1
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu Z, Liang W, Pan Y. Complement-coagulation crosstalk in idiopathic membranous nephropathy: The potential pathogenesis and therapeutic perspective. Autoimmun Rev 2025; 24:103763. [PMID: 39914678 DOI: 10.1016/j.autrev.2025.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Idiopathic membranous nephropathy (IMN) is a glomerular disease that is prevalent in elderly males. The pathogenesis of IMN includes abnormal autoimmunity and complement activation, both of which leading to the damage of the glomerular filtration structure. Meanwhile, due to the pathological changes in the kidney, certain coagulation-related proteins are leaked from urine, resulting in the imbalance of coagulation homeostasis. Recent studies have indicated the interaction between complement and coagulation systems, while the aberration of both is common in IMN. In this review, we summarize the subsistent and underlying pathogenesis that ensue from complement-coagulation crosstalk and present the emerging evidence in this evolving field.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Wei Liang
- Department of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
3
|
Setarehaseman A, Mohammadi A, Maitta RW. Thrombocytopenia in Sepsis. Life (Basel) 2025; 15:274. [PMID: 40003683 PMCID: PMC11857489 DOI: 10.3390/life15020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Platelets, traditionally known for their role in hemostasis, have emerged as key players in immune response and inflammation. Sepsis, a life-threatening condition characterized by systemic inflammation, often presents with thrombocytopenia, which at times, can be significant. Platelets contribute to the inflammatory response by interacting with leukocytes, endothelial cells, and the innate immune system. However, excessive platelet activation and consumption can lead to thrombocytopenia and exacerbate the severity of sepsis. Understanding the multifaceted roles of platelets in sepsis is crucial for developing effective therapeutic strategies. Targeting platelet-mediated inflammatory responses and promoting platelet production may offer potential avenues for improving outcomes in septic patients with thrombocytopenia. Future research should focus on elucidating the mechanisms underlying platelet dysfunction in sepsis and exploring novel therapeutic approaches to optimize platelet function and mitigate inflammation. This review explores the intricate relationship between platelets, inflammation, and thrombosis in the context of sepsis.
Collapse
Affiliation(s)
- Alireza Setarehaseman
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Abbas Mohammadi
- Department of Internal Medicine, Valley Health System, Las Vegas, NV 89119, USA;
| | - Robert W. Maitta
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| |
Collapse
|
4
|
Meza Monge K, Ardon-Lopez A, Pratap A, Idrovo JP. Targeting Inflammation After Hemorrhagic Shock as a Molecular and Experimental Journey to Improve Outcomes: A Review. Cureus 2025; 17:e77776. [PMID: 39981454 PMCID: PMC11841828 DOI: 10.7759/cureus.77776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Hemorrhagic shock continues to be a major contributor to trauma-related fatalities globally, posing a significant and intricate pathophysiological challenge. The condition is marked by injury and blood loss, which activate molecular cascades that can quickly become harmful. The inflammatory response exhibits a biphasic pattern, beginning with a hyper-inflammatory phase that transitions into immunosuppression, posing significant obstacles to effective therapeutic interventions. This review article explores the intricate molecular mechanisms driving inflammation in hemorrhagic shock, emphasizing cellular signaling pathways, endothelial dysfunction, and immune activation. We discuss the role of molecular biomarkers in tracking disease progression and stratifying risk, with a focus on markers of endothelial dysfunction and inflammatory mediators as potential prognostic tools. Additionally, we assess therapeutic strategies, spanning traditional approaches like hemostatic resuscitation to advanced immunomodulatory treatments. Despite promising advancements in molecular monitoring and targeted therapies, challenges persist in bridging experimental findings with clinical applications. Future efforts must prioritize understanding the dynamic progression of inflammatory pathways and refining the timing of interventions to improve outcomes in hemorrhagic shock management.
Collapse
Affiliation(s)
- Kenneth Meza Monge
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Astrid Ardon-Lopez
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Colorado, Aurora, USA
| | - Akshay Pratap
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| |
Collapse
|
5
|
Kokoris S, Polyviou A, Evangelidis P, Grouzi E, Valsami S, Tragiannidis K, Gialeraki A, Tsakiris DA, Gavriilaki E. Thrombosis in Paroxysmal Nocturnal Hemoglobinuria (PNH): From Pathogenesis to Treatment. Int J Mol Sci 2024; 25:12104. [PMID: 39596172 PMCID: PMC11594924 DOI: 10.3390/ijms252212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Paroxysmal Nocturnal Hemoglobinuria (PNH) constitutes a rare bone marrow failure syndrome characterized by hemolytic anemia, thrombotic events (TEs), and bone marrow aplasia of variable degrees. Thrombosis is one of the major clinical manifestations of the disease, affecting up to 40% of individuals with PNH. Venous thrombosis is more prevalent, affecting mainly unusual sites, such as intrabdominal and hepatic veins. TEs might be the first clinical manifestation of PNH. Complement activation, endothelial dysfunction, hemolysis, impaired bioavailability of nitric oxide, and activation of platelets and neutrophils are implicated in the pathogenesis of TEs in PNH patients. Moreover, a vicious cycle involving the coagulation cascade, complement system, and inflammation cytokines, such as interleukin-6, is established. Complement inhibitors, such as eculizumab and ravulizumab (C5 inhibitors), have revolutionized the care of patients with PNH. C5 inhibitors should be initiated in patients with PNH and thrombosis, while they constitute a great prophylactic measure for TEs in those individuals. Anticoagulants, such as warfarin and low-molecular-weight heparin, and, in selected cases, direct oral anticoagulants (DOACs) should be used in combination with C5 inhibitors in patients who develop TEs. Novel complement inhibitors are considered an alternative treatment option, especially for those who develop extravascular or breakthrough hemolysis when terminal inhibitors are administered.
Collapse
Affiliation(s)
- Styliani Kokoris
- Laboratory of Hematology and Blood Bank Unit, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.K.); (A.G.)
| | - Antri Polyviou
- Department of Hematology and Lymphoma, BMT Unit, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (K.T.)
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece;
| | - Serena Valsami
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Konstantinos Tragiannidis
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (K.T.)
| | - Argyri Gialeraki
- Laboratory of Hematology and Blood Bank Unit, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.K.); (A.G.)
| | - Dimitrios A. Tsakiris
- Department of Hemostasis and Thrombosis, University of Basel, 4001 Basel, Switzerland;
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (K.T.)
| |
Collapse
|
6
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
7
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Rayes J, Brill A. Hot under the clot: venous thrombogenesis is an inflammatory process. Blood 2024; 144:477-489. [PMID: 38728383 DOI: 10.1182/blood.2023022522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Venous thrombosis (VT) is a serious medical condition in which a blood clot forms in deep veins, often causing limb swelling and pain. Current antithrombotic therapies carry significant bleeding risks resulting from targeting essential coagulation factors. Recent advances in this field have revealed that the cross talk between the innate immune system and coagulation cascade is a key driver of VT pathogenesis, offering new opportunities for potential therapeutic interventions without inducing bleeding complications. This review summarizes and discusses recent evidence from preclinical models on the role of inflammation in VT development. We highlight the major mechanisms by which endothelial cell activation, Weibel-Palade body release, hypoxia, reactive oxygen species, inflammasome, neutrophil extracellular traps, and other immune factors cooperate to initiate and propagate VT. We also review emerging clinical data describing anti-inflammatory approaches as adjuncts to anticoagulation in VT treatment. Finally, we identify key knowledge gaps and future directions that could maximize the benefit of anti-inflammatory therapies in VT. Identifying and targeting the inflammatory factors driving VT, either at the endothelial cell level or within the clot, may pave the way for new therapeutic possibilities for improving VT treatment and reducing thromboembolic complications without increasing bleeding risk.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Kang YH, Varghese PM, Aiyan AA, Pondman K, Kishore U, Sim RB. Complement-Coagulation Cross-talk: Factor H-mediated regulation of the Complement Classical Pathway activation by fibrin clots. Front Immunol 2024; 15:1368852. [PMID: 38933264 PMCID: PMC11199686 DOI: 10.3389/fimmu.2024.1368852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.
Collapse
Affiliation(s)
- Yu-Hoi Kang
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- MediMabBio Inc., Pangyo Business Growth Centre, Gyeonggi-do, Republic of Korea
| | - Praveen M. Varghese
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, Netherlands
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Robert B. Sim
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Guo WY, Wang GQ, Kong LQ, Sun LJ, Xu XY, Cheng WR, Dong HR, Cheng H. Complement system is overactivated in patients with IgA nephropathy after COVID-19. Clin Immunol 2024; 263:110232. [PMID: 38701960 DOI: 10.1016/j.clim.2024.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.
Collapse
Affiliation(s)
- Wei-Yi Guo
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Guo-Qin Wang
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Ling-Qiang Kong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Li-Jun Sun
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Xiao-Yi Xu
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Wen-Rong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Hong-Rui Dong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Hong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China.
| |
Collapse
|
11
|
Bo Y, Lu Q, Li B, Sha R, Yu H, Miao C. The role of platelets in central hubs of inflammation: A literature review. Medicine (Baltimore) 2024; 103:e38115. [PMID: 38728509 PMCID: PMC11081549 DOI: 10.1097/md.0000000000038115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Platelets are increasingly recognized for their multifaceted roles in inflammation beyond their traditional involvement in haemostasis. This review consolidates knowledge on platelets as critical players in inflammatory responses. This study did an extensive search of electronic databases and identified studies on platelets in inflammation, focusing on molecular mechanisms, cell interactions, and clinical implications, emphasizing recent publications. Platelets contribute to inflammation via surface receptors, release of mediators, and participation in neutrophil extracellular trap formation. They are implicated in diseases like atherosclerosis, rheumatoid arthritis, and sepsis, highlighting their interaction with immune cells as pivotal in the onset and resolution of inflammation. Platelets are central to regulating inflammation, offering new therapeutic targets for inflammatory diseases. Future research should explore specific molecular pathways of platelets in inflammation for therapeutic intervention.
Collapse
Affiliation(s)
- Yan Bo
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Qingyang Lu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR of China
| | - Beilei Li
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ren Sha
- School of Economics and Management, Henan Polytechnic University, Jiaozuo, China
| | - Haodong Yu
- School of Economic Crime Investigation, Jiangxi Police Academy, Nanchang, China
| | - Chuhan Miao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR of China
| |
Collapse
|
12
|
Thom CS, Davenport P, Fazelinia H, Soule-Albridge E, Liu ZJ, Zhang H, Feldman HA, Ding H, Roof J, Spruce LA, Ischiropoulos H, Sola-Visner M. Quantitative label-free mass spectrometry reveals content and signaling differences between neonatal and adult platelets. J Thromb Haemost 2024; 22:1447-1462. [PMID: 38160730 PMCID: PMC11055671 DOI: 10.1016/j.jtha.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Recent clinical studies have shown that transfusions of adult platelets increase morbidity and mortality in preterm infants. Neonatal platelets are hyporesponsive to agonist stimulation, and emerging evidence suggests developmental differences in platelet immune functions. OBJECTIVES This study was designed to compare the proteome and phosphoproteome of resting adult and neonatal platelets. METHODS We isolated resting umbilical cord blood-derived platelets from healthy full-term neonates (n = 8) and resting blood platelets from healthy adults (n = 6) and compared protein and phosphoprotein contents using data-independent acquisition mass spectrometry. RESULTS We identified 4770 platelet proteins with high confidence across all samples. Adult and neonatal platelets were clustered separately by principal component analysis. Adult platelets were significantly enriched in immunomodulatory proteins, including β2 microglobulin and CXCL12, whereas neonatal platelets were enriched in ribosomal components and proteins involved in metabolic activities. Adult platelets were enriched in phosphorylated GTPase regulatory enzymes and proteins participating in trafficking, which may help prime them for activation and degranulation. Neonatal platelets were enriched in phosphorylated proteins involved in insulin growth factor signaling. CONCLUSION Using label-free data-independent acquisition mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation between neonatal and adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hossein Fazelinia
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erin Soule-Albridge
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Haorui Zhang
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hua Ding
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer Roof
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lynn A Spruce
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Kumari P, Panigrahi AR, Yadav P, Beura SK, Singh SK. Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:347-379. [PMID: 38762274 DOI: 10.1016/bs.apcsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Pooja Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
14
|
Xie HG, Jiang LP, Tai T, Ji JZ, Mi QY. The Complement System and C4b-Binding Protein: A Focus on the Promise of C4BPα as a Biomarker to Predict Clopidogrel Resistance. Mol Diagn Ther 2024; 28:189-199. [PMID: 38261250 DOI: 10.1007/s40291-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
The complement system plays a dual role in the body, either as a first-line defense barrier when balanced between activation and inhibition or as a potential driver of complement-associated injury or diseases when unbalanced or over-activated. C4b-binding protein (C4BP) was the first circulating complement regulatory protein identified and it functions as an important complement inhibitor. C4BP can suppress the over-activation of complement components and prevent the complement system from attacking the host cells through the binding of complement cleavage products C4b and C3b, working in concert as a cofactor for factor I in the degradation of C4b and C3b, and consequently preventing or reducing the assembly of C3 convertase and C5 convertase, respectively. C4BP, particularly C4BP α-chain (C4BPα), exerts its unique inhibitory effects on complement activation and opsonization, systemic inflammation, and platelet activation and aggregation. It has long been acknowledged that crosstalk or interplay exists between the complement system and platelets. Our unpublished preliminary data suggest that circulating C4BPα exerts its antiplatelet effects through inhibition of both complement activity levels and complement-induced platelet reactivity. Plasma C4BPα levels appear to be significantly higher in patients sensitive to, rather than resistant to, clopidogrel, and we suggest that a plasma C4BPα measurement could be used to predict clopidogrel resistance in the clinical settings.
Collapse
Affiliation(s)
- Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
15
|
Costantini TW, Kornblith LZ, Pritts T, Coimbra R. The intersection of coagulation activation and inflammation after injury: What you need to know. J Trauma Acute Care Surg 2024; 96:347-356. [PMID: 37962222 PMCID: PMC11001294 DOI: 10.1097/ta.0000000000004190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Affiliation(s)
- Todd W Costantini
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (T.W.C.), UC San Diego School of Medicine, San Diego; Department of Surgery (L.Z.K.), Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California; Department of Surgery (T.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio; and Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California
| | | | | | | |
Collapse
|
16
|
Tohidi-Esfahani I, Mittal P, Isenberg D, Cohen H, Efthymiou M. Platelets and Thrombotic Antiphospholipid Syndrome. J Clin Med 2024; 13:741. [PMID: 38337435 PMCID: PMC10856779 DOI: 10.3390/jcm13030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Antiphospholipid antibody syndrome (APS) is an autoimmune disorder characterised by thrombosis and the presence of antiphospholipid antibodies (aPL): lupus anticoagulant and/or IgG/IgM anti-β2-glycoprotein I and anticardiolipin antibodies. APS carries significant morbidity for a relatively young patient population from recurrent thrombosis in any vascular bed (arterial, venous, or microvascular), often despite current standard of care, which is anticoagulation with vitamin K antagonists (VKA). Platelets have established roles in thrombosis at any site, and platelet hyperreactivity is clearly demonstrated in the pathophysiology of APS. Together with excess thrombin generation, platelet activation and aggregation are the common end result of all the pathophysiological pathways leading to thrombosis in APS. However, antiplatelet therapies play little role in APS, reserved as a possible option of low dose aspirin in addition to VKA in arterial or refractory thrombosis. This review outlines the current evidence and mechanisms for excessive platelet activation in APS, how it plays a central role in APS-related thrombosis, what evidence for antiplatelets is available in clinical outcomes studies, and potential future avenues to define how to target platelet hyperreactivity better with minimal impact on haemostasis.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- Haematology Department, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Prabal Mittal
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Hannah Cohen
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - Maria Efthymiou
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| |
Collapse
|
17
|
Noce D, Foco L, Orth-Höller D, König E, Barbieri G, Pietzner M, Ghasemi-Semeskandeh D, Coassin S, Fuchsberger C, Gögele M, Del Greco M F, De Grandi A, Summerer M, Wheeler E, Langenberg C, Lass-Flörl C, Pramstaller PP, Kronenberg F, Würzner R, Pattaro C. Genetic determinants of complement activation in the general population. Cell Rep 2024; 43:113611. [PMID: 38159276 DOI: 10.1016/j.celrep.2023.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
Complement is a fundamental innate immune response component. Its alterations are associated with severe systemic diseases. To illuminate the complement's genetic underpinnings, we conduct genome-wide association studies of the functional activity of the classical (CP), lectin (LP), and alternative (AP) complement pathways in the Cooperative Health Research in South Tyrol study (n = 4,990). We identify seven loci, encompassing 13 independent, pathway-specific variants located in or near complement genes (CFHR4, C7, C2, MBL2) and non-complement genes (PDE3A, TNXB, ABO), explaining up to 74% of complement pathways' genetic heritability and implicating long-range haplotypes associated with LP at MBL2. Two-sample Mendelian randomization analyses, supported by transcriptome- and proteome-wide colocalization, confirm known causal pathways, establish within-complement feedback loops, and implicate causality of ABO on LP and of CFHR2 and C7 on AP. LP causally influences collectin-11 and KAAG1 levels and the risk of mouth ulcers. These results build a comprehensive resource to investigate the role of complement in human health.
Collapse
Affiliation(s)
- Damia Noce
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy; Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Luisa Foco
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Dorothea Orth-Höller
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria; MB-LAB - Clinical Microbiology Laboratory, Franz-Fischer-Str. 7b, 6020 Innsbruck, Austria
| | - Eva König
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Giulia Barbieri
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Dariush Ghasemi-Semeskandeh
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Christian Fuchsberger
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Martin Gögele
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Fabiola Del Greco M
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Alessandro De Grandi
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Monika Summerer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Peter Paul Pramstaller
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria.
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria.
| | - Cristian Pattaro
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy.
| |
Collapse
|
18
|
Andersson LI, Sjöström DJ, Quach HQ, Hägerström K, Hurler L, Kajdácsi E, Cervenak L, Prohászka Z, Toonen EJM, Mohlin C, Mollnes TE, Sandgren P, Tjernberg I, Nilsson PH. Storage of Transfusion Platelet Concentrates Is Associated with Complement Activation and Reduced Ability of Platelets to Respond to Protease-Activated Receptor-1 and Thromboxane A2 Receptor. Int J Mol Sci 2024; 25:1091. [PMID: 38256162 PMCID: PMC10816124 DOI: 10.3390/ijms25021091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Platelet activation and the complement system are mutually dependent. Here, we investigated the effects of storage time on complement activation and platelet function in routinely produced platelet concentrates. The platelet concentrates (n = 10) were stored at 22 °C for seven days and assessed daily for complement and platelet activation markers. Additionally, platelet function was analyzed in terms of their responsiveness to protease-activated receptor-1 (PAR-1) and thromboxane A2 receptor (TXA2R) activation and their capacity to adhere to collagen. Complement activation increased over the storage period for all analyzed markers, including the C1rs/C1-INH complex (fold change (FC) = 1.9; p < 0.001), MASP-1/C1-INH complex (FC = 2.0; p < 0.001), C4c (FC = 1.8, p < 0.001), C3bc (FC = 4.0; p < 0.01), and soluble C5b-9 (FC = 1.7, p < 0.001). Furthermore, the levels of soluble platelet activation markers increased in the concentrates over the seven-day period, including neutrophil-activating peptide-2 (FC = 2.5; p < 0.0001), transforming growth factor beta 1 (FC = 1.9; p < 0.001) and platelet factor 4 (FC = 2.1; p < 0.0001). The ability of platelets to respond to activation, as measured by surface expression of CD62P and CD63, decreased by 19% and 24% (p < 0.05) for PAR-1 and 69-72% (p < 0.05) for TXA2R activation, respectively, on Day 7 compared to Day 1. The extent of platelet binding to collagen was not significantly impaired during storage. In conclusion, we demonstrated that complement activation increased during the storage of platelets, and this correlated with increased platelet activation and a reduced ability of the platelets to respond to, primarily, TXA2R activation.
Collapse
Affiliation(s)
- Linnea I. Andersson
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
| | - Dick J. Sjöström
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kim Hägerström
- Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, 391 85 Kalmar, Sweden; (K.H.); (I.T.)
| | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | | | - Camilla Mohlin
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, 0372 Oslo, Norway;
- Research Laboratory, Nordland Hospital, 8005 Bodo, Norway
| | - Per Sandgren
- Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 171 77 Huddinge, Sweden;
| | - Ivar Tjernberg
- Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, 391 85 Kalmar, Sweden; (K.H.); (I.T.)
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, 581 83 Linköping, Sweden
| | - Per H. Nilsson
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
19
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
20
|
Davenport P, Soule-Albridge E, Sola-Visner M. Hemostatic and Immunologic Effects of Platelet Transfusions in Neonates. Clin Perinatol 2023; 50:793-803. [PMID: 37866848 DOI: 10.1016/j.clp.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Liberal platelet transfusions are associated with increased morbidity and mortality among preterm neonates, and it is now recognized that platelets are both hemostatic and immune cells. Neonatal and adult platelets are functionally distinct, and adult platelets have the potential to be more immuno-active. Preclinical studies suggest that platelet transfusions (from adult donors) can trigger dysregulated immune responses in neonates, which might mediate the increased morbidity and mortality observed in clinical studies. More research is needed to understand how neonatal and adult platelets differ in their immune functions and the consequences of these differences in the setting of neonatal platelet transfusions.
Collapse
Affiliation(s)
- Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Enders 954, Boston, MA 02115, USA.
| | - Erin Soule-Albridge
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Enders 950.5, Boston, MA 02115, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Enders 961, Boston, MA 02115, USA
| |
Collapse
|
21
|
Urwyler P, Leimbacher M, Charitos P, Moser S, Heijnen IAFM, Trendelenburg M, Thoma R, Sumer J, Camacho-Ortiz A, Bacci MR, Huber LC, Stüssi-Helbling M, Albrich WC, Sendi P, Osthoff M. Recombinant C1 inhibitor in the prevention of severe COVID-19: a randomized, open-label, multi-center phase IIa trial. Front Immunol 2023; 14:1255292. [PMID: 37965347 PMCID: PMC10641758 DOI: 10.3389/fimmu.2023.1255292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background Conestat alfa (ConA), a recombinant human C1 inhibitor, may prevent thromboinflammation. Methods We conducted a randomized, open-label, multi-national clinical trial in which hospitalized adults at risk for progression to severe COVID-19 were assigned in a 2:1 ratio to receive either 3 days of ConA plus standard of care (SOC) or SOC alone. Primary and secondary endpoints were day 7 disease severity on the WHO Ordinal Scale, time to clinical improvement within 14 days, and safety, respectively. Results The trial was prematurely terminated because of futility after randomization of 84 patients, 56 in the ConA and 28 in the control arm. At baseline, higher WHO Ordinal Scale scores were more frequently observed in the ConA than in the control arm. On day 7, no relevant differences in the primary outcome were noted between the two arms (p = 0.11). The median time to defervescence was 3 days, and the median time to clinical improvement was 7 days in both arms (p = 0.22 and 0.56, respectively). Activation of plasma cascades and endothelial cells over time was similar in both groups. The incidence of adverse events (AEs) was higher in the intervention arm (any AE, 30% with ConA vs. 19% with SOC alone; serious AE, 27% vs. 15%; death, 11% vs. 0%). None of these were judged as being related to the study drug. Conclusion The study results do not support the use of ConA to prevent COVID-19 progression. Clinical trial registration https://clinicaltrials.gov, identifier NCT04414631.
Collapse
Affiliation(s)
- Pascal Urwyler
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marina Leimbacher
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stephan Moser
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Ingmar A. F. M. Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Reto Thoma
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Johannes Sumer
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Adrián Camacho-Ortiz
- Servicio de Infectologia, Hospital Universitario Dr. José Eleuterio González, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Marcelo R. Bacci
- Department of General Practice, Centro Universitário em Saúde do ABC, Santo André, Brazil
| | - Lars C. Huber
- Clinic for Internal Medicine, City Hospital Triemli, Zurich, Switzerland
| | | | - Werner C. Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Nording H, Baron L, Lübken A, Emami H, von Esebeck J, Meusel M, Sadik C, Schanze N, Duerschmied D, Köhl J, Münch G, Langer HF. The Platelet Anaphylatoxin Receptor C5aR1 (CD88) Is a Promising Target for Modulating Vessel Growth in Response to Ischemia a. TH OPEN 2023; 7:e289-e293. [PMID: 37868192 PMCID: PMC10586890 DOI: 10.1055/a-2156-8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- Medical Clinic II, University Hospital, University Heart Center Lübeck, Lübeck, Germany
| | - Christian Sadik
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jörg Köhl
- ISEF, University of Lübeck, Lübeck, Germany
| | | | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
23
|
Thom CS, Davenport P, Fazelinia H, Liu ZJ, Zhang H, Ding H, Roof J, Spruce LA, Ischiropoulos H, Sola-Visner M. Phosphoproteomics reveals content and signaling differences between neonatal and adult platelets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557268. [PMID: 37745418 PMCID: PMC10515911 DOI: 10.1101/2023.09.13.557268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background and Objective Recent clinical studies have shown that transfusions of adult platelets increase morbidity and mortality in preterm infants. Neonatal platelets are hyporesponsive to agonist stimulation, and emerging evidence suggests developmental differences in platelet immune functions. This study was designed to compare the proteome and phosphoproteome of resting adult and neonatal platelets. Methods We isolated resting umbilical cord blood-derived platelets from healthy full term neonates (n=9) and resting blood platelets from healthy adults (n=7), and compared protein and phosphoprotein contents using data independent acquisition mass spectrometry. Results We identified 4745 platelet proteins with high confidence across all samples. Adult and neonatal platelets clustered separately by principal component analysis. Adult platelets were significantly enriched for immunomodulatory proteins, including β2 microglobulin and CXCL12, whereas neonatal platelets were enriched for ribosomal components and proteins involved in metabolic activities. Adult platelets were enriched for phosphorylated GTPase regulatory enzymes and proteins participating in trafficking, which may help prime them for activation and degranulation. Neonatal platelets were enriched for phosphorylated proteins involved in insulin growth factor signaling. Conclusions Using state-of-the-art mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation compared with adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of a molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hossein Fazelinia
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haorui Zhang
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hua Ding
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
25
|
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A role for P-selectin and complement in the pathological sequelae of germinal matrix hemorrhage. J Neuroinflammation 2023; 20:143. [PMID: 37322469 PMCID: PMC10273747 DOI: 10.1186/s12974-023-02828-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Germinal matrix hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. METHODS We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal C57BL/6 J mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. RESULTS Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. In addition, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. CONCLUSIONS GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.
Collapse
Affiliation(s)
- Devin Hatchell
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mohammed Alshareef
- Department of Neurological Surgery, Children's Hospital of Colorado, Aurora, CO, USA
| | - Tyler Vasas
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Davis Borucki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Chunfang Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ramin Eskandari
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Ralph Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
26
|
Arambula AM, Gu S, Warnecke A, Schmitt HA, Staecker H, Hoa M. In Silico Localization of Perilymph Proteins Enriched in Meńier̀e Disease Using Mammalian Cochlear Single-cell Transcriptomics. OTOLOGY & NEUROTOLOGY OPEN 2023; 3:e027. [PMID: 38516320 PMCID: PMC10950140 DOI: 10.1097/ono.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 03/23/2024]
Abstract
Hypothesis Proteins enriched in the perilymph proteome of Meńier̀e disease (MD) patients may identify affected cell types. Utilizing single-cell transcriptome datasets from the mammalian cochlea, we hypothesize that these enriched perilymph proteins can be localized to specific cochlear cell types. Background The limited understanding of human inner ear pathologies and their associated biomolecular variations hinder efforts to develop disease-specific diagnostics and therapeutics. Perilymph sampling and analysis is now enabling further characterization of the cochlear microenvironment. Recently, enriched inner ear protein expression has been demonstrated in patients with MD compared to patients with other inner ear diseases. Localizing expression of these proteins to cochlear cell types can further our knowledge of potential disease pathways and subsequent development of targeted therapeutics. Methods We compiled previously published data regarding differential perilymph proteome profiles amongst patients with MD, otosclerosis, enlarged vestibular aqueduct, sudden hearing loss, and hearing loss of undefined etiology (controls). Enriched proteins in MD were cross-referenced against published single-cell/single-nucleus RNA-sequencing datasets to localize gene expression to specific cochlear cell types. Results In silico analysis of single-cell transcriptomic datasets demonstrates enrichment of a unique group of perilymph proteins associated with MD in a variety of intracochlear cells, and some exogeneous hematologic and immune effector cells. This suggests that these cell types may play an important role in the pathology associated with late MD, suggesting potential future areas of investigation for MD pathophysiology and treatment. Conclusions Perilymph proteins enriched in MD are expressed by specific cochlear cell types based on in silico localization, potentially facilitating development of disease-specific diagnostic markers and therapeutics.
Collapse
Affiliation(s)
- Alexandra M. Arambula
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Athanasia Warnecke
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Heike A. Schmitt
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
27
|
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A Role for P-selectin and Complement in the Pathological Sequelae of Germinal Matrix Hemorrhage. RESEARCH SQUARE 2023:rs.3.rs-2617965. [PMID: 36909595 PMCID: PMC10002788 DOI: 10.21203/rs.3.rs-2617965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Background Germinal Matrix Hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. Methods We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. Results Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. Also, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. Conclusion GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.
Collapse
|
28
|
Cauchois R, Muller R, Lagarde M, Dignat-George F, Tellier E, Kaplanski G. Is Endothelial Activation a Critical Event in Thrombotic Thrombocytopenic Purpura? J Clin Med 2023; 12:jcm12030758. [PMID: 36769407 PMCID: PMC9918301 DOI: 10.3390/jcm12030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a severe thrombotic microangiopathy. The current pathophysiologic paradigm suggests that the ADAMTS13 deficiency leads to Ultra Large-Von Willebrand Factor multimers accumulation with generation of disseminated microthrombi. Nevertheless, the role of endothelial cells in this pathology remains an issue. In this review, we discuss the various clinical, in vitro and in vivo experimental data that support the important role of the endothelium in this pathology, suggesting that ADAMTS13 deficiency may be a necessary but not sufficient condition to induce TTP. The "second hit" model suggests that in TTP, in addition to ADAMTS13 deficiency, endogenous or exogenous factors induce endothelial activation affecting mainly microvascular cells. This leads to Weibel-Palade bodies degranulation, resulting in UL-VWF accumulation in microcirculation. This endothelial activation seems to be worsened by various amplification loops, such as the complement system, nucleosomes and free heme.
Collapse
Affiliation(s)
- Raphael Cauchois
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Internal Medicine and Clinical Immunology, 13005 Marseille, France
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
- Correspondence:
| | - Romain Muller
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Internal Medicine and Clinical Immunology, 13005 Marseille, France
| | - Marie Lagarde
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Françoise Dignat-George
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Hematology Laboratory, 13005 Marseille, France
| | - Edwige Tellier
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Gilles Kaplanski
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Internal Medicine and Clinical Immunology, 13005 Marseille, France
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
| |
Collapse
|
29
|
Gui M, Zhao B, Huang J, Chen E, Qu H, Mao E. Pathogenesis and Therapy of Coagulation Disorders in Severe Acute Pancreatitis. J Inflamm Res 2023; 16:57-67. [PMID: 36636248 PMCID: PMC9831125 DOI: 10.2147/jir.s388216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/12/2022] [Indexed: 01/07/2023] Open
Abstract
Ischemia superimposed upon pancreatic edema leads to acute necrotizing pancreatitis. One possible mechanism contributing to ischemia is intravascular thrombogenesis since fibrin deposits have been detected in pancreatic capillaries by electron microscope. Current experimental and clinical data provided compelling evidence that the disorders in the blood coagulation system play a critical role in the pathogenesis of severe acute pancreatitis (SAP). This leads to microcirculatory failure of intra- and extrapancreatic organs and multiple organ failure and increases the case fatality rate. However, the mechanism of coagulopathy underlying SAP is not yet clear, although some anticoagulant drugs have entered clinical practice showing improvement in prognosis. Thus, enhanced understanding of the process might improve the treatment strategies with safety and high efficacy. Herein, the pathogenesis of the coagulation system of SAP was reviewed with a focus on the coagulation pathway, intercellular interactions, and complement system, thereby illustrating some anticoagulant therapies and potential therapeutic targets.
Collapse
Affiliation(s)
- Menglu Gui
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bing Zhao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Abstract
The complement and hemostatic systems are complex systems, and both involve enzymatic cascades, regulators, and cell components-platelets, endothelial cells, and immune cells. The two systems are ancestrally related and are defense mechanisms that limit infection by pathogens and halt bleeding at the site of vascular injury. Recent research has uncovered multiple functional interactions between complement and hemostasis. On one side, there are proteins considered as complement factors that activate hemostasis, and on the other side, there are coagulation proteins that modulate complement. In addition, complement and coagulation and their regulatory proteins strongly interact each other to modulate endothelial, platelet and leukocyte function and phenotype, creating a potentially devastating amplifying system that must be closely regulated to avoid unwanted damage and\or disseminated thrombosis. In view of its ability to amplify all complement activity through the C3b-dependent amplification loop, the alternative pathway of complement may play a crucial role in this context. In this review, we will focus on available and emerging evidence on the role of the alternative pathway of complement in regulating hemostasis and vice-versa, and on how dysregulation of either system can lead to severe thromboinflammatory events.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Galbusera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
31
|
Schlüter J, Cunningham S, Zimmermann R, Achenbach S, Kramer R, Erdmann M, Beckmann M, Heinzerling L, Hackstein H. Characterization of the impact of immune checkpoint inhibitors on platelet activation and aggregation. Immunobiology 2023; 228:152311. [PMID: 36495598 DOI: 10.1016/j.imbio.2022.152311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are effective oncological drugs which block cellular check-point receptors typically targeted by tumor immune evasion strategies. Despite their benefits, clinicians have reported treatment-associated thromboembolism during ICI therapy in recent years. Though several theories on this ICI-associated pathogenesis exist, the direct effects of ICIs on platelets remains unknown. We therefore investigated the potential direct and indirect effect of PD-1, PD-L1 and CTLA-4-targeting ICIs on platelet functionality in multifaceted in vitro experiments. Interestingly, we could not observe a clear effect of ICI on platelet aggregation and primary hemostasis in whole blood and platelet concentrate-based assays. Furthermore, the presence of ICIs in toll-like receptor stimulation had no significant impact on platelet surface marker expression. In a second approach, we investigated the indirect immunological impact of ICIs on platelet activation by exposing platelets to supernatants from ICI- and Staphylococcal enterotoxin B-exposed PBMCs. Whereas ICIs affected IL-2 levels in supernatants, we could not detect clear differences in the secretion of pro-thrombogenic factors and platelet responses. The obtained data suggest that the direct influence of ICIs on platelet activation or the influence of altered T cell function on platelet activation cannot be considered a major factor in the development of thrombotic events.
Collapse
Affiliation(s)
- Julian Schlüter
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany.
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Rafaela Kramer
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Michael Erdmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Malte Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany
| | - Lucie Heinzerling
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen 91054, Germany; Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich 80539, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen 91054, Germany
| |
Collapse
|
32
|
Landsem A, Emblem Å, Lau C, Christiansen D, Gerogianni A, Karlsen BO, Mollnes TE, Nilsson PH, Brekke OL. Complement C3b contributes to Escherichia coli-induced platelet aggregation in human whole blood. Front Immunol 2022; 13:1020712. [PMID: 36591264 PMCID: PMC9797026 DOI: 10.3389/fimmu.2022.1020712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Platelets have essential functions as first responders in the immune response to pathogens. Activation and aggregation of platelets in bacterial infections can lead to life-threatening conditions such as arterial thromboembolism or sepsis-associated coagulopathy. Methods In this study, we investigated the role of complement in Escherichia coli (E. coli)-induced platelet aggregation in human whole blood, using Multiplate® aggregometry, flow cytometry, and confocal microscopy. Results and Discussion We found that compstatin, which inhibits the cleavage of complement component C3 to its components C3a and C3b, reduced the E. coli-induced platelet aggregation by 42%-76% (p = 0.0417). This C3-dependent aggregation was not C3a-mediated as neither inhibition of C3a using a blocking antibody or a C3a receptor antagonist, nor the addition of purified C3a had any effects. In contrast, a C3b-blocking antibody significantly reduced the E. coli-induced platelet aggregation by 67% (p = 0.0133). We could not detect opsonized C3b on platelets, indicating that the effect of C3 was not dependent on C3b-fragment deposition on platelets. Indeed, inhibition of glycoprotein IIb/IIIa (GPIIb/IIIa) and complement receptor 1 (CR1) showed that these receptors were involved in platelet aggregation. Furthermore, aggregation was more pronounced in hirudin whole blood than in hirudin platelet-rich plasma, indicating that E. coli-induced platelet aggregation involved other blood cells. In conclusion, the E. coli-induced platelet aggregation in human whole blood is partly C3b-dependent, and GPIIb/IIIa and CR1 are also involved in this process.
Collapse
Affiliation(s)
- Anne Landsem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,*Correspondence: Anne Landsem,
| | - Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Corinna Lau
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Dorte Christiansen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
33
|
Genest DS, Patriquin CJ, Licht C, John R, Reich HN. Renal Thrombotic Microangiopathy: A Review. Am J Kidney Dis 2022; 81:591-605. [PMID: 36509342 DOI: 10.1053/j.ajkd.2022.10.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Thrombotic microangiopathy (TMA), a pathological lesion observed in a wide spectrum of diseases, is triggered by endothelial injury and/or dysfunction. Although TMA lesions are often accompanied by clinical features of microangiopathic hemolytic anemia, thrombocytopenia, and ischemic end-organ injury, renal-limited forms of TMA are not infrequently encountered in clinical practice. The presence of renal-limited manifestations can be diagnostically challenging, often delaying the initiation of targeted therapy. Prompt investigation and empirical treatment of TMA is warranted to reduce associated morbidity and mortality. Major advances have been made with respect to the pathophysiology of primary TMA entities, with the subsequent development of novel diagnostic tools and lifesaving therapies for diseases like thrombotic thrombocytopenic purpura and complement-mediated TMA. This article will review the clinical presentation and pathologic hallmarks of TMA involving the kidney, and the disease-specific mechanisms that contribute to the endothelial injury that characterizes TMA lesions. Diagnostic approach and both empirical and disease-specific treatment strategies will be discussed, along with the potential role for emerging targeted disease-specific therapies.
Collapse
Affiliation(s)
- Dominique Suzanne Genest
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Christopher J Patriquin
- Division of Medical Oncology & Hematology, University Health Network, Toronto, Ontario, Canada; Department of Medicine, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Christoph Licht
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Department of Medicine, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rohan John
- Division of Laboratory Medicine and Pathology, University Health Network, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Heather N Reich
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Department of Medicine, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
35
|
Das D, Adhikary S, Das RK, Banerjee A, Radhakrishnan AK, Paul S, Pathak S, Duttaroy AK. Bioactive food components and their inhibitory actions in multiple platelet pathways. J Food Biochem 2022; 46:e14476. [PMID: 36219755 DOI: 10.1111/jfbc.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets' hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet's hemostatic function unaffected. Platelets' anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets' complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact.
Collapse
Affiliation(s)
- Diptimayee Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Shubhamay Adhikary
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Scurt FG, Bose K, Hammoud B, Brandt S, Bernhardt A, Gross C, Mertens PR, Chatzikyrkou C. Old known and possible new biomarkers of ANCA-associated vasculitis. J Autoimmun 2022; 133:102953. [PMID: 36410262 DOI: 10.1016/j.jaut.2022.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises a group of multisystem disorders involving severe, systemic, small-vessel vasculitis with short- and long term serious and life-threating complications. Despite the simplification of treatment, fundamental aspects concerning assessment of its efficacy and its adaptation to encountered complications or to the relapsing/remitting/subclinical disease course remain still unknown. The pathogenesis of AAV is complex and unique, and despite the progress achieved in the last years, much has not to be learnt. Foremost, there is still no accurate marker enabling us to monitoring disease and guide therapy. Therefore, the disease management relays often on clinical judgment and follows a" trial and error approach". In the recent years, an increasing number of new molecules s have been explored and used for this purpose including genomics, B- and T-cell subpopulations, complement system factors, cytokines, metabolomics, biospectroscopy and components of our microbiome. The aim of this review is to discuss both the role of known historical and clinically established biomarkers of AAV, as well as to highlight potential new ones, which could be used for timely diagnosis and monitoring of this devastating disease, with the goal to improve the effectiveness and ameliorate the complications of its demanding therapy.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany.
| | - K Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Ben Hammoud
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - S Brandt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - A Bernhardt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - C Gross
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | | |
Collapse
|
37
|
Jiang SZ, To JL, Hughes MR, McNagny KM, Kim H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front Immunol 2022; 13:977828. [PMID: 36505402 PMCID: PMC9732516 DOI: 10.3389/fimmu.2022.977828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder characterized by chronic inflammation of the synovial tissues and progressive destruction of bone and cartilage. The inflammatory response and subsequent tissue degradation are orchestrated by complex signaling networks between immune cells and their products in the blood, vascular endothelia and the connective tissue cells residing in the joints. Platelets are recognized as immune-competent cells with an important role in chronic inflammatory diseases such as RA. Here we review the specific aspects of platelet function relevant to arthritic disease, including current knowledge of the molecular crosstalk between platelets and other innate immune cells that modulate RA pathogenesis.
Collapse
Affiliation(s)
- Steven Z. Jiang
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L. To
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Urwyler P, Moser S, Trendelenburg M, Sendi P, Osthoff M. Targeting thromboinflammation in COVID-19 - A narrative review of the potential of C1 inhibitor to prevent disease progression. Mol Immunol 2022; 150:99-113. [PMID: 36030710 PMCID: PMC9393183 DOI: 10.1016/j.molimm.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.
Collapse
Affiliation(s)
- Pascal Urwyler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephan Moser
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Osthoff
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Yoshida Y, Nishi H. The role of the complement system in kidney glomerular capillary thrombosis. Front Immunol 2022; 13:981375. [PMID: 36189215 PMCID: PMC9515535 DOI: 10.3389/fimmu.2022.981375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is part of the innate immune system. The crucial step in activating the complement system is the generation and regulation of C3 convertase complexes, which are needed to generate opsonins that promote phagocytosis, to generate C3a that regulates inflammation, and to initiate the lytic terminal pathway through the generation and activity of C5 convertases. A growing body of evidence has highlighted the interplay between the complement system, coagulation system, platelets, neutrophils, and endothelial cells. The kidneys are highly susceptible to complement-mediated injury in several genetic, infectious, and autoimmune diseases. Atypical hemolytic uremic syndrome (aHUS) and lupus nephritis (LN) are both characterized by thrombosis in the glomerular capillaries of the kidneys. In aHUS, congenital or acquired defects in complement regulators may trigger platelet aggregation and activation, resulting in the formation of platelet-rich thrombi in the kidneys. Because glomerular vasculopathy is usually noted with immunoglobulin and complement accumulation in LN, complement-mediated activation of tissue factors could partly explain the autoimmune mechanism of thrombosis. Thus, kidney glomerular capillary thrombosis is mediated by complement dysregulation and may also be associated with complement overactivation. Further investigation is required to clarify the interaction between these vascular components and develop specific therapeutic approaches.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW COVID-19 remains a major source of concern, particularly as new variants emerge and with recognition that patients may suffer long-term effects. Mechanisms underlying SARS-CoV-2 mediated organ damage and the associated vascular endotheliopathy remain poorly understood, hindering new drug development. Here, we highlight selected key concepts of how the complement system, a major component of innate immunity that is dysregulated in COVID-19, participates in the thromboinflammatory response and drives the vascular endotheliopathy. RECENT FINDINGS Recent studies have revealed mechanisms by which complement is activated directly by SARS-CoV-2, and how the system interfaces with other innate thromboinflammatory cellular and proteolytic pathways involving platelets, neutrophils, neutrophil extracellular traps and the coagulation and kallikrein-kinin systems. With this new information, multiple potential sites for therapeutic intervention are being uncovered and evaluated in the clinic. SUMMARY Infections with SARS-CoV-2 cause damage to the lung alveoli and microvascular endothelium via a process referred to as thromboinflammation. Although not alone in being dysregulated, complement is an early player, prominent in promoting the endotheliopathy and consequential organ damage, either directly and/or via the system's complex interplay with other cellular, molecular and biochemical pathways. Delineating these critical interactions is revealing novel and promising strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
42
|
Schanze N, Hamad MA, Nührenberg TG, Bode C, Duerschmied D. Platelets in Myocardial Ischemia/Reperfusion Injury. Hamostaseologie 2022; 43:110-121. [PMID: 35913081 PMCID: PMC10132858 DOI: 10.1055/a-1739-9351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Coronary artery disease, including myocardial infarction (MI), remains a leading cause of global mortality. Rapid reperfusion therapy is key to the improvement of patient outcome but contributes substantially to the final cardiac damage. This phenomenon is called "ischemia/reperfusion injury (IRI)." The underlying mechanisms of IRI are complex and not fully understood. Contributing cellular and molecular mechanisms involve the formation of microthrombi, alterations in ion concentrations, pH shifts, dysregulation of osmolality, and, importantly, inflammation. Beyond their known action as drivers of the development of coronary plaques leading to MI, platelets have been identified as important mediators in myocardial IRI. Circulating platelets are activated by the IRI-provoked damages in the vascular endothelium. This leads to platelet adherence to the reperfused endothelium, aggregation, and the formation of microthrombi. Furthermore, activated platelets release vasoconstrictive substances, act via surface molecules, and enhance leukocyte infiltration into post-IR tissue, that is, via platelet-leukocyte complexes. A better understanding of platelet contributions to myocardial IRI, including their interaction with other lesion-associated cells, is necessary to develop effective treatment strategies to prevent IRI and further improve the condition of the reperfused myocardium. In this review, we briefly summarize platelet properties that modulate IRI. We also describe the beneficial impacts of antiplatelet agents as well as their mechanisms of action in IRI beyond classic effects.
Collapse
Affiliation(s)
- Nancy Schanze
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Muataz Ali Hamad
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Georg Nührenberg
- Department of Cardiology and Angiology II, Heart Center, University of Freiburg, Freiburg, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
43
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Lauková L, Weber V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front Cell Dev Biol 2022; 10:914891. [PMID: 35874830 PMCID: PMC9299085 DOI: 10.3389/fcell.2022.914891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
44
|
The Role of Complement in HSCT-TMA: Basic Science to Clinical Practice. Adv Ther 2022; 39:3896-3915. [PMID: 35781192 PMCID: PMC9402756 DOI: 10.1007/s12325-022-02184-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/05/2022]
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a common complication occurring post-HSCT and is associated with substantial morbidity and mortality if not promptly identified and treated. Emerging evidence suggests a central role for the complement system in the pathogenesis of HSCT-TMA. The complement system has also been shown to interact with other pathways and processes including coagulation and inflammation, all of which are activated following HSCT. Three endothelial cell-damaging “hits” are required for HSCT-TMA genesis: a genetic predisposition or existing damage, an endothelial cell-damaging conditioning regimen, and additional damaging insults. Numerous risk factors for the development of HSCT-TMA have been identified (including primary diagnosis, graft type, and conditioning regimen) and validated lists of relatively simple diagnostic signs and symptoms exist, many utilizing routine clinical and laboratory assessments. Despite the relative ease with which HSCT-TMA can be screened for, it is often overlooked or masked by other common post-transplant conditions. Recent evidence that patients with HSCT-TMA may also concurrently present with these differential diagnoses only serve to further confound its identification and treatment. HSCT-TMA may be treated, or even prevented, by removing or ameliorating triggering “hits”, and recent studies have also shown substantial utility of complement-targeted therapies in this patient population. Further investigation into optimal management and treatment strategies is needed. Greater awareness of TMA post-HSCT is urgently needed to improve patient outcomes; the objective of this article is to clarify current understanding, explain underlying complement biology and provide simple tools to aid the early recognition, management, and monitoring of HSCT-TMA.
Collapse
|
45
|
Krocker JD, Lee KH, Henriksen HH, Wang YWW, Schoof EM, Karvelsson ST, Rolfsson Ó, Johansson PI, Pedroza C, Wade CE. Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. Int J Mol Sci 2022; 23:6213. [PMID: 35682894 PMCID: PMC9181752 DOI: 10.3390/ijms23116213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D. Krocker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Hanne H. Henriksen
- Center for Endotheliomics CAG, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Yao-Wei Willa Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Sigurdur T. Karvelsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Pär I. Johansson
- Center for Endotheliomics CAG, Department of Clinical Immunology, Rigshospitalet, & Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| |
Collapse
|
46
|
Plášek J, Gumulec J, Máca J, Škarda J, Procházka V, Grézl T, Václavík J. COVID-19 associated coagulopathy: Mechanisms and host-directed treatment. Am J Med Sci 2022; 363:465-475. [PMID: 34752741 PMCID: PMC8576106 DOI: 10.1016/j.amjms.2021.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is associated with specific coagulopathy that frequently occurs during the different phases of coronavirus disease 2019 (COVID-19) and can result in thrombotic complications and/or death. This COVID-19-associated coagulopathy (CAC) exhibits some of the features associated with thrombotic microangiopathy, particularly complement-mediated hemolytic-uremic syndrome. In some cases, due to the anti-phospholipid antibodies, CAC resembles catastrophic anti-phospholipid syndrome. In other patients, it exhibits features of hemophagocytic syndrome. CAC is mainly identified by: increases in fibrinogen, D-dimers, and von Willebrand factor (released from activated endothelial cells), consumption of a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13), over activated and dysregulated complement, and elevated plasma cytokine levels. CAC manifests as both major cardiovascular and/or cerebrovascular events and dysfunctional microcirculation, which leads to multiple organ damage. It is not clear whether the mainstay of COVID-19 is complement overactivation, cytokine/chemokine activation, or a combination of these activities. Available data have suggested that non-critically ill hospitalized patients should be administered full-dose heparin. In critically ill, full dose heparin treatment is discouraged due to higher mortality rate. In addition to anti-coagulation, four different host-directed therapeutic pathways have recently emerged that influence CAC: (1) Anti-von Willebrand factor monoclonal antibodies; (2) activated complement C5a inhibitors; (3) recombinant ADAMTS13; and (4) Interleukin (IL)-1 and IL-6 antibodies. Moreover, neutralizing monoclonal antibodies against the virus surface protein have been tested. However, the role of antiplatelet treatment remains unclear for patients with COVID-19.
Collapse
Affiliation(s)
- Jiří Plášek
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - J Gumulec
- Department of Clinical Hematology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - J Máca
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic; Medical Faculty, Institute of Physiology and Pathophysiology, University of Ostrava, Ostrava, Czech Republic
| | - J Škarda
- Institute of Clinical Pathology, University Hospital of Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - V Procházka
- Institute of Radiology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - T Grézl
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Václavík
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
47
|
Winskel-Wood B, Padula MP, Marks DC, Johnson L. Cold storage alters the immune characteristics of platelets and potentiates bacterial-induced aggregation. Vox Sang 2022; 117:1006-1015. [PMID: 35579630 DOI: 10.1111/vox.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Cold-stored platelets are currently under clinical evaluation and have been approved for limited clinical use in the United States. Most studies have focused on the haemostatic functionality of cold-stored platelets; however, limited information is available examining changes to their immune function. MATERIALS AND METHODS Two buffy-coat-derived platelet components were combined and split into two treatment arms: room temperature (RT)-stored (20-24°C) or refrigerated (cold-stored, 2-6°C). The concentration of select soluble factors was measured in the supernatant using commercial ELISA kits. The abundance of surface receptors associated with immunological function was assessed by flow cytometry. Platelet aggregation was assessed in response to Escherichia coli and Staphylococcus aureus, in the presence and absence of RGDS (blocks active conformation of integrin α2 β3 ). RESULTS Cold-stored platelet components contained a lower supernatant concentration of C3a, RANTES and PF4. The abundance of surface-bound P-selectin and integrin α2 β3 in the activated conformation increased during cold storage. In comparison, the abundance of CD86, CD44, ICAM-2, CD40, TLR1, TLR2, TLR4, TLR3, TLR7 and TLR9 was lower on the surface membrane of cold-stored platelets compared to RT-stored components. Cold-stored platelets exhibited an increased responsiveness to E. coli- and S. aureus-induced aggregation compared to RT-stored platelets. Inhibition of the active conformation of integrin α2 β3 using RGDS reduced the potentiation of bacterial-induced aggregation in cold-stored platelets. CONCLUSION Our data highlight that cold storage changes the in vitro immune characteristics of platelets, including their sensitivity to bacterial-induced aggregation. Changes in these immune characteristics may have clinical implications post transfusion.
Collapse
Affiliation(s)
- Ben Winskel-Wood
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Meuleman MS, Duval A, Fremeaux-Bacchi V, Roumenina LT, Chauvet S. Ex Vivo Test for Measuring Complement Attack on Endothelial Cells: From Research to Bedside. Front Immunol 2022; 13:860689. [PMID: 35493497 PMCID: PMC9041553 DOI: 10.3389/fimmu.2022.860689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
As part of the innate immune system, the complement system plays a key role in defense against pathogens and in host cell homeostasis. This enzymatic cascade is rapidly triggered in the presence of activating surfaces. Physiologically, it is tightly regulated on host cells to avoid uncontrolled activation and self-damage. In cases of abnormal complement dysregulation/overactivation, the endothelium is one of the primary targets. Complement has gained momentum as a research interest in the last decade because its dysregulation has been implicated in the pathophysiology of many human diseases. Thus, it appears to be a promising candidate for therapeutic intervention. However, detecting abnormal complement activation is challenging. In many pathological conditions, complement activation occurs locally in tissues. Standard routine exploration of the plasma concentration of the complement components shows values in the normal range. The available tests to demonstrate such dysregulation with diagnostic, prognostic, and therapeutic implications are limited. There is a real need to develop tools to demonstrate the implications of complement in diseases and to explore the complex interplay between complement activation and regulation on human cells. The analysis of complement deposits on cultured endothelial cells incubated with pathologic human serum holds promise as a reference assay. This ex vivo assay most closely resembles the physiological context. It has been used to explore complement activation from sera of patients with atypical hemolytic uremic syndrome, malignant hypertension, elevated liver enzymes low platelet syndrome, sickle cell disease, pre-eclampsia, and others. In some cases, it is used to adjust the therapeutic regimen with a complement-blocking drug. Nevertheless, an international standard is lacking, and the mechanism by which complement is activated in this assay is not fully understood. Moreover, primary cell culture remains difficult to perform, which probably explains why no standardized or commercialized assay has been proposed. Here, we review the diseases for which endothelial assays have been applied. We also compare this test with others currently available to explore complement overactivation. Finally, we discuss the unanswered questions and challenges to overcome for validating the assays as a tool in routine clinical practice.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anna Duval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
49
|
Gauchel N, Rieder M, Krauel K, Goller I, Jeserich M, Salzer U, Venhoff AC, Baldus N, Pollmeier L, Wirth L, Kern W, Rieg S, Busch HJ, Hofmann M, Bode C, Duerschmied D, Lother A, Heger LA. Complement system component dysregulation is a distinctive feature of COVID-19 disease: a prospective and comparative analysis of patients admitted to the emergency department for suspected COVID-19 disease. J Thromb Thrombolysis 2022; 53:788-797. [PMID: 34904186 PMCID: PMC8668393 DOI: 10.1007/s11239-021-02617-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
The complement system (CS) plays a pivotal role in Coronavirus disease 2019 (COVID-19) pathophysiology. The objective of this study was to provide a comparative, prospective data analysis of CS components in an all-comers cohort and COVID-19 patients. Patients with suspected COVID-19 infection admitted to the Emergency department were grouped for definite diagnosis of COVID-19 and no COVID-19 accordingly. Clinical presentation, routine laboratory and von Willebrand factor (vWF) antigen as well as CS components 3, 4 and activated 5 (C5a) were assessed. Also, total complement activity via the classical pathway (CH50) was determined. Levels of calprotectin in serum were measured using an automated quantitative lateral flow assay. We included 80 patients in this prospective trial. Of those 19 (23.7%) were tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with COVID-19 had higher levels of CS components 5a and 4 (54.79 [24.14-88.79] ng/ml vs. 35 [23.15-46.1] ng/ml; p = 0.0433 and 0.3772 [± 0.1056] g/L vs. 0.286 [0.2375-0.3748] g/L; p = 0.0168). COVID-19 patients had significantly higher levels of vWF antigen when compared to the control group (288.3 [± 80.26] % vs. 212 [151-320] %; p = 0.0469). There was a significant correlation between CS C3 and 5a with vWF antigen (rs = 0.5957 [p = 0.0131] and rs = 0.5015 [p = 0.042]) in COVID-19 patients. There was no difference in calprotectin plasma levels (4.786 [± 2.397] µg/ml vs. 4.233 [± 2.142] µg/ml; p = 0.4175) between both groups. This prospective data from a single centre all-comers cohort accentuates altered levels of CS components as a distinct feature of COVID-19 disease. Deregulation of CS component 3 and C5a are associated with increased vWF antigen possibly linking vascular damage to alternative CS activation in COVID-19.
Collapse
Affiliation(s)
- Nadine Gauchel
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Marina Rieder
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Krystin Krauel
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Isabella Goller
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Maren Jeserich
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, University Hospital of Freiburg, Freiburg, Germany
| | - Ana Cecilia Venhoff
- Department of Rheumatology and Clinical Immunology, University Hospital of Freiburg, Freiburg, Germany
| | - Niklas Baldus
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Luisa Pollmeier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Wirth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Winfried Kern
- Division of Infectious Diseases, Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- Department of Emergency Medicine, Faculty of Medicine, University Hospital of Freiburg, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Faculty of Medicine, University Hospital Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Achim Lother
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Hospital of Freiburg, Freiburg, Germany
| | - Lukas A Heger
- Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
50
|
Zaid Y, Merhi Y. Implication of Platelets in Immuno-Thrombosis and Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:863846. [PMID: 35402556 PMCID: PMC8990903 DOI: 10.3389/fcvm.2022.863846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
In addition to their well-described hemostatic function, platelets are active participants in innate and adaptive immunity. Inflammation and immunity are closely related to changes in platelet reactions and enhanced platelet function in thrombo-inflammation, as well as in microbial and virus infections. A platelet’s immune function is incompletely understood, but an important balance exists between its protective and pathogenic responses and its thrombotic and inflammatory functions. As the mediator of vascular homeostasis, platelets interact with neutrophils, bacteria and virus by expressing specific receptors and releasing granules, transferring RNA, and secreting mitochondria, which controls hemostasis and thrombosis, infection, and innate and adaptive immunity. This review focuses on the involvement of platelets during immuno-thrombosis and thrombo-inflammation.
Collapse
Affiliation(s)
- Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, The Université de Montréal, Montreal, QC, Canada
| |
Collapse
|