1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Ramadan HKA, Ahmed ZN, AboDief AR, Mohamed ZR, Hamed HM, El-Sherif TH. Human immunodeficiency virus and Helicobacter pylori coinfection: Immune modulation and eradication failure. Trop Doct 2025:494755251339521. [PMID: 40340469 DOI: 10.1177/00494755251339521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The relationship between Human Immunodeficiency Virus (HIV) and Helicobacter pylori (H. pylori) is bidirectional and complex. Helicobacter pylori, by inducing local gastric and systemic immune responses, counteracts HIV invasion to CD4+ cells and other inflammatory cells and can reactivate HIV in latently infected immune cells. Human Immunodeficiency Virus infection, by reducing secretion of pro-inflammatory cytokines, reduces the incidence of H. pylori-induced gastric pathology. Gastric lymphoma regressed in some cases of people living with HIV (PLWH) after H. pylori eradication. Triple therapy for H. pylori could be associated with a strong immune. Treatment for both H. pylori and HIV can reduce the activation of either organism. However, the primary resistance to antibiotics such as levofloxacin, clarithromycin and metronidazole is higher among PLWH. This review highlights the need for further research and guidelines on the appropriate antibiotics in HIV-H. pylori co-infection particularly in PLWH who receive multiple antibiotic prophylaxis.
Collapse
Affiliation(s)
- Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Zeinab N Ahmed
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdel-Rahman AboDief
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Zeinab R Mohamed
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hager M Hamed
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Taha H El-Sherif
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Yi M, Chen S, Yi X, Zhang F, Zhou X, Zeng M, Song H. Helicobacter pylori infection process: from the molecular world to clinical treatment. Front Microbiol 2025; 16:1541140. [PMID: 40083792 PMCID: PMC11903457 DOI: 10.3389/fmicb.2025.1541140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic microorganism intricately associated with chronic gastrointestinal disorders and gastric cancer. H. pylori can cause various upper digestive tract diseases, including chronic gastritis, peptic ulcer, gastroesophageal reflux disease, and gastric cancer. The bacterium exhibits a variety of pathogenic mechanisms, including colonization, the expression of virulence factors, and the development of drug resistance. This article presents a comprehensive review of H. pylori pathogenesis, emphasizing recent research advancements concerning the cytotoxin-associated gene A, vacuolating cytotoxin, outer membrane proteins, and other virulence factors. Additionally, it examines the molecular mechanisms underlying drug resistance and evaluates the efficacy of conventional therapeutic approaches. Recently, researchers have attempted novel therapeutic regimens, including probiotics and Chinese medicine-assisted therapies, to enhance therapeutic effects. This article aimed to offer an overview of the academic community's comprehension of H. pylori infection and to highlight the current treatment options.
Collapse
Affiliation(s)
- Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Tsai HJ, Yeh KH, Lin CW, Wu MS, Liou JM, Hsu PN, Zeng YS, Wei MF, Shun CT, Wang HP, Chen LT, Cheng AL, Kuo SH. Cooperative participation of CagA and NFATc1 in the pathogenesis of antibiotics-responsive gastric MALT lymphoma. Cancer Cell Int 2024; 24:383. [PMID: 39558403 PMCID: PMC11575159 DOI: 10.1186/s12935-024-03552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND This study aimed to explore whether cytotoxin-associated gene A (CagA) can inhibit cell cycle progression by activating nuclear factor of activated T cells (NFAT) in lymphoma B cells and contribute to Helicobacter pylori eradication (HPE) responsiveness (complete remission [CR] after HPE) in gastric mucosa-associated lymphoid tissue (MALT) lymphoma. MATERIALS AND METHODS We co-cultured three B-lymphoma cell lines (MA-1, OCI-Ly3, and OCI-Ly7) with HP strains (derived from HPE-responsive gastric MALT lymphoma) and evaluated the expression patterns of CagA, phosphorylated (p)-CagA (CagAP-Tyr), and CagA-signaling molecules, cell-cycle inhibitors, p-NFATc1 (Ser172), and NFATc1 using western blotting. Furthermore, we evaluated the association between nuclear NFATc1 expression in the tumor cells of 91 patients who received first-line HPE (59 patients with HPE responsiveness and 32 without HPE responsiveness) and HPE responsiveness and CagA expression in tumor cells. RESULTS In HP strains co-cultured with B cell lymphoma cell lines, CagA was translocated to the nucleus through tyrosine phosphorylation (CagAP-Tyr) and simultaneously dephosphorylated NFATc1, subsequently causing nuclear NFATc1 translocation and stimulating the expression of p-SHP-2/p-ERK/Bcl-xL. Activated NFATc1 causes G1 cell cycle retardation in both MA-1 and OCI-Ly3 cells by triggering p21 and p27 production. Nuclear NFATc1 localization was significantly associated with the presence of CagA in gastric MALT lymphomas (80% [41/51] vs. 33% [13/40]; p < 0.001) and with HPE responsiveness (73% [43/59] vs. 25% [8/32]; p < 0.001). Patients exhibiting both the presence of CagA and nuclear NFATc1 localization responded more rapidly to HPE than those without (median interval to CR, 4.00 vs. 6.00 months, p = 0.003). CONCLUSIONS Our findings indicated that CagA and NFATc1 cooperatively participate in the lymphomagenesis of HPE-responsive gastric MALT lymphoma.
Collapse
Affiliation(s)
- Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oncology, National Cheng-Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ping-Ning Hsu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Shin Zeng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Feng Wei
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Po Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oncology, National Cheng-Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan.
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
5
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Abadi T, Teklu T, Wondmagegn T, Alem M, Desalegn G. CD4 + T cell count and HIV-1 viral load dynamics positively impacted by H. pylori infection in HIV-positive patients regardless of ART status in a high-burden setting. Eur J Med Res 2024; 29:178. [PMID: 38494500 PMCID: PMC10946129 DOI: 10.1186/s40001-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND There is a widespread co-infection of HIV and Helicobacter pylori (H. pylori) globally, particularly in developing countries, and it has been suggested that this co-infection may affect the course of HIV disease. However, the interplay between H. pylori infection and HIV disease progression is not fully elucidated. In this study, we investigated the effect of H. pylori co-infection on CD4+ T cell count and HIV viral load dynamics in HIV-positive individuals in a high co-endemic setting. METHODS A comparative cross-sectional study was conducted among 288 HIV-positive and 175 HIV-negative individuals, both with and without H. pylori infection. Among HIV-positive participants, 195 were on antiretroviral therapy (ART) and 93 were ART-naïve. CD4+ T cell count and HIV-1 viral load were measured and compared between H. pylori-infected and -uninfected individuals, taking into account different HIV and ART status. RESULT Our study demonstrated that individuals infected with H. pylori had a significantly higher CD4+ T cell count compared to uninfected controls among both HIV-negative and HIV-positive participants, regardless of ART therapy. Conversely, HIV/H. pylori co-infected participants had lower HIV-1 viral load than those without H. pylori infection. Linear regression analysis further confirmed a positive association between H. pylori infection, along with other clinical factors such as BMI, ART, and duration of therapy, with CD4+ T cell count while indicating an inverse relationship with HIV-1 viral load in HIV-positive patients. Additionally, factors such as khat chewing, age and WHO clinical stage of HIV were associated with reduced CD4+ T cell count and increased HIV-1 viral load. CONCLUSION Our study demonstrates that H. pylori co-infection was associated with higher CD4+ T cell count and lower HIV-1 viral load in HIV-positive patients, regardless of ART status. These findings show a positive effect of H. pylori co-infection on the dynamics of HIV-related immunological and virological parameters. Further studies are needed to elucidate the underlying mechanisms of the observed effects.
Collapse
Affiliation(s)
- Tesfay Abadi
- Department of Medical Laboratory Science, Adigrat University, Adigrat, Ethiopia
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Takele Teklu
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia.
- School of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Sodo, Ethiopia.
| | - Tadelo Wondmagegn
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Meseret Alem
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Girmay Desalegn
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
7
|
Engelsberger V, Gerhard M, Mejías-Luque R. Effects of Helicobacter pylori infection on intestinal microbiota, immunity and colorectal cancer risk. Front Cell Infect Microbiol 2024; 14:1339750. [PMID: 38343887 PMCID: PMC10853882 DOI: 10.3389/fcimb.2024.1339750] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.
Collapse
Affiliation(s)
| | | | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Meliț LE, Mărginean CO, Borka Balas R. The Most Recent Insights into the Roots of Gastric Cancer. Life (Basel) 2024; 14:95. [PMID: 38255710 PMCID: PMC10817233 DOI: 10.3390/life14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the most common bacterial infection worldwide, usually being acquired during childhood, and its persistence into adulthood represents one of the main contributors of gastric carcinogenesis. Based on these statements, it would be of great importance to know if the most early premalignant transformation occurs in children or later since, this would enable the development of effective anti-tumorigenesis strategies. The interplay between H. pylori virulence factors, the host's responses modified by this infection, and the gastric microecology are complex and eventually lead to the development of gastric cancer in susceptible individuals. Several biomarkers were identified as major contributors of this long-lasting process, such as pepsinogens, gastrin 17, lipid-, glucose- and iron-metabolism parameters, immunity players, aberrant bacterial DNA methylation, H. pylori virulence factors, and hallmarks of gastric dysbiosis. Several of these biomarkers were also identified in children with H. pylori infection, independently of the presence of premalignant lesions, which were also proven to be present in a subgroup of H. pylori-infected children, especially those carrying extremely virulent strains. Therefore, the most incipient premalignant gastric changes might indeed occur early during childhood, opening a promising research gate for further studies to delineate the border between infection and cancer.
Collapse
Affiliation(s)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureș, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (L.E.M.)
| | | |
Collapse
|
9
|
Marzhoseyni Z, Mousavi MJ, Ghotloo S. Helicobacter pylori antigens as immunomodulators of immune system. Helicobacter 2024; 29:e13058. [PMID: 38380545 DOI: 10.1111/hel.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the most prevalent human pathogens and the leading cause of chronic infection in almost half of the population in the world (~59%). The bacterium is a major leading cause of chronic gastritis, gastric and duodenal ulcers, and two type of malignancies, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Despite the immune responses mounted by the host, the bacteria are not cleared from the body resulting in a chronic infection accompanied by a chronic inflammation. Herein, a review of the literature discussing H. pylori antigens modulating the immune responses is presented. The mechanisms that are involved in the modulation of innate immune response, include modulation of recognition by pattern recognition receptors (PRRs) such as modulation of recognition by toll like receptors (TLR)4 and TLR5, modulation of phagocytic function, and modulation of phagocytic killing mediated by reactive oxygen species (ROS) and nitric oxide (NO). On the other hands, H. pylori modulates acquired immune response by the induction of tolerogenic dendritic cells (DCs), modulation of apoptosis, induction of regulatory T cells, modulation of T helper (Th)1 response, and modulation of Th17 response.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Luo D, Luo H, Yan X, Lei A, He J, Liao Y, Peng K, Li X, Ye Y, Chen L, Zeng Z, Xiao H, Zeng Y. Mycoplasma genitalium Protein of Adhesion Suppresses T Cell Activation via CypA-CaN-NFAT Pathway. Microbiol Spectr 2023; 11:e0450322. [PMID: 37074201 PMCID: PMC10269615 DOI: 10.1128/spectrum.04503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
Mycoplasma genitalium is a prokaryotic microorganism that causes urogenital tract infections. M. genitalium protein of adhesion (MgPa) was essential for M. genitalium attachment and subsequent invasion into host cells. Our prior research confirmed that Cyclophilin A (CypA) was the binding receptor for MgPa and MgPa-CypA interaction can lead to the production of inflammatory cytokines. In this study, we revealed that the recombinant MgPa (rMgPa) could inhibit the CaN-NFAT signaling pathway to reduce the level of IFN-γ, IL-2, CD25, and CD69 in Jurkat cells by binding to the CypA receptor. Moreover, rMgPa inhibited the expressions of IFN-γ, IL-2, CD25, and CD69 in primary mouse T cells. Likewise, the expressions of these T cells activation-related molecules in CypA-siRNA-transfected cells and CypA-/- mouse primary T cell was strengthened by rMgPa. These findings showed that rMgPa suppressed T cell activation by downregulating the CypA-CaN-NFAT pathway, and as a result, acted as an immunosuppressive agent. IMPORTANCE Mycoplasma genitalium is a sexually transmitted bacterium that can co-infect with other infections and causes nongonococcal urethritis in males, cervicitis, pelvic inflammatory disease, premature birth, and ectopic pregnancy in women. The adhesion protein of M. genitalium (MgPa) is the primary virulence factor in the complicated pathogenicity of M. genitalium. This research proved that MgPa could interact with host cell Cyclophilin A (CypA) and prevent T cell activation by inhibiting Calcineurin (CaN) phosphorylation and NFAT nuclear translocation, which clarified the immunosuppression mechanism of M. genitalium to host T cells. Therefore, this study can provide a new idea that CypA can be used for a therapeutic or prophylactic target for M. genitalium infection.
Collapse
Affiliation(s)
- Dan Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Aihua Lei
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Jun He
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yating Liao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Xia Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Hua Xiao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| |
Collapse
|
12
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
13
|
Wanford JJ, Odendall C. Ca 2+-calmodulin signalling at the host-pathogen interface. Curr Opin Microbiol 2023; 72:102267. [PMID: 36716574 DOI: 10.1016/j.mib.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
Multiple eukaryotic cell processes are modulated by calcium ions (Ca2+). As such, Ca2+ is emerging as a crucial regulator of innate immunity in multicellular organisms. In particular, recent studies have identified roles of Ca2+ signalling at the host-bacteria interface. Following microbial exposure, Ca2+ signals mobilised from the extracellular milieu or intracellular stores are transduced into cell physiological responses. However, during infection with host-adapted pathogens, Ca2+ signals are often atypical, due to the activities of virulence factors, with varied consequences for both the pathogen and the host cell. In this review, we describe the Ca2+-dependent host factors regulating antibacterial immunity, in addition to bacterial effectors that promote, inhibit, or co-opt Ca2+-calmodulin signalling to promote infection.
Collapse
Affiliation(s)
- Joseph J Wanford
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Charlotte Odendall
- School of Immunology and Microbial Sciences, Kings College London, London, UK.
| |
Collapse
|
14
|
Increased IL-17A Serum Levels and Gastric Th17 Cells in Helicobacter pylori-Infected Patients with Gastric Premalignant Lesions. Cancers (Basel) 2023; 15:cancers15061662. [PMID: 36980548 PMCID: PMC10046233 DOI: 10.3390/cancers15061662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Helicobacter pylori infection is characterized by an inflammatory infiltrate that might be an important antecedent of gastric cancer. The purpose of this study was to evaluate whether interleukin (IL)-17 inflammation is elicited by gastric T cells in Helicobacter pylori patients with gastric intestinal metaplasia and dysplasia (IM/DYS). We also investigated the serum IL-17A levels in Helicobacter pylori patients with gastric intestinal metaplasia and dysplasia, and patients with Helicobacter pylori non-atrophic gastritis (NAG). Methods: the IL-17 cytokine profile of gastric T cells was investigated in six patients with IM/DYS and Helicobacter pylori infection. Serum IL-17A levels were measured in 45 Helicobacter pylori-infected IM/DYS patients, 45 Helicobacter pylori-infected patients without IM/DYS and in 45 healthy controls (HC). Results: gastric T cells from all IM/DYS patients with Helicobacter pylori were able to proliferate in response to Helicobacter pylori and to produce IL-17A. The Luminex analysis revealed that IL-17A levels were significantly increased in Helicobacter pylori IM/DYS patients compared to healthy controls and to Helicobacter pylori gastritis patients without IM/DYS (452.34 ± 369.13 pg/mL, 246.82 ± 156.06 pg/mL, 169.26 ± 73.82 pg/mL, respectively; p < 0.01, p < 0.05). Conclusions: the results obtained indicate that Helicobacter pylori is able to drive gastric IL-17 inflammation in IM/DYS Helicobacter pylori-infected patients, and that IL-17A serum levels are significantly increased in Helicobacter pylori-infected patients with IM/DYS.
Collapse
|
15
|
Ruamsap N, Riyapa D, Janesomboon S, Stevens JM, Pichyangkul S, Pattanapanyasat K, Demons ST, Stevens MP, Korbsrisate S. Lymphostatin, a virulence factor of attaching and effacing Escherichia coli, inhibits proliferation and cytokine responses of human T cells in a manner associated with cell cycle arrest but not apoptosis or necrosis. Front Cell Infect Microbiol 2022; 12:941939. [PMID: 35967844 PMCID: PMC9373022 DOI: 10.3389/fcimb.2022.941939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Donporn Riyapa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sathit Pichyangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Department for Research and Development, Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Samandra T. Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| |
Collapse
|
16
|
Capitani N, Baldari CT. The Immunological Synapse: An Emerging Target for Immune Evasion by Bacterial Pathogens. Front Immunol 2022; 13:943344. [PMID: 35911720 PMCID: PMC9325968 DOI: 10.3389/fimmu.2022.943344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Similar to other pathogens, bacteria have developed during their evolution a variety of mechanisms to overcome both innate and acquired immunity, accounting for their ability to cause disease or chronic infections. The mechanisms exploited for this critical function act by targeting conserved structures or pathways that regulate the host immune response. A strategic potential target is the immunological synapse (IS), a highly specialized structure that forms at the interface between antigen presenting cells (APC) and T lymphocytes and is required for the establishment of an effective T cell response to the infectious agent and for the development of long-lasting T cell memory. While a variety of bacterial pathogens are known to impair or subvert cellular processes essential for antigen processing and presentation, on which IS assembly depends, it is only recently that the possibility that IS may be a direct target of bacterial virulence factors has been considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a powerful, novel means of immune evasion by bacterial pathogens. In this review we will present a brief overview of the mechanisms used by bacteria to affect IS assembly by targeting APCs. We will then summarize what has emerged from the current handful of studies that have addressed the direct impact of bacterial virulence factors on IS assembly in T cells and, based on the strategic cellular processes targeted by these factors in other cell types, highlight potential IS-related vulnerabilities that could be exploited by these pathogens to evade T cell mediated immunity.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
17
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
18
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
19
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Bakhti SZ, Latifi-Navid S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol 2021; 21:258. [PMID: 34556055 PMCID: PMC8461988 DOI: 10.1186/s12866-021-02315-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic Helicobacter pylori infection is a critical risk factor for gastric cancer (GC). However, only 1-3 % of people with H. pylori develop GC. In gastric carcinogenesis, non-H. pylori bacteria in the stomach might interact with H. pylori. Bacterial dysbiosis in the stomach can strengthen gastric neoplasia development via generating tumor-promoting metabolites, DNA damaging, suppressing antitumor immunity, and activating oncogenic signaling pathways. Other bacterial species may generate short-chain fatty acids like butyrate that may inhibit carcinogenesis and inflammation in the human stomach. The present article aimed at providing a comprehensive overview of the effects of gut microbiota and H. pylori on the development of GC. Next, the potential mechanisms of intestinal microbiota were discussed in gastric carcinogenesis. We also disserted the complicated interactions between H. pylori, intestinal microbiota, and host in gastric carcinogenesis, thus helping us to design new strategies for preventing, diagnosing, and treating GC.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran.
| |
Collapse
|
21
|
Effect of Helicobacter pylori and Helminth Coinfection on the Immune Response to Mycobacterium tuberculosis. Curr Microbiol 2021; 78:3351-3371. [PMID: 34251513 DOI: 10.1007/s00284-021-02604-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis remains one of the main causes of morbidity and mortality worldwide despite decades of efforts to eradicate the disease. Although the immune response controls the infection in most infected individuals (90%), the ability of the bacterium to persist throughout the host's life leads to a risk of reactivation. Underlying conditions including human immunodeficiency virus (HIV) infection, organ transplantation, and immunosuppressive therapies are considered risk factors for progression to active disease. However, many individuals infected with Mycobacterium tuberculosis may develop clinical disease in the absence of underlying immunosuppression. It is also possible that unknown conditions may drive the progression to disease. The human microbiota can be an important modulator of the immune system; it can not only trigger inflammatory disorders, but also drive the response to other infectious diseases. In developing countries, chronic mucosal infections with Helicobacter pylori and helminths may be particularly important, as these infections frequently coexist throughout the host's life. However, little is known about the interactions of these pathogens with the immune system and their effects on M. tuberculosis clinical disease, if any. In this review, we discuss the potential effects of H. pylori and helminth co-infections on the immune response to M. tuberculosis. This may contribute to our understanding of host-pathogen interactions and in designing new strategies for the prevention and control of tuberculosis.
Collapse
|
22
|
Ahmed AAQ, Qi F, Zheng R, Xiao L, Abdalla AME, Mao L, Bakadia BM, Liu L, Atta OM, Li X, Shi Z, Yang G. The impact of ExHp-CD (outer membrane vesicles) released from Helicobacter pylori SS1 on macrophage RAW 264.7 cells and their immunogenic potential. Life Sci 2021; 279:119644. [PMID: 34048813 DOI: 10.1016/j.lfs.2021.119644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Bacterial-derived extracellular vesicles could play a major role in attenuating and treating diseases. They play a major anti-infection role by modulating immune responses against pathogens and preventing infection by inhibiting pathogen localization and proliferation. In this study, outer membrane vesicles (ExHp-CD) released by Helicobacter pylori SS1 (H. pylori) and total antigens isolated from H. pylori SS1 (AgHp) were evaluated for their immunogenic potential and their effect on macrophage RAW 264.7 cells. Results demonstrated that both ExHp-CD and AgHp induced T helper 2 (Th2) immune response, which was reported to be important in immune protection against H. pylori infections. Both ExHp-CD and AgHp produced high levels of IL-10 and IL-4, while no significant levels of IL-12 p70 or IFN-γ were detected. However, ExHp-CD showed a better effect on macrophage RAW 264.7 cells compared to AgHp. Macrophage RAW 264.7 cells stimulated with 5, and 10 μg/mL of ExHp-CD showed an increased ratio of CD206 (M2 phenotype marker) and a decreased ratio of CD86 (M1 phenotype marker). Moreover, results suggested that the immunogenic effect that ExHp-CD possesses was attributed to their cargo of Epimerase_2 domain-containing protein (Epi_2D), Probable malate:quinone oxidoreductase (Pro_mqo), and Probable cytosol aminopeptidase (Pro_ca). Results demonstrated that ExHp-CD possesses an immunological activity to induce Th2 immune response against H. pylori infection with results comparable to AgHp. However, ExHp-CD showed higher efficacy regarding safety, biocompatibility, lack of toxicity, and hemocompatibility. Thus, it could serve as an immunogenic candidate with more desired characteristics.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ahmed M E Abdalla
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum 1660/11111, Sudan
| | - Lin Mao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Omar Mohammad Atta
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
23
|
Farsimadan M, Heravi FS, Emamvirdizadeh A, Moradi S, Iranpour H, Tabasi E, Eskandarion MR, Azizian R, Tabasi M. Evaluation of Helicobacter pylori Genotypes in Obese Patients with Gastric Ulcer, Duodenal Ulcer, and Gastric Cancer: An Observational Study. Dig Dis 2021; 40:355-361. [PMID: 34010829 DOI: 10.1159/000517262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Obesity is a well-known risk factor for a variety of gastrointestinal disorders (GID). Helicobacter pylori is associated with different GID, such as gastric cancer and chronic gastritis. In this study, we investigated the prevalence of dominant genotypes in H. pylori isolated from obese patients diagnosed with gastric ulcer, duodenal ulcer, and gastric cancer. METHODS A total of 222 H. pylori-positive samples were collected from patients with obesity. GID and gastric cancer were identified by endoscopy and histopathology, respectively. Three biopsy specimens from the gastric antrum were obtained from each patient for culture tests, histological examination, and identification of vacuolating cytotoxin A (vacA) (vacA s1, vacA s2, vacA m1, vacA m2, vacA s1m1 vacA s1m2, vacA s2m1, and vacA s2m2), cagA, cagE, iceA1, oipA, dupA, and babA2 using polymerase chain reaction. RESULTS vacA, cagE, cagA, iceA1, oipA, dupA, and babA2 genes were detected in 222 (100%), 171 (77%), 161 (72.5%), 77 (34.6%), 77 (34.6%), 137 (61%), and 69 (31%) patients with obesity, respectively. Our findings revealed that vacA, iceA1, oipA, and babA2 were significantly associated with a higher risk of GID, while cagE, cagA, and dupA indicated no correlation with the development of GID. Also, in the combination of s- and m-region genotypes, s1m2 (79%) was the most frequently identified genotype in patients with obesity. A significant association was also found between cagA and the presence of vacA genotypes (except for vacA m1 and babA2). CONCLUSIONS This study indicated the high prevalence of different virulence genes in H. pylori isolated from obese patients and supported the significant role of H. pylori in the development of GID.
Collapse
Affiliation(s)
- Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Samaneh Moradi
- Department of Biology, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Hamidreza Iranpour
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran.,Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Tabasi
- Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Reza Eskandarion
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.,Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizian
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Tabasi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.,Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| |
Collapse
|
24
|
Palrasu M, Zaika E, El-Rifai W, Que J, Zaika AI. Role of Bacterial and Viral Pathogens in Gastric Carcinogenesis. Cancers (Basel) 2021; 13:1878. [PMID: 33919876 PMCID: PMC8070847 DOI: 10.3390/cancers13081878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. In contrast to many other tumor types, gastric carcinogenesis is tightly linked to infectious events. Infections with Helicobacter pylori (H. pylori) bacterium and Epstein-Barr virus (EBV) are the two most investigated risk factors for GC. These pathogens infect more than half of the world's population. Fortunately, only a small fraction of infected individuals develops GC, suggesting high complexity of tumorigenic processes in the human stomach. Recent studies suggest that the multifaceted interplay between microbial, environmental, and host genetic factors underlies gastric tumorigenesis. Many aspects of these interactions still remain unclear. In this review, we update on recent discoveries, focusing on the roles of various gastric pathogens and gastric microbiome in tumorigenesis.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Elena Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Alexander I. Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| |
Collapse
|
25
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Holland RL, Bosi KD, Harpring GH, Luo J, Wallig M, Phillips H, Blanke SR. Chronic in vivo exposure to Helicobacter pylori VacA: Assessing the efficacy of automated and long-term intragastric toxin infusion. Sci Rep 2020; 10:9307. [PMID: 32518315 PMCID: PMC7283276 DOI: 10.1038/s41598-020-65787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (Hp) secrete VacA, a diffusible pore-forming exotoxin that is epidemiologically linked to gastric disease in humans. In vitro studies indicate that VacA modulates gastric epithelial and immune cells, but the in vivo contributions of VacA as an important determinant of Hp colonization and chronic infection remain poorly understood. To identify perturbations in the stomachs of C57BL/6 or BALB/C mice that result specifically from extended VacA exposure, we evaluated the efficacy of administering purified toxin using automated infusion via surgically-implanted, intragastric catheters. At 3 and 30 days of interrupted infusion, VacA was detected in association with gastric glands. In contrast to previously-reported tissue damage resulting from short term exposure to Hp extracts administered by oral gavage, extended infusion of VacA did not damage stomach, esophageal, intestinal, or liver tissue. However, several alterations previously reported during Hp infection were detected in animals infused with VacA, including reduction of the gastric mucus layer, and increased vacuolation of parietal cells. VacA infusion invoked an immune response, as indicated by the detection of circulating VacA antibodies. These foundational studies support the use of VacA infusion for identifying gastric alterations that are unambiguously attributable to long-term exposure to toxin.
Collapse
Affiliation(s)
- Robin L Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristopher D Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Gregory H Harpring
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jiayi Luo
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Matthew Wallig
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Heidi Phillips
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Steven R Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
27
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
28
|
Nonhelical Helicobacter pylori Mutants Show Altered Gland Colonization and Elicit Less Gastric Pathology than Helical Bacteria during Chronic Infection. Infect Immun 2019; 87:IAI.00904-18. [PMID: 31061142 DOI: 10.1128/iai.00904-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Half of all humans harbor Helicobacter pylori in their stomachs. Helical cell shape is thought to facilitate H. pylori's ability to bore into the protective mucus layer in a corkscrew-like motion, thereby enhancing colonization of the stomach. H. pylori cell shape mutants show impaired colonization of the mouse stomach, highlighting the importance of cell shape in infection. To gain a deeper understanding of how helical cell morphology promotes host colonization by H. pylori, we used three-dimensional confocal microscopy to visualize the clinical isolate PMSS1 and an isogenic straight-rod mutant (Δcsd6) within thick longitudinal mouse stomach sections. We also performed volumetric image analysis to quantify the number of bacteria residing within corpus and antral glands in addition to measuring total CFU. We found that straight rods show attenuation during acute colonization of the stomach (1 day or 1 week postinfection) as measured by total CFU. Our quantitative imaging revealed that wild-type bacteria extensively colonized antral glands at 1 week postinfection, while csd6 mutants showed variable colonization of the antrum at this time point. During chronic infection (1 or 3 months postinfection), total CFU were highly variable but similar for wild-type and straight rods. Both wild-type and straight rods persisted and expanded in corpus glands during chronic infection. However, the straight rods showed reduced inflammation and disease progression. Thus, helical cell shape contributes to tissue interactions that promote inflammation during chronic infection, in addition to facilitating niche acquisition during acute infection.
Collapse
|
29
|
Lee MH, Yang JY, Cho Y, Woo HJ, Kwon HJ, Kim DH, Park M, Moon C, Yeon MJ, Kim HW, Seo WD, Kim SH, Kim JB. Inhibitory Effects of Menadione on Helicobacter pylori Growth and Helicobacter pylori-Induced Inflammation via NF-κB Inhibition. Int J Mol Sci 2019; 20:ijms20051169. [PMID: 30866458 PMCID: PMC6429389 DOI: 10.3390/ijms20051169] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
H. pylori is classified as a group I carcinogen by WHO because of its involvement in gastric cancer development. Several reports have suggested anti-bacterial effects of menadione, although the effect of menadione on major virulence factors of H. pylori and H. pylori-induced inflammation is yet to be elucidated. In this study, therefore, we demonstrated that menadione has anti-H. pylori and anti-inflammatory effects. Menadione inhibited growth of H. pylori reference strains and clinical isolates. Menadione reduced expression of vacA in H. pylori, and translocation of VacA protein into AGS (gastric adenocarcinoma cell) was also decreased by menadione treatment. This result was concordant with decreased apoptosis in AGS cells infected with H. pylori. Moreover, cytotoxin-associated protein A (CagA) translocation into H. pylori-infected AGS cells was also decreased by menadione. Menadione inhibited expression of several type IV secretion system (T4SS) components, including virB2, virB7, virB8, and virB10, that are responsible for translocation of CagA into host cells. In particular, menadione inhibited nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and thereby reduced expression of the proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α in AGS as well as in THP-1 (monocytic leukemia cell) cell lines. Collectively, these results suggest the anti-bacterial and anti-inflammatory effects of menadione against H. pylori.
Collapse
Affiliation(s)
- Min Ho Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea.
| | - Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Yoonjung Cho
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea.
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Hye Jin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Do Hyun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Min Park
- Department of Biomedical Laboratory Science, Daekyeung University, Gyeongsan 38547, Korea.
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Min Ji Yeon
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung 25451, Korea.
| | - Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Woo-Duck Seo
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju-Gun 55365, Korea.
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| |
Collapse
|
30
|
Capitani N, Codolo G, Vallese F, Minervini G, Grassi A, Cianchi F, Troilo A, Fischer W, Zanotti G, Baldari CT, de Bernard M, D'Elios MM. The lipoprotein HP1454 of Helicobacter pylori regulates T-cell response by shaping T-cell receptor signalling. Cell Microbiol 2019; 21:e13006. [PMID: 30646431 DOI: 10.1111/cmi.13006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (HP) is a Gram-negative bacterium that chronically infects the stomach of more than 50% of human population and represents a major cause of gastric cancer, gastric lymphoma, gastric autoimmunity, and peptic ulcer. It still remains to be elucidated, which HP virulence factors are important in the development of gastric disorders. Here, we analysed the role of the HP protein HP1454 in the host-pathogen interaction. We found that a significant proportion of T cells isolated from HP patients with chronic gastritis and gastric adenocarcinoma proliferated in response to HP1454. Moreover, we demonstrated in vivo that HP1454 protein drives Th1/Th17 inflammatory responses. We further analysed the in vitro response of human T cells exposed either to an HP wild-type strain or to a strain with a deletion of the hp1454 gene, and we revealed that HP1454 triggers the T-cell antigen receptor-dependent signalling and lymphocyte proliferation, as well as the CXCL12-dependent cell adhesion and migration. Our study findings prove that HP1454 is a crucial bacterial factor that exerts its proinflammatory activity by directly modulating the T-cell response. The relevance of these results can be appreciated by considering that compelling evidence suggest that chronic gastric inflammation, a condition that paves the way to HP-associated diseases, is dependent on T cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Gaia Codolo
- Department of Biology, University of Padua, Padua, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Alessia Grassi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Cianchi
- Department of Surgery, University of Florence, Florence, Italy
| | - Arianna Troilo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Wolfgang Fischer
- Max von Pettenkofer-Institutfür Hygiene und Medizinische Mikrobiologie, Ludwig Maximilian University of Munich, Munich, Germany
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | | | - Mario M D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
31
|
Reyes VE, Peniche AG. Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Curr Top Microbiol Immunol 2019; 421:229-265. [PMID: 31123892 DOI: 10.1007/978-3-030-15138-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell-cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Alex G Peniche
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
32
|
Immunohistochemical Expression of Xenophagy Proteins in Helicobacter pylori and None Helicobacter pylori Gastritis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Matsunaga S, Nishiumi S, Tagawa R, Yoshida M. Alterations in metabolic pathways in gastric epithelial cells infected with Helicobacter pylori. Microb Pathog 2018; 124:122-129. [PMID: 30138760 DOI: 10.1016/j.micpath.2018.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 01/04/2023]
Abstract
Helicobacter pylori (H. pylori), which is a spiral-shaped Gram-negative microaerobic bacterium, is a causative pathogen. The entry of H. pylori into gastric epithelial cells involves various host signal transduction events, and its virulence factors can also cause a variety of biological responses. In this study, AGS human gastric carcinoma cells were infected with CagA-positive H. pylori strain ATCC43504, and then the metabolites in the AGS cells after the 2-, 6- and 12-h infections were analyzed by GC/MS-based metabolomic analysis. Among 67 metabolites detected, 11 metabolites were significantly altered by the H. pylori infection. The metabolite profiles of H. pylori-infected AGS cells were evaluated on the basis of metabolite pathways, and it was found that glycolysis, tricarboxylic acid (TCA) cycle, and amino acid metabolism displayed characteristic changes in the H. pylori-infected AGS cells. At 2 h post-infection, the levels of many metabolites related to TCA cycle and amino acid metabolism were lower in H. pylori-infected AGS cells than in the corresponding uninfected AGS cells. On the contrary, after 6-h and 12-h infections the levels of most of these metabolites were higher in the H. pylori-infected AGS cells than in the corresponding uninfected AGS cells. In addition, it was shown that the H. pylori infection might regulate the pathways related to isocitrate dehydrogenase and asparagine synthetase. These metabolite alterations in gastric epithelial cells might be involved in H. pylori-induced biological responses; thus, our findings are important for understanding H. pylori-related gastric diseases.
Collapse
Affiliation(s)
- Shinsuke Matsunaga
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Ryoma Tagawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan; AMED-CREST, AMED, Kobe, Japan.
| |
Collapse
|
34
|
Direct Manipulation of T Lymphocytes by Proteins of Gastrointestinal Bacterial Pathogens. Infect Immun 2018; 86:IAI.00683-17. [PMID: 29339462 DOI: 10.1128/iai.00683-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal bacterial infection represents a significant threat to human health, as well as a burden on food animal production and welfare. Although there is advanced knowledge about the molecular mechanisms underlying pathogenesis, including the development of immune responses to these pathogens, gaps in knowledge persist. It is well established that gastrointestinal bacterial pathogens produce a myriad of proteins that affect the development and effectiveness of innate immune responses. However, relatively few proteins that directly affect lymphocytes responsible for humoral or cell-mediated immunity and memory have been identified. Here, we review factors produced by gastrointestinal bacterial pathogens that have direct T cell interactions and what is known about their functions and mechanisms of action. T cell-interacting bacterial proteins that have been identified to date mainly target three major T cell responses: activation and expansion, chemotaxis, or apoptosis. Further, the requirement for more focused studies to identify and understand additional mechanisms used by bacteria to directly affect the T cell immune response and how these may contribute to pathogenesis is highlighted. Increased knowledge in this area will help to drive development of better interventions in prevention and treatment of gastrointestinal bacterial infection.
Collapse
|
35
|
Sutton P, Boag JM. Status of vaccine research and development for Helicobacter pylori. Vaccine 2018; 37:7295-7299. [PMID: 29627231 PMCID: PMC6892279 DOI: 10.1016/j.vaccine.2018.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Gastric adenocarcinoma is globally the third leading cause of death due to malignancy, with the bulk of this disease burden being suffered by low and middle income countries (LMIC), especially in Asia. The majority of these cancers develop as a result of a chronic gastritis that arises in response to infection with the stomach-dwelling bacterium, Helicobacter pylori. A vaccine against this pathogen would therefore be a powerful tool for preventing gastric adenocarcinoma. However, notwithstanding a proof-of-concept that vaccination can protect children from acquisition of H. pylori infection, there are currently no advanced vaccine candidates with only a single vaccine in Phase I clinical trial. Further, the development of a vaccine against H. pylori is not a current strategic priority of major pharmaceutical companies despite the large global disease burden. Given the involvement of such companies is likely to be critical for late stage development, there is therefore a need for an increased appreciation of the burden of this disease in LMIC and more investment to reinvigorate research in H. pylori vaccine Research and Development.
Collapse
Affiliation(s)
- Philip Sutton
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Joanne M Boag
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
36
|
Hock BD, McKenzie JL, Keenan JI. Helicobacter pylori outer membrane vesicles inhibit human T cell responses via induction of monocyte COX-2 expression. Pathog Dis 2018; 75:3738186. [PMID: 28430970 DOI: 10.1093/femspd/ftx034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 12/30/2022] Open
Abstract
The modulation of T cell responses by Helicobacter pylori is thought to potentiate both H. pylori persistence and development of gastric pathologies including cancer. Release of outer membrane vesicles (OMV) by H. pylori provides a potential vehicle for modulation of the immune system. Although OMV are thought to have T cell suppressive activity, this has not yet been demonstrated. Their suppressive activity was investigated in this study using the responses of peripheral blood mononuclear cells (PBMC) to T cell stimuli as a readout. We demonstrate that addition of OMV to PBMC significantly inhibits subsequent T cell proliferation in a cyclo-oxygenase-2 (COX-2)-dependent manner. Addition of OMV did not significantly modulate PBMC apoptosis, but induced strong expression of COX-2 by the monocytes present and significantly increased levels of PGE2 and IL-10. These effects were independent of vacuolating cytotoxin expression. Together, these findings demonstrate that OMV can suppress human T cell responses and that the predominant mechanism is not through a direct effect on the T cells but results from the induction of COX-2 expression in monocytes. This increased COX-2 activity may modulate not only H. pylori-directed immune responses but also wider immune responses.
Collapse
Affiliation(s)
- Barry D Hock
- Haematology Research Group, Christchurch Hospital and Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Judith L McKenzie
- Haematology Research Group, Christchurch Hospital and Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Jacqueline I Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
37
|
Patrussi L, Capitani N, Cattaneo F, Manganaro N, Gamberucci A, Frezzato F, Martini V, Visentin A, Pelicci PG, D'Elios MM, Trentin L, Semenzato G, Baldari CT. p66Shc deficiency enhances CXCR4 and CCR7 recycling in CLL B cells by facilitating their dephosphorylation-dependent release from β-arrestin at early endosomes. Oncogene 2018; 37:1534-1550. [PMID: 29326436 DOI: 10.1038/s41388-017-0066-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
Neoplastic cell traffic abnormalities are central to the pathogenesis of chronic lymphocytic leukemia (CLL). Enhanced CXC chemokine receptor-4 (CXCR4) and chemokine receptor-7 (CCR7) recycling contributes to the elevated surface levels of these receptors on CLL cells. Here we have addressed the role of p66Shc, a member of the Shc family of protein adaptors the expression of which is defective in CLL cells, in CXCR4/CCR7 recycling. p66Shc reconstitution in CLL cells reduced CXCR4/CCR7 recycling, lowering their surface levels and attenuating B-cell chemotaxis, due to their accumulation in Rab5+ endosomes as serine-phosphoproteins bound to β-arrestin. This results from the ability of p66Shc to inhibit Ca2+ and PP2B-dependent CXCR4/CCR7 dephosphorylation and β-arrestin release. We also show that ibrutinib, a Btk inhibitor that promotes leukemic cell mobilization from lymphoid organs, reverses the CXCR4/CCR7 recycling abnormalities in CLL cells by increasing p66Shc expression. These results, identifying p66Shc as a regulator of CXCR4/CCR7 recycling in B cells, underscore the relevance of its deficiency to CLL pathogenesis and provide new clues to the mechanisms underlying the therapeutic effects of ibrutinib.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy.,Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Noemi Manganaro
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Federica Frezzato
- Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Veronica Martini
- Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Andrea Visentin
- Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | | | - Mario M D'Elios
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Livio Trentin
- Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Gianpietro Semenzato
- Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | | |
Collapse
|
38
|
Nakano M, Yahiro K, Yamasaki E, Kurazono H, Akada J, Yamaoka Y, Niidome T, Hatakeyama M, Suzuki H, Yamamoto T, Moss J, Isomoto H, Hirayama T. Helicobacter pylori VacA, acting through receptor protein tyrosine phosphatase α, is crucial for CagA phosphorylation in human duodenum carcinoma cell line AZ-521. Dis Model Mech 2017; 9:1473-1481. [PMID: 27935824 PMCID: PMC5200893 DOI: 10.1242/dmm.025361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a major cause of gastroduodenal diseases, produces vacuolating cytotoxin (VacA) and cytotoxin-associated gene A (CagA), which seem to be involved in virulence. VacA exhibits pleiotropic actions in gastroduodenal disorders via its specific receptors. Recently, we found that VacA induced the phosphorylation of cellular Src kinase (Src) at Tyr418 in AZ-521 cells. Silencing of receptor protein tyrosine phosphatase (RPTP)α, a VacA receptor, reduced VacA-induced Src phosphorylation. Src is responsible for tyrosine phosphorylation of CagA at its Glu-Pro-Ile-Tyr-Ala (EPIYA) variant C (EPIYA-C) motif in Helicobacterpylori-infected gastric epithelial cells, resulting in binding of CagA to SHP-2 phosphatase. Challenging AZ-521 cells with wild-type H. pylori induced phosphorylation of CagA, but this did not occur when challenged with a vacA gene-disrupted mutant strain. CagA phosphorylation was observed in cells infected with a vacA gene-disrupted mutant strain after addition of purified VacA, suggesting that VacA is required for H. pylori-induced CagA phosphorylation. Following siRNA-mediated RPTPα knockdown in AZ-521 cells, infection with wild-type H. pylori and treatment with VacA did not induce CagA phosphorylation. Taken together, these results support our conclusion that VacA mediates CagA phosphorylation through RPTPα in AZ-521 cells. These data indicate the possibility that Src phosphorylation induced by VacA is mediated through RPTPα, resulting in activation of Src, leading to CagA phosphorylation at Tyr972 in AZ-521 cells. Summary: The authors show a newly identified role of VacA in Helicobacter pylori infection through induction of tyrosine phosphorylation of CagA acting through the VacA receptor RPTPα.
Collapse
Affiliation(s)
- Masayuki Nakano
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan .,Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Eiki Yamasaki
- Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hisao Kurazono
- Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka 1-1, Yufu, Oita 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka 1-1, Yufu, Oita 879-5593, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Takuro Niidome
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Hidekazu Suzuki
- Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
39
|
YAKOOB J, ABBAS Z, AHMAD Z, TARIQ K, AWAN S, MUSTAFA K, KHAN R. Gastric lymphoma: association with Helicobacter pylori outer membrane protein Q (HopQ) and cytotoxic-pathogenicity activity island (CPAI) genes. Epidemiol Infect 2017; 145:3468-3476. [PMID: 29143724 PMCID: PMC9148747 DOI: 10.1017/s0950268817002023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
B-cell non-Hodgkin lymphoma (B-cell NHL) is the second commonest malignancy in the stomach. We determined the distribution of Helicobacter pylori outer membrane protein Q (HopQ) allelic type, cytotoxin-associated gene (cag)-pathogenicity activity island (cag-PAI) and vacuolation activating cytotoxin A (vacA) genes, respectively, in patients with B-cell NHL. We also compared them with their distribution in non-ulcer dyspepsia (NUD). H. pylori was cultured from gastric biopsy tissue obtained at endoscopy. Polymerase chain reaction was performed. Of 170 patients enrolled, 114 (63%) had NUD and 56 (37%) had B-cell NHL. HopQ type 1 was positive in 66 (58%) in NUD compared with 46 (82%) (P = 0·002) in B-cell NHL; HopQ type 2 was positive in 93 (82%) with NUD compared with 56 (100%) (P < 0·001) in B-cell NHL. Multiple HopQ types were present in 46 (40%) in NUD compared with 46 (82%) (P < 0·001) in B-cell NHL. CagA was positive in 48 (42%) in NUD vs. 50 (89%) (P < 0·001) in B-cell NHL; cagT was positive in 35 (31%) in NUD vs. 45 (80%) (P < 0·001) in B-cell NHL; left end of the cagA gene (LEC)1 was positive in 23 (20%) in NUD vs. 43 (77%) (P < 0·001) in B-cell NHL. VacAs1am1 positive in B-cell NHL in 48 (86%) (P < 0·001) vs. 50 (44%) in NUD, while s1am2 was positive in 20 (17%) in NUD vs. 46 (82%) (P < 0·001) in B-cell NHL. H. pylori strains with multiple HopQ allelic types, truncated cag-PAI evidenced by expression of cagA, cagT and cag LEC with virulent vacAs1 alleles are associated with B-cell NHL development.
Collapse
Affiliation(s)
- J. YAKOOB
- Department of Medicine, Aga Khan University, Karachi-74800, Pakistan
- Biological Biomedical Sciences, Aga Khan University, Karachi-74800, Pakistan
| | - Z. ABBAS
- Department of Medicine, Aga Khan University, Karachi-74800, Pakistan
| | - Z. AHMAD
- Department of Pathology, Aga Khan University, Karachi-74800, Pakistan
| | - K. TARIQ
- Department of Medicine, Aga Khan University, Karachi-74800, Pakistan
| | - S. AWAN
- Department of Medicine, Aga Khan University, Karachi-74800, Pakistan
| | - K. MUSTAFA
- Faculty of Health Sciences, Aga Khan University, Karachi-74800, Pakistan
| | - R. KHAN
- Department of Medicine, Aga Khan University, Karachi-74800, Pakistan
| |
Collapse
|
40
|
Blevins LK, Parsonage D, Oliver MB, Domzalski E, Swords WE, Alexander-Miller MA. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling. Front Immunol 2017; 8:1610. [PMID: 29230212 PMCID: PMC5711787 DOI: 10.3389/fimmu.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN) was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Melissa B Oliver
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Elizabeth Domzalski
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
41
|
McClain MS, Beckett AC, Cover TL. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins (Basel) 2017; 9:toxins9100316. [PMID: 29023421 PMCID: PMC5666363 DOI: 10.3390/toxins9100316] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori VacA is a channel-forming toxin unrelated to other known bacterial toxins. Most H. pylori strains contain a vacA gene, but there is marked variation among strains in VacA toxin activity. This variation is attributable to strain-specific variations in VacA amino acid sequences, as well as variations in the levels of VacA transcription and secretion. In this review, we discuss epidemiologic studies showing an association between specific vacA allelic types and gastric cancer, as well as studies that have used animal models to investigate VacA activities relevant to gastric cancer. We also discuss the mechanisms by which VacA-induced cellular alterations may contribute to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
42
|
Mima K, Ogino S, Nakagawa S, Sawayama H, Kinoshita K, Krashima R, Ishimoto T, Imai K, Iwatsuki M, Hashimoto D, Baba Y, Sakamoto Y, Yamashita YI, Yoshida N, Chikamoto A, Ishiko T, Baba H. The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surg Oncol 2017; 26:368-376. [PMID: 29113654 DOI: 10.1016/j.suronc.2017.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/09/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
More than 100 trillion microorganisms inhabit the human intestinal tract and play important roles in health conditions and diseases, including cancer. Accumulating evidence demonstrates that specific bacteria and bacterial dysbiosis in the gastrointestinal tract can potentiate the development and progression of gastrointestinal tract neoplasms by damaging DNA, activating oncogenic signaling pathways, producing tumor-promoting metabolites such as secondary bile acids, and suppressing antitumor immunity. Other bacterial species have been shown to produce short-chain fatty acids such as butyrate, which can suppress inflammation and carcinogenesis in the gastrointestinal tract. Consistent with these lines of evidence, clinical studies using metagenomic analyses have shown associations of specific bacteria and bacterial dysbiosis with gastrointestinal tract cancers, including esophageal, gastric, and colorectal cancers. Emerging data demonstrate that intestinal bacteria can modulate the efficacy of cancer chemotherapies and novel targeted immunotherapies such as anti-CTLA4 and anti-CD274 therapies, the process of absorption, and the occurrence of complications after gastrointestinal surgery. A better understanding of the mechanisms by which the gut microbiota influence tumor development and progression in the intestine would provide opportunities to develop new prevention and treatment strategies for patients with gastrointestinal tract cancers by targeting the intestinal microflora.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shuji Ogino
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Koichi Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Ryuichi Krashima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Daisuke Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Ishiko
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
43
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
44
|
Mejías-Luque R, Gerhard M. Immune Evasion Strategies and Persistence of Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:53-71. [PMID: 28124149 DOI: 10.1007/978-3-319-50520-6_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori infection is commonly acquired during childhood, can persist lifelong if not treated, and can cause different gastric pathologies, including chronic gastritis, peptic ulcer disease, and eventually gastric cancer. H. pylori has developed a number of strategies in order to cope with the hostile conditions found in the human stomach as well as successful mechanisms to evade the strong innate and adaptive immune responses elicited upon infection. Thus, by manipulating innate immune receptors and related signaling pathways, inducing tolerogenic dendritic cells and inhibiting effector T cell responses, H. pylori ensures low recognition by the host immune system as well as its persistence in the gastric epithelium. Bacterial virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin A, or gamma-glutamyltranspeptidase have been extensively studied in the context of bacterial immune escape and persistence. Further, the bacterium possesses other factors that contribute to immune evasion. In this chapter, we discuss in detail the main evasion and persistence strategies evolved by the bacterium as well as the specific bacterial virulence factors involved.
Collapse
Affiliation(s)
- Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany. .,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
45
|
Floch P, Mégraud F, Lehours P. Helicobacter pylori Strains and Gastric MALT Lymphoma. Toxins (Basel) 2017; 9:toxins9040132. [PMID: 28397767 PMCID: PMC5408206 DOI: 10.3390/toxins9040132] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
This article summarizes the main findings concerning Helicobacter pylori associated with gastric MALT lymphoma (GML). Considered together, GML strains based on their virulence factor profile appear to be less virulent than those associated with peptic ulcers or gastric adenocarcinoma. A particular Lewis antigen profile has been identified in GML strains and could represent an alternative adaptive mechanism to escape the host immune response thereby allowing continuous antigenic stimulation of infiltrating lymphocytes.
Collapse
Affiliation(s)
- Pauline Floch
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
| | - Francis Mégraud
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
| | - Philippe Lehours
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
| |
Collapse
|
46
|
Tavares R, Pathak SK. Helicobacter pylori Secreted Protein HP1286 Triggers Apoptosis in Macrophages via TNF-Independent and ERK MAPK-Dependent Pathways. Front Cell Infect Microbiol 2017; 7:58. [PMID: 28293545 PMCID: PMC5329642 DOI: 10.3389/fcimb.2017.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 01/10/2023] Open
Abstract
Macrophages constitute a powerful line of defense against H. pylori. The final disease outcome is highly dependent on the bacterial ability to modulate the effector functions of activated macrophages. Here, we report that H. pylori secreted protein HP1286 is a novel regulator of macrophage responses. Differential expression and release of HP1286 homologues were observed among H. pylori strains. Recombinant purified HP1286 (rHP1286) had the ability to bind to primary human monocyte-derived macrophages (MDM) and macrophage cell lines. Exposure to rHP1286 induced apoptosis in macrophages in a dose- and time-dependent manner. Although interaction of rHP1286 was observed for several other cell types, such as human monocytes, differentiated neutrophil-like HL60 cells, and the T lymphocyte Jurkat cell line, rHP1286 failed to induce apoptosis under similar conditions, indicating a macrophage-specific effect of the protein. A mutant strain of H. pylori lacking HP1286 protein expression was significantly impaired in its ability to induce apoptosis in macrophages. Significantly higher caspase 3 activity was detected in rHP1286-challenged macrophages. Furthermore, rHP1286-induced macrophages apoptosis was not inhibited in the presence of neutralizing antibodies against TNF. These observations indicate that rHP1286 induced a caspase-dependent and TNF-independent macrophage apoptosis. Pre-treatment of macrophages with U0126, an inhibitor of the ERK MAPK signaling pathway significantly reduced rHP1286-induced apoptosis. Furthermore, nuclear translocation of ERK and phosphorylation of c-Fos was detected in rHP1286-treated macrophages. These results provide functional insight into the potential role of HP1286 during H. pylori infection. Considering the ability of HP1286 to induce macrophage apoptosis, the protein could possibly help in the bacterial escape from the activated macrophages and persistence in the stomach.
Collapse
Affiliation(s)
- Raquel Tavares
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
47
|
A Nonoligomerizing Mutant Form of Helicobacter pylori VacA Allows Structural Analysis of the p33 Domain. Infect Immun 2016; 84:2662-70. [PMID: 27382020 PMCID: PMC4995914 DOI: 10.1128/iai.00254-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly β-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the β-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the β-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.
Collapse
|
48
|
Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA Toxin Biology. Toxins (Basel) 2016; 8:toxins8060173. [PMID: 27271669 PMCID: PMC4926140 DOI: 10.3390/toxins8060173] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.
Collapse
Affiliation(s)
- Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
49
|
Yahiro K, Hirayama T, Moss J, Noda M. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors. Toxins (Basel) 2016; 8:toxins8050152. [PMID: 27187473 PMCID: PMC4885067 DOI: 10.3390/toxins8050152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, Building 10, Room 6D03, MSC 1590, Bethesda, MD 20892-1590, USA.
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
50
|
Khalilpour A, Kazemzadeh-Narbat M, Tamayol A, Oklu R, Khademhosseini A. Biomarkers and diagnostic tools for detection of Helicobacter pylori. Appl Microbiol Biotechnol 2016; 100:4723-34. [PMID: 27084783 DOI: 10.1007/s00253-016-7495-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|