression is significantly enhanced following tumor metastasis or chemotherapy treatment. In line with this, CD47 expression in various lung cancer cells is markedly increased by IFN-γ treatment. Mechanistically, IFN-γ promotes CD47 expression by activating interferon regulatory factor-1 (IRF-1), which binds to an IRF-1-binding domain within the CD47 promoter region and increases CD47 transcription. Functionally, IFN-γ-enhanced CD47 expression facilitates human lung cancer cell invasion both in vitro and in vivo, whereas IFN-γ-induced CD47 upregulation and cancer metastasis are blocked by mutating the IRF-1-binding site within the CD47 promoter. Our results reveal IFN-γ-enhanced CD47 expression as a novel mechanism promoting human lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Shuang Qu
- Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zichen Jiao
- Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Geng Lu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210093, China
| | - Jiahan Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210093, China
| | - Bing Yao
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210093, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210093, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210093, China
| | - Xin Yan
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210093, China
| | - Tao Wang
- Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China
- Corresponding author Tao Wang, Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China.
| | - Hongwei Liang
- Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
- Corresponding author Hongwei Liang, Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China.
| | - Ke Zen
- Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China
- Corresponding author Ke Zen, Department of Thoracic Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
20
|
Shao H, Kaplan HJ, Sun D. Bidirectional Effect of IFN-γ on Th17 Responses in Experimental Autoimmune Uveitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:831084. [PMID: 36188211 PMCID: PMC9521044 DOI: 10.3389/fopht.2022.831084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pro- and ant-inflammatory effects of IFN-γ have been repeatedly found in various immune responses, including cancer and autoimmune diseases. In a previous study we showed that the timing of treatment determines the effect of adenosine-based immunotherapy. In this study we examined the role of IFN-γ in pathogenic Th17 responses in experimental autoimmune uveitis (EAU). We observed that IFN-γ has a bidirectional effect on Th17 responses, when tested both in vitro and in vivo. Anti-IFN-γ antibody inhibits Th17 responses when applied in the initial phase of the immune response; however, it enhances the Th17 response if administered in a later phase of EAU. In the current study we showed that IFN-γ is an important immunomodulatory molecule in γδ T cell activation, as well as in Th17 responses. These results should advance our understanding of the regulation of Th17 responses in autoimmunity.
Collapse
Affiliation(s)
- Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, United States
| | - Henry J. Kaplan
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Activation-induced cell death in CAR-T cell therapy. Hum Cell 2022; 35:441-447. [PMID: 35032297 DOI: 10.1007/s13577-022-00670-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/05/2022] [Indexed: 01/30/2023]
Abstract
Engineered T cells expressing chimeric antigen receptors (CARs) with tumor specificity have shown remarkable therapeutic effects on hematologic malignancies. However, CAR-T cells are less effective on solid tumors mainly due to the weak persistence of CAR-T cells, which might be caused by T cell death. Significant activation-induced cell death (AICD) of CAR-T cells was triggered by repeated antigen stimulation. AICD of T cell is characterized by the upregulation of death receptors and low persistence of T cells. Understanding the mechanism of AICD is crucial to improve the anti-tumor effect of CAR-T cells against solid tumors. Many approaches have been applied in CAR-T cell modification to enhance their anti-apoptosis ability. In this review, we summarized the molecular mechanisms of AICD in CAR-T cells and the progresses of anti-AICD in CAR-T cells therapy.
Collapse
|
22
|
CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers. Nat Biomed Eng 2022; 6:830-841. [PMID: 35379957 PMCID: PMC9288934 DOI: 10.1038/s41551-022-00875-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
Chimeric antigen receptor T cells (CAR T cells) are effective against haematologic malignancies. However, in solid tumours, their potency is hampered by local immunosuppression and by the heterogeneous expression of the antigen that the CAR targets. Here we show that CAR T cells expressing a pluripotent pro-inflammatory neutrophil-activating protein (NAP) from Helicobacter pylori trigger endogenous bystander T-cell responses against solid cancers. In mice with subcutaneous murine pancreatic ductal adenocarcinomas, neuroblastomas or colon carcinomas, CAR(NAP) T cells led to slower tumour growth and higher survival rates than conventional mouse CAR T cells, regardless of target antigen, tumour type and host haplotype. In tumours with heterogeneous antigen expression, NAP secretion induced the formation of an immunologically 'hot' microenvironment that supported dendritic cell maturation and bystander responses, as indicated by epitope spreading and infiltration of cytotoxic CD8+ T cells targeting tumour-associated antigens other than the CAR-targeted antigen. CAR T cells armed with NAP neither increased off-tumour toxicity nor hampered the efficacy of CAR T cells, and hence may have advantageous translational potential.
Collapse
|
23
|
Song TY, Long M, Zhao HX, Zou MW, Fan HJ, Liu Y, Geng CL, Song MF, Liu YF, Chen JY, Yang YL, Zhou WR, Huang DW, Peng B, Peng ZG, Cang Y. Tumor evolution selectively inactivates the core microRNA machinery for immune evasion. Nat Commun 2021; 12:7003. [PMID: 34853298 PMCID: PMC8636623 DOI: 10.1038/s41467-021-27331-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cells acquire genetic heterogeneity to escape from immune surveillance during tumor evolution, but a systematic approach to distinguish driver from passenger mutations is lacking. Here we investigate the impact of different immune pressure on tumor clonal dynamics and immune evasion mechanism, by combining massive parallel sequencing of immune edited tumors and CRISPR library screens in syngeneic mouse tumor model and co-culture system. We find that the core microRNA (miRNA) biogenesis and targeting machinery maintains the sensitivity of cancer cells to PD-1-independent T cell-mediated cytotoxicity. Genetic inactivation of the machinery or re-introduction of ANKRD52 frequent patient mutations dampens the JAK-STAT-interferon-γ signaling and antigen presentation in cancer cells, largely by abolishing miR-155-targeted silencing of suppressor of cytokine signaling 1 (SOCS1). Expression of each miRNA machinery component strongly correlates with intratumoral T cell infiltration in nearly all human cancer types. Our data indicate that the evolutionarily conserved miRNA pathway can be exploited by cancer cells to escape from T cell-mediated elimination and immunotherapy.
Collapse
Affiliation(s)
- Tian-Yu Song
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Long
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Xin Zhao
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd, Shanghai, China
| | - Miao-Wen Zou
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong-Jie Fan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Liu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen-Lu Geng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Fang Song
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Feng Liu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun-Yi Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-Lin Yang
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd, Shanghai, China
| | - Wen-Rong Zhou
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd, Shanghai, China
| | - Da-Wei Huang
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd, Shanghai, China
| | - Bo Peng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhen-Gang Peng
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd, Shanghai, China
| | - Yong Cang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
24
|
Liu L, Chen J, Bae J, Li H, Sun Z, Moore C, Hsu E, Han C, Qiao J, Fu YX. Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells. Nat Biomed Eng 2021; 5:1261-1273. [PMID: 34725504 PMCID: PMC9499378 DOI: 10.1038/s41551-021-00800-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
Bispecific T-cell engagers (BiTEs) preferentially targeting tumour-associated antigens and stimulating CD3-mediated signalling are being used in patients to treat acute B-cell lymphoblastic leukemia. However, the potency of BiTEs in solid tumours is limited by their short half-life and their severe toxicity at relevant therapeutic doses. Here we report the design and in vivo performance of a bispecific antibody that simultaneously targets the murine T-cell co-receptor CD3ε and the murine immune checkpoint programmed-death ligand 1 (PD-L1). In multiple syngeneic tumour models, the bispecific antibody generated higher antitumour immune responses than conventional BiTEs targeting tumour-associated antigens and CD3ε. We found that the durable antigen-specific T-cell responses resulted from the rejuvenation of CD8 T cells, owing to the blockade of PD-L1 on dendritic cells (but not on tumour cells) and co-stimulation by B7-1&2 (a peripheral membrane protein on dendritic cells). Bispecific T-cell engagers targeting dendritic cells rather than tumour cells may represent a general means of T-cell rejuvenation for durable cancer immunotherapy.
Collapse
Affiliation(s)
- Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiyu Li
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhichen Sun
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chuanhui Han
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Nguyen LN, Nguyen LNT, Zhao J, Schank M, Dang X, Cao D, Khanal S, Thakuri BKC, Zhang J, Lu Z, Wu XY, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. Immune Activation Induces Telomeric DNA Damage and Promotes Short-Lived Effector T Cell Differentiation in Chronic HCV Infection. Hepatology 2021; 74:2380-2394. [PMID: 34110660 PMCID: PMC8542603 DOI: 10.1002/hep.32008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/10/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV) leads to a high rate of chronic infection and T cell dysfunction. Although it is well known that chronic antigenic stimulation is a driving force for impaired T cell functions, the precise mechanisms underlying immune activation-induced T cell dysfunctions during HCV infection remain elusive. APPROACH AND RESULTS Here, we demonstrated that circulating CD4+ T cells from patients who are chronically HCV-infected exhibit an immune activation status, as evidenced by the overexpression of cell activation markers human leukocyte antigen-antigen D-related, glucose transporter 1, granzyme B, and the short-lived effector marker CD127- killer cell lectin-like receptor G1+ . In contrast, the expression of stem cell-like transcription factor T cell factor 1 and telomeric repeat-binding factor 2 (TRF2) are significantly reduced in CD4+ T cells from patients who are chronically HCV-infected compared with healthy participants (HP). Mechanistic studies revealed that CD4+ T cells from participants with HCV exhibit phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling hyperactivation on T cell receptor stimulation, promoting proinflammatory effector cell differentiation, telomeric DNA damage, and cellular apoptosis. Inhibition of Akt signaling during T cell activation preserved the precursor memory cell population and prevented inflammatory effector cell expansion, DNA damage, and apoptotic death. Moreover, knockdown of TRF2 reduced HP T cell stemness and triggered telomeric DNA damage and cellular apoptosis, whereas overexpression of TRF2 in CD4 T cells prevented telomeric DNA damage. CONCLUSIONS These results suggest that modulation of immune activation through inhibiting Akt signaling and protecting telomeres through enhancing TRF2 expression may open therapeutic strategies to fine tune the adaptive immune responses in the setting of persistent immune activation and inflammation during chronic HCV infection.
Collapse
Affiliation(s)
- Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN
| |
Collapse
|
26
|
Kalia V, Yuzefpolskiy Y, Vegaraju A, Xiao H, Baumann F, Jatav S, Church C, Prlic M, Jha A, Nghiem P, Riddell S, Sarkar S. Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Sci Transl Med 2021; 13:eaba6006. [PMID: 34644150 DOI: 10.1126/scitranslmed.aba6006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vandana Kalia
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yevgeniy Yuzefpolskiy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adithya Vegaraju
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hanxi Xiao
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Florian Baumann
- QIAGEN Sciences LLC, 19300 Germantown Rd, Germantown, MD 20874, USA
| | | | - Candice Church
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Global Health, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Paul Nghiem
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stanley Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Surojit Sarkar
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Wu W, Liu Y, Zeng S, Han Y, Shen H. Intratumor heterogeneity: the hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes. J Hematol Oncol 2021; 14:160. [PMID: 34620200 PMCID: PMC8499512 DOI: 10.1186/s13045-021-01166-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
In this era of precision medicine, with the help of biomarkers, immunotherapy has significantly improved prognosis of many patients with malignant tumor. Deficient mismatch repair (dMMR)/microsatellite instability (MSI) status is used as a biomarker in clinical practice to predict favorable response to immunotherapy and prognosis. MSI is an important characteristic which facilitates mutation and improves the likelihood of a favorable response to immunotherapy. However, many patients with dMMR/MSI still respond poorly to immunotherapies, which partly results from intratumor heterogeneity propelled by dMMR/MSI. In this review, we discuss how dMMR/MSI facilitates mutations in tumor cells and generates intratumor heterogeneity, especially through type II interferon (IFN-γ) signaling and tumor-infiltrating lymphocytes (TILs). We discuss the mechanism of immunotherapy from the perspective of dMMR/MSI, molecular pathways and TILs, and we discuss how intratumor heterogeneity hinders the therapeutic effect of immunotherapy. Finally, we summarize present techniques and strategies to look at the tumor as a whole to design personalized regimes and achieve favorable prognosis.
Collapse
Affiliation(s)
- Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
28
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
29
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
30
|
Cell Death in Coronavirus Infections: Uncovering Its Role during COVID-19. Cells 2021; 10:cells10071585. [PMID: 34201847 PMCID: PMC8306954 DOI: 10.3390/cells10071585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cell death mechanisms are crucial to maintain an appropriate environment for the functionality of healthy cells. However, during viral infections, dysregulation of these processes can be present and can participate in the pathogenetic mechanisms of the disease. In this review, we describe some features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and some immunopathogenic mechanisms characterizing the present coronavirus disease (COVID-19). Lymphopenia and monocytopenia are important contributors to COVID-19 immunopathogenesis. The fine mechanisms underlying these phenomena are still unknown, and several hypotheses have been raised, some of which assign a role to cell death as far as the reduction of specific types of immune cells is concerned. Thus, we discuss three major pathways such as apoptosis, necroptosis, and pyroptosis, and suggest that all of them likely occur simultaneously in COVID-19 patients. We describe that SARS-CoV-2 can have both a direct and an indirect role in inducing cell death. Indeed, on the one hand, cell death can be caused by the virus entry into cells, on the other, the excessive concentration of cytokines and chemokines, a process that is known as a COVID-19-related cytokine storm, exerts deleterious effects on circulating immune cells. However, the overall knowledge of these mechanisms is still scarce and further studies are needed to delineate new therapeutic strategies.
Collapse
|
31
|
Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol 2021; 22:158-172. [PMID: 34155388 DOI: 10.1038/s41577-021-00566-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy offers substantive benefit to patients with various tumour types, in some cases leading to complete tumour clearance. However, many patients do not respond to immunotherapy, galvanizing the field to define the mechanisms of pre-existing and acquired resistance. Interferon-γ (IFNγ) is a cytokine that has both protumour and antitumour activities, suggesting that it may serve as a nexus for responsiveness to immunotherapy. Many cancer immunotherapies and chemotherapies induce IFNγ production by various cell types, including activated T cells and natural killer cells. Patients resistant to these therapies commonly have molecular aberrations in the IFNγ signalling pathway or express resistance molecules driven by IFNγ. Given that all nucleated cells can respond to IFNγ, the functional consequences of IFNγ production need to be carefully dissected on a cell-by-cell basis. Here, we review the cells that produce IFNγ and the different effects of IFNγ in the tumour microenvironment, highlighting the pleiotropic nature of this multifunctional and abundant cytokine.
Collapse
Affiliation(s)
- Angela M Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Lee JK, Koo SY, Nam HM, Lee JB, Ko J, Kim KM, Park EJ, Kim TJ, Lee H, Go H, Lee CW. Ssu72 is a T-cell receptor-responsive modifier that is indispensable for regulatory T cells. Cell Mol Immunol 2021; 18:1395-1411. [PMID: 33850312 PMCID: PMC8166877 DOI: 10.1038/s41423-021-00671-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The homeostatic balance between effector T cells and regulatory T cells (Tregs) is crucial for adaptive immunity; however, epigenetic programs that inhibit phosphorylation to regulate Treg development, peripheral expression, and suppressive activity are elusive. Here, we found that the Ssu72 phosphatase is activated by various T-cell receptor signaling pathways, including the T-cell receptor and IL-2R pathways, and localizes at the cell membrane. Deletion of Ssu72 in T cells disrupts CD4+ T-cell differentiation into Tregs in the periphery via the production of high levels of the effector cytokines IL-2 and IFNγ, which induce CD4+ T-cell activation and differentiation into effector cell lineages. We also found a close correlation between downregulation of Ssu72 and severe defects in mucosal tolerance in patients. Interestingly, Ssu72 forms a complex with PLCγ1, which is an essential effector molecule for T-cell receptor signaling as well as Treg development and function. Ssu72 deficiency impairs PLCγ1 downstream signaling and results in failure of Foxp3 induction. Thus, our studies show that the Ssu72-mediated cytokine response coordinates the differentiation and function of Treg cells in the periphery.
Collapse
Affiliation(s)
- Jin-Kwan Lee
- Research Institute, Curogen Technology, Suwon, South Korea
| | - Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hye-Mi Nam
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
- MOGAM Institute for Biomedical Research, Gyeonggi, South Korea
| | - Jee-Boong Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Mo Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Gyeonggi, South Korea.
| | - Heounjeong Go
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Chang-Woo Lee
- Research Institute, Curogen Technology, Suwon, South Korea.
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| |
Collapse
|
33
|
Gao Y, Wang Y, Luo F, Chu Y. Optimization of T Cell Redirecting Strategies: Obtaining Inspirations From Natural Process of T Cell Activation. Front Immunol 2021; 12:664329. [PMID: 33981310 PMCID: PMC8107274 DOI: 10.3389/fimmu.2021.664329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) or bispecific antibodies (bsAbs) redirected T cell against tumors is one of the most promising immunotherapy approaches. However, insufficient clinical outcomes are still observed in treatments of both solid and non-solid tumors. Limited efficacy and poor persistence are two major challenges in redirected T cell therapies. The immunological synapse (IS) is a vital component during the T cell response, which largely determines the clinical outcomes of T cell-based therapies. Here, we review the structural and signaling characteristics of IS formed by natural T cells and redirected T cells. Furthermore, inspired by the elaborate natural T cell receptor-mediated IS, we provide potential strategies for higher efficacy and longer persistence of redirected T cells.
Collapse
Affiliation(s)
- Yiyuan Gao
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yuedi Wang
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, China.,Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Ceccarello E, Tabaglio T, Koh S, Oei V, Teo W, Jonathan OJ, Pavesi A, Chen Q, Bertoletti A, Wee KB, Guccione E. Splice-Switching Antisense Oligonucleotides as a Targeted Intrinsic Engineering Tool for Generating Armored Redirected T Cells. Nucleic Acid Ther 2021; 31:145-154. [PMID: 33567222 PMCID: PMC7997720 DOI: 10.1089/nat.2020.0905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Modification of specificity of T cells for the use in adoptive transfer (CAR- or TCR-redirected T cells) has revolutionized the therapy of liquid tumors and some infectious diseases. However, several obstacles are still hampering the efficacy of such potent therapy, hence concurrent modification of the function is also required to obtain successful results. Here we show the use of splice-switching antisense oligonucleotides (SSOs) as a tool to transiently modify T cell function. We demonstrate the possibility to transfect SSOs and an exogenous TCR into primary human T cells in the same electroporation reaction, without affecting viability and function of the transfected T lymphocytes. Moreover, we show that SSOs targeting T cell-specific mRNAs induce the skipping of the targeted exons, and the reduction of the protein and consequent modification of T cell function. This technical work paves the way to the use of SSOs in immune cells, not only for the knockdown of the functional isoform of the targeted proteins, but also for the protein manipulation by elimination of specific domains encoded by targeted exons.
Collapse
Affiliation(s)
- Erica Ceccarello
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,IMMUNOA Pte Ltd, Singapore, Singapore
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sarene Koh
- Lion TCR Pte Ltd, Singapore, Singapore.,Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore, Singapore
| | - Vincent Oei
- Duke-NUS Medical School, Singapore, Singapore
| | - Winnie Teo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Owen Julianto Jonathan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Keng Boon Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
35
|
Bos R, Marquardt KL, Cheung J, Sherman LA. Functional differences between low- and high-affinity CD8(+) T cells in the tumor environment. Oncoimmunology 2021; 1:1239-1247. [PMID: 23243587 PMCID: PMC3518496 DOI: 10.4161/onci.21285] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Weak T-cell antigen receptor (TCR)-ligand interactions are sufficient to activate naïve CD8(+) T cells, but generally do not result in tumor eradication. How differences in TCR affinity affect the regulation of T-cell function in an immunosuppressive tumor environment has not been investigated. We have examined the functional differences of high- vs. low-affinity CD8(+) T cells and we observed that infiltration, accumulation, survival and cytotoxicity within the tumor are severely impacted by the strength of TCR-ligand interactions. In addition, high-affinity CD8(+) T cells were found to exhibit lower expression of inhibitory molecules including PD-1, LAG-3 and NKG2A, thus being less susceptible to suppressive mechanisms. Interferon γ and autocrine interleukin-2 were both found to influence the level of expression of these molecules. Interestingly, although high-affinity CD8(+) T cells were superior to low-affinity CD8(+) T cells in their ability to effect tumor eradication, they could be further improved by the presence of tumor specific CD4(+) T cells. These findings illustrate the importance of both TCR affinity and tumor-specific CD4 help in tumor immunotherapy.
Collapse
Affiliation(s)
- Rinke Bos
- Department of Immunology and Microbial Sciences; The Scripps Research Institute; La Jolla, CA USA
| | | | | | | |
Collapse
|
36
|
Angelicola S, Ruzzi F, Landuzzi L, Scalambra L, Gelsomino F, Ardizzoni A, Nanni P, Lollini PL, Palladini A. IFN-γ and CD38 in Hyperprogressive Cancer Development. Cancers (Basel) 2021; 13:309. [PMID: 33467713 PMCID: PMC7830527 DOI: 10.3390/cancers13020309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) improve the survival of patients with multiple types of cancer. However, low response rates and atypical responses limit their success in clinical applications. The paradoxical acceleration of tumor growth after treatment, defined as hyperprogressive disease (HPD), is the most difficult problem facing clinicians and patients alike. The mechanisms that underlie hyperprogression (HP) are still unclear and controversial, although different factors are associated with the phenomenon. In this review, we propose two factors that have not yet been demonstrated to be directly associated with HP, but upon which it is important to focus attention. IFN-γ is a key cytokine in antitumor response and its levels increase during ICI therapy, whereas CD38 is an alternative immune checkpoint that is involved in immunosuppressive responses. As both factors are associated with resistance to ICI therapy, we have discussed their possible involvement in HPD with the conclusion that IFN-γ may contribute to HP onset through the activation of the inflammasome pathway, immunosuppressive enzyme IDO1 and activation-induced cell death (AICD) in effector T cells, while the role of CD38 in HP may be associated with the activation of adenosine receptors, hypoxia pathways and AICD-dependent T-cell depletion.
Collapse
Affiliation(s)
- Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Francesco Gelsomino
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.A.)
| | - Andrea Ardizzoni
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.A.)
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| |
Collapse
|
37
|
Kipper FC, Angolano C, Vissapragada R, Contreras MA, Moore J, Bhasin M, Ferran C, Thomas AJ. Embryonic periventricular endothelial cells demonstrate a unique pro-neurodevelopment and anti-inflammatory gene signature. Sci Rep 2020; 10:20393. [PMID: 33230288 PMCID: PMC7683543 DOI: 10.1038/s41598-020-77297-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
Brain embryonic periventricular endothelial cells (PVEC) crosstalk with neural progenitor cells (NPC) promoting mutual proliferation, formation of tubular-like structures in the former and maintenance of stemness in the latter. To better characterize this interaction, we conducted a comparative transcriptome analysis of mouse PVEC vs. adult brain endothelial cells (ABEC) in mono-culture or NPC co-culture. We identified > 6000 differentially expressed genes (DEG), regardless of culture condition. PVEC exhibited a 30-fold greater response to NPC than ABEC (411 vs. 13 DEG). Gene Ontology (GO) analysis of DEG that were higher or lower in PVEC vs. ABEC identified "Nervous system development" and "Response to Stress" as the top significantly different biological process, respectively. Enrichment in canonical pathways included HIF1A, FGF/stemness, WNT signaling, interferon signaling and complement. Solute carriers (SLC) and ABC transporters represented an important subset of DEG, underscoring PVEC's implication in blood-brain barrier formation and maintenance of nutrient-rich/non-toxic environment. Our work characterizes the gene signature of PVEC and their important partnership with NPC, underpinning their unique role in maintaining a healthy neurovascular niche, and in supporting brain development. This information may pave the way for additional studies to explore their therapeutic potential in neuro-degenerative diseases, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Franciele Cristina Kipper
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Cleide Angolano
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Ravi Vissapragada
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Adelaide, 5042, SA, Australia
| | - Mauricio A Contreras
- Division of Vascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Justin Moore
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Manoj Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Division of Vascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Ajith J Thomas
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
38
|
Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2020; 184:149-168.e17. [PMID: 33278357 PMCID: PMC7674074 DOI: 10.1016/j.cell.2020.11.025] [Citation(s) in RCA: 1078] [Impact Index Per Article: 215.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Evan Peter Williams
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Patrick Schreiner
- The Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Colleen Beth Jonsson
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
39
|
Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.29.361048. [PMID: 33140051 PMCID: PMC7605562 DOI: 10.1101/2020.10.29.361048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality. Currently, there is a critical shortage of proven treatment options and an urgent need to understand the pathogenesis of multi-organ failure and lung damage. Cytokine storm is associated with severe inflammation and organ damage during COVID-19. However, a detailed molecular pathway defining this cytokine storm is lacking, and gaining mechanistic understanding of how SARS-CoV-2 elicits a hyperactive inflammatory response is critical to develop effective therapeutics. Of the multiple inflammatory cytokines produced by innate immune cells during SARS-CoV-2 infection, we found that the combined production of TNF-α and IFN-γ specifically induced inflammatory cell death, PANoptosis, characterized by gasdermin-mediated pyroptosis, caspase-8-mediated apoptosis, and MLKL-mediated necroptosis. Deletion of pyroptosis, apoptosis, or necroptosis mediators individually was not sufficient to protect against cell death. However, cells deficient in both RIPK3 and caspase-8 or RIPK3 and FADD were resistant to this cell death. Mechanistically, the JAK/STAT1/IRF1 axis activated by TNF-α and IFN-γ co-treatment induced iNOS for the production of nitric oxide. Pharmacological and genetic deletion of this pathway inhibited pyroptosis, apoptosis, and necroptosis in macrophages. Moreover, inhibition of PANoptosis protected mice from TNF-α and IFN-γ-induced lethal cytokine shock that mirrors the pathological symptoms of COVID-19. In vivo neutralization of both TNF-α and IFN-γ in multiple disease models associated with cytokine storm showed that this treatment provided substantial protection against not only SARS-CoV-2 infection, but also sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock models, demonstrating the broad physiological relevance of this mechanism. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other cytokine storm-driven syndromes by limiting inflammation and tissue damage. The findings also provide a molecular and mechanistic description for the term cytokine storm. Additionally, these results open new avenues for the treatment of other infectious and autoinflammatory diseases and cancers where TNF-α and IFN-γ synergism play key pathological roles.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Evan Peter Williams
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | | | - Patrick Schreiner
- The Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Colleen Beth Jonsson
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | | |
Collapse
|
40
|
Matas‐Céspedes A, Brown L, Mahbubani KT, Bareham B, Higgins J, Curran M, de Haan L, Lapointe J, Stebbings R, Saeb‐Parsy K. Use of human splenocytes in an innovative humanised mouse model for prediction of immunotherapy-induced cytokine release syndrome. Clin Transl Immunology 2020; 9:e1202. [PMID: 33173582 PMCID: PMC7641894 DOI: 10.1002/cti2.1202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Humanised mice have emerged as valuable models for pre-clinical testing of the safety and efficacy of immunotherapies. Given the variety of models available, selection of the most appropriate humanised mouse model is critical in study design. Here, we aimed to develop a model for predicting cytokine release syndrome (CRS) while minimising graft-versus-host disease (GvHD). METHODS To overcome donor-induced variation, we directly compared the in vitro and in vivo immune phenotype of immunodeficient NSG mice reconstituted with human bone marrow (BM) CD34+ haematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) or spleen mononuclear cells (SPMCs) from the same human donors. SPMC engraftment in NSG-dKO mice, which lack MHC class I and II, was also evaluated as a strategy to limit GvHD. Another group of mice was engrafted with umbilical cord blood (UCB) CD34+ HSCs. Induction of CRS in vivo was investigated upon administration of the anti-CD3 monoclonal antibody OKT3. RESULTS PBMC- and SPMC-reconstituted NSG mice showed short-term survival, with engrafted human T cells exhibiting mostly an effector memory phenotype. Survival in SPMC-reconstituted NSG-dKO mice was significantly longer. Conversely, both BM and UCB-HSC models showed longer survival, without demonstrable GvHD and a more naïve T-cell phenotype. PBMC- and SPMC-reconstituted mice, but not BM-HSC or UCB-HSC mice, experienced severe clinical signs of CRS upon administration of OKT3. CONCLUSION PBMC- and SPMC-reconstituted NSG mice better predict OKT3-mediated CRS. The SPMC model allows generation of large experimental groups, and the use of NSG-dKO mice mitigates the limitation of early GvHD.
Collapse
Affiliation(s)
- Alba Matas‐Céspedes
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lee Brown
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
| | - Krishnaa T Mahbubani
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Bethany Bareham
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Jackie Higgins
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Michelle Curran
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lolke de Haan
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Present address:
ADC TherapeuticsLondonUK
| | | | | | - Kourosh Saeb‐Parsy
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| |
Collapse
|
41
|
Liu C, Ayyar VS, Zheng X, Chen W, Zheng S, Mody H, Wang W, Heald D, Singh AP, Cao Y. Model-Based Cellular Kinetic Analysis of Chimeric Antigen Receptor-T Cells in Humans. Clin Pharmacol Ther 2020; 109:716-727. [PMID: 33002189 DOI: 10.1002/cpt.2040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has achieved considerable success in treating B-cell hematologic malignancies. However, the challenges of extending CAR-T therapy to other tumor types, particularly solid tumors, remain appreciable. There are substantial variabilities in CAR-T cellular kinetics across CAR-designs, CAR-T products, dosing regimens, patient responses, disease types, tumor burdens, and lymphodepletion conditions. As a "living drug," CAR-T cellular kinetics typically exhibit four distinct phases: distribution, expansion, contraction, and persistence. The cellular kinetics of CAR-T may correlate with patient responses, but which factors determine CAR-T cellular kinetics remain poorly defined. Herein, we developed a cellular kinetic model to retrospectively characterize CAR-T kinetics in 217 patients from 7 trials and compared CAR-T kinetics across response status, patient populations, and tumor types. Based on our analysis results, CAR-T cells exhibited a significantly higher cell proliferation rate and capacity but a lower contraction rate in patients who responded to treatment. CAR-T cells proliferate to a higher degree in hematologic malignancies than in solid tumors. Within the assessed dose ranges (107 -109 cells), CAR-T doses were weakly correlated with CAR-T cellular kinetics and patient response status. In conclusion, the developed CAR-T cellular kinetic model adequately characterized the multiphasic CAR-T cellular kinetics and supported systematic evaluations of the potential influencing factors, which can have significant implications for the development of more effective CAR-T therapies.
Collapse
Affiliation(s)
- Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vivaswath S Ayyar
- Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA
| | - Xirong Zheng
- Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA
| | - Wenbo Chen
- Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA
| | - Songmao Zheng
- Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA
| | - Hardik Mody
- Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA
| | - Weirong Wang
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Donald Heald
- Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA
| | - Aman P Singh
- Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Ishii K, Pouzolles M, Chien CD, Erwin-Cohen RA, Kohler ME, Qin H, Lei H, Kuhn S, Ombrello AK, Dulau-Florea A, Eckhaus MA, Shalabi H, Yates B, Lichtenstein DA, Zimmermann VS, Kondo T, Shern JF, Young HA, Taylor N, Shah NN, Fry TJ. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. J Clin Invest 2020; 130:5425-5443. [PMID: 32925169 PMCID: PMC7524496 DOI: 10.1172/jci130059] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Late-onset inflammatory toxicities resembling hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) occur after chimeric antigen receptor T cell (CAR T cell) infusion and represent a therapeutic challenge. Given the established link between perforin deficiency and primary HLH, we investigated the role of perforin in anti-CD19 CAR T cell efficacy and HLH-like toxicities in a syngeneic murine model. Perforin contributed to both CD8+ and CD4+ CAR T cell cytotoxicity but was not required for in vitro or in vivo leukemia clearance. Upon CAR-mediated in vitro activation, perforin-deficient CAR T cells produced higher amounts of proinflammatory cytokines compared with WT CAR T cells. Following in vivo clearance of leukemia, perforin-deficient CAR T cells reexpanded, resulting in splenomegaly with disruption of normal splenic architecture and the presence of hemophagocytes, which are findings reminiscent of HLH. Notably, a substantial fraction of patients who received anti-CD22 CAR T cells also experienced biphasic inflammation, with the second phase occurring after the resolution of cytokine release syndrome, resembling clinical manifestations of HLH. Elevated inflammatory cytokines such as IL-1β and IL-18 and concurrent late CAR T cell expansion characterized the HLH-like syndromes occurring in the murine model and in humans. Thus, a murine model of perforin-deficient CAR T cells recapitulated late-onset inflammatory toxicities occurring in human CAR T cell recipients, providing therapeutically relevant mechanistic insights.
Collapse
Affiliation(s)
- Kazusa Ishii
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, and
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Christopher D. Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Rebecca A. Erwin-Cohen
- Cancer and Inflammation Program, Center for Cancer Research, NCI, NIH, Frederick, Maryland, USA
| | - M. Eric Kohler
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Haiying Qin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Skyler Kuhn
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Amanda K. Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, NIH
| | | | - Michael A. Eckhaus
- Diagnostic and Research Services Branch, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Daniel A. Lichtenstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Valérie S. Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Université de Montpellier, IGMM, CNRS, Montpellier, France
| | - Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, NCI, NIH, Frederick, Maryland, USA
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, NCI, NIH, Frederick, Maryland, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Université de Montpellier, IGMM, CNRS, Montpellier, France
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Terry J. Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
43
|
Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res 2020; 8:49. [PMID: 33005420 PMCID: PMC7526126 DOI: 10.1186/s40364-020-00228-x] [Citation(s) in RCA: 719] [Impact Index Per Article: 143.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Interferon-γ (IFN-γ) plays a key role in activation of cellular immunity and subsequently, stimulation of antitumor immune-response. Based on its cytostatic, pro-apoptotic and antiproliferative functions, IFN-γ is considered potentially useful for adjuvant immunotherapy for different types of cancer. Moreover, it IFN-γ may inhibit angiogenesis in tumor tissue, induce regulatory T-cell apoptosis, and/or stimulate the activity of M1 proinflammatory macrophages to overcome tumor progression. However, the current understanding of the roles of IFN-γ in the tumor microenvironment (TME) may be misleading in terms of its clinical application. MAIN BODY Some researchers believe it has anti-tumorigenic properties, while others suggest that it contributes to tumor growth and progression. In our recent work, we have shown that concentration of IFN-γ in the TME determines its function. Further, it was reported that tumors treated with low-dose IFN-γ acquired metastatic properties while those infused with high dose led to tumor regression. Pro-tumorigenic role may be described through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, upregulation of indoleamine 2,3-dioxygenase, and checkpoint inhibitors such as programmed cell death ligand 1. CONCLUSION Significant research efforts are required to decipher IFN-γ-dependent pro- and anti-tumorigenic effects. This review discusses the current knowledge concerning the roles of IFN-γ in the TME as a part of the complex immune response to cancer and highlights the importance of identifying IFN-γ responsive patients to improve their sensitivity to immuno-therapies.
Collapse
Affiliation(s)
- Dragica Jorgovanovic
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052 China
| | - Mengjia Song
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, 510060 China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052 China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052 China
| |
Collapse
|
44
|
Lee PY, Platt CD, Weeks S, Grace RF, Maher G, Gauthier K, Devana S, Vitali S, Randolph AG, McDonald DR, Geha RS, Chou J. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J Allergy Clin Immunol 2020; 146:1194-1200.e1. [PMID: 32853638 PMCID: PMC7445138 DOI: 10.1016/j.jaci.2020.07.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/29/2022]
Abstract
Background We studied 2 unrelated patients with immune thrombocytopenia and autoimmune hemolytic anemia in the setting of acute infections. One patient developed multisystem inflammatory syndrome in children in the setting of a severe acute respiratory syndrome coronavirus 2 infection. Objectives We sought to identify the mechanisms underlying the development of infection-driven autoimmune cytopenias. Methods Whole-exome sequencing was performed on both patients, and the impact of the identified variants was validated by functional assays using the patients’ PBMCs. Results Each patient was found to have a unique heterozygous truncation variant in suppressor of cytokine signaling 1 (SOCS1). SOCS1 is an essential negative regulator of type I and type II IFN signaling. The patients’ PBMCs showed increased levels of signal transducer and activator of transcription 1 phosphorylation and a transcriptional signature characterized by increased expression of type I and type II IFN-stimulated genes and proapoptotic genes. The enhanced IFN signature exhibited by the patients’ unstimulated PBMCs parallels the hyperinflammatory state associated with multisystem inflammatory syndrome in children, suggesting the contributions of SOCS1 in regulating the inflammatory response characteristic of multisystem inflammatory syndrome in children. Conclusions Heterozygous loss-of-function SOCS1 mutations are associated with enhanced IFN signaling and increased immune cell activation, thereby predisposing to infection-associated autoimmune cytopenias.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sabrina Weeks
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Rachael F Grace
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - George Maher
- Division of Pediatric Hematology/Oncology, Sanford Children's Hospital, Sioux Falls, SD
| | - Kasey Gauthier
- Division of Pediatric Hematology/Oncology, Sanford Children's Hospital, Sioux Falls, SD
| | - Sridevi Devana
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Mass; Department of Pediatrics Harvard Medical School, Boston, Mass
| | - Sally Vitali
- Boston Children's Hospital, Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, Mass
| | - Adrienne G Randolph
- Boston Children's Hospital, Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, Mass
| | - Douglas R McDonald
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
45
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Martin-Hijano L, Sainz B. The Interactions Between Cancer Stem Cells and the Innate Interferon Signaling Pathway. Front Immunol 2020; 11:526. [PMID: 32296435 PMCID: PMC7136464 DOI: 10.3389/fimmu.2020.00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) form a family of cytokines with pleiotropic effects that modulate the immune response against multiple challenges like viral infections, autoimmune diseases, and cancer. While numerous anti-tumor activities have been described for IFNs, IFNs have also been associated with tumor growth and progression. The effect of IFNs on apoptosis, angiogenesis, tumor cell immunogenicity, and modulation of immune cells have been largely studied; however, less is known about their specific effects on cancer stem cells (CSCs). CSCs constitute a subpopulation of tumor cells endowed with stem-like properties including self-renewal, chemoresistance, tumorigenic capacity, and quiescence. This rare and unique subpopulation of cells is believed to be responsible for tumor maintenance, metastatic spread, and relapse. Thus, this review aims to summarize and discuss the current knowledge of the anti- and pro-CSCs effects of IFNs and also to highlight the need for further research on the interplay between IFNs and CSCs. Importantly, understanding this interplay will surely help to exploit the anti-tumor effects of IFNs, specifically those that target CSCs.
Collapse
Affiliation(s)
- Laura Martin-Hijano
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Bruno Sainz
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
47
|
Williams JB, Li S, Higgs EF, Cabanov A, Wang X, Huang H, Gajewski TF. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat Commun 2020; 11:602. [PMID: 32001684 PMCID: PMC6992737 DOI: 10.1038/s41467-020-14290-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
PD-1/PD-L1 blockade can promote robust tumor regression yet secondary resistance often occurs as immune selective pressure drives outgrowth of resistant tumor clones. Here using a genome-wide CRISPR screen in B16.SIY melanoma cells, we confirm Ifngr2 and Jak1 as important genes conferring sensitivity to T cell-mediated killing in vitro. However, when implanted into mice, these Ifngr2- and Jak1-deficient tumors paradoxically are better controlled immunologically. This phenotype maps to defective PD-L1 upregulation on mutant tumor cells, which improves anti-tumor efficacy of CD8+ T cells. To reconcile these observations with clinical reports of anti-PD-1 resistance linked to emergence of IFN-γ signaling mutants, we show that when mixed with wild-type tumor cells, IFN-γ-insensitive tumor cells indeed grow out, which depends upon PD-L1 expression by wild-type cells. Our results illustrate the complexity of functions for IFN-γ in anti-tumor immunity and demonstrate that intratumor heterogeneity and clonal cooperation can contribute to immunotherapy resistance.
Collapse
Affiliation(s)
- Jason B Williams
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Shuyin Li
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Emily F Higgs
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Alexandra Cabanov
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, United States
| | - Haochu Huang
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States.
- Departments of Medicine, Section of Hematology/Oncology, Chicago, IL, 60208, United States.
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, United States.
| |
Collapse
|
48
|
Xu K, Jin L. The role of heparin/heparan sulphate in the IFN-γ-led Arena. Biochimie 2019; 170:1-9. [PMID: 31794784 DOI: 10.1016/j.biochi.2019.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
IFN-γ (Interferon-gamma) is a pleiotropic cytokine. It is often involved in a variety of physiological processes by binding to the cell surface transmembrane receptor (IFN-γR) to initiate a series of signalling pathways that transmit external signals from cell surface receptors to the cell nucleus. Heparan sulphate (HS), a highly sulphated linear polysaccharide, is ubiquitous on the mammalian cell surface and extracellular matrix. Electrostatic interactions can be generated between the highly sulphated HS region and specific basic amino acid residues in the IFN-γ structure, thereby detaining IFN-γ on the cell surface, and the concentration of IFN-γ on the cell surface is thus, changed. IFN-γ retained on the cell surface will optimize the binding of IFN-γ to the transmembrane receptor resulting in high efficiency signalling. Heparin is a glycosaminoglycan with a structure similar to HS. The structural similarity provides a basis for modelling exogenous heparin dependence for interference with IFN-γ function. This model can be summarized as follows: First, the competitive binding effect; heparin bound to cytokines by competing with membrane-associated HS, causes a decrease in cytokine concentration on the cell surface. Second, the principle of priority occupancy; heparin can occupy the receptor binding site on cytokines, partially preventing the IFN-γ-IFN-γR interaction. These two models interfere with IFN-γ signal transmission. To decipher the mechanism by which heparin influences IFN-γ activity, studies of the structure-activity relationship are in progress. This paper summarizes research progress on the IFN-γ signalling pathway, heparin interference with IFN-γ activity and the structure-activity relationship between heparin and IFN-γ.
Collapse
Affiliation(s)
- Kening Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266000, Shandong, PR China.
| |
Collapse
|
49
|
Voss K, Luthers CR, Pohida K, Snow AL. Fatty Acid Synthase Contributes to Restimulation-Induced Cell Death of Human CD4 T Cells. Front Mol Biosci 2019; 6:106. [PMID: 31681794 PMCID: PMC6803432 DOI: 10.3389/fmolb.2019.00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Restimulation-induced cell death (RICD) is an apoptotic pathway triggered in activated effector T cells after T cell receptor (TCR) re-engagement. RICD operates at the peak of the immune response to ensure T cell expansion remains in check to maintain immune homeostasis. Understanding the biochemical regulation of RICD sensitivity may provide strategies for tuning the magnitude of an effector T cell response. Metabolic reprogramming in activated T cells is not only critical for T cell differentiation and effector functions, but also influences apoptosis sensitivity. We previously demonstrated that aerobic glycolysis correlates with optimum RICD sensitivity in human effector CD8 T cells. However, metabolic programming in CD4 T cells has not been investigated in this context. We employed a pharmacological approach to explore the effects of fatty acid and glycolytic metabolism on RICD sensitivity in primary human CD4 T cells. Blockade of fatty acid synthase (FASN) with the compound C75 significantly protected CD4 effector T cells from RICD, suggesting that fatty acid biosynthesis contributes to RICD sensitivity. Interestingly, sphingolipid synthesis and fatty acid oxidation (FAO) were dispensable for RICD. Disruption of glycolysis did not protect CD4 T cells from RICD unless glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymatic activity was targeted specifically, highlighting important differences in the metabolic control of RICD in effector CD4 vs. CD8 T cell populations. Moreover, C75 treatment protected effector CD4 T cells derived from naïve, effector memory, and central memory T cell subsets. Decreased RICD in C75-treated CD4 T cells correlated with markedly reduced FAS ligand (FASL) induction and a Th2-skewed phenotype, consistent with RICD-resistant CD4 T cells. These findings highlight FASN as a critical metabolic potentiator of RICD in human effector CD4 T cells.
Collapse
Affiliation(s)
- Kelsey Voss
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Christopher R Luthers
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katherine Pohida
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
50
|
Verma V, Shrimali RK, Ahmad S, Dai W, Wang H, Lu S, Nandre R, Gaur P, Lopez J, Sade-Feldman M, Yizhak K, Bjorgaard SL, Flaherty KT, Wargo JA, Boland GM, Sullivan RJ, Getz G, Hammond SA, Tan M, Qi J, Wong P, Merghoub T, Wolchok J, Hacohen N, Janik JE, Mkrtichyan M, Gupta S, Khleif SN. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1 +CD38 hi cells and anti-PD-1 resistance. Nat Immunol 2019; 20:1231-1243. [PMID: 31358999 PMCID: PMC7472661 DOI: 10.1038/s41590-019-0441-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
Abstract
Understanding resistance to antibody to programmed cell death protein 1 (PD-1; anti-PD-1) is crucial for the development of reversal strategies. In anti-PD-1-resistant models, simultaneous anti-PD-1 and vaccine therapy reversed resistance, while PD-1 blockade before antigen priming abolished therapeutic outcomes. This was due to induction of dysfunctional PD-1+CD38hi CD8+ cells by PD-1 blockade in suboptimally primed CD8 cell conditions induced by tumors. This results in erroneous T cell receptor signaling and unresponsiveness to antigenic restimulation. On the other hand, PD-1 blockade of optimally primed CD8 cells prevented the induction of dysfunctional CD8 cells, reversing resistance. Depleting PD-1+CD38hi CD8+ cells enhanced therapeutic outcomes. Furthermore, non-responding patients showed more PD-1+CD38+CD8+ cells in tumor and blood than responders. In conclusion, the status of CD8+ T cell priming is a major contributor to anti-PD-1 therapeutic resistance. PD-1 blockade in unprimed or suboptimally primed CD8 cells induces resistance through the induction of PD-1+CD38hi CD8+ cells that is reversed by optimal priming. PD-1+CD38hi CD8+ cells serve as a predictive and therapeutic biomarker for anti-PD-1 treatment. Sequencing of anti-PD-1 and vaccine is crucial for successful therapy.
Collapse
Affiliation(s)
- Vivek Verma
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rajeev K Shrimali
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Therapeutic Discovery, MD Anderson Cancer Center, Houston, TX, USA
| | - Shamim Ahmad
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Winjie Dai
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Hua Wang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Sumin Lu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Rahul Nandre
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jose Lopez
- Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Moshe Sade-Feldman
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Keren Yizhak
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Stacey L. Bjorgaard
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Keith T. Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gad Getz
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ming Tan
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University, Washington, DC, USA
| | - Jingjing Qi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical and Graduate Schools, New York, NY, USA
| | - Jedd Wolchok
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical and Graduate Schools, New York, NY, USA
| | - Nir Hacohen
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - John E. Janik
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Incyte Inc., Wilmington, DE, USA
| | - Mikayel Mkrtichyan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Present address: A2 Biotherapeutics, Agoura Hills, CA, USA
| | - Seema Gupta
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Samir N. Khleif
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Present address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Correspondence and requests for materials should be addressed to S.N.K.
| |
Collapse
|