1
|
Bourdais A, Viard P, Bormann J, Sesboüé C, Guerrier D, Therville N, Guillermet-Guibert J, Carroll J, Halet G. Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos. Development 2025; 152:dev204398. [PMID: 39982048 DOI: 10.1242/dev.204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.
Collapse
Affiliation(s)
- Anne Bourdais
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Patricia Viard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | - Côme Sesboüé
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Daniel Guerrier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Nicole Therville
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
2
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
3
|
Zierden M, Berghausen EM, Gnatzy-Feik L, Millarg C, Picard FSR, Kiljan M, Geißen S, Polykratis A, Zimmermann L, Nies RJ, Pasparakis M, Baldus S, Valasarajan C, Pullamsetti SS, Winkels H, Vantler M, Rosenkranz S. Hematopoietic PI3Kδ deficiency aggravates murine atherosclerosis through impairment of Tregs. JCI Insight 2024; 9:e155626. [PMID: 39378110 PMCID: PMC11601942 DOI: 10.1172/jci.insight.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Chronic activation of the adaptive immune system is a hallmark of atherosclerosis. As PI3Kδ is a key regulator of T and B cell differentiation and function, we hypothesized that alleviation of adaptive immunity by PI3Kδ inactivation may represent an attractive strategy counteracting atherogenesis. As expected, lack of hematopoietic PI3Kδ in atherosclerosis-prone Ldlr-/- mice resulted in lowered T and B cell numbers, CD4+ effector T cells, Th1 response, and immunoglobulin levels. However, despite markedly impaired peripheral pro-inflammatory Th1 cells and atheromatous CD4+ T cells, the unexpected net effect of hematopoietic PI3Kδ deficiency was aggravated vascular inflammation and atherosclerosis. Further analyses revealed that PI3Kδ deficiency impaired numbers, immunosuppressive functions, and stability of regulatory CD4+ T cells (Tregs), whereas macrophage biology remained largely unaffected. Adoptive transfer of wild-type Tregs fully restrained the atherosclerotic plaque burden in Ldlr-/- mice lacking hematopoietic PI3Kδ, whereas PI3Kδ-deficient Tregs failed to mitigate disease. Numbers of atheroprotective B-1 and pro-atherogenic B-2 cells as well as serum immunoglobulin levels remained unaffected by adoptively transferred wild-type Tregs. In conclusion, we demonstrate that hematopoietic PI3Kδ ablation promotes atherosclerosis. Mechanistically, we identified PI3Kδ signaling as a powerful driver of atheroprotective Treg responses, which outweigh PI3Kδ-driven pro-atherogenic effects of adaptive immune cells like Th1 cells.
Collapse
Affiliation(s)
- Mario Zierden
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Eva Maria Berghausen
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Leoni Gnatzy-Feik
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Christopher Millarg
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
| | - Felix Simon Ruben Picard
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | | | - Simon Geißen
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Apostolos Polykratis
- Institute for Genetics; and
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Lea Zimmermann
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Richard Julius Nies
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Manolis Pasparakis
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
- Institute for Genetics; and
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Chanil Valasarajan
- Center for Infection and Genomics of the Lung (CIGL), Justus Liebig University, Giessen, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Center for Infection and Genomics of the Lung (CIGL), Justus Liebig University, Giessen, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Holger Winkels
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Marius Vantler
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Stephan Rosenkranz
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| |
Collapse
|
4
|
Wade-Vallance AK, Yang Z, Libang JB, Krishnapura AR, Jung JB, Matcham EW, Robinson MJ, Allen CDC. BCR ligation selectively inhibits IgE class switch recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613749. [PMID: 39345367 PMCID: PMC11429801 DOI: 10.1101/2024.09.18.613749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mechanisms that restrict class switch recombination (CSR) to IgE limit the subsequent production of IgE antibodies and therefore the development of allergic disease. Mice with impaired B cell receptor (BCR) signaling have significantly increased IgE responses, consistent with a role for BCR signaling in IgE regulation. While prior work focused on BCR signaling in IgE-expressing cells to explain these findings, it has been reported that BCR signaling can reduce CSR. Therefore, we investigated the possibility that IgE CSR might be particularly sensitive to inhibition by BCR signaling in unswitched B cells. We found that immunization of mice with high-affinity antigen resulted in reduced representation of IgE-expressing cells among germinal center B cells and plasma cells relative to a low-affinity antigen. Mechanistic experiments with cultured mouse B cells demonstrated that BCR ligands selectively inhibited IgE CSR in a dose-, affinity-, and avidity-dependent manner. Signaling via Syk was required for the inhibition of IgE CSR following BCR stimulation, whereas inhibition of the PI3K subunit p110δ increased IgE CSR independently of BCR ligation. The inhibition of IgE CSR by BCR ligands synergized with IL-21 or TGFβ1. BCR ligation also inhibited CSR to IgE in human tonsillar B cells, and this inhibition was also synergistic with IL-21. These findings establish that IgE CSR is uniquely susceptible to inhibition by BCR signaling in mouse and human B cells, with important implications for the regulation and pathogenesis of allergic disease.
Collapse
Affiliation(s)
- Adam K. Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Jeremy B. Libang
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Ananya R. Krishnapura
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - James B. Jung
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Emily W. Matcham
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Marcus J. Robinson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
| | - Christopher D. C. Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Lanahan SM, Yang L, Jones KM, Qi Z, Cabrera EC, Cominsky LY, Ramaswamy A, Barmada A, Gabernet G, Uthaya Kumar DB, Xu L, Shan P, Wymann MP, Kleinstein SH, Rao VK, Mustillo P, Romberg N, Abraham RS, Lucas CL. PI3Kγ in B cells promotes antibody responses and generation of antibody-secreting cells. Nat Immunol 2024; 25:1422-1431. [PMID: 38961274 DOI: 10.1038/s41590-024-01890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
The differentiation of naive and memory B cells into antibody-secreting cells (ASCs) is a key feature of adaptive immunity. The requirement for phosphoinositide 3-kinase-delta (PI3Kδ) to support B cell biology has been investigated intensively; however, specific functions of the related phosphoinositide 3-kinase-gamma (PI3Kγ) complex in B lineage cells have not. In the present study, we report that PI3Kγ promotes robust antibody responses induced by T cell-dependent antigens. The inborn error of immunity caused by human deficiency in PI3Kγ results in broad humoral defects, prompting our investigation of roles for this kinase in antibody responses. Using mouse immunization models, we found that PI3Kγ functions cell intrinsically within activated B cells in a kinase activity-dependent manner to transduce signals required for the transcriptional program supporting differentiation of ASCs. Furthermore, ASC fate choice coincides with upregulation of PIK3CG expression and is impaired in the context of PI3Kγ disruption in naive B cells on in vitro CD40-/cytokine-driven activation, in memory B cells on toll-like receptor activation, or in human tonsillar organoids. Taken together, our study uncovers a fundamental role for PI3Kγ in supporting humoral immunity by integrating signals instructing commitment to the ASC fate.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucas Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhihong Qi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emylette Cruz Cabrera
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Y Cominsky
- Immunology Graduate Group, Perelman School of Medicine, Philadelphia, PA, USA
| | - Anjali Ramaswamy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anis Barmada
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gisela Gabernet
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Lan Xu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peiying Shan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - V Koneti Rao
- Primary Immunodeficiency Clinic, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Peter Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Cai Y, He J, Wu Z, He W, Dai X, Xu Y, Cheng M, Yang N, Ren Y, Wang G, Wang J, Sai Y, Jia H, Dai G, Li X, Su W. Preclinical Pharmacology Characterization of Sovleplenib (HMPL-523), an Orally Available Syk Inhibitor. J Pharmacol Exp Ther 2024; 388:156-170. [PMID: 37918855 DOI: 10.1124/jpet.123.001752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is an intracellular tyrosine kinase involved in the signal transduction in immune cells mainly. Its aberrant regulation is associated with diversified allergic disorders, autoimmune diseases and B cell malignancies. Therefore, inhibition of Syk is considered a reasonable approach to treat autoimmune/inflammatory diseases and B cell malignancies. Here we described the preclinical characterization of sovleplenib, a novel, highly potent and selective, oral Syk inhibitor, in several rodent autoimmune disease models. Sovleplenib potently inhibited Syk activity in a recombinant enzymatic assay and Syk-dependent cellular functions in various immune cell lines and human whole blood in vitro. Furthermore, sovleplenib, by oral administration, demonstrated strong in vivo efficacies in murine models of immune thrombocytopenia (ITP), autoimmune hemolytic anemia (AIHA), and chronic graft-versus-host disease (cGVHD), and a rat model of collagen induced arthritis (CIA) respectively, in a dose-dependent manner. Collectively, these results clearly supported sovleplenib as a therapeutic agent in the treatment of autoimmune diseases. Sovleplenib is being globally developed for ITP (Phase III, NCT05029635, Phase Ib/II, NCT03951623), wAIHA (Phase II/III, NCT05535933) and B-cell lymphoma (Phase I, NCT02857998, NCT03779113). SIGNIFICANCE STATEMENT: Syk is a key mediator of signaling pathways downstream of a wide array of receptors important for immune functions, including the B cell receptor, immunoglobulin receptors bearing Fc receptors. Inhibition of Syk could provide a novel therapeutic approach for autoimmune diseases and hematologic malignancies. The manuscript describes the preclinical pharmacology characterization of sovleplenib, a novel Syk inhibitor, in enzymatic and cellular assays in vitro and several murine autoimmune disease models in vivo.
Collapse
Affiliation(s)
- Yu Cai
- HUTCHMED Limited, Shanghai, China
| | | | | | | | | | - Yan Xu
- HUTCHMED Limited, Shanghai, China
| | | | - Na Yang
- HUTCHMED Limited, Shanghai, China
| | | | | | | | - Yang Sai
- HUTCHMED Limited, Shanghai, China
| | - Hong Jia
- HUTCHMED Limited, Shanghai, China
| | | | - Xiong Li
- HUTCHMED Limited, Shanghai, China
| | | |
Collapse
|
8
|
Berglund LJ. Modulating the PI3K Signalling Pathway in Activated PI3K Delta Syndrome: a Clinical Perspective. J Clin Immunol 2023; 44:34. [PMID: 38148368 PMCID: PMC10751257 DOI: 10.1007/s10875-023-01626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023]
Abstract
Activated phosphoinositide-3-kinase (PI3K) δ syndrome (APDS) is an inborn error of immunity characterised by immune dysregulation. Since the discovery of genetic mutations resulting in PI3Kδ overactivation, treatment of APDS patients has begun to focus on modulation of the PI3K pathway in addition to supportive therapies. The mTOR inhibitor sirolimus has been used effectively for some clinical manifestations of this condition, however the arrival of specific PI3Kδ inhibitor leniolisib has shown promising early results and may provide a more targeted approach. This review summarizes key aspects of PI3K pathway biology and discusses potential options for nuanced modulation of the PI3K pathway in APDS from a clinical perspective, highlighting differences from PI3K inhibition in haematological malignancies.
Collapse
Affiliation(s)
- Lucinda J Berglund
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
- Department of Immunopathology, Westmead Hospital, NSW Health Pathology, Westmead, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Cutrina‐Pons A, De Sa A, Fear DJ, Gould HJ, Ramadani F. Inhibition of PI3K p110δ activity reduces IgE production in IL-4 and anti-CD40 stimulated human B cell cultures. Immunology 2023; 170:483-494. [PMID: 37530226 PMCID: PMC11495259 DOI: 10.1111/imm.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) p110δ signalling negatively regulates the production of mouse IgE. However, there are disparities between the mouse and human IgE biology, and the role of PI3K p110δ in the production of human IgE is yet to be determined. To investigate the effect of PI3K p110δ inhibition in the production of human IgE we isolated human B cells from tonsil tissue and stimulated them with IL-4 and anti-CD40 antibody to induce class switching to IgE and IgG1 in the presence or absence of IC87114, a small molecule inhibitor of PI3K p110δ. Using FACS, RT-PCR and ELISA we examined the effect of PI3K p110δ inhibition on IgE production and determined the mechanisms involved. Unlike in mice, we observed that PI3K p110δ inhibition significantly reduces the number of IgE+ switched cells and the amounts of secreted IgE in IL4 and anti-CD40 cultures. However, the number of IgG1+ cells and secreted IgG1 were largely unaffected by PI3K p110δ inhibition. The expression levels of AID, ε and γ1 germinal transcripts or other factors involved in the regulation of CSR to IgE and IgG1 were also unaffected by IC87114. However, we found that IC87114 significantly decreases the proliferation of tonsil B cells stimulated with IL-4 and anti-CD40, specifically reducing the frequency of cells that had undergone 4 divisions or more. In addition, PI3K p110δ inhibition reduced the levels of IRF4 expression in IgE+ germinal centre-like B cells leading to a block in plasma cell differentiation. In conclusion, PI3K p110δ signalling is required for the production of human IgE, which makes it a pharmacological target for the treatment of allergic disease.
Collapse
Affiliation(s)
- Anna Cutrina‐Pons
- Randall Centre for Cell & Molecular BiophysicsKing's College LondonLondonUK
| | - Aloka De Sa
- Randall Centre for Cell & Molecular BiophysicsKing's College LondonLondonUK
| | - David J. Fear
- Division of Asthma, Allergy and Lung BiologyKing's College LondonLondonUK
| | - Hannah J. Gould
- Randall Centre for Cell & Molecular BiophysicsKing's College LondonLondonUK
| | - Faruk Ramadani
- Randall Centre for Cell & Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
10
|
Davoodi-Moghaddam Z, Jafari-Raddani F, Delshad M, Pourbagheri-Sigaroodi A, Bashash D. Inhibitors of the PI3K/AKT/mTOR pathway in human malignancies; trend of current clinical trials. J Cancer Res Clin Oncol 2023; 149:15293-15310. [PMID: 37594532 DOI: 10.1007/s00432-023-05277-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates proliferation, survival and metabolism, and its dysregulation is one of the most frequent oncogenic events across human malignancies. Over the last two decades, there has been significant focus on the clinical development of PI3K pathway inhibitors. More than 40 different inhibitors of this axis have reached various stages of clinical trials, but only a few of them have been approved by the Food and Drug Administration (FDA) for cancer treatment. These clinical results, however, could be improved given the importance of PI3K signaling in cancer and its role in linking cancer growth with metabolism. In this systematic review, after a glance at PI3K/AKT/mTOR pathway and its different inhibitors, we retrieved registered clinical trials evaluating the efficacy and safety of PI3K/AKT/mTOR inhibitors on Clinicaltrials.gov. Following the extraction of the data, finally we analyzed 2250 included studies in multiple steps, beginning with an overview and moving on to the details about type of malignancies, inhibitors, and treatment strategies. We also took a closer look at more than 100 phase III-IV clinical trials to pinpoint promising therapies, hoping that presenting a comprehensive picture of current clinical trials casts a flash of light on what remains to be done in future clinical trials of PI3K/AKT/mTOR inhibitors in human malignancies.
Collapse
Affiliation(s)
- Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Xu Y, Zheng C, Ashaq MS, Zhou Q, Li Y, Lu C, Zhao B. Regulatory role of E3 ubiquitin ligases in normal B lymphopoiesis and B-cell malignancies. Life Sci 2023; 331:122043. [PMID: 37633415 DOI: 10.1016/j.lfs.2023.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
E3 ubiquitin ligases play an essential role in protein ubiquitination, which is involved in the regulation of protein degradation, protein-protein interactions and signal transduction. Increasing evidences have shed light on the emerging roles of E3 ubiquitin ligases in B-cell development and related malignances. This comprehensive review summarizes the current understanding of E3 ubiquitin ligases in B-cell development and their contribution to B-cell malignances, which could help explore the molecular mechanism of normal B-cell development and provide potential therapeutic targets of the related diseases.
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Muhammad Sameer Ashaq
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Sun Y, Wen J, Xu T, Meng L. Reduction of peritoneal cavity B1a cells in adult Slc7a5 knockdown mice via dysregulating the mTOR pathway. Int Immunopharmacol 2023; 117:109939. [PMID: 37012862 DOI: 10.1016/j.intimp.2023.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Slc7a5 is an important amino acid transporter that is highly expressed in metabolically active and rapidly proliferating cells. To explore the effect of Slc7a5 on adult B cell development, we conditionally deleted Slc7a5 in murine B cells and observed a significant reduction of B1a cells. In contrast to PI3K-Akt pathway activation, activity of the mTOR pathway was decreased. This may result from intracellular amino acid starvation in Slc7a5 knockdown (Slc7a5 KD) bone marrow B cells, thereby dampening B1a development. RNA-seq analysis demonstrated increased translation and reduced proliferation in Slc7a5 KD bone marrow B cells. Overall, the results of our study highlight the importance of Slc7a5 in peritoneal B1a cell development.
Collapse
Affiliation(s)
- Yumeng Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Wen
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Lu Meng
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Fiascarelli A, Merlino G, Capano S, Talucci S, Bisignano D, Bressan A, Bellarosa D, Carrisi C, Paoli A, Bigioni M, Tunici P, Irrissuto C, Salerno M, Arribas J, de Stanchina E, Scaltriti M, Binaschi M. Antitumor activity of the PI3K δ-sparing inhibitor MEN1611 in PIK3CA mutated, trastuzumab-resistant HER2 + breast cancer. Breast Cancer Res Treat 2023; 199:13-23. [PMID: 36913051 PMCID: PMC10147754 DOI: 10.1007/s10549-023-06895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE Dysregulation of the PI3K pathway is one of the most common events in breast cancer. Here we investigate the activity of the PI3K inhibitor MEN1611 at both molecular and phenotypic levels by dissecting and comparing its profile and efficacy in HER2 + breast cancer models with other PI3K inhibitors. METHODS Models with different genetic backgrounds were used to investigate the pharmacological profile of MEN1611 against other PI3K inhibitors. In vitro studies evaluated cell viability, PI3K signaling, and cell death upon treatment with MEN1611. In vivo efficacy of the compound was investigated in cell line- and patient-derived xenografts models. RESULTS Consistent with its biochemical selectivity, MEN1611 demonstrated lower cytotoxic activity in a p110δ-driven cellular model when compared to taselisib, and higher cytotoxic activity in the p110β-driven cellular model when compared to alpelisib. Moreover, MEN1611 selectively decreased the p110α protein levels in PIK3CA mutated breast cancer cells in a concentration- and proteasome-dependent manner. In vivo, MEN1611 monotherapy showed significant and durable antitumor activity in several trastuzumab-resistant PIK3CA-mutant HER2 + PDX models. The combination of trastuzumab and MEN1611 significantly improved the efficacy compared to single agent treatment. CONCLUSIONS The profile of MEN1611 and its antitumoral activity suggest an improved profile as compared to pan-inhibitors, which are limited by a less than ideal safety profile, and isoform selective molecules, which may potentially promote development of resistance mechanisms. The compelling antitumor activity in combination with trastuzumab in HER2 + trastuzumab-resistant, PIK3CA mutated breast cancer models is at the basis of the ongoing B-Precise clinical trial (NCT03767335).
Collapse
Affiliation(s)
- Alessio Fiascarelli
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy.
| | - Giuseppe Merlino
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Stefania Capano
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Simone Talucci
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Diego Bisignano
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Alessandro Bressan
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Daniela Bellarosa
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Corrado Carrisi
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Alessandro Paoli
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Mario Bigioni
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Patrizia Tunici
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Clelia Irrissuto
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Massimiliano Salerno
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Joaquin Arribas
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Preclinical and Translational Research Program Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, 28029, Monforte de Lemos, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193, Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maurizio Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica Binaschi
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| |
Collapse
|
14
|
Darwish IA, Alzoman NZ, Almomen A, Almehizia AA, Attwa MW, Darwish HW, Sayed AY. Development and validation of an UPLC-ESI-MS/MS method for quantification of duvelisib in plasma: application to pharmacokinetic study in rats. RSC Adv 2023; 13:7929-7938. [PMID: 36909770 PMCID: PMC9999367 DOI: 10.1039/d3ra00310h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Duvelisib (DUV) is a new oral phosphoinositide-3-kinase (PI3K)-δ and PI3K-γ inhibitor. It is used for the treatment of relapsed or refractory chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). This study describes the development and validation of a new highly sensitive and efficient UPLC-ESI-MS/MS method for quantitation of DUV in plasma samples and its application to the pharmacokinetic study of DUV in rats. The method employed a very simple step for plasma sample pretreatment via precipitation of protein using methanol. DUV and ceritinib (CRB) as an internal standard (IS) were separated on a porous Hypersil BDS-C18 column (125 mm × 2 mm, 3 μm) using a mobile phase consisting of ammonium formate (10 mM, pH 4.2):acetonitrile (42 : 58, v/v), pumped isocratically at a flow rate of 0.3 mL min-1. DUV and CRB were eluted at 0.58 and 1.10 min, respectively. The mass spectrometric analysis was performed using an ESI in positive mode with multiple reaction monitoring (MRM). The technique was validated in accordance with the standards for validating bioanalytical methods established by the International Conference on Harmonization (ICH). The method's linear range was 5-500 ng mL-1, and its correlation coefficient was satisfactory as it is almost unity (0.9999). The limit of quantitation (LOQ) was 5 ng mL-1, while the limit of detection (LOD) was 1.7 ng mL-1. The recovery of the spiking DUV was between 94.95 and 102.21%, and the relative standard deviation (RSD) was less than 2.70%, confirming the method's accuracy and precision. The specificity/carryover of the method was proved. The robustness and ruggedness of the method was proved as the recovery values were 97.6-101.96% (±01.17-2.20%) and 98.74-102.00 (±1.18-4.02%) for robustness and ruggedness, respectively. The stability of DUV under the different analytical conditions were documented as the recovery values were in the range of 95.89-103.28% and the RSD values did not exceed 7.36%. The method was efficiently used to analyze DUV in human plasma samples that had been spiked with DUV and to conduct pharmacokinetic investigations of DUV in rats after giving them a single oral dosage of 25 mg kg-1 of the drug. The methodology is distinguished by excellent sensitivity, accuracy, and ease of sample pretreatment. Furthermore, it is efficient and has a short run time, which makes it high throughput and accordingly enables faster processing of many samples in clinical laboratories.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Ahmed Y Sayed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| |
Collapse
|
15
|
Wang Z, Zhou H, Xu J, Wang J, Niu T. Safety and efficacy of dual PI3K-δ, γ inhibitor, duvelisib in patients with relapsed or refractory lymphoid neoplasms: A systematic review and meta-analysis of prospective clinical trials. Front Immunol 2023; 13:1070660. [PMID: 36685572 PMCID: PMC9845779 DOI: 10.3389/fimmu.2022.1070660] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Background Duvelisib is the first FDA-approved oral dual inhibitor of phosphatidylinositol-3-kinase PI3K-delta (PI3K-δ) and PI3K-gamma (PI3K-γ). Although many clinical studies support the efficacy of duvelisib, the safety of duvelisib remains with great attention. This systematic review and meta-analysis aimed to evaluate the safety and efficacy of duvelisib in treating different relapsed or refractory (RR) lymphoid neoplasm types. Methods We searched prospective clinical trials from PUBMED, EMBASE, Cochrane Library, and ClinicalTrials.gov. For efficacy analysis, Overall response rate (ORR), complete response rate (CR), partial response rate (PR), rate of stable disease (SDR), rate of progressive disease (PDR), median progression-free survival (mPFS), 12-/24-month PFS, and 12-month overall survival (OS) were assessed. For safety analysis, the incidences of any grade and grade ≥3 adverse events (AEs), serious AEs, and treatment-related discontinuation and death were evaluated. Subgroup analysis based on the disease type was performed. Results We included 11 studies and 683 patients, including 305 chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), 187 B-cell indolent non-Hodgkin lymphoma (iNHL), 39 B-cell aggressive non-Hodgkin lymphoma (aNHL), and 152 T-cell non-Hodgkin lymphoma (T-NHL) patients. The pooled ORR in CLL/SLL, iNHL, aNHL and T-NHL was 70%, 70%, 28% and 47%, respectively. Additionally, the pooled ORR in CLL/SLL patients with or without TP53 mutation/17p-deletion (62% vs. 74%, p=0.45) and in follicular lymphoma (FL) or other iNHL (69% vs. 57%, p=0.38) had no significant differences. Mantle cell lymphoma (MCL) patients had higher pooled ORR than other aNHL (68% vs. 17%, p=0.04). Angioimmunoblastic TCL (AITL) patients had higher pooled ORR than other PTCL patients (67% vs. 42%, p=0.01). The pooled incidence of any grade, grade ≥3, serious AEs, treatment-related discontinuation and death was 99%, 79%, 63%, 33% and 3%, respectively. The most frequent any-grade AEs were diarrhea (47%), ALT/AST increase (39%), and neutropenia (38%). The most frequent grade ≥3 AEs were neutropenia (25%), ALT/AST increased (16%), diarrhea (12%), and anemia (12%). Conclusion Generally, duvelisib could offer favorable efficacy in patients with RR CLL/SLL, iNHL, MCL, and AITL. Risk and severity in duvelisib treatment may be mitigated through proper identification and management.
Collapse
|
16
|
Andreani V, Ramamoorthy S, Fässler R, Grosschedl R. Integrin β1 regulates marginal zone B cell differentiation and PI3K signaling. J Exp Med 2022; 220:213672. [PMID: 36350325 PMCID: PMC9814157 DOI: 10.1084/jem.20220342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Marginal zone (MZ) B cells represent innate-like B cells that mediate a fast immune response. The adhesion of MZ B cells to the marginal sinus of the spleen is governed by integrins. Here, we address the question of whether β1-integrin has additional functions by analyzing Itgb1fl/flCD21Cre mice in which the β1-integrin gene is deleted in mature B cells. We find that integrin β1-deficient mice have a defect in the differentiation of MZ B cells and plasma cells. We show that integrin β1-deficient transitional B cells, representing the precursors of MZ B cells, have enhanced B cell receptor (BCR) signaling, altered PI3K and Ras/ERK pathways, and an enhanced interaction of integrin-linked kinase (ILK) with the adaptor protein Grb2. Moreover, the MZ B cell defect of integrin β1-deficient mice could, at least in part, be restored by a pharmacological inhibition of the PI3K pathway. Thus, β1-integrin has an unexpected function in the differentiation and function of MZ B cells.
Collapse
Affiliation(s)
- Virginia Andreani
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany,Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany,Virginia Andreani:
| | - Senthilkumar Ramamoorthy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany,Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Freiburg, Germany,Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany,Correspondence to Rudolf Grosschedl:
| |
Collapse
|
17
|
Dual PI3Kδγ inhibition demonstrates potent anticancer effects in diffuse large B-cell lymphoma models: Discovery and preclinical characterization of LL-00084282. Biochem Biophys Res Commun 2022; 637:267-275. [DOI: 10.1016/j.bbrc.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
18
|
Class I PI3K regulatory subunits control differentiation of dendritic cell subsets and regulate Flt3L mediated signal transduction. Sci Rep 2022; 12:12311. [PMID: 35853935 PMCID: PMC9296662 DOI: 10.1038/s41598-022-16548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) play pivotal roles in initiating and shaping both innate and adaptive immune responses. The spatiotemporal expression of transcription factor networks and activation of specific signal transduction pathways determine the specification, distribution and differentiation of DC subsets. Even though pioneering studies have established indispensable roles for specific catalytic subunits (p110δ and p110γ) in immune cells, functions of the regulatory subunits, particularly of Class I PI3K, within the hematopoietic system remain incompletely understood. In the study presented here, we deleted the key regulatory subunits—p85α and p85β of the Class IA PI3K in hematopoietic cells and studied its impact on DC differentiation. Our studies identify that a deficiency of p85 causes increased differentiation of conventional DC (cDC) 2 and plasmacytoid DC (pDC) subsets in the spleen. On the other hand, DC numbers in the bone marrow (BM), thymus and lymph nodes were decreased in p85 mutant mice. Analysis of DC-specific progenitors and precursors indicated increased numbers in the BM and spleen of p85 deficient mice. In-vitro differentiation studies demonstrated augmented DC-differentiation capacities of p85 deficient BM cells in the presence of GM-CSF and Flt3L. BM chimera studies established that p85 deficiency affects DC development through cell intrinsic mechanisms. Molecular studies revealed increased proliferation of DCs and common DC progenitors (CDPs) in the absence of p85 and altered signal transduction pathways in p85 mutant DC subsets in response to Flt3L. In essence, data presented here, for the first time, unequivocally establish that the P85α subunit of class IA PI3Ks has an indispensable role in the development and maintenance of DCs.
Collapse
|
19
|
Wang W, Min Q, Lai N, Csomos K, Wang Y, Liu L, Meng X, Sun J, Hou J, Ying W, Zhou Q, Sun B, Hui X, Ujhazi B, Gordon S, Buchbinder D, Schuetz C, Butte M, Walter JE, Wang X, Wang JY. Cellular Mechanisms Underlying B Cell Abnormalities in Patients With Gain-of-Function Mutations in the PIK3CD Gene. Front Immunol 2022; 13:890073. [PMID: 35799777 PMCID: PMC9253290 DOI: 10.3389/fimmu.2022.890073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Activated phosphoinositide 3 kinase (PI3K) -delta syndrome (APDS) is an inborn error of immunity with variable clinical phenotype of immunodeficiency and immune dysregulation and caused by gain-of-function mutations in PIK3CD. The hallmark of immune phenotype is increased proportions of transitional B cells and plasmablasts (PB), progressive B cell loss, and elevated levels of serum IgM. OBJECTIVE To explore unique B cell subsets and the pathomechanisms driving B cell dysregulation beyond the transitional B cell stage in APDS. METHODS Clinical and immunological data was collected from 24 patients with APDS. In five cases, we performed an in-depth analysis of B cell phenotypes and cultured purified naïve B cells to evaluate their survival, activation, Ig gene class switch recombination (CSR), PB differentiation and antibody secretion. We also analyzed PB differentiation capacity of sorted CD27-IgD- double-negative B (DNB) cells. RESULTS The patients had increased B cell sizes and higher proportions of IgM+ DNB cells than healthy controls (HC). Their naïve B cells exhibited increased death, impaired CSR but relatively normal PB differentiation. Upon stimulation, patient's DNB cells secreted a similar level of IgG but a higher level of IgM than DNB cells from HC. Targeted therapy of PI3K inhibition partially restored B cell phenotypes. CONCLUSIONS The present study suggests additional mechanistic insight into B cell pathology of APDS: (1) decreased peripheral B cell numbers may be due to the increased death of naïve B cells; (2) larger B cell sizes and expanded DNB population suggest enhanced activation and differentiation of naïve B cells into DNB cells; (3) the impaired CSR yet normal PB differentiation can predominantly generate IgM-secreting cells, resulting in elevated IgM levels.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Ying Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Luyao Liu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bijun Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - David Buchbinder
- Division of Hematology, Children’s Hospital of Orange Country (CHOC), Irvine, CA, United States
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manish Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| |
Collapse
|
20
|
Phosphoinositide 3-Kinases as Potential Targets for Thrombosis Prevention. Int J Mol Sci 2022; 23:ijms23094840. [PMID: 35563228 PMCID: PMC9105564 DOI: 10.3390/ijms23094840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
As integral parts of pathological arterial thrombi, platelets are the targets of pharmacological regimens designed to treat and prevent thrombosis. A detailed understanding of platelet biology and function is thus key to design treatments that prevent thrombotic cardiovascular disease without significant disruption of the haemostatic balance. Phosphoinositide 3-kinases (PI3Ks) are a group of lipid kinases critical to various aspects of platelet biology. There are eight PI3K isoforms, grouped into three classes. Our understanding of PI3K biology has recently progressed with the targeting of specific isoforms emerging as an attractive therapeutic strategy in various human diseases, including for thrombosis. This review will focus on the role of PI3K subtypes in platelet function and subsequent thrombus formation. Understanding the mechanisms by which platelet function is regulated by the various PI3Ks edges us closer toward targeting specific PI3K isoforms for anti-thrombotic therapy.
Collapse
|
21
|
Bier J, Deenick EK. The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunol Rev 2022; 307:134-144. [DOI: 10.1111/imr.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Julia Bier
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- St Vincent’s Clinical School Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
22
|
Chen ZQ, Cao ZR, Wang Y, Zhang X, Xu L, Wang YX, Chen Y, Yang CH, Ding J, Meng LH. Repressing MYC by targeting BET synergizes with selective inhibition of PI3Kα against B cell lymphoma. Cancer Lett 2022; 524:206-218. [PMID: 34688842 DOI: 10.1016/j.canlet.2021.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) δ-specific inhibitors have been approved for the therapy of certain types of B cell lymphoma (BCL). However, their clinical use is limited by the substantial toxicity and lack of efficacy in other types of BCL. Emerging evidence indicates that PI3Kα plays important roles in the progression of B cell lymphoma. In this study, we revealed that PI3Kα was important for the PI3K signaling and proliferation in BCL cells. A novel clinical PI3Kα-selective inhibitor CYH33 possessed superior activity against BCL compared to the marketed PI3Kα-selective inhibitor Alpelisib and PI3Kδ-selective inhibitor Idelalisib. Though CYH33 was able to inhibit PI3K/AKT signaling in tested BCL cells, differential activity against proliferation was observed. Transcriptome profiling revealed that CYH33 down-regulated "MYC-targets" gene set in sensitive but not resistant cells. CYH33 inhibited c-MYC transcription in sensitive cells, which was attributed to a decrease in acetylated H3 bound to the promoter and super-enhancer region of c-MYC. Accordingly, CYH33 treatment resulted in phosphorylation and proteasomal degradation of the histone acetyltransferase p300. An unbiased screening with drugs approved or in clinical trials for the therapy of BCL identified that the clinical BET (Bromodomain and Extra Terminal domain) inhibitor OTX015 significantly potentiated the activity of CYH33 against BCL in vitro and in vivo, which was associated with enhanced inhibition on c-MYC expression and induction of cell cycle arrest and apoptosis. Our findings provide the rationale of combined CYH33 with BET inhibitors for the therapy of B cell lymphoma.
Collapse
Affiliation(s)
- Zi-Qi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhe-Rui Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Zhang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lan Xu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Xiang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hao Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Ling-Hua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
23
|
PI3K Isoforms in Vascular Biology, A Focus on the Vascular System-Immune Response Connection. Curr Top Microbiol Immunol 2022; 436:289-309. [DOI: 10.1007/978-3-031-06566-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Deenick EK, Bier J, Lau A. PI3K Isoforms in B Cells. Curr Top Microbiol Immunol 2022; 436:235-254. [PMID: 36243847 DOI: 10.1007/978-3-031-06566-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phosphatidylinositol-3-kinases (PI3K) control many aspects of cellular activation and differentiation and play an important role in B cells biology. Three different classes of PI3K have been described, all of which are expressed in B cells. However, it is the class IA PI3Ks, and the p110δ catalytic subunit in particular, which seem to play the most critical role in B cells. Here we discuss the important role that class IA PI3K plays in B cell development, activation and differentiation, as well as examine what is known about the other classes of PI3Ks in B cells.
Collapse
Affiliation(s)
- Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Julia Bier
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Anthony Lau
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
25
|
Schrottmaier WC, Mussbacher M, Salzmann M, Kral-Pointner JB, Assinger A. PI3K Isoform Signalling in Platelets. Curr Top Microbiol Immunol 2022; 436:255-285. [PMID: 36243848 DOI: 10.1007/978-3-031-06566-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Platelets are unique anucleated blood cells that constantly patrol the vasculature to seal and prevent injuries in a process termed haemostasis. Thereby they rapidly adhere to the subendothelial matrix and recruit further platelets, resulting in platelet aggregates. Apart from their central role in haemostasis, they also kept some of their features inherited by their evolutionary ancestor-the haemocyte, which was also involved in immune defences. Together with leukocytes, platelets fight pathogenic invaders and guide many immune processes. In addition, they rely on several signalling pathways which are also relevant to immune cells. Among these, one of the central signalling hubs is the PI3K pathway. Signalling processes in platelets are unique as they lack a nucleus and therefore transcriptional regulation is absent. As a result, PI3K subclasses fulfil distinct roles in platelets compared to other cells. In contrast to leukocytes, the central PI3K subclass in platelet signalling is PI3K class Iβ, which underlines the uniqueness of this cell type and opens new ways for potential platelet-specific pharmacologic inhibition. An overview of platelet function and signalling with emphasis on PI3K subclasses and their respective inhibitors is given in this chapter.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Serra I, Manusama OR, Kaiser FMP, Floriano II, Wahl L, van der Zalm C, IJspeert H, van Hagen PM, van Beveren NJM, Arend SM, Okkenhaug K, Pel JJM, Dalm VASH, Badura A. Activated PI3Kδ syndrome, an immunodeficiency disorder, leads to sensorimotor deficits recapitulated in a murine model. Brain Behav Immun Health 2021; 18:100377. [PMID: 34786564 PMCID: PMC8579111 DOI: 10.1016/j.bbih.2021.100377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
The phosphoinositide-3-kinase (PI3K) family plays a major role in cell signaling and is predominant in leukocytes. Gain-of-function (GOF) mutations in the PIK3CD gene lead to the development of activated PI3Kδ syndrome (APDS), a rare primary immunodeficiency disorder. A subset of APDS patients also displays neurodevelopmental delay symptoms, suggesting a potential role of PIK3CD in cognitive and behavioural function. However, the extent and nature of the neurodevelopmental deficits has not been previously quantified. Here, we assessed the cognitive functions of two APDS patients, and investigated the causal role of the PIK3CD GOF mutation in neurological deficits using a murine model of this disease. We used p110δE1020K knock-in mice, harbouring the most common APDS mutation in patients. We found that APDS patients present with visuomotor deficits, exacerbated by autism spectrum disorder comorbidity, whereas p110δE1020K mice exhibited impairments in motor behaviour, learning and repetitive behaviour patterning. Our data indicate that PIK3CD GOF mutations increase the risk for neurodevelopmental deficits, supporting previous findings on the interplay between the nervous and the immune system. Further, our results validate the knock-in mouse model, and offer an objective assessment tool for patients that could be incorporated in diagnosis and in the evaluation of treatments.
Collapse
Affiliation(s)
- Ines Serra
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Fabian M P Kaiser
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Hanna IJspeert
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Sandra M Arend
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
27
|
Borbet TC, Hines MJ, Koralov SB. MicroRNA regulation of B cell receptor signaling. Immunol Rev 2021; 304:111-125. [PMID: 34523719 PMCID: PMC8616848 DOI: 10.1111/imr.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
B lymphocytes play a central role in host immune defense. B cell receptor (BCR) signaling regulates survival, proliferation, and differentiation of B lymphocytes. Signaling through the BCR signalosome is a multi-component cascade that is tightly regulated and is important in the coordination of B cell differentiation and function. At different stages of development, B cells that have BCRs recognizing self are eliminated to prevent autoimmunity. microRNAs (miRNAs) are small single-stranded non-coding RNAs that contribute to post-transcriptional regulation of gene expression and have been shown to orchestrate cell fate decisions through the regulation of lineage-specific transcriptional profiles. Studies have identified miRNAs to be crucial for B cell development in the bone marrow and their subsequent population of the peripheral immune system. In this review, we focus on the role of miRNAs in the regulation of BCR signaling as it pertains to B lymphocyte development and function. In particular, we discuss the most recent studies describing the role of miRNAs in the regulation of both early B cell development and peripheral B cell responses and examine the ways by which miRNAs regulate signal downstream of B cell antigen receptor to prevent aberrant activation and autoimmunity.
Collapse
Affiliation(s)
- Timothy C. Borbet
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Marcus J. Hines
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Sergei B. Koralov
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| |
Collapse
|
28
|
Vanhaesebroeck B, Perry MWD, Brown JR, André F, Okkenhaug K. PI3K inhibitors are finally coming of age. Nat Rev Drug Discov 2021; 20:741-769. [PMID: 34127844 PMCID: PMC9297732 DOI: 10.1038/s41573-021-00209-1] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
Overactive phosphoinositide 3-kinase (PI3K) in cancer and immune dysregulation has spurred extensive efforts to develop therapeutic PI3K inhibitors. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval - the PI3Kα isoform-selective inhibitor alpelisib for the treatment of breast cancer and inhibitors mainly aimed at the leukocyte-enriched PI3Kδ in B cell malignancies. In addition to targeting cancer cell-intrinsic PI3K activity, emerging evidence highlights the potential of PI3K inhibitors in cancer immunotherapy. This Review summarizes key discoveries that aid the clinical translation of PI3Kα and PI3Kδ inhibitors, highlighting lessons learnt and future opportunities.
Collapse
Affiliation(s)
| | - Matthew W D Perry
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer R Brown
- CLL Center, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fabrice André
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Paris, France
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Zillikens H, Kasprick A, Osterloh C, Gross N, Radziewitz M, Hass C, Hartmann V, Behnen-Härer M, Ernst N, Boch K, Vidarsson G, Visser R, Laskay T, Yu X, Petersen F, Ludwig RJ, Bieber K. Topical Application of the PI3Kβ-Selective Small Molecule Inhibitor TGX-221 Is an Effective Treatment Option for Experimental Epidermolysis Bullosa Acquisita. Front Med (Lausanne) 2021; 8:713312. [PMID: 34557502 PMCID: PMC8452940 DOI: 10.3389/fmed.2021.713312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Class I phosphoinositide 3-kinases (PI3K) have been implemented in pathogenesis of experimental epidermolysis bullosa acquisita (EBA), an autoimmune skin disease caused by type VII collagen (COL7) autoantibodies. Mechanistically, inhibition of specific PI3K isoforms, namely PI3Kβ or PI3Kδ, impaired immune complex (IC)-induced neutrophil activation, a key prerequisite for EBA pathogenesis. Data unrelated to EBA showed that neutrophil activation is also modulated by PI3Kα and γ, but their impact on the EBA has, so far, remained elusive. To address this and to identify potential therapeutic targets, we evaluated the impact of a panel of PI3K isoform-selective inhibitors (PI3Ki) on neutrophil function in vitro, and in pre-clinical EBA mouse models. We document that distinctive, and EBA pathogenesis-related activation-induced neutrophil in vitro functions depend on distinctive PI3K isoforms. When mice were treated with the different PI3Ki, selective blockade of PI3Kα (alpelisib), PI3Kγ (AS-604850), or PI3Kβ (TGX-221) impaired clinical disease manifestation. When applied topically, only TGX-221 impaired induction of experimental EBA. Ultimately, multiplex kinase activity profiling in the presence of disease-modifying PI3Ki identified unique signatures of different PI3K isoform-selective inhibitors on the kinome of IC-activated human neutrophils. Collectively, we here identify topical PI3Kβ inhibition as a potential therapeutic target for the treatment of EBA.
Collapse
Affiliation(s)
- Hannah Zillikens
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Colin Osterloh
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Radziewitz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Cindy Hass
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Veronika Hartmann
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Martina Behnen-Härer
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Nancy Ernst
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Tamás Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood 2021; 138:1110-1119. [PMID: 34320160 DOI: 10.1182/blood.2020006784] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category comprising distinct molecular subtypes characterized by diverse genetic aberrations that dictate patient outcome. As roughly one-third of DLBCL patients are not cured by current standard chemo-immunotherapy a better understanding of the molecular pathogenesis is warranted to improve outcome. B-cell receptor (BCR) signaling is crucial for the development, growth and survival of both normal and a substantial fraction of malignant B-cells. Various analyses revealed genetic alterations of central components of the BCR or its downstream signaling effectors in some subtypes of DLBCL. Thus, BCR signaling and the downstream NF-κB and PI3K cascades have been proposed as potential targets for the treatment of DLBCL patients. As one of the main effectors of BCR activation, PI3K mediated signals play a crucial role in the pathogenesis and survival of DLBCL. In this review, we summarize our current understanding of BCR signaling with a special focus on the PI3K pathway in DLBCL and how to utilize this knowledge therapeutically.
Collapse
|
31
|
Wishnie AJ, Chwat-Edelstein T, Attaway M, Vuong BQ. BCR Affinity Influences T-B Interactions and B Cell Development in Secondary Lymphoid Organs. Front Immunol 2021; 12:703918. [PMID: 34381455 PMCID: PMC8350505 DOI: 10.3389/fimmu.2021.703918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre-Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B cells in the EF and GC response. Overall, these studies demonstrate that B cells expressing high affinity BCRs preferentially differentiate into antibody secreting cells (ASCs) while those expressing low affinity BCRs undergo further affinity maturation or differentiate into memory B cells (MBCs).
Collapse
Affiliation(s)
- Alec J Wishnie
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| | - Tzippora Chwat-Edelstein
- Department of Biology, The City College of New York, New York, NY, United States.,Macaulay Honors College, New York, NY, United States
| | - Mary Attaway
- Department of Biology, The City College of New York, New York, NY, United States
| | - Bao Q Vuong
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| |
Collapse
|
32
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
33
|
Nguyen T, Deenick EK, Tangye SG. Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Rev Clin Immunol 2021; 17:905-914. [PMID: 34157234 DOI: 10.1080/1744666x.2021.1945443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that plays a fundamental role in cell survival, metabolism, proliferation and differentiation. Thus, balanced PI3K signalling is critical for multiple aspects of human health. The discovery that germline variants in genes in the PI3K pathway caused inborn errors of immunity highlighted the non-redundant role of these signalling proteins in the human immune system. The subsequent identification and characterisation of >300 individuals with a novel immune dysregulatory disorder, termed activated PI3K-delta syndrome (APDS), has reinforced the status of PI3K as a key pathway regulating immune function. Studies of APDS have demonstrated that dysregulated PI3K function is disruptive for immune cell development, activation, differentiation, effector function and self-tolerance, which are all important in supporting effective, long-term immune responses. AREAS COVERED In this review, we recount recent findings regarding humans with germline variants in PI3K genes and discuss the underlying cellular and molecular pathologies, with a focus on implications for therapy in APDS patients. EXPERT OPINION Modulating PI3K immune cell signalling by offers opportunities for therapeutic interventions in settings of immunodeficiency, autoimmunity and malignancy, but also highlights potential adverse events that may result from overt pharmacological or intrinsic inhibition of PI3K function.
Collapse
Affiliation(s)
- Tina Nguyen
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Elissa K Deenick
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Stuart G Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| |
Collapse
|
34
|
Sayed AY, Khalil NY, Almomen A, Alzoman NZ, Almehizia AA, Darwish IA. A Highly Sensitive Nonextraction-Assisted HPLC Method with Fluorescence Detection for Quantification of Duvelisib in Plasma Samples and its Application to Pharmacokinetic Study in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2667-2677. [PMID: 34188446 PMCID: PMC8232391 DOI: 10.2147/dddt.s318714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023]
Abstract
Background Duvelisib (DUV) is a new oral phosphoinositide-3-kinase (PI3K)-δ and PI3K-γ inhibitor. It has been recently granted an accelerated approval for treatment of adult patients with relapsed or refractory chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). It is also effective in therapy of T-cell lymphoma, solid tumors, and non-Hodgkin’s lymphoma. In literature, there is no method valid for quantitation of DUV in human plasma for its therapeutic monitoring and pharmacokinetic studies. Purpose The purpose of this study is the establishment of a highly sensitive HPLC method with fluorescence detection for quantitation of DUV in plasma for its therapeutic monitoring and pharmacokinetic studies of DUV. Methods The resolution of DUV and the internal standard (IS) olaparib (OLA) was achieved on Nucleosil CN column, with a mobile phase composed of acetonitrile:water (25:75, v/v) at a flow rate of 1.7 mL min–1. The fluorescence of both DUV and OLA was detected at 410 nm after excitation at 280 nm. The method was validated according to the guidelines of bioanalytical method validation. Results The method was linear in the range of 5–100 ng mL–1, and its limit of detection (LOD) and limit of quantitation (LOQ) were 2.12 ng mL–1 and 7 ng mL–1, respectively. The precisions of the method were ≤ 8.26%, and its accuracies were ≥ 95.32%. All the other validation parameters were satisfactory. The proposed method was successfully employed to the investigation of the pharmacokinetic profile of DUV in rats following a 25 mg/kg single dose of oral administration. Conclusion The method is characterized with high sensitivity, accuracy, simple sample pretreatment, rapidity, eco-friendly as it consumes low volumes of organic solvent in the mobile phase and has high analysis throughput as its run time was short (~ 10 min).
Collapse
Affiliation(s)
- Ahmed Y Sayed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasr Y Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Smith SD, Gopal AK. Umbralisib: Walking the Tightrope of PI3K Inhibition in Indolent NHL. J Clin Oncol 2021; 39:1671-1673. [PMID: 33861621 DOI: 10.1200/jco.21.00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stephen D Smith
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Seattle Cancer Care Alliance, Seattle, WA
| | - Ajay K Gopal
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Seattle Cancer Care Alliance, Seattle, WA
| |
Collapse
|
36
|
Adefemi F, Fruman DA, Marshall AJ. A Case for Phosphoinositide 3-Kinase-Targeted Therapy for Infectious Disease. THE JOURNAL OF IMMUNOLOGY 2021; 205:3237-3245. [PMID: 33288538 DOI: 10.4049/jimmunol.2000599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
PI3Ks activate critical signaling cascades and have multifaceted regulatory functions in the immune system. Loss-of-function and gain-of-function mutations in the PI3Kδ isoform have revealed that this enzyme can substantially impact immune responses to infectious agents and their products. Moreover, reports garnered from decades of infectious disease studies indicate that pharmacologic inhibition of the PI3K pathway could potentially be effective in limiting the growth of certain microbes via modulation of the immune system. In this review, we briefly highlight the development and applications of PI3K inhibitors and summarize data supporting the concept that PI3Kδ inhibitors initially developed for oncology have immune regulatory potential that could be exploited to improve the control of some infectious diseases. This repurposing of existing kinase inhibitors could lay the foundation for alternative infectious disease therapy using available therapeutic agents.
Collapse
Affiliation(s)
- Folayemi Adefemi
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, R3E-0T5 Winnipeg, Manitoba, Canada
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697; and.,Institute for Immunology, University of California, Irvine, CA 92697
| | - Aaron J Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, R3E-0T5 Winnipeg, Manitoba, Canada;
| |
Collapse
|
37
|
Guarente V, Sportoletti P. Lessons, Challenges and Future Therapeutic Opportunities for PI3K Inhibition in CLL. Cancers (Basel) 2021; 13:cancers13061280. [PMID: 33805745 PMCID: PMC7999552 DOI: 10.3390/cancers13061280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The phosphoinositide 3-kinase (PI3K) is a family of kinases that play a key role in the biology of chronic lymphocytic leukemia (CLL). Inhibitors of PI3K demonstrated efficacy in the treatment of CLL, associated with significant adverse events that limited the clinical use of this drugs. In this review, we underlined the relevance of PI3K inhibitors in CLL, we collected recent data about the use of these molecules in clinical practice and in clinical trial discussing strategies for the management of adverse events, which could help to improve the use of these therapies in the treatment of CLL. Abstract Chronic lymphocytic leukemia (CLL) shows constitutive phosphatidylinositol 3-kinase (PI3K) activation resulting from aberrant regulation of the B-cell receptor (BCR) signaling. PI3K inhibitors have been evaluated in CLL therapy, bringing a new treatment opportunity for patients with this disease. Despite the proven therapeutic efficacy, the use of approved PI3K inhibitors is limited by severe immune-mediated toxicities and given the availability of other more tolerable agents. This article reviews the relevance of PI3K signaling and pharmacologic inhibition in CLL. Data on efficacy and toxicity of PI3K inhibitors are also presented, as well as strategies for overcoming barriers for their clinical use in CLL treatment.
Collapse
|
38
|
Aydin E, Faehling S, Saleh M, Llaó Cid L, Seiffert M, Roessner PM. Phosphoinositide 3-Kinase Signaling in the Tumor Microenvironment: What Do We Need to Consider When Treating Chronic Lymphocytic Leukemia With PI3K Inhibitors? Front Immunol 2021; 11:595818. [PMID: 33552053 PMCID: PMC7857022 DOI: 10.3389/fimmu.2020.595818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.
Collapse
Affiliation(s)
- Ebru Aydin
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Faehling
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Mariam Saleh
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Molecular Medicine, Ulm University, Ulm, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
40
|
Hines MJ, Coffre M, Mudianto T, Panduro M, Wigton EJ, Tegla C, Osorio-Vasquez V, Kageyama R, Benhamou D, Perez O, Bajwa S, McManus MT, Ansel KM, Melamed D, Koralov SB. miR-29 Sustains B Cell Survival and Controls Terminal Differentiation via Regulation of PI3K Signaling. Cell Rep 2020; 33:108436. [PMID: 33264610 DOI: 10.1016/j.celrep.2020.108436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling cascade downstream of the B cell receptor (BCR) signalosome is essential for B cell maturation. Proper signaling strength is maintained through the PI3K negative regulator phosphatase and tensin homolog (PTEN). Although a role for microRNA (miRNA)-dependent control of the PTEN-PI3K axis has been described, the contribution of individual miRNAs to the regulation of this crucial signaling modality in mature B lymphocytes remains to be elucidated. Our analyses reveal that ablation of miR-29 specifically in B lymphocytes results in an increase in PTEN expression and dampening of the PI3K pathway in mature B cells. This dysregulation has a profound impact on the survival of B lymphocytes and results in increased class switch recombination and decreased plasma cell differentiation. Furthermore, we demonstrate that ablation of one copy of Pten is sufficient to ameliorate the phenotypes associated with miR-29 loss. Our data suggest a critical role for the miR-29-PTEN-PI3K regulatory axis in mature B lymphocytes.
Collapse
Affiliation(s)
- Marcus J Hines
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Maryaline Coffre
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Tenny Mudianto
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Marisella Panduro
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - Eric J Wigton
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - Cosmin Tegla
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | | | - Robin Kageyama
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - David Benhamou
- Department of Immunology, Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Oriana Perez
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Sofia Bajwa
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, UCSF, San Francisco, CA 94143, USA
| | - Doron Melamed
- Department of Immunology, Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Sergei B Koralov
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
41
|
Ottens K, Schneider J, Kane LP, Satterthwaite AB. PIK3IP1 Promotes Extrafollicular Class Switching in T-Dependent Immune Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:2100-2108. [PMID: 32887751 DOI: 10.4049/jimmunol.2000584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
PI3K plays multiple roles throughout the life of a B cell. As such, its signaling is tightly regulated. The importance of this is illustrated by the fact that both loss- and gain-of-function mutations in PI3K can cause immunodeficiency in humans. PIK3IP1, also known as TrIP, is a transmembrane protein that has been shown to inhibit PI3K in T cells. Results from the ImmGen Consortium indicate that PIK3IP1 expression fluctuates throughout B cell development in a manner inversely correlated with PI3K activity; however, its role in B cells is poorly understood. In this study, we define the consequences of B cell-specific deletion of PIK3IP1. B cell development, basal Ig levels, and T-independent responses were unaffected by loss of PIK3IP1. However, there was a significant delay in the production of IgG during T-dependent responses, and secondary responses were impaired. This is likely due to a role for PIK3IP1 in the extrafollicular response because germinal center formation and affinity maturation were normal, and PIK3IP1 is not appreciably expressed in germinal center B cells. Consistent with a role early in the response, PIK3IP1 was downregulated at late time points after B cell activation, in a manner dependent on PI3K. Increased activation of the PI3K pathway was observed in PIK3IP1-deficient B cells in response to engagement of both the BCR and CD40 or strong cross-linking of CD40 alone. Taken together, these observations suggest that PIK3IP1 promotes extrafollicular responses by limiting PI3K signaling during initial interactions between B and T cells.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jalyn Schneider
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
42
|
Abstract
Inhibitors of PI3Kδ hold great potential for the therapy of chronic lymphocytic leukemia and B-cell malignancies. After initially exciting efficacy results with idelalisib, the first-in-class inhibitor, the emergence of unexpected and unpredictable autoimmune toxicities, worse in less heavily treated and younger patients, has decreased the use of the currently available inhibitors. Newer drugs in development are attempting to reduce toxicity with novel schedules and/or combinations. This article reviews the clinical data on efficacy and toxicity across the class and discusses ongoing efforts to understand and mitigate the likely on-target autoimmune toxicity.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Clinical Trials as Topic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
- Phosphoinositide-3 Kinase Inhibitors/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Jennifer R Brown
- From Harvard Medical School and CLL Center, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
43
|
Goldsmith DR, Bekhbat M, Le NA, Chen X, Woolwine BJ, Li Z, Haroon E, Felger JC. Protein and gene markers of metabolic dysfunction and inflammation together associate with functional connectivity in reward and motor circuits in depression. Brain Behav Immun 2020; 88:193-202. [PMID: 32387344 PMCID: PMC7415617 DOI: 10.1016/j.bbi.2020.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Bidirectional relationships between inflammation and metabolic dysfunction may contribute to the pathophysiology of psychiatric illnesses like depression. Metabolic disturbances drive inflammation, which in turn exacerbate metabolic outcomes including insulin resistance. Both inflammatory (e.g. endotoxin, vaccination) and metabolic challenges (e.g. glucose ingestion) have been shown to affect activity and functional connectivity (FC) in brain regions that subserve reward and motor processing. We previously reported relationships between elevated concentrations of endogenous inflammatory markers including C-reactive protein (CRP) and low corticostriatal FC, which correlated with symptoms of anhedonia and motor slowing in major depression (MD). Herein, we examined whether similar relationships were observed between plasma markers related to glucose metabolism (non-fasting concentrations of glucose, insulin, leptin, adiponectin and resistin) in 42 medically-stable, unmedicated MD outpatients who underwent fMRI. A targeted, hypothesis-driven approach was used to assess FC between seeds in subdivisions of the ventral and dorsal striatum and a region in ventromedial prefrontal cortex (VS-vmPFC), which was previously found to correlate with both inflammation and symptoms of anhedonia and motor slowing. Associations between FC and gene expression signatures were also explored. A composite score of all 5 glucose-related markers (with increasing values reflecting higher concentrations) was negatively correlated with both ventral striatum (VS)-vmPFC (r = -0.33, p < 0.05) and dorsal caudal putamen (dcP)-vmPFC (r = -0.51, p < 0.01) FC, and remained significant after adjusting for covariates including body mass index (p < 0.05). Moreover, an interaction between the glucose-related composite score and CRP was observed for these relationships (F[2,33] = 4.3, p < 0.05) whereby significant correlations between the glucose-related metabolic markers and FC was found only in patients with high plasma CRP (>3 mg/L; r = -0.61 to -0.81, p < 0.05). Insulin and resistin were the individual markers most predictive of VS-vmPFC and dcP-mPFC FC, respectively, and insulin, resistin and CRP clustered together and in association with both LV-vmPFC and dcP-vmPFC in principal component analyses. Exploratory whole blood gene expression analyses also confirmed that gene probes negatively associated with FC were enriched for both inflammatory and metabolic pathways (FDR p < 0.05). These results provide preliminary evidence that inflammation and metabolic dysfunction contribute jointly to deficits in reward and motor circuits in MD. Future studies using fasting samples and longitudinal and interventional approaches are required to further elucidate the respective contributions of inflammation and metabolic dysfunction to circuits and symptoms relevant to motivation and motor activity, which may have treatment implications for patients with psychiatric illnesses like depression.
Collapse
Affiliation(s)
- David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Ngoc-Anh Le
- Biomarker Core Laboratory, Foundation for Atlanta Veterans Education and Research, Atlanta VAHSC, Decatur, GA 30033, United States
| | - Xiangchuan Chen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Bobbi J Woolwine
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Zhihao Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong 518060, China; Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
44
|
Wei Z, Zhang Y, Chen J, Hu Y, Jia P, Wang X, Zhao Q, Deng Y, Li N, Zang Y, Qin J, Wang X, Lu W. Pathogenic CARD11 mutations affect B cell development and differentiation through a noncanonical pathway. Sci Immunol 2020; 4:4/41/eaaw5618. [PMID: 31784498 DOI: 10.1126/sciimmunol.aaw5618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/29/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Pathogenic CARD11 mutations cause aberrant nuclear factor κB (NF-κB) activation, which is presumably responsible for multiple immunological disorders. However, whether there is an NF-κB-independent regulatory mechanism contributing to CARD11 mutations related to pathogenesis remains undefined. Using three distinct genetic mouse models, the Card11 knockout (KO) mouse model mimicking primary immunodeficiency, the CARD11 E134G point mutation mouse model representing BENTA (B cell expansion with NF-κB and T cell anergy) disease, and the mouse model bearing oncogenic K215M mutation, we show that CARD11 has a noncanonical function as a negative regulator of the AKT-FOXO1 signal axis, independent of NF-κB activation. Although BENTA disease-related E134G mutant elevates NF-κB activation, we find that E134G mutant mice phenotypically copy Card11 KO mice, in which NF-κB activation is disrupted. Mechanistically, the E134G mutant causes exacerbated AKT activation and reduced FOXO1 protein in B cells similar to that in Card11 KO cells. Moreover, the oncogenic CARD11 mutant K215M reinforces the importance of the noncanonical function of CARD11. In contrast to the E134G mutant, K215M shows a stronger inhibitory effect on AKT activation and more stabilized FOXO1. Likewise, E134G and K215M mutants have converse impacts on B cell development and differentiation. Our results demonstrate that, besides NF-κB, CARD11 also governs the AKT/FOXO1 signaling pathway in B cells. The critical role of CARD11 is further revealed by the effects of pathogenic CARD11 mutants on this noncanonical regulatory function on the AKT-FOXO1 signaling axis.
Collapse
Affiliation(s)
- Zheng Wei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Division of Immunotherapy, Institute of Human Virology (IHV), School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jingjing Chen
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China
| | - Yu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qifang Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yicong Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China.
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Treatment for chronic lymphocytic leukemia has changed substantially in the past decade with an increasing shift towards use of targeted therapies, in particular agents targeting the B cell receptor pathway. Inhibition of PI3K, downstream of the B cell receptor pathway, represents an active therapeutic strategy in CLL. Here, we explore the relevance of PI3K inhibition in CLL, examine efficacy and toxicity of approved PI3K inhibitors in CLL, examine barriers to use of PI3K inhibitors, and explore strategies to optimize use of PI3K inhibitors in CLL. RECENT FINDINGS Current generation PI3K inhibitors are active agents in CLL but their use may be limited by immune-mediated toxicities. Clinical trials of next generation PI3K inhibitors are ongoing and early data suggests these agents are highly active with potentially differentiated toxicity profiles. Furthermore, alternative dosing schedules may reduce toxicities of these agents. Inhibition of PI3K remains an important strategy in management of CLL and novel approaches to limit toxicities of PI3K inhibitors represent an important area of clinical research in CLL.
Collapse
|
46
|
Izutsu K, Kato K, Kiyoi H, Yamamoto G, Shimada K, Akashi K. Phase I study of duvelisib in Japanese patients with relapsed or refractory lymphoma. Int J Hematol 2020; 112:504-509. [PMID: 32613313 DOI: 10.1007/s12185-020-02929-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Duvelisib is a novel dual inhibitor of phosphoinositide-3-kinase (PI3K)-δ and -γ. This single-arm, multicenter phase I study investigated its safety, pharmacokinetics, and preliminary efficacy in Japanese patients with relapsed or refractory lymphoma. Duvelisib was administered orally twice daily at 25 mg in 28-day cycles. Seven patients, comprising 4 with follicular lymphoma (FL), 2 with diffuse large B-cell lymphoma, and 1 with mantle cell lymphoma (MCL) were enrolled. No dose-limiting toxicity occurred in any patient. The most commonly experienced treatment-related adverse events of any grade were neutropenia and thrombocytopenia, occurring in 3 patients each (42.9%); followed by lymphopenia, diarrhea, enterocolitis, stomatitis, hepatic function abnormal, ALT increased, and AST increased, occurring in 2 patients each (28.6%). The most common grade ≥ 3 treatment-related adverse events were neutropenia, which occurred in 3 patients (42.9%), and thrombocytopenia, lymphopenia, and hepatic function abnormal, which occurred in 2 patients each (28.6%). One patient with FL achieved a complete response; the remaining 3 with FL and the 1 with MCL achieved a partial response. The overall response rate was 71.4% (5/7 patients). Duvelisib was well tolerated in Japanese patients with relapsed or refractory lymphoma. Safety and preliminary efficacy data support further development of duvelisib in Japanese patients.
Collapse
Affiliation(s)
- Koji Izutsu
- Department of Hematology, Toranomon Hospital, Minato-ku, Tokyo, Japan. .,Department of Hematology, National Cancer Center Hospital, Chuo-ku, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyusyu University, Fukuoka, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyusyu University, Fukuoka, Japan
| |
Collapse
|
47
|
Lynch RC, Gopal AK. Phosphatidylinositol-3-Kinase Inhibition in Follicular Lymphoma. Hematol Oncol Clin North Am 2020; 34:727-741. [PMID: 32586577 DOI: 10.1016/j.hoc.2020.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chemoimmunotherapy is the standard frontline treatment for symptomatic or high tumor burden follicular lymphoma. Better understanding of the molecular mechanisms of lymphomagenesis has led to the development of drugs targeting these pathways. The phosphatidylinositol-3-kinase pathway is an important signaling pathway in B-cell lymphomas. Three drugs in this class have received FDA approval. We describe the efficacy and toxicities of phosphatidylinositol-3-kinase inhibitors. Response rates in highly refractory disease are high, demonstrate few long-term remissions, and have high long-term toxicity. Early data on dosing and combination strategies are promising and may change how we use these agents in the coming years.
Collapse
Affiliation(s)
- Ryan C Lynch
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, 617 Eastlake Avenue East CE3-300, Seattle, WA 98109, USA
| | - Ajay K Gopal
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, 617 Eastlake Avenue East CE3-300, Seattle, WA 98109, USA.
| |
Collapse
|
48
|
p110δ PI3K as a therapeutic target of solid tumours. Clin Sci (Lond) 2020; 134:1377-1397. [DOI: 10.1042/cs20190772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
AbstractFrom the time of first characterization of PI3K as a heterodimer made up of a p110 catalytic subunit and a regulatory subunit, a wealth of evidence have placed the class IA PI3Ks at the forefront of drug development for the treatment of various diseases including cancer. The p110α isoform was quickly brought at the centre of attention in the field of cancer research by the discovery of cancer-specific gain-of-function mutations in PIK3CA gene in a range of human solid tumours. In contrast, p110δ PI3K was placed into the spotlight of immunity, inflammation and haematologic malignancies because of the preferential expression of this isoform in leucocytes and the rare mutations in PIK3CD gene. The last decade, however, several studies have provided evidence showing that the correlation between the PIK3CA mutations and the response to PI3K inhibition is less clear than originally considered, whereas concurrently an unexpected role of p110δ PI3K in solid tumours has being emerging. While PIK3CD is mostly non-mutated in cancer, the expression levels of p110δ protein seem to act as an intrinsic cancer-causing driver in various solid tumours including breast, prostate, colorectal and liver cancer, Merkel-Cell carcinoma, glioblastoma and neurobalstoma. Furthermore, p110δ selective inhibitors are being studied as potential single agent treatments or as combination partners in attempt to improve cancer immunotherapy, with both strategies to shown great promise for the treatment of several solid tumours. In this review, we discuss the evidence implicating the p110δ PI3K in human solid tumours, their impact on the current state of the field and the potential of using p110δ-selective inhibitors as monotherapy or combined therapy in different cancer contexts.
Collapse
|
49
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
50
|
Mulvey E, Ruan J. Biomarker-driven management strategies for peripheral T cell lymphoma. J Hematol Oncol 2020; 13:59. [PMID: 32448357 PMCID: PMC7245625 DOI: 10.1186/s13045-020-00889-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 01/08/2023] Open
Abstract
Peripheral T cell lymphomas are heterogeneous diseases which remain treatment challenges. Recent advances in molecular and genomic profiling have provided unprecedented insight into disease pathogenesis driven by distinct cells of origins and molecular pathways. The discovery and clinical application of molecular biomarkers in PTCL subtypes has the potential to transform personalized care for patients with PTCL in diagnosis, prognosis, and therapy. Targeting CD30+ PTCL with the antibody-drug conjugate brentuximab vedotin in the relapsed setting and in combination with chemotherapy in the frontline setting has improved patient survivals. Epigenetic modifying agents, including HDAC inhibitors and hypomethylating agents, have demonstrated broad clinical efficacy and durability and are in clinical development for combination strategies for both relapsed and frontline settings. Wide-ranging novel agents targeting critical intracellular pathways and tumor microenvironment are in active exploration to define clinical activities. This review summarizes PTCL-specific biomarkers which are increasingly incorporated in clinical practice to guide precision diagnosis and personalized treatment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Consolidation Chemotherapy
- Disease Management
- Enzyme Inhibitors/therapeutic use
- Epigenesis, Genetic/drug effects
- Forecasting
- Humans
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Lymphoma, Extranodal NK-T-Cell/drug therapy
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, T-Cell, Peripheral/drug therapy
- Maintenance Chemotherapy
- Molecular Targeted Therapy/methods
- Neoplasm Proteins/antagonists & inhibitors
- Precision Medicine/methods
- Precision Medicine/trends
- Signal Transduction/drug effects
- Therapies, Investigational/methods
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Erin Mulvey
- Meyer Cancer Center, Weill Cornell Medicine, 1305 York Avenue, 7th Floor, New York, NY, 10021, USA
| | - Jia Ruan
- Meyer Cancer Center, Weill Cornell Medicine, 1305 York Avenue, 7th Floor, New York, NY, 10021, USA.
| |
Collapse
|