1
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
2
|
Thompson S, Ojo OR, Hoyles L, Winter J. Menadione reduces the expression of virulence- and colonization-associated genes in Helicobacter pylori. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40072906 DOI: 10.1099/mic.0.001539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Novel treatment options are needed for the gastric pathogen Helicobacter pylori due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on H. pylori growth, viability, antibiotic resistance, motility and gene expression using clinical isolates. The MIC of menadione was 313 µM for 11/13 isolates and 156 µM for 2/13 isolates. The minimum bactericidal concentrations were 1.25-2.5 mM, indicating that concentrations in the micromolar range were bacteriostatic rather than bactericidal. We were not able to experimentally evolve resistance to menadione in vitro. Sub-MIC menadione (16 µM for 24 h) did not significantly inhibit bacterial growth but significantly (P<0.05) changed the expression of 1291/1615 (79.9%) genes encoded by strain 322A. The expression of the virulence factor genes cagA and vacA was downregulated in the presence of sub-MIC menadione, while genes involved in stress responses were upregulated. Sub-MIC menadione significantly (P<0.0001) inhibited the motility of H. pylori, consistent with the predicted effects of the observed significant (P<0.05) downregulation of cheY, upregulation of rpoN and changes in the expression of flagellar assembly pathway genes seen in the transcriptomic analysis. Through in-depth interrogation of transcriptomic data, we concluded that sub-MIC menadione elicits a general stress response in H. pylori with survival in the stationary phase likely mediated by the upregulation of surE and rpoN. Sub-MIC menadione caused some modest increases in H. pylori susceptibility to antibiotics, but the effect was variable with strain and antibiotic type and did not reach statistical significance. Menadione (78 µM) was minimally cytotoxic to human gastric adenocarcinoma (AGS) cells after 4 h but caused a significant loss of cell viability after 24 h. Given its inhibitory effects on bacterial growth, motility and expression of virulence- and colonization-associated genes, menadione at low micromolar concentrations may have potential utility as a virulence-attenuating agent against H. pylori.
Collapse
Affiliation(s)
- Stephen Thompson
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Omoyemi Rebecca Ojo
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Jody Winter
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
3
|
Xun M, Feng Z, Li H, Yao M, Wang H, Wei R, Jia J, Fan Z, Shi X, Lv Z, Zhang G. In vitro anti-Helicobacter pylori activity and antivirulence activity of cetylpyridinium chloride. PLoS One 2024; 19:e0300696. [PMID: 38603679 PMCID: PMC11008818 DOI: 10.1371/journal.pone.0300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
The primary treatment method for eradicating Helicobacter pylori (H. pylori) infection involves the use of antibiotic-based therapies. Due to the growing antibiotic resistance of H. pylori, there has been a surge of interest in exploring alternative therapies. Cetylpyridinium chloride (CPC) is a water-soluble and nonvolatile quaternary ammonium compound with exceptional broad-spectrum antibacterial properties. To date, there is no documented or described specific antibacterial action of CPC against H. pylori. Therefore, this study aimed to explore the in vitro activity of CPC against H. pylori and its potential antibacterial mechanism. CPC exhibited significant in vitro activity against H. pylori, with MICs ranging from 0.16 to 0.62 μg/mL and MBCs ranging from 0.31 to 1.24 μg/mL. CPC could result in morphological and physiological modifications in H. pylori, leading to the suppression of virulence and adherence genes expression, including flaA, flaB, babB, alpA, alpB, ureE, and ureF, and inhibition of urease activity. CPC has demonstrated in vitro activity against H. pylori by inhibiting its growth, inducing damage to the bacterial structure, reducing virulence and adherence factors expression, and inhibiting urease activity.
Collapse
Affiliation(s)
- Mingjin Xun
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zhong Feng
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hui Li
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haibo Wang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Ruixia Wei
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Junwei Jia
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zimao Fan
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Xiaoyan Shi
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zhanzhu Lv
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Guimin Zhang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| |
Collapse
|
4
|
Martini C, Araba V, Beniani M, Armoa Ortiz P, Simmons M, Chalbi M, Mellouk A, El Bakkouri M, Calmettes C. Unraveling the crystal structure of the HpaA adhesin: insights into cell adhesion function and epitope localization of a Helicobacter pylori vaccine candidate. mBio 2024; 15:e0295223. [PMID: 38376163 PMCID: PMC10936181 DOI: 10.1128/mbio.02952-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Helicobacter pylori is a bacterium that exhibits strict host restriction to humans and non-human primates, and the bacterium is widely acknowledged as a significant etiological factor in the development of chronic gastritis, peptic ulcers, and gastric cancers. The pathogenic potential of this organism lies in its adeptness at colonizing the gastric mucosa, which is facilitated by a diverse repertoire of virulence factors, including adhesins that promote the attachment of the bacteria to the gastric epithelium. Among these adhesins, HpaA stands out due to its conserved nature and pivotal role in establishing H. pylori colonization. Moreover, this lipoprotein holds promise as an antigen for the development of effective H. pylori vaccines, thus attracting considerable attention for in-depth investigations into its molecular function and identification of binding determinants. Here, we present the elucidation of the crystallographic structure of HpaA at 2.9 Å resolution. The folding adopts an elongated protein shape, which is distinctive to the Helicobacteraceae family, and features an apical domain extension that plays a critical role in the cell-adhesion activity on gastric epithelial cells. Our study also demonstrates the ability of HpaA to induce TNF-α expression in macrophages, highlighting a novel role as an immunoregulatory effector promoting the pro-inflammatory response in vitro. These findings not only contribute to a deeper comprehension of the multifaceted role of HpaA in H. pylori pathogenesis but also establish a fundamental basis for the design and development of structure-based derivatives, aimed at enhancing the efficacy of H. pylori vaccines. IMPORTANCE Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and gastric cancers. The bacterium adheres to the lining of the stomach using proteins called adhesins. One of these proteins, HpaA, is particularly important for H. pylori colonization and is considered a promising vaccine candidate against H. pylori infections. In this work, we determined the atomic structure of HpaA, identifying a characteristic protein fold to the Helicobacter family and delineating specific amino acids that are crucial to support the attachment to the gastric cells. Additionally, we discovered that HpaA can trigger the production of TNF-α, a proinflammatory molecule, in macrophages. These findings provide valuable insights into how H. pylori causes disease and suggest that HpaA has a dual role in both attachment and immune activation. This knowledge could contribute to the development of improved vaccine strategies for preventing H. pylori infections.
Collapse
Affiliation(s)
- Cyrielle Martini
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Victoria Araba
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Meriem Beniani
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Paula Armoa Ortiz
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mimi Simmons
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Mariem Chalbi
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Abdelkader Mellouk
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Majida El Bakkouri
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Charles Calmettes
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, Québec city, Québec, Canada
| |
Collapse
|
5
|
Rosli NA, Al-Maleki AR, Loke MF, Tay ST, Rofiee MS, Teh LK, Salleh MZ, Vadivelu J. Exposure of Helicobacter pylori to clarithromycin in vitro resulting in the development of resistance and triggers metabolic reprogramming associated with virulence and pathogenicity. PLoS One 2024; 19:e0298434. [PMID: 38446753 PMCID: PMC10917248 DOI: 10.1371/journal.pone.0298434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
In H. pylori infection, antibiotic-resistance is one of the most common causes of treatment failure. Bacterial metabolic activities, such as energy production, bacterial growth, cell wall construction, and cell-cell communication, all play important roles in antimicrobial resistance mechanisms. Identification of microbial metabolites may result in the discovery of novel antimicrobial therapeutic targets and treatments. The purpose of this work is to assess H. pylori metabolomic reprogramming in order to reveal the underlying mechanisms associated with the development of clarithromycin resistance. Previously, four H. pylori isolates were induced to become resistant to clarithromycin in vitro by incrementally increasing the concentrations of clarithromycin. Bacterial metabolites were extracted using the Bligh and Dyer technique and analyzed using metabolomic fingerprinting based on Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-ToF-MS). The data was processed and analyzed using the MassHunter Qualitative Analysis and Mass Profiler Professional software. In parental sensitivity (S), breakpoint isolates (B), and induced resistance isolates (R) H. pylori isolates, 982 metabolites were found. Furthermore, based on accurate mass, isotope ratios, abundances, and spacing, 292 metabolites matched the metabolites in the Agilent METLIN precise Mass-Personal Metabolite Database and Library (AM-PCDL). Several metabolites associated with bacterial virulence, pathogenicity, survival, and proliferation (L-leucine, Pyridoxone [Vitamine B6], D-Mannitol, Sphingolipids, Indoleacrylic acid, Dulcitol, and D-Proline) were found to be elevated in generated resistant H. pylori isolates when compared to parental sensitive isolates. The elevated metabolites could be part of antibiotics resistance mechanisms. Understanding the fundamental metabolome changes in the course of progressing from clarithromycin-sensitive to breakpoint to resistant in H. pylori clinical isolates may be a promising strategy for discovering novel alternatives therapeutic targets.
Collapse
Affiliation(s)
- Naim Asyraf Rosli
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, Department of Medical Microbiology, Sana’a University, Sana’a, Yemen
| | - Mun Fai Loke
- Camtech Biomedical Pte Ltd, Singapore, Singapore
| | - Sun Tee Tay
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Salleh Rofiee
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Jamuna Vadivelu
- Faculty of Medicine, Medical Education Research and Development Unit (MERDU), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Dhindwal P, Boniecki MT, Moore SA. Helicobacter pylori FlgN binds its substrate FlgK and the flagellum ATPase FliI in a similar manner observed for the FliT chaperone. Protein Sci 2024; 33:e4882. [PMID: 38151822 PMCID: PMC10804663 DOI: 10.1002/pro.4882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
In bacterial flagellum biogenesis, secretion of the hook-filament junction proteins FlgK and FlgL and completion of the flagellum requires the FlgN chaperone. Similarly, the related FliT chaperone is necessary for the secretion of the filament cap protein FliD and binds the flagellar export gate protein FlhA and the flagellum ATPase FliI. FlgN and FliT require FliJ for effective substrate secretion. In Helicobacter pylori, neither FlgN, FliT, nor FliJ have been annotated. We demonstrate that the genome location of HP1120 is identical to that of flgN in other flagellated bacteria and that HP1120 is the homolog of Campylobacter jejuni FlgN. A modeled HP1120 structure contains three α-helices and resembles the FliT chaperone, sharing a similar substrate-binding pocket. Using pulldowns and thermophoresis, we show that both HP1120 and a HP1120Δ126-144 deletion mutant bind to FlgK with nanomolar affinity, but not to the filament cap protein FliD, confirming that HP1120 is FlgN. Based on size-exclusion chromatography and multi-angle light scattering, H. pylori FlgN binds to FlgK with 1:1 stoichiometry. Overall structural similarities between FlgN and FliT suggest that substrate recognition on FlgN primarily involves an antiparallel coiled-coil interface between the third helix of FlgN and the C-terminal helix of the substrate. A FlgNΔ126-144 N100A, Y103A, S111I triple mutant targeting this interface significantly impairs the binding of FlgK. Finally, we demonstrate that FlgNΔ126-144 , like FliT, binds with sub-micromolar affinity to the flagellum ATPase FliI or its N-terminal domain. Hence FlgN and FliT likely couple delivery of low-abundance export substrates to the flagellum ATPase FliI.
Collapse
Affiliation(s)
- Poonam Dhindwal
- Department of Biochemistry, Microbiology and ImmunologyCollege of Medicine, University of SaskatchewanSaskatoonCanada
| | - Michal T. Boniecki
- Department of Biochemistry, Microbiology and ImmunologyCollege of Medicine, University of SaskatchewanSaskatoonCanada
| | - Stanley A. Moore
- Department of Biochemistry, Microbiology and ImmunologyCollege of Medicine, University of SaskatchewanSaskatoonCanada
| |
Collapse
|
7
|
Jung MS, Piazuelo MB, Brackman LC, McClain MS, Algood HMS. Essential role of Helicobacter pylori apolipoprotein N-acyltransferase (Lnt) in stomach colonization. Infect Immun 2023; 91:e0036923. [PMID: 37937999 PMCID: PMC10715074 DOI: 10.1128/iai.00369-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Bacterial lipoproteins are post-translationally modified with acyl chains, anchoring these proteins to bacterial membranes. In Gram-negative bacteria, three enzymes complete the modifications. Lgt (which adds two acyl chains) and LspA (which removes the signal peptide) are essential. Lnt (which adds a third acyl chain) is not essential in certain bacteria including Francisella tularensis, Neisseria gonorrhoeae, and Acinetobacter baumannii. Deleting lnt results in mild to severe physiologic changes. We previously showed lnt is not essential for Helicobacter pylori growth in vitro. Here, the physiologic consequences of deleting lnt in H. pylori and the role of Lnt in the host response to H. pylori were examined using in vitro and in vivo models. Comparing wild-type, Δlnt, and complemented mutant H. pylori, no changes in growth rates or sensitivity to acid or antibiotics were observed. Since deleting lnt changes the number of acyl chains on lipoproteins and the number of acyl chains on lipoproteins impacts the innate immune response through Toll-like receptor 2 (TLR2) signaling, primary human gastric epithelial cells were treated with a purified lipoprotein from wild-type or lnt mutant H. pylori. Differential gene expression analysis indicated that lipoprotein from the lnt mutant induced a more robust TLR2 response. In a complementary approach, we infected wild-type and Tlr2-/- mice and found that both the wild-type and complemented mutant strains successfully colonized the animals. However, the lnt mutant strain was unable to colonize either mouse strain. These results show that lnt is essential for H. pylori colonization and identifies lipoprotein synthesis as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew S. Jung
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lee C. Brackman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Silao FGS, Jiang T, Bereczky-Veress B, Kühbacher A, Ryman K, Uwamohoro N, Jenull S, Nogueira F, Ward M, Lion T, Urban CF, Rupp S, Kuchler K, Chen C, Peuckert C, Ljungdahl PO. Proline catabolism is a key factor facilitating Candida albicans pathogenicity. PLoS Pathog 2023; 19:e1011677. [PMID: 37917600 PMCID: PMC10621835 DOI: 10.1371/journal.ppat.1011677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.
Collapse
Affiliation(s)
- Fitz Gerald S. Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Biborka Bereczky-Veress
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Kühbacher
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nathalie Uwamohoro
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Sabrina Jenull
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Filomena Nogueira
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Meliza Ward
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Thomas Lion
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Constantin F. Urban
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Steffen Rupp
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Christiane Peuckert
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
9
|
Gao Y, Wang R, Liu L, Feng S, Xi X, Yu W, Gu Y, Wang Y. Identification and characterization of shark VNARs targeting the Helicobacter pylori adhesin HpaA. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:509-519. [PMID: 37695066 DOI: 10.1080/21691401.2023.2255635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. H. pylori can adhere to and colonize the gastric mucosa through H. pylori adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of H. pylori infection.
Collapse
Affiliation(s)
- Yanchun Gao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Ruihong Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, P.R. China
| | - Lin Liu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Shitao Feng
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Xiaozhi Xi
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Ye Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
10
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Xiong Z, Zhang N, Xu L, Deng Z, Limwachiranon J, Guo Y, Han Y, Yang W, Scharf DH. Urease of Aspergillus fumigatus Is Required for Survival in Macrophages and Virulence. Microbiol Spectr 2023; 11:e0350822. [PMID: 36916906 PMCID: PMC10100864 DOI: 10.1128/spectrum.03508-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
The number of patients suffering from fungal diseases has constantly increased during the last decade. Among the fungal pathogens, the airborne filamentous fungus Aspergillus fumigatus can cause chronic and fatal invasive mold infections. So far, only three major classes of drugs (polyenes, azoles, and echinocandins) are available for the treatment of life-threatening fungal infections, and all present pharmacological drawbacks (e.g., low solubility or toxicity). Meanwhile, clinical antifungal-resistant isolates are continuously emerging. Therefore, there is a high demand for novel antifungal drugs, preferentially those that act on new targets. We studied urease and the accessory proteins in A. fumigatus to determine their biochemical roles and their influence on virulence. Urease is crucial for the growth on urea as the sole nitrogen source, and the transcript and protein levels are elevated on urea media. The urease deficient mutant displays attenuated virulence, and its spores are more susceptible to macrophage-mediated killing. We demonstrated that this observation is associated with an inability to prevent the acidification of the phagosome. Furthermore, we could show that a nickel-chelator inhibits growth on urea. The nickel chelator is also able to reverse the effects of urease on macrophage killing and phagosome acidification, thereby reducing virulence in systemic and trachea infection models. IMPORTANCE The development of antifungal drugs is an urgent task, but it has proven to be difficult due to many similarities between fungal and animal cells. Here, we characterized the urease system in A. fumigatus, which depends on nickel for activity. Notably, nickel is not a crucial element for humans. Therefore, we went further to explore the role of nickel-dependent urease in host-pathogen interactions. We were able to show that urease is important in preventing the acidification of the phagosome and therefore reduces the killing of conidia by macrophages. Furthermore, the deletion of urease shows reduced virulence in murine infection models. Taken together, we identified urease as an essential virulence factor of A. fumigatus. We were able to show that the application of the nickel-chelator dimethylglyoxime is effective in both in vitro and in vivo infection models. This suggests that nickel chelators or urease inhibitors are potential candidates for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Liru Xu
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiduo Deng
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jarukitt Limwachiranon
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaojie Guo
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Han
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yang
- Department of Biophysics and Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel H. Scharf
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Wessler S, Posselt G. Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease. Curr Top Microbiol Immunol 2023; 444:259-277. [PMID: 38231222 DOI: 10.1007/978-3-031-47331-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori (H. pylori) proteases have become a major focus of research in recent years, because they not only have an important function in bacterial physiology, but also directly alter host cell functions. In this review, we summarize recent findings on extracellular H. pylori proteases that target host-derived substrates to facilitate bacterial pathogenesis. In particular, the secreted H. pylori collagenase (Hp0169), the metalloprotease Hp1012, or the serine protease High temperature requirement A (HtrA) are of great interest. Specifically, various host cell-derived substrates were identified for HtrA that directly interfere with the gastric epithelial barrier allowing full pathogenesis. In light of increasing antibiotic resistance, the development of inhibitory compounds for extracellular proteases as potential targets is an innovative field that offers alternatives to existing therapies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria.
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
| |
Collapse
|
13
|
Hajra D, Nair AV, Roy Chowdhury A, Mukherjee S, Chatterjee R, Chakravortty D. Salmonella Typhimurium U32 peptidase, YdcP, promotes bacterial survival by conferring protection against in vitro and in vivo oxidative stress. Microb Pathog 2022; 173:105862. [PMID: 36402347 DOI: 10.1016/j.micpath.2022.105862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
YdcP, a U32 peptidase, is characterized as a putative collagenase with a role in several bacterial infections. However, its role in the pathogenesis of Salmonella Typhimurium remains elusive. Here, we investigated the role of U32 peptidase, YdcP, in the intracellular survival of S. Typhimurium (STM). Our study revealed a novel function of YdcP in protecting wild-type Salmonella from in vitro and in vivo oxidative stress. The ydcP knockout strain showed attenuated intracellular proliferation within the murine and human macrophages. Incubation of wild-type Salmonella with H2O2 induced the transcript level expression of ydcP. Moreover, deleting ydcP increased the susceptibility of the bacteria to in vitro oxidative stress. STM ΔydcP showed increased colocalization with the gp91phox subunit of the NADPH phagocytic oxidase in RAW264.7 cells. Further, we observed a reduction in the expression of bacterial anti-oxidant genes in STM ΔydcP growing within the RAW264.7 cells. The delay in the death of BALB/c mice infected with STM ΔydcP proved the association of ydcP with the in vivo pathogenesis of Salmonella. Finally, the attenuated growth of the ydcP mutant in wild-type C57BL/6 mice and the recovery of their growth inhibition in gp91phox-/- C57BL/6 mice endorsed the role of ydcP in protecting Salmonella from in vivo oxidative stress. Together, our study depicts a novel role of Salmonella Typhimurium YdcP, a putative U32 peptidase in rendering protection against oxidative stress.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Atish Roy Chowdhury
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | | - Ritika Chatterjee
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
14
|
Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics. Curr Opin Microbiol 2022; 70:102203. [PMID: 36156373 DOI: 10.1016/j.mib.2022.102203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
Helicobacter pylori is an important human pathogen with increasing antimicrobial resistance to standard-of-care antibiotics. Treatment generally includes a combination of classical broad-spectrum antibiotics and a proton-pump inhibitor, which often leads to perturbation of the gut microbiome and the potential for the development of antibiotic resistance. In this review, we examine reports, primarily from the past decade, on the discovery of new anti-H. pylori therapeutics, including approaches to develop narrow-spectrum and mechanistically unique antibiotics to treat these infections in their gastric niche. Compound series that target urease, respiratory complex I, and menaquinone biosynthesis are discussed in this context, along with bivalent antibiotic approaches that suppress resistance development. With increases in the understanding of the unique physiology of H. pylori and technological advances in the field of antibacterial drug discovery, there is a clear promise that novel therapeutics can be developed to effectively treat H. pylori infections.
Collapse
|
15
|
Ortiz-Ramírez P, Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Martínez-Rosas V, Morales-Luna L, Arreguin-Espinosa R, Castillo-Rodríguez RA, Canseco-Ávila LM, Cárdenas-Rodríguez N, Pérez de la Cruz V, Montiel-González AM, Gómez-Chávez F, Gómez-Manzo S. Biochemical and Kinetic Characterization of the Glucose-6-Phosphate Dehydrogenase from Helicobacter pylori Strain 29CaP. Microorganisms 2022; 10:microorganisms10071359. [PMID: 35889079 PMCID: PMC9323780 DOI: 10.3390/microorganisms10071359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) has been proposed as the foremost risk factor for the development of gastric cancer. We found that H. pylori express the enzyme glucose-6-phosphate dehydrogenase (HpG6PD), which participates in glucose metabolism via the pentose phosphate pathway. Thus, we hypothesized that if the biochemical and physicochemical characteristics of HpG6PD contrast with the host G6PD (human G6PD, HsG6PD), HpG6PD becomes a potential target for novel drugs against H. pylori. In this work, we characterized the biochemical properties of the HpG6PD from the H.pylori strain 29CaP and expressed the active recombinant protein, to analyze its steady-state kinetics, thermostability, and biophysical aspects. In addition, we analyzed the HpG6PD in silico structural properties to compare them with those of the HsG6PD. The optimal pH for enzyme activity was 7.5, with a T1/2 of 46.6 °C, at an optimum stability temperature of 37 °C. The apparent Km values calculated for G6P and NADP+ were 75.0 and 12.8 µM, respectively. G6P does not protect HpG6PD from trypsin digestion, but NADP+ does protect the enzyme from trypsin and guanidine hydrochloride (Gdn-HCl). The biochemical characterization of HpG6PD contributes to knowledge regarding H. pylori metabolism and opens up the possibility of using this enzyme as a potential target for specific and efficient treatment against this pathogen; structural alignment indicates that the three-dimensional (3D) homodimer model of the G6PD protein from H. pylori is different from the 3D G6PD of Homo sapiens.
Collapse
Affiliation(s)
- Paulina Ortiz-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa Angélica Castillo-Rodríguez
- Programa Investigadoras e Investigadores por México, CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Luis Miguel Canseco-Ávila
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico;
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alba Mónica Montiel-González
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Aut. San Martín Texmelucan-Tlaxcala Km 10.5, San Felipe Ixtacuixtla, Tlaxcala 90120, Mexico;
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (P.O.-R.); (V.M.-R.); (L.M.-L.)
- Correspondence: ; Tel.: +52-55-1084-0900 (ext. 1442)
| |
Collapse
|
16
|
Identification of Antimotilins, Novel Inhibitors of Helicobacter pylori Flagellar Motility That Inhibit Stomach Colonization in a Mouse Model. mBio 2022; 13:e0375521. [PMID: 35227071 PMCID: PMC8941896 DOI: 10.1128/mbio.03755-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New treatment options against the widespread cancerogenic gastric pathogen Helicobacter pylori are urgently needed. We describe a novel screening procedure for inhibitors of H. pylori flagellar biosynthesis. The assay is based on a flaA flagellin gene-luciferase reporter fusion in H. pylori and was amenable to multi-well screening formats with an excellent Z factor. We screened various compound libraries to identify virulence blockers ("antimotilins") that inhibit H. pylori motility or the flagellar type III secretion apparatus. We identified compounds that either inhibit both motility and the bacterial viability, or the flagellar system only, without negatively affecting bacterial growth. Novel anti-virulence compounds which suppressed flagellar biosynthesis in H. pylori were active on pure H. pylori cultures in vitro and partially suppressed motility directly, reduced flagellin transcript and flagellin protein amounts. We performed a proof-of-principle treatment study in a mouse model of chronic H. pylori infection and demonstrated a significant effect on H. pylori colonization for one antimotilin termed Active2 even as a monotherapy. The diversity of the intestinal microbiota was not significantly affected by Active2. In conclusion, the novel antimotilins active against motility and flagellar assembly bear promise to complement commonly used antibiotic-based combination therapies for treating and eradicating H. pylori infections. IMPORTANCE Helicobacter pylori is one of the most prevalent bacterial pathogens, inflicting hundreds of thousands of peptic ulcers and gastric cancers to patients every year. Antibacterial treatment of H. pylori is complicated due to the need of combining multiple antibiotics, entailing serious side effects and increasing selection for antibiotic resistance. Here, we aimed to explore novel nonantibiotic approaches to H. pylori treatment. We selected an antimotility approach since flagellar motility is essential for H. pylori colonization. We developed a screening system for inhibitors of H. pylori motility and flagellar assembly, and identified numerous novel antibacterial and anti-motility compounds (antimotilins). Selected compounds were further characterized, and one was evaluated in a preclinical therapy study in mice. The antimotilin compound showed a good efficacy to reduce bacterial colonization in the model, such that the antimotilin approach bears promise to be further developed into a therapy against H. pylori infection in humans.
Collapse
|
17
|
Bernegger S, Jarzab M, Wessler S, Posselt G. Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. Int J Mol Sci 2022; 23:2419. [PMID: 35269560 PMCID: PMC8910283 DOI: 10.3390/ijms23052419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer is a leading cause of cancer-related death, and a large proportion of cases are inseparably linked to infections with the bacterial pathogen and type I carcinogen Helicobacter pylori. The development of gastric cancer follows a cascade of transformative tissue events in an inflammatory environment. Proteases of host origin as well as H. pylori-derived proteases contribute to disease progression at every stage, from chronic gastritis to gastric cancer. In the present article, we discuss the importance of (metallo-)proteases in colonization, epithelial inflammation, and barrier disruption in tissue transformation, deregulation of cell proliferation and cell death, as well as tumor metastasis and neoangiogenesis. Proteases of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase domain-containing protein (ADAM) families, caspases, calpain, and the H. pylori proteases HtrA, Hp1012, and Hp0169 cleave substrates including extracellular matrix molecules, chemokines, and cytokines, as well as their cognate receptors, and thus shape the pathogenic microenvironment. This review aims to summarize the current understanding of how proteases contribute to disease progression in the gastric compartment.
Collapse
Affiliation(s)
- Sabine Bernegger
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| | - Miroslaw Jarzab
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
- Cancer Cluster Salzburg and Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| |
Collapse
|
18
|
You Y, Thorell K, He L, Yahara K, Yamaoka Y, Cha JH, Murakami K, Katsura Y, Kobayashi I, Falush D, Zhang J. Genomic differentiation within East Asian Helicobacter pylori. Microb Genom 2022; 8. [PMID: 35188454 PMCID: PMC8942036 DOI: 10.1099/mgen.0.000676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The East Asian region, including China, Japan and Korea, accounts for half of gastric cancer deaths. However, different areas have contrasting gastric cancer incidences and the population structure of Helicobacter pylori in this ethnically diverse region is yet unknown. We aimed to investigate genomic differences in H. pylori between these areas to identify sequence polymorphisms associated with increased cancer risk. We analysed 381 H. pylori genomes collected from different areas of the three countries using phylogenetic and population genetic tools to characterize population differentiation. The functional consequences of SNPs with a highest fixation index (Fst) between subpopulations were examined by mapping amino acid changes on 3D protein structure, solved or modelled. Overall, 329/381 genomes belonged to the previously identified hspEAsia population indicating that import of bacteria from other regions of the world has been uncommon. Seven subregional clusters were found within hspEAsia, related to subpopulations with various ethnicities, geographies and gastric cancer risks. Subpopulation-specific amino acid changes were found in multidrug exporters (hefC), transporters (frpB-4), outer membrane proteins (hopI) and several genes involved in host interaction, such as a catalase site, involved in H2O2 entrance, and a flagellin site mimicking host glycosylation. Several of the top hits, including frpB-4, hefC, alpB/hopB and hofC, have been found to be differentiated within the Americas in previous studies, indicating that a handful of genes may be key to local geographic adaptation. H. pylori within East Asia are not homogeneous but have become differentiated geographically at multiple loci that might have facilitated adaptation to local conditions and hosts. This has important implications for further evaluation of these changes in relation to the varying gastric cancer incidence between geographical areas in this region.
Collapse
Affiliation(s)
- Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Kaisa Thorell
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Västra Götaland 12 Region, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Jeong-Heon Cha
- Department of Oral Biology, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yukako Katsura
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
- I2BC, University of Paris-Saclay, Gif-sur-Yvette, France
- Research Center for Micro-Nano Technology, Hosei University, Koganei-shi, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Daniel Falush
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, PR China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | | |
Collapse
|
19
|
Capparelli R, Iannelli D. Epigenetics and Helicobacter pylori. Int J Mol Sci 2022; 23:ijms23031759. [PMID: 35163679 PMCID: PMC8836069 DOI: 10.3390/ijms23031759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetics regulates gene expression, cell type development during differentiation, and the cell response to environmental stimuli. To survive, bacteria need to evade the host immune response. Bacteria, including Helicobacter pylori (Hp), reach this target epigenetically, altering the chromatin of the host cells, in addition to several more approaches, such as DNA mutation and recombination. This review shows that Hp prevalently silences the genes of the human gastric mucosa by DNA methylation. Epigenetics includes different mechanisms. However, DNA methylation persists after DNA replication and therefore is frequently associated with the inheritance of repressed genes. Chromatin modification can be transmitted to daughter cells leading to heritable changes in gene expression. Aberrant epigenetic alteration of the gastric mucosa DNA remains the principal cause of gastric cancer. Numerous methylated genes have been found in cancer as well as in precancerous lesions of Hp-infected patients. These methylated genes inactivate tumor-suppressor genes. It is time for us to complain about our genetic and epigenetic makeups for our diseases.
Collapse
|
20
|
Cordone A, Coppola A, Severino A, Correggia M, Selci M, Cascone A, Vetriani C, Giovannelli D. From Sequences to Enzymes: Comparative Genomics to Study Evolutionarily Conserved Protein Functions in Marine Microbes. Methods Mol Biol 2022; 2498:77-88. [PMID: 35727541 DOI: 10.1007/978-1-0716-2313-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Comparative genomics is a research field that allows comparison between genomes of different life forms providing information on the organization of the compared genomes, both in terms of structure and encoded functions. Moreover, this approach provides a powerful tool to study and understand the evolutionary changes and adaptation among organisms. Comparative genomics can be used to compare phylogenetically close marine organisms showing different vital strategies and lifestyles and obtain information regarding specific adaptations and/or their evolutionary history. Here we report a basic comparative genomics protocol to extrapolate evolutionary information about a protein of interest conserved across diverse marine microbes. The outlined approach can be used in a number of different settings and might help to gain new insights into the evolution and adaptation of marine microorganisms.
Collapse
Affiliation(s)
- Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Angelica Severino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Monica Correggia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Matteo Selci
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Cascone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy.
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.
- National Research Council-Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Falmouth, MA, USA.
| |
Collapse
|
21
|
Candidates for Repurposing as Anti-Virulence Agents Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors. Pharmaceutics 2021; 14:pharmaceutics14010062. [PMID: 35056958 PMCID: PMC8780423 DOI: 10.3390/pharmaceutics14010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 01/17/2023] Open
Abstract
The pharmacological inhibition of the bacterial collagenases (BC) enzymes is considered a promising strategy to block the virulence of the bacteria without targeting the selection mechanism leading to drug resistance. The chemical structures of the Clostridium perfringens collagenase A (ColA) inhibitors were analyzed using Bemis-Murcko skeletons, Murcko frameworks, the type of plain rings, and docking studies. The inhibitors were classified based on their structural architecture and various scoring methods were implemented to predict the probability of new compounds to inhibit ColA and other BC. The analyses indicated that all compounds contain at least one aromatic ring, which is often a nitrobenzene fragment. 2-Nitrobenzene based compounds are, on average, more potent BC inhibitors compared to those derived from 4-nitrobenzene. The molecular descriptors MDEO-11, AATS0s, ASP-0, and MAXDN were determined as filters to identify new BC inhibitors and highlighted the necessity for a compound to contain at least three primary oxygen atoms. The DrugBank database was virtually screened using the developed methods. A total of 100 compounds were identified as potential BC inhibitors, of which, 10 are human approved drugs. Benzthiazide, entacapone, and lodoxamide were chosen as the best candidates for in vitro testing based on their pharmaco-toxicological profile.
Collapse
|
22
|
Miller AK, Tavera G, Dominguez RL, Camargo MC, Waterboer T, Wilson KT, Williams SM, Morgan DR. Ornithine decarboxylase (ODC1) gene variant (rs2302615) is associated with gastric cancer independently of Helicobacter pylori CagA serostatus. Oncogene 2021; 40:5963-5969. [PMID: 34376808 PMCID: PMC8692072 DOI: 10.1038/s41388-021-01981-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The primary cause of gastric cancer is chronic infection with Helicobacter pylori (H. pylori), particularly the high-risk genotype cagA, and risk modification by human genetic variants. We studied 94 variants in 54 genes for association with gastric cancer, including rs2302615 in ornithine decarboxylase (ODC1), which may affect response to chemoprevention with the ODC inhibitor, eflornithine (difluoromethylornithine; DFMO). Our population-based, case-control study included 1366 individuals (664 gastric cancer cases and 702 controls) from Western Honduras, a high incidence region of Latin America. CagA seropositivity was strongly associated with cancer (OR = 3.6; 95% CI: 2.6, 5.1). The ODC1 variant rs2302615 was associated with gastric cancer (OR = 1.36; p = 0.018) in a model adjusted for age, sex, and CagA serostatus. Two additional single nucleotide polymorphisms (SNPs) in CASP1 (rs530537) and TLR4 (rs1927914) genes were also associated with gastric cancer in univariate models as well as models adjusted for age, sex, and CagA serostatus. The ODC1 SNP association with gastric cancer was stronger in individuals who carried the TT genotype at the associating TLR4 polymorphism, rs1927914 (OR = 1.77; p = 1.85 × 10-3). In conclusion, the ODC1 variant, rs2302615, is associated with gastric cancer and supports chemoprevention trials with DFMO, particularly in individuals homozygous for the T allele at rs1927914.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gloria Tavera
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ricardo L Dominguez
- Hospital de Occidente, Ministry of Health, Santa Rosa de Copan, Copan, Honduras
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Keith T Wilson
- Vanderbilt University Medical Center, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Douglas R Morgan
- UAB Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
23
|
Harvey ML, Lin AS, Sun L, Koyama T, Shuman JHB, Loh JT, Algood HMS, Scholz MB, McClain MS, Cover TL. Enhanced Fitness of a Helicobacter pylori babA Mutant in a Murine Model. Infect Immun 2021; 89:e0072520. [PMID: 34310886 PMCID: PMC8445181 DOI: 10.1128/iai.00725-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori genomes encode over 60 predicted outer membrane proteins (OMPs). Several OMPs in the Hop family act as adhesins, but the functions of most Hop proteins are unknown. To identify hop mutant strains exhibiting differential fitness in vivo compared to in vitro, we used a genetic barcoding method that allowed us to track changes in the proportional abundance of H. pylori strains within a mixed population. We generated a library of hop mutant strains, each containing a unique nucleotide barcode, as well as a library of control strains, each containing a nucleotide barcode in an intergenic region predicted to be a neutral locus unrelated to bacterial fitness. We orogastrically inoculated each of the libraries into mice and analyzed compositional changes in the populations over time in vivo compared to changes detected in the populations during library passage in vitro. The control library proliferated as a relatively stable community in vitro, but there was a reduction in the population diversity of this library in vivo and marked variation in the dominant strains recovered from individual animals, consistent with the existence of a nonselective bottleneck in vivo. We did not identify any OMP mutants exhibiting fitness defects exclusively in vivo without corresponding fitness defects in vitro. Conversely, a babA mutant exhibited a strong fitness advantage in vivo but not in vitro. These findings, when taken together with results of other studies, suggest that production of BabA may have differential effects on H. pylori fitness depending on the environmental conditions.
Collapse
Affiliation(s)
- M. Lorena Harvey
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Matthew B. Scholz
- Vanderbilt Technologies for Advanced Genetics (VANTAGE), Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Gollapalli P, G TS, H M, Shetty P, N SK. Network topology analysis of essential genes interactome of Helicobacter pylori to explore novel therapeutic targets. Microb Pathog 2021; 158:105059. [PMID: 34157412 DOI: 10.1016/j.micpath.2021.105059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022]
Abstract
The Helicobacter pylori chronic colonization produces a wide range of gastric diseases in the gastric mucosa by abetting inflammation. Amidst coevolution and reorganization of its metabolism with humans, it has become difficult still imperative to understand and prevent its growth. This study focus to explore functional insights into identification of hub proteins/genes by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We have constructed a PPI network of 123 essential genes along with 1213 interactions in H. pylori 26695. The degree and other centrality measures analysis assist in identifying the important hub nodes, which are top-ranked proteins. A total of nine proteins (recA, guaA, dnaK, rpsB, rplQ, rpmA, rpmC, rpmF, and rpsE) were obtained with high degree (k), betweenness centrality (BC) value. Gene ontology analysis reveals 8, 5 and 3 GO terms correspond to biological processes, cellular components and molecular function respectively. Gene complexes of hypothetical proteins (HPs) were related to aminoacyl-tRNA biosynthesis, biosynthesis of secondary metabolites, bacterial secretion system and protein export. The MCODE analysis revealed that protein from module M1, M3 and M6 include the proteins which have highest degree and BC values. It is noteworthy to mention that the bifunctional GMP synthase/glutamine amidotransferase protein (guaA), molecular chaperon (dnaK), recombinase A (recA) constitute as hub proteins. As a result, these genes are considered as network hub nodes that might be used as therapeutic targets. Our analysis affords a detailed understanding of the molecular process and pathways regulated by the essential genes in H. pylori 26695.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India.
| | - Tamizh Selvan G
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Manjunatha H
- Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Suchetha Kumari N
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India
| |
Collapse
|
25
|
Steiner TM, Lettl C, Schindele F, Goebel W, Haas R, Fischer W, Eisenreich W. Substrate usage determines carbon flux via the citrate cycle in Helicobacter pylori. Mol Microbiol 2021; 116:841-860. [PMID: 34164854 DOI: 10.1111/mmi.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H. pylori, carbon fluxes through the citrate cycle (TCA cycle) remained enigmatic. In this study, different 13 C-labeled substrates were supplied as carbon sources to H. pylori during microaerophilic growth in a complex medium. After growth, 13 C-excess and 13 C-distribution were determined in multiple metabolites using GC-MS analysis. [U-13 C6 ]Glucose was efficiently converted into glyceraldehyde but only less into TCA cycle-related metabolites. In contrast, [U-13 C5 ]glutamate, [U-13 C4 ]succinate, and [U-13 C4 ]aspartate were incorporated at high levels into intermediates of the TCA cycle. The comparative analysis of the 13 C-distributions indicated an adaptive TCA cycle fully operating in the closed oxidative direction with rapid equilibrium fluxes between oxaloacetate-succinate and α-ketoglutarate-citrate. 13 C-Profiles of the four-carbon intermediates in the TCA cycle, especially of malate, together with the observation of an isocitrate lyase activity by in vitro assays, suggested carbon fluxes via a glyoxylate bypass. In conjunction with the lack of enzymes for anaplerotic CO2 fixation, the glyoxylate bypass could be relevant to fill up the TCA cycle with carbon atoms derived from acetyl-CoA.
Collapse
Affiliation(s)
- Thomas M Steiner
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Clara Lettl
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Franziska Schindele
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Werner Goebel
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
26
|
Feng H, Yuan Y, Yang Z, Xing XH, Zhang C. Genome-wide genotype-phenotype associations in microbes. J Biosci Bioeng 2021; 132:1-8. [PMID: 33895083 DOI: 10.1016/j.jbiosc.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
The concept of a gene has been developed a lot since the Mendelian era owing to the rapid progress in molecular biology and informatics. To explore the nature of life, varieties of biological tools have been continuously established. Many achievements have been made to clarify the relationships between genotypes and phenotypes. However, it is still not completely clear that how traits of an organism are encoded by its genome. In this review, we will summarize and discuss representative works in systematical functional genomic studies in microbes. By analyzing their developmental progressions and limitations, we may have chances to design more powerful means to decipher the code of life.
Collapse
Affiliation(s)
- Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yaomeng Yuan
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Yang
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Dey R, Rieger A, Banting G, Ashbolt NJ. Role of amoebae for survival and recovery of 'non-culturable' Helicobacter pylori cells in aquatic environments. FEMS Microbiol Ecol 2021; 96:5902844. [PMID: 32897313 PMCID: PMC7494403 DOI: 10.1093/femsec/fiaa182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a fastidious Gram-negative bacterium that infects over half of the world's population, causing chronic gastritis and is a risk factor for stomach cancer. In developing and rural regions where prevalence rate exceeds 60%, persistence and waterborne transmission are often linked to poor sanitation conditions. Here we demonstrate that H. pylori not only survives but also replicates within acidified free-living amoebal phagosomes. Bacterial counts of the clinical isolate H. pylori G27 increased over 50-fold after three days in co-culture with amoebae. In contrast, a H. pylori mutant deficient in a cagPAI gene (cagE) showed little growth within amoebae, demonstrating the likely importance of a type IV secretion system in H. pylori for amoebal infection. We also demonstrate that H. pylori can be packaged by amoebae and released in extracellular vesicles. Furthermore, and for the first time, we successfully demonstrate the ability of two free-living amoebae to revert and recover viable but non-cultivable coccoid (VBNC)-H. pylori to a culturable state. Our studies provide evidence to support the hypothesis that amoebae and perhaps other free-living protozoa contribute to the replication and persistence of human-pathogenic H. pylori by providing a protected intracellular microenvironment for this pathogen to persist in natural aquatic environments and engineered water systems, thereby H. pylori potentially uses amoeba as a carrier and a vector of transmission.
Collapse
Affiliation(s)
- Rafik Dey
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada.,Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Aja Rieger
- Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Graham Banting
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada.,Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Provincial Laboratory for Public Health (ProvLab), Alberta Health Services, Edmonton, Canada.,School of Environmental, Sciense and Engineering, Southern Cross University, Lismore NSW, Australia
| |
Collapse
|
28
|
Muszewska A, Okrasińska A, Steczkiewicz K, Drgas O, Orłowska M, Perlińska-Lenart U, Aleksandrzak-Piekarczyk T, Szatraj K, Zielenkiewicz U, Piłsyk S, Malc E, Mieczkowski P, Kruszewska JS, Bernat P, Pawłowska J. Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina. Front Microbiol 2021; 12:636986. [PMID: 33679672 PMCID: PMC7928374 DOI: 10.3389/fmicb.2021.636986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Drgas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Malc
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Piotr Mieczkowski
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
30
|
Banga Ndzouboukou JL, Lei Q, Ullah N, Zhang Y, Hao L, Fan X. Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines for H. pylori. Helicobacter 2021; 26:e12758. [PMID: 33259676 DOI: 10.1111/hel.12758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helicobacter pylori is a gram-negative bacterium involved in many gastric pathologies such as ulcers and cancers. Although the treatment for this infection has existed for several years, the development of a vaccine is nevertheless necessary to reduce the severe forms of the disease. For more than three decades, many advances have been made particularly in the understanding of virulence factors as well as the pathogenesis of gastric diseases caused by H. pylori. Among these key virulence factors, specific antigens have been identified: Urease, Vacuolating cytotoxin A (VacA), Cytotoxin-associated gene A (CagA), Blood group antigen-binding adhesin (BabA), H. pylori adhesin A (HpaA), and others. OBJECTIVES This review will focus on H. pylori adhesins, in particular, on HpaA and on the current knowledge of H. pylori vaccines. METHODS All of the information included in this review was retrieved from published studies on H. pylori adhesins in H. pylori infections. RESULTS These proteins, used in their native or recombinant forms, induce protection against H. pylori in experimental animal models. CONCLUSION H. pylori adhesins are known to be promising candidate vaccines against H. pylori. Future research should be carried out on adhesins, in particular, on HpaA.
Collapse
Affiliation(s)
- Jo-Lewis Banga Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nadeem Ullah
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM. A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori. Mol Cell 2020; 80:210-226.e7. [PMID: 33002424 DOI: 10.1016/j.molcel.2020.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.
Collapse
Affiliation(s)
- Sara K Eisenbart
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sandy R Pernitzsch
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sascha Dietrich
- Core Unit Systems Medicine, Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Stahl
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
32
|
Jung KW, Lee KT, Bahn YS. A Signature-Tagged Mutagenesis (STM)-based murine-infectivity assay for Cryptococcus neoformans. J Microbiol 2020; 58:823-831. [PMID: 32989639 DOI: 10.1007/s12275-020-0341-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
Signature-tagged mutagenesis (STM) is a high-throughput genetic technique that can be used to investigate the function of genes by constructing a large number of mutant strains with unique DNA identification tags, pooling them, and screening them for a particular phenotypic trait. STM was first designed for the identification of genes that contribute to the virulence or infectivity of a pathogen in its host. Recently, this method has also been applied for the identification of mutants with specific phenotypes, such as antifungal drug resistance and proliferation. In the present study, we describe an STM method for the identification of genes contributing to the infectivity of Cryptococcus neoformans using a mutant library, in which each strain was tagged with a unique DNA sequence.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup o56212, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
33
|
Ibrahim KA, Helmy OM, Kashef MT, Elkhamissy TR, Ramadan MA. Identification of Potential Drug Targets in Helicobacter pylori Using In Silico Subtractive Proteomics Approaches and Their Possible Inhibition through Drug Repurposing. Pathogens 2020; 9:E747. [PMID: 32932580 PMCID: PMC7558524 DOI: 10.3390/pathogens9090747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
The class 1 carcinogen, Helicobacter pylori, is one of the World Health Organization's high priority pathogens for antimicrobial development. We used three subtractive proteomics approaches using protein pools retrieved from: chokepoint reactions in the BIOCYC database, the Kyoto Encyclopedia of Genes and Genomes, and the database of essential genes (DEG), to find putative drug targets and their inhibition by drug repurposing. The subtractive channels included non-homology to human proteome, essentiality analysis, sub-cellular localization prediction, conservation, lack of similarity to gut flora, druggability, and broad-spectrum activity. The minimum inhibitory concentration (MIC) of three selected ligands was determined to confirm anti-helicobacter activity. Seventeen protein targets were retrieved. They are involved in motility, cell wall biosynthesis, processing of environmental and genetic information, and synthesis and metabolism of secondary metabolites, amino acids, vitamins, and cofactors. The DEG protein pool approach was superior, as it retrieved all drug targets identified by the other two approaches. Binding ligands (n = 42) were mostly small non-antibiotic compounds. Citric, dipicolinic, and pyrophosphoric acid inhibited H. pylori at an MIC of 1.5-2.5 mg/mL. In conclusion, we identified potential drug targets in H. pylori, and repurposed their binding ligands as possible anti-helicobacter agents, saving time and effort required for the development of new antimicrobial compounds.
Collapse
Affiliation(s)
- Kareem A. Ibrahim
- Department of Microbiology & Immunology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; (K.A.I.); (T.R.E.)
| | - Omneya M. Helmy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.T.K.); (M.A.R.)
| | - Mona T. Kashef
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.T.K.); (M.A.R.)
| | - Tharwat R. Elkhamissy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; (K.A.I.); (T.R.E.)
| | - Mohammed A. Ramadan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.T.K.); (M.A.R.)
| |
Collapse
|
34
|
Seib KL, Srikhanta YN, Atack JM, Jennings MP. Epigenetic Regulation of Virulence and Immunoevasion by Phase-Variable Restriction-Modification Systems in Bacterial Pathogens. Annu Rev Microbiol 2020; 74:655-671. [PMID: 32689914 DOI: 10.1146/annurev-micro-090817-062346] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| |
Collapse
|
35
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
Szymczak A, Ferenc S, Majewska J, Miernikiewicz P, Gnus J, Witkiewicz W, Dąbrowska K. Application of 16S rRNA gene sequencing in Helicobacter pylori detection. PeerJ 2020; 8:e9099. [PMID: 32440373 PMCID: PMC7229771 DOI: 10.7717/peerj.9099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is one of the major stomach microbiome components, promoting development of inflammation and gastric cancer in humans. H. pylori has a unique ability to transform into a coccoidal form which is difficult to detect by many diagnostic methods, such as urease activity detection, and even histopathological examination. Here we present a comparison of three methods for H. pylori identification: histological assessment (with eosin, hematoxylin, and Giemsa staining), polymerase chain reaction (PCR) detection of urease (ureA specific primers), and detection by 16S rRNA gene sequencing. The study employed biopsies from the antral part of the stomach (N = 40). All samples were assessed histologically which revealed H. pylori in eight patients. Bacterial DNA isolated from the bioptates was used as a template for PCR reaction and 16S rRNA gene sequencing that revealed H. pylori in 13 and in 20 patients, respectively. Thus, 16S rRNA gene sequencing was the most sensitive method for detection of H. pylori in stomach biopsy samples.
Collapse
Affiliation(s)
- Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stanisław Ferenc
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Joanna Majewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Gnus
- Medical Academy in Wroclaw, Wrocław, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
37
|
Suzuki R, Satou K, Shiroma A, Shimoji M, Teruya K, Matsumoto T, Akada J, Hirano T, Yamaoka Y. Genome-wide mutation analysis of Helicobacter pylori after inoculation to Mongolian gerbils. Gut Pathog 2019; 11:45. [PMID: 31558915 PMCID: PMC6754630 DOI: 10.1186/s13099-019-0326-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori is a pathogenic bacterium that causes various gastrointestinal diseases in the human stomach. H. pylori is well adapted to the human stomach but does not easily infect other animals. As a model animal, Mongolian gerbils are often used, however, the genome of the inoculated H. pylori may accumulate mutations to adapt to the new host. To investigate mutations occurring in H. pylori after infection in Mongolian gerbils, we compared the whole genome sequence of TN2 wild type strain (TN2wt) and next generation sequencing data of retrieved strains from the animals after different lengths of infection. Results We identified mutations in 21 loci of 17 genes of the post-inoculation strains. Of the 17 genes, five were outer membrane proteins that potentially influence on the colonization and inflammation. Missense and nonsense mutations were observed in 15 and 6 loci, respectively. Multiple mutations were observed in three genes. Mutated genes included babA, tlpB, and gltS, which are known to be associated with adaptation to murine. Other mutations were involved with chemoreceptor, pH regulator, and outer membrane proteins, which also have potential to influence on the adaptation to the new host. Conclusions We confirmed mutations in genes previously reported to be associated with adaptation to Mongolian gerbils. We also listed up genes that mutated during the infection to the gerbils, though it needs experiments to prove the influence on adaptation.
Collapse
Affiliation(s)
- Rumiko Suzuki
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Akino Shiroma
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Makiko Shimoji
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Kuniko Teruya
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Takashi Matsumoto
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Junko Akada
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Takashi Hirano
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Yoshio Yamaoka
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan.,3Department of Medicine-Gastroenterology, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030 USA.,Global Oita Medical Advanced Research Center for Health, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| |
Collapse
|
38
|
Zhao H, Xu L, Xu Z, Ding Y, Yu H, Zhang Y, Wu Y, Li B, Ji X. Investigation on the role of gene hp0788 in Helicobacter pylori in infecting gastric epithelial cells. Microb Pathog 2019; 137:103739. [PMID: 31513896 DOI: 10.1016/j.micpath.2019.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/20/2019] [Accepted: 09/08/2019] [Indexed: 11/30/2022]
Abstract
Helicobacter pylori infection can cause a wide range of digestive diseases. Gene hp0788 encodes an outer membrane protein HofF, which can reduce the bacterial adherence to the GES-1 cells and affect pathogenesis of H. pylori. In this study, the role of hp0788 in H. pylori infection was further analyzed. RNA-seq data showed that two genes (hp0523 and hp0539), located on the cagPAI, were down-regulated in Δ0788 mutant. The changes were confirmed through qRT-PCR, and the expression of these two genes will be almost recovered to the normal level in complemented strain. These two genes, hp0523 and hp0539, are known to be necessary for integrated T4SS, which related to CagA translocation and IL-8 induction. In H. pylori infected assay, lower amount of phosphorylated CagA and lower induction of IL-8 were both detected in GES-1 cells infected by Δ0788 mutant, compared with the wild type strain. Meanwhile, these reductions almost recovered to the wild-type level in complemented strain. These results reveal that there is a correlation between hp0788 disruption and CagA/IL-8 decline. Deletion of CagA-encoding gene (hp0547) in Δ0788 mutant was further constructed. The double deleted mutant shows lower IL-8-inducing capability than Δ0788 mutant, indicated the correlation between deficiency of CagA and reduced IL-8 production. These results together imply that disruption of hp0788 might affect the efficiency of T4SS and CagA injection, then weaken the induction of IL-8 in infected GES-1 cells.
Collapse
Affiliation(s)
- Huilin Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Linlin Xu
- Department of Neurology, Second Hospital, Shandong University, Jinan, China
| | - Zheng Xu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Yunfei Ding
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Haonan Yu
- School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Ying Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Yulong Wu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Boqing Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China.
| | - Xiaofei Ji
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China.
| |
Collapse
|
39
|
Dual pathways of tRNA hydroxylation ensure efficient translation by expanding decoding capability. Nat Commun 2019; 10:2858. [PMID: 31253794 PMCID: PMC6599085 DOI: 10.1038/s41467-019-10750-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/30/2019] [Indexed: 11/09/2022] Open
Abstract
In bacterial tRNAs, 5-carboxymethoxyuridine (cmo5U) and its derivatives at the first position of the anticodon facilitate non-Watson-Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. However, their biogenesis and physiological roles remained to be investigated. Using reverse genetics and comparative genomics, we identify two factors responsible for 5-hydroxyuridine (ho5U) formation, which is the first step of the cmo5U synthesis: TrhP (formerly known as YegQ), a peptidase U32 family protein, is involved in prephenate-dependent ho5U formation; and TrhO (formerly known as YceA), a rhodanese family protein, catalyzes oxygen-dependent ho5U formation and bypasses cmo5U biogenesis in a subset of tRNAs under aerobic conditions. E. coli strains lacking both trhP and trhO exhibit a temperature-sensitive phenotype, and decode codons ending in G (GCG and UCG) less efficiently than the wild-type strain. These findings confirm that tRNA hydroxylation ensures efficient decoding during protein synthesis.
Collapse
|
40
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
41
|
Gupta N, Maurya S, Verma H, Verma VK. Unraveling the factors and mechanism involved in persistence: Host-pathogen interactions in Helicobacter pylori. J Cell Biochem 2019; 120:18572-18587. [PMID: 31237031 DOI: 10.1002/jcb.29201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori and humans have one of the most complex relationships in nature. How a bacterium manages to live in one of the harshest and hostile environments is a topic of unraveling mysteries. H. pylori is a prevalent species and it colonizes the human gut of more than 50% of the world population. It infects the epithelial region of antrum and persists there for a long period. Over the time of evolution, H. pylori has developed complex strategies to extend the degree of inflammation in gastric mucosa. H. pylori needs specific adaptations for initial colonization into the host environment like helical shape, flagellar movement, chemotaxis, and the production of urease enzyme that neutralizes acidic environment of the stomach. There are several factors from the bacterium as well as from the host that participate in these complex interactions. On the other hand, to establish the persistent infection, H. pylori escapes the immune system by mimicking the host antigens. This pathogen has the ability to dodge the immune system and then persist there in the form of host cell, which leads to immune tolerance. H. pylori has an ability to manipulate its own pathogen-associated molecular patterns, which leads to an inhibition in the binding with specific pattern recognition receptors of the host to avoid immune cell detection. Also, it manipulates the host metabolic homeostasis in the gastric epithelium. Besides, it has several genes, which may get involved in the acquisition of nutrition from the host to survive longer in the host. Due to the persistence of H. pylori, it causes chronic inflammation and raises the chances of gastric cancer. This review highlights the important elements, which are certainly responsible for the persistence of H. pylori in the human host.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Shweta Maurya
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Harshvardhan Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Vijay K Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| |
Collapse
|
42
|
Xue RY, Guo MF, Guo L, Liu C, Li S, Luo J, Nie L, Ji L, Ma CJ, Chen DQ, Sun S, Jin Z, Zou QM, Li HB. Synthetic Lipopeptide Enhances Protective Immunity Against Helicobacter pylori Infection. Front Immunol 2019; 10:1372. [PMID: 31258538 PMCID: PMC6587705 DOI: 10.3389/fimmu.2019.01372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Over fifty percent of the people around the world is infected with Helicobacter pylori (H. pylori), which is the main cause of gastric diseases such as chronic gastritis and stomach cancer. H. pylori adhesin A (HpaA), which is a surface-located lipoprotein, is essential for bacterial colonization in the gastric mucosa. HpaA had been proposed to be a promising vaccine candidate against H. pylori infection. However, the effect of non-lipidated recombinant HpaA (rHpaA) to stimulate immune response was not very ideal, and the protective effect against H. pylori infection was also limited. Here, we hypothesized that low immunogenicity of rHpaA may attribute to lacking the immunostimulatory properties endowed by the lipid moiety. In this study, two novel lipopeptides, LP1 and LP2, which mimic the terminal structure of the native HpaA (nHpaA), were synthesized and TLR2 activation activity was confirmed in vitro. To investigate whether two novel lipopeptides could improve the protective effect of rHpaA against the infection of H. pylori, groups of mice were immunized either intramuscularly or intranasally with rHpaA together with LP1 or LP2. Compared with rHpaA alone, the bacterial colonization of the mice immunized with rHpaA plus LP2 via intranasal route was significantly decreased and the expression levels of serum IgG2a, IFN-γ, and IL-17 cytokines in spleen lymphocyte culture supernatant increased obviously, indicating that the enhanced protection of LP2 may be associated with elevated specific Th1 and Th17 responses. In conclusion, LP2 has been shown to improve the protective effect of rHpaA against H. pylori infection, which may be closely related to its ability in activating TLR2 by mimicking the terminal structure of nHpaA.
Collapse
Affiliation(s)
- Ruo-Yi Xue
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Mu-Fei Guo
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ling Guo
- Chongqing Technical Center for Drug Evaluation and Certification, Chongqing, China
| | - Chang Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Sun Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiao Luo
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Nie
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lu Ji
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cong-Jia Ma
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Da-Qun Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Si Sun
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhe Jin
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quan-Ming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hai-Bo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Bhattacharya S, Bhattacharya S, Gachhui R, Hazra S, Mukherjee J. U32 collagenase from Pseudoalteromonas agarivorans NW4327: Activity, structure, substrate interactions and molecular dynamics simulations. Int J Biol Macromol 2019; 124:635-650. [DOI: 10.1016/j.ijbiomac.2018.11.206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
44
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
45
|
In silico proteomic and phylogenetic analysis of the outer membrane protein repertoire of gastric Helicobacter species. Sci Rep 2018; 8:15453. [PMID: 30337679 PMCID: PMC6194013 DOI: 10.1038/s41598-018-32476-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter (H.) pylori is an important risk factor for gastric malignancies worldwide. Its outer membrane proteome takes an important role in colonization of the human gastric mucosa. However, in zoonotic non-H. pylori helicobacters (NHPHs) also associated with human gastric disease, the composition of the outer membrane (OM) proteome and its relative contribution to disease remain largely unknown. By means of a comprehensive survey of the diversity and distribution of predicted outer membrane proteins (OMPs) identified in all known gastric Helicobacter species with fully annotated genome sequences, we found genus- and species-specific families known or thought to be implicated in virulence. Hop adhesins, part of the Helicobacter-specific family 13 (Hop, Hor and Hom) were restricted to the gastric species H. pylori, H. cetorum and H. acinonychis. Hof proteins (family 33) were putative adhesins with predicted Occ- or MOMP-family like 18-stranded β-barrels. They were found to be widespread amongst all gastric Helicobacter species only sporadically detected in enterohepatic Helicobacter species. These latter are other members within the genus Helicobacter, although ecologically and genetically distinct. LpxR, a lipopolysaccharide remodeling factor, was also detected in all gastric Helicobacter species but lacking as well from the enterohepatic species H. cinaedi, H. equorum and H. hepaticus. In conclusion, our systemic survey of Helicobacter OMPs points to species and infection-site specific members that are interesting candidates for future virulence and colonization studies.
Collapse
|
46
|
Noncatalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol 2018; 200:JB.00124-18. [PMID: 29866802 DOI: 10.1128/jb.00124-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.
Collapse
|
47
|
Guijarro JA, García-Torrico AI, Cascales D, Méndez J. The Infection Process of Yersinia ruckeri: Reviewing the Pieces of the Jigsaw Puzzle. Front Cell Infect Microbiol 2018; 8:218. [PMID: 29998086 PMCID: PMC6028603 DOI: 10.3389/fcimb.2018.00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Finding the keys to understanding the infectious process of Yersinia ruckeri was not a priority for many years due to the prompt development of an effective biotype 1 vaccine which was used mainly in Europe and USA. However, the gradual emergence of outbreaks in vaccinated fish, which have been reported since 2003, has awakened interest in the mechanism of virulence in this pathogen. Thus, during the last two decades, a large number of studies have considerably enriched our knowledge of many aspects of the pathogen and its interaction with the host. By means of both conventional and a variety of novel strategies, such as cell GFP tagging, bioluminescence imaging and optical projection tomography, it has been possible to determine three putative Y. ruckeri infection routes, the main point of entry for the bacterium being the gill lamellae. Moreover, a wide range of potential virulence factors have been highlighted by specific gene mutagenesis strategies or genome-wide transposon/plasmid insertion-based screening approaches, such us in vivo expression technology (IVET) and signature tagged mutagenesis (STM). Finally, recent proteomic and whole genomic analyses have allowed many of the genes and systems that are potentially implicated in the organism's pathogenicity and its adaptation to the host environmental conditions to be elucidated. Altogether, these studies contribute to a better understanding of the infectious process of Y. ruckeri in fish, which is crucial for the development of more effective strategies for preventing or treating enteric redmouth disease (ERM).
Collapse
Affiliation(s)
- José A Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Ana I García-Torrico
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Desirée Cascales
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Jessica Méndez
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
48
|
Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol 2018; 13:1041-1054. [PMID: 29927340 DOI: 10.2217/fmb-2018-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) has an essential role in the pathogenesis of gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma and gastric cancer. The severity of the host inflammatory responses against the bacteria have been straightly associated with a special bacterial virulence factor, the cag pathogenicity island, which is a type IV secretion system (T4SS) to deliver CagA into the host cells. Besides cag-T4SS, the chromosomes of H. pylori can encode another three T4SSs, including comB, tfs3 and tfs4. In this review, we systematically reviewed the four T4SSs of H. pylori and explored their roles in the pathogenesis of gastroduodenal diseases. The information summarized in this review might provide valuable insights into the pathogenic mechanism for H. pylori.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ying Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
49
|
Rojas-Rengifo DF, Alvarez-Silva MC, Ulloa-Guerrero CP, Nuñez-Velez VL, Del Pilar Delgado M, Aguilera SM, Castro H, Jaramillo CA, Fernando González Barrios A. Intramolecular energies of the cytotoxic protein CagA of Helicobacter pylori as a possible descriptor of strains' pathogenicity level. Comput Biol Chem 2018; 76:17-22. [PMID: 29864542 DOI: 10.1016/j.compbiolchem.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The Helicobacter pylori cytotoxin-associated gene A (CagA) is known for causing gastroduodenal diseases, such as atrophic gastritis and peptic ulcerations. Furthermore Helicobacter pylori CagA positive strains has been reported as one of the main risk factors for gastric cancer (Parsonnet et al., 1997). Structural variations in the CagA structure can alter its affinity with the host proteins, inducing differences in the pathogenicity of H. pylori. CagA N-terminal region is characterized for be conserved among all H. pylori strains since the C-terminal region is characterized by an intrinsically disorder behavior. We generated complete structural models of CagA using different conformations of the C-terminal region for two H. pylori strains. These models contain the same EPIYA (ABC1C2) motifs but different level of pathogenicity: gastric cancer and duodenal ulcer. Using these structural models we evaluated the pathogenicity level of the H. pylori strain, based on the affinity of the interaction with SHP-2 and Grb2 receptors and on the number of interactions with the EPIYA motif. We found that the main differences in the interaction was due to the contributions of certain types of energies from each strain and not from the total energy of the molecule. Specifically, the electrostatic energy, helix dipole energy, Wander Waals clashes, torsional clash, backbone clash and cis bond energy allowed a separation between severe and mild pathology for the interaction of only CagA with SHP2.
Collapse
Affiliation(s)
- Diana F Rojas-Rengifo
- Department of Biological Sciences, Laboratorio de Diagnóstico Molecular y Bioinformática, Universidad de los Andes, Bogotá, Colombia
| | - Maria Camila Alvarez-Silva
- Grupo de Diseño de Productos y Procesos (GDPP), Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Cindy P Ulloa-Guerrero
- Department of Biological Sciences, Laboratorio de Diagnóstico Molecular y Bioinformática, Universidad de los Andes, Bogotá, Colombia
| | - Vanessa Lucía Nuñez-Velez
- Grupo de Diseño de Productos y Procesos (GDPP), Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Maria Del Pilar Delgado
- Department of Biological Sciences, Laboratorio de Diagnóstico Molecular y Bioinformática, Universidad de los Andes, Bogotá, Colombia.
| | - Sonia Milena Aguilera
- Grupo de Diseño de Productos y Procesos (GDPP), Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Harold Castro
- Computing and Systems Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Carlos Alberto Jaramillo
- Department of Biological Sciences, Laboratorio de Diagnóstico Molecular y Bioinformática, Universidad de los Andes, Bogotá, Colombia
| | | |
Collapse
|
50
|
Wuchty S, Müller SA, Caufield JH, Häuser R, Aloy P, Kalkhof S, Uetz P. Proteome Data Improves Protein Function Prediction in the Interactome of Helicobacter pylori. Mol Cell Proteomics 2018; 17:961-973. [PMID: 29414760 DOI: 10.1074/mcp.ra117.000474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Indexed: 01/17/2023] Open
Abstract
Helicobacter pylori is a common pathogen that is estimated to infect half of the human population, causing several diseases such as duodenal ulcer. Despite one of the first pathogens to be sequenced, its proteome remains poorly characterized as about one-third of its proteins have no functional annotation. Here, we integrate and analyze known protein interactions with proteomic and genomic data from different sources. We find that proteins with similar abundances tend to interact. Such an observation is accompanied by a trend of interactions to appear between proteins of similar functions, although some show marked cross-talk to others. Protein function prediction with protein interactions is significantly improved when interactions from other bacteria are included in our network, allowing us to obtain putative functions of more than 300 poorly or previously uncharacterized proteins. Proteins that are critical for the topological controllability of the underlying network are significantly enriched with genes that are up-regulated in the spiral compared with the coccoid form of H. pylori Determining their evolutionary conservation, we present evidence that 80 protein complexes are identical in composition with their counterparts in Escherichia coli, while 85 are partially conserved and 120 complexes are completely absent. Furthermore, we determine network clusters that coincide with related functions, gene essentiality, genetic context, cellular localization, and gene expression in different cellular states.
Collapse
Affiliation(s)
- Stefan Wuchty
- From the ‡Dept. of Computer Science.,§Center for Computational Science.,¶Dept. of Biology.,‖Sylvester Comprehensive Cancer Center, Univ. of Miami, Miami, FL 33156
| | - Stefan A Müller
- **German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - J Harry Caufield
- ‡‡Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VI 23284
| | - Roman Häuser
- §§German Cancer Research Center, 69120 Heidelberg, Germany
| | - Patrick Aloy
- ¶¶Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology. Barcelona, Catalonia, Spain.,‖‖Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research Leipzig, 04318 Leipzig, Germany.,Institute of Bioanalysis, University of Applied Sciences and Arts of Coburg, Friedrich-Streib-Str. 2, 96450 Coburg, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Department of Therapy Validation, 04103 Leipzig, Germany
| | - Peter Uetz
- ‡‡Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VI 23284
| |
Collapse
|