1
|
Huang S, Zhou Y, Ji H, Zhang T, Liu S, Ma L, Deng D, Ding Y, Han L, Shu S, Wang Y, Chen X. Decoding mechanisms and protein markers in lung-brain axis. Respir Res 2025; 26:190. [PMID: 40390067 PMCID: PMC12090670 DOI: 10.1186/s12931-025-03272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/08/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND The lung-brain axis represents a complex bidirectional communication network that is pivotal in the crosstalk between respiratory and neurological functions. This review summarizes the current understanding of the mechanisms and protein markers that mediate the effects of lung diseases on brain health. MAIN FINDINGS In this review, we explore the mechanisms linking lung injury to neurocognitive impairments, focusing on neural pathways, immune regulation and inflammatory responses, microorganism pathways, and hypoxemia. Specifically, we highlight the role of the vagus nerve in modulating the central nervous system response to pulmonary stimuli; Additionally, the regulatory function of the immune system is underscored, with evidence suggesting that lung-derived immune mediators can traverse the blood-brain barrier, induce neuroinflammation and cognitive decline; Furthermore, we discuss the potential of lung microbiota to influence brain diseases through microbial translocation and immune activation; Finally, the impact of hypoxemia is examined, with findings indicating that it can exacerbate cerebral injury via oxidative stress and impaired perfusion. Moreover, we analyze how pulmonary conditions, such as pneumonia, ALI/ARDS, and asthma, contribute to neurological dysfunction. Prolonged mechanical ventilation can also contribute to cognitive impairment. Conversely, brain diseases (e.g., stroke, traumatic brain injury) can lead to acute respiratory complications. In addition, protein markers such as TLR4, ACE2, A-SAA, HMGB1, and TREM2 are crucial to the lung-brain axis and correlate with disease severity. We also discuss emerging therapeutic strategies targeting this axis, including immunomodulation and microbiome engineering. Overall, understanding the lung-brain interplay is crucial for developing integrated treatment strategies and improving patient outcomes. Further research is needed to elucidate the molecular mechanisms and foster interdisciplinary collaboration.
Collapse
Affiliation(s)
- Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Yuxi Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Haipeng Ji
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Shiya Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Yu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China.
| |
Collapse
|
2
|
Nguyen THV, Ferron F, Murakami K. Neurotoxic Implications of Human Coronaviruses in Neurodegenerative Diseases: A Perspective from Amyloid Aggregation. ACS Chem Biol 2025; 20:983-992. [PMID: 40272376 DOI: 10.1021/acschembio.5c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Human coronaviruses (HCoVs) include seven species: HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, MERS-CoV, SARS-CoV-1, and SARS-CoV-2. The last three, classified as Betacoronaviruses, are highly transmissible and have caused severe pandemics. HCoV infections primarily affect the respiratory system, leading to symptoms such as dry cough, fever, and breath shortness, which can progress to acute respiratory failure and death. Beyond respiratory effects, increasing evidence links HCoVs to neurological dysfunction. However, distinguishing direct neural complications from preexisting disorders, particularly in the elderly, remains challenging. This study examines the association between HCoVs and neurodegenerative diseases like Alzheimer disease, Parkinson disease, Lewy body dementia, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease. It also presents the long-term neurological effects of HCoV infections and their differential impact across age groups and sexes. A key aspect of this study is the investigation of the sequence and structural similarities between amyloidogenic and HCoV spike proteins, which can provide insights into potential neuropathomechanisms.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Francois Ferron
- Aix Marseille Univ, CNRS-Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR7257, Marseille 13288, France
- European Virus Bioinformatics Center, Jena 07743, Germany
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Medeiros RS, Neves L, Sousa I, Pereira BD. Arginine-vasopressin deficiency due to long COVID-associated infundibulo-neurohypophysitis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240168. [PMID: 40215290 PMCID: PMC11967181 DOI: 10.20945/2359-4292-2024-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/24/2024] [Indexed: 04/15/2025]
Abstract
Long COVID is defined by the occurrence of signs, symptoms, and conditions that develop after COVID-19 and may affect several organs and systems. Arginine-vasopressin deficiency (AVP-D; central diabetes insipidus) is a very rare complication of COVID-19 and SARS-CoV-2 immunization. Case reports, original studies, and reviews on AVP-D and long COVID published until February 2024 were retrieved from PubMed. A 47-year-old man presented with polydipsia, polyuria, memory loss, and mental fog 8 weeks after an episode of mild COVID-19. His past personal and family medical history were unremarkable. Biochemical evaluation was relevant for low urine osmolality and a 24-hour urine volume of 10,350 mL. Basal anterior pituitary evaluation was normal. A water deprivation test was started and interrupted after 2 hours due to the development of hypernatremia, high serum osmolality, and low urine osmolality. Urine osmolality significantly increased after intranasal desmopressin 20 μg. Contrast-enhanced pituitary MRI was suggestive of infundibulo-neurohypophysitis. Further biochemical, genetic, and imaging tests excluded secondary AVP-D causes.The patient was subsequently started on oral desmopressin, showing prompt response. After a follow-up of 20 months, he remained well-controlled with isolated AVP-D. Although molecular and histologic confirmation of SARS-CoV-2 infundibulo-neurohypophysitis could not be investigated, a strong temporal relationship and the absence of an alternative diagnosis rendered plausible the inclusion of AVP-D in the myriad of long COVID manifestations. Further studies with patients recovered from COVID-19 are necessary for a better understanding of the epidemiology, pathophysiology, and clinical course of this very rare endocrine condition.
Collapse
Affiliation(s)
- Regina S. Medeiros
- Serviço de Endocrinologia e Nutrição, Hospital do
Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| | - Lígia Neves
- Serviço de Neurorradiologia, Hospital Garcia de Orta, Unidade Local
de Saúde de Almada-Seixal, Almada, Setúbal, Portugal
| | - Isabel Sousa
- Serviço de Endocrinologia e Nutrição, Hospital do
Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| | - Bernardo Dias Pereira
- Serviço de Endocrinologia e Nutrição, Hospital do
Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| |
Collapse
|
4
|
Wong KT, Hooi YT, Tan SH, Ong KC. Emerging and re-emerging viral infections of the central nervous system in Australasia and beyond. Pathology 2025; 57:230-240. [PMID: 39799084 DOI: 10.1016/j.pathol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country. Another orthoflavivirus, Murray Valley encephalitis virus, has re-emerged in Australia. The Hendra henipavirus together with Nipah henipavirus are listed as high-risk pathogens by the World Health Organization because both can cause lethal encephalitis. The former remains a health threat in Australasia because bats may still be able to spread the infection to unvaccinated Australian horses and other animals acting as intermediate hosts, and thence to humans. The global COVID-19 pandemic, caused by the emerging severe acute respiratory syndrome coronavirus-2, a virus transmitted from animals to humans that was first described and first arose in China, is associated with acute and long-lasting CNS pathology. Fortunately, the pathology and pathogenesis of these important neurotropic viruses are now better understood, leading to better management protocols and prevention strategies. Pathologists are in a unique position to contribute to the diagnosis and advancement in our knowledge of infectious diseases. This review summarises some of the current knowledge about a few important emerging and re-emerging CNS infections in Australasia and beyond.
Collapse
Affiliation(s)
- Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Sahli W, Vitte J, Desnues B. Eosinophils and COVID-19: Insights into immune complexity and vaccine safety. Clin Transl Allergy 2025; 15:e70050. [PMID: 40120088 PMCID: PMC11929522 DOI: 10.1002/clt2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND COVID-19 exhibits a variety of symptoms and may lead to multi-organ failure and death. This clinical complexity is exacerbated by significant immune dysregulation affecting nearly all cells of the innate and adaptive immune system. Granulocytes, including eosinophils, are affected by SARS-CoV-2. OBJECTIVES Eosinophil responses remain poorly understood despite early recognition of eosinopenia as a hallmark feature of COVID-19 severity. RESULTS The heterogeneous nature of eosinophil responses categorizes them as dual-function cells with contradictory effects. Eosinophil activation can suppress virus-induced inflammation by releasing type 2 cytokines like IL-13 and granular proteins with antiviral action such as eosinophil-derived neurotoxins and eosinophil cationic protein, and also by acting as antigen-presenting cells. In contrast, eosinophil accumulation in the lungs can induce tissue damage triggered by cytokines or hormones like IFN-γ and leptin. Additionally, they can affect adaptive immune functions by interacting with T cells through direct formation of membrane complexes or soluble mediator action. Individuals with allergic disorders who have elevated levels of eosinophils in tissues and blood, such as asthma, do not appear to be at an increased risk of developing severe COVID-19 following SARS-CoV-2 infection. However, the SARS-CoV-2 vaccine appears to be associated with complications and eosinophilic infiltrate-induced immunopathogenicity, which can be mitigated by corticosteroid, anti-histamines and anti-IL-5 therapy and avoided by modifying adjuvants or excipients. CONCLUSION This review highlights the importance of eosinophils in COVID-19 and contributes to a better understanding of their role during natural infection and vaccination.
Collapse
Affiliation(s)
- Wided Sahli
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| | - Joana Vitte
- Laboratory of ImmunologyUniversity Hospital of ReimsReimsFrance
- INSERM UMR‐S 1250 P3CELLUniversity of ReimsReimsFrance
| | - Benoit Desnues
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| |
Collapse
|
6
|
Cheng Y, Zhao L, Yu H, Lin J, Li M, Zhang H, Zhu H, Cheng H, Huang Q, Liu Y, Wang T, Ling S. Insights into the Correlation and Immune Crosstalk Between COVID-19 and Sjögren's Syndrome Keratoconjunctivitis Sicca via Weighted Gene Coexpression Network Analysis and Machine Learning. Biomedicines 2025; 13:579. [PMID: 40149556 PMCID: PMC11940795 DOI: 10.3390/biomedicines13030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Although autoimmune complications of COVID-19 have aroused concerns, there is no consensus on its ocular complications. Sjögren's syndrome is an autoimmune disease accompanied by the ocular abnormality keratoconjunctivitis sicca (SS-KCS), which may be influenced by COVID-19. Thereby, we explored the possible interaction between COVID-19 and SS-KCS, and we aimed to elucidate the potential correlated mechanism. Methods: Differentially expressed genes (DEGs) in COVID-19 and SS-KCS transcriptome data obtained from the gene expression omnibus database were identified, and COVID-19-related genes were screened using weighted gene coexpression network analysis. Common genes were verified using four machine-learning diagnostic predictors. The clinical relationship between the two common hub genes of COVID-19 was analyzed. Finally, the immune cell types infiltrating the microenvironment in the COVID-19 dataset were analyzed using CIBERSORT, and the interrelation between key genes and differentially infiltrating immune cells was verified via Pearson correlation. Results: Ten potential primary hub mRNAs were screened by intersecting the COVID-19 DEGs, SS-KCS DEGs, and WGCNA genes. After a multifaceted evaluation using four mainstream machine-learning diagnostic predictors, the most accurate and sensitive random forest model identified CR1 and TAP2 as the common hub genes of COVID-19 and SS-KCS. Together with the clinical information on COVID-19, the expression of CR1 and TAP2 was significantly correlated with the status and severity of COVID-19. CR1 and TAP2 were significantly positively correlated with M0 and M2 macrophages, neutrophils, and CD4+ memory resting T cells and negatively correlated with activated NK cells, monocytes, and CD8+ T cells. Conclusions: We validated the hub genes associated with both COVID-19 and SS-KCS, and we investigated the immune mechanisms underlying their interaction, which may help in the early prediction, identification, diagnosis, and management of SARS-CoV-2 infection-related SS-KCS syndrome or many other immune-related complications in the long COVID period.
Collapse
Affiliation(s)
- Yaqi Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Liang Zhao
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China;
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510055, China;
| | - Jiayi Lin
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Meng Li
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Huini Zhang
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Haocheng Zhu
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Huanhuan Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Qunai Huang
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Yingjie Liu
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Tao Wang
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510055, China; (Y.C.); (J.L.); (M.L.); (H.Z.); (H.Z.); (H.C.); (Q.H.); (Y.L.)
| |
Collapse
|
7
|
Tao T, Tian L, Ke J, Zhang C, Li M, Xu X, Fan J, Tong Y, Fan H. Antibody-dependent enhancement of coronaviruses. Int J Biol Sci 2025; 21:1686-1704. [PMID: 39990674 PMCID: PMC11844293 DOI: 10.7150/ijbs.96112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
The COVID-19 pandemic presents a significant challenge to the global health and the world economy, with humanity engaged in an extended struggle against the virus. Notable advancements have been achieved in the development of vaccines and therapeutic interventions, including the application of neutralizing antibodies (NAbs) and convalescent plasma (CP). While antibody-dependent enhancement (ADE) has not been observed in human clinical studies related to SARS-CoV-2, the potential for ADE remains a critical concern and challenge in addressing SARS-CoV-2 infections. Moreover, the causal relationship between ADE and viral characteristics remains to be clearly elucidated. Viruses that present with severe clinical manifestations of ADE have demonstrated the capacity to replicate in macrophages or other immune cells, or to alter the immunological status of these cells, which induces abortive infections characterized by systemic inflammation. In this review, we summarize experimental observations and clinical evidence concerning the ADE effect associated with coronaviruses. We critically examine the potential mechanisms through which coronaviruses mediate ADE, and propose strategies to mitigate this phenomenon in the context of viral infection treatment. Our aim is to offer informed recommendations for the containment of the COVID-19 pandemic and to strengthen the response to SARS-CoV-2, as well as to prepare for potential future coronavirus threats.
Collapse
Affiliation(s)
- Tao Tao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayi Ke
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuxie Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Hooi YT, Fu TL, Tan SH, Ong KC, Tan CY, Wong KT. Neuroinvasion via Peripheral Nerves in Epidemic Viral Encephalitis Caused by Enterovirus, Orthoflavivirus and SARS-Coronavirus. Neuropathol Appl Neurobiol 2025; 51:e70005. [PMID: 39989030 DOI: 10.1111/nan.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Pathogens invade the central nervous system (CNS) and cause infections either through the haematogenous route or via peripheral nerves. Neuroinvasion via peripheral nerves, involving spinal or cranial somatic nerves, is well-established for certain viral encephalitides such as rabies, herpes simplex encephalitis, and poliomyelitis. Advances in understanding emerging and re-emerging viruses that cause epidemic CNS infections have highlighted the growing importance of peripheral nerve pathways in viral neuroinvasion. This review focuses on epidemic viral encephalitides caused by three groups of RNA viruses, viz., enteroviruses (enterovirus A71 and enterovirus D68), orthoflaviviruses (West Nile virus and Japanese encephalitis virus), and severe acute respiratory syndrome coronaviruses (mainly severe acute respiratory coronavirus-2). We examine evidence supporting the hypothesis that peripheral nerve viral transmission may play an increasingly significant if not more critical role than the haematogenous route in neuroinvasion.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Tzeh Long Fu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Yang Tan
- MBBS Class of 2017/2022, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
9
|
Liliequist A, Svensson P, Hofmann R, Häbel H, Ståhlberg M, Nordberg P. From Crisis to Complications: A Nationwide Cohort Study Assessing One-Year Cardiovascular and Thromboembolic Risks After Severe COVID-19 Compared to Matched Controls. J Clin Med 2024; 13:7265. [PMID: 39685724 DOI: 10.3390/jcm13237265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The long-term risk of cardiovascular and thrombotic events following severe COVID-19 remains largely unknown. This study aimed to assess the risk of atherosclerotic cardiovascular disease (ASCVD) within one year after hospital discharge in patients who received intensive care for severe COVID-19. Methods: A register-based nationwide case-control study on a cohort of patients with severe COVID-19 (cases) requiring mechanical ventilation and discharged alive without experiencing cardiovascular or thrombotic events during their hospital stay. Each case was matched (age, sex, district of residence) with up to 10 population-based controls. The primary outcome was ASCVD occurring after hospital discharge, defined as a composite endpoint, including myocardial infarction (MI), unstable angina pectoris and ischemic stroke. Secondary endpoints were MI, stroke, all-cause mortality, and venous thromboembolic events. Hazard ratio (HR) (95% CI) was used with adjustments for age, sex, socioeconomic factors, and co-morbidities. Results: In total, 31,375 individuals (70% men, median age 62 years) were included, of which 2854 had severe COVID-19 and 26,885 matched control subjects. The adjusted HR for ASCVD during the first year compared to control subjects was 3.1 (95% CI 1.7-5.4). Adjusted HRs for secondary outcomes for myocardial infarction were 2.0 (95% CI 0.8-5.3), for stroke 1.9 (95% CI 0.7-5.3), for pulmonary embolism 49.4 (95% CI 28.0-87.1), and deep venous thrombosis (DVT) 16.0 (95% CI 7.8-32.6). Conclusions: Severe COVID-19 requiring intensive care was associated with a substantial increase in 1-year risk for ASCVD and venous thromboembolic events.
Collapse
Affiliation(s)
- Andreas Liliequist
- Department of Medicine, Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Per Svensson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Robin Hofmann
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Henrike Häbel
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institute, 171 65 Stockholm, Sweden
| | - Marcus Ståhlberg
- Department of Medicine, Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Per Nordberg
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 171 65 Stockholm, Sweden
| |
Collapse
|
10
|
Aquino A, Zaikova E, Kalinina O, Karonova TL, Rubinstein A, Mikhaylova AA, Kudryavtsev I, Golovkin AS. T Regulatory Cell Subsets Do Not Restore for One Year After Acute COVID-19. Int J Mol Sci 2024; 25:11759. [PMID: 39519310 PMCID: PMC11545974 DOI: 10.3390/ijms252111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, triggers a complex immune response, with T regulatory cells (Tregs) playing a crucial role in maintaining immune homeostasis and preventing excessive inflammation. The current study investigates the function of T regulatory cells during COVID-19 infection and the subsequent recovery period, emphasizing their impact on immune regulation and inflammation control. We conducted a comprehensive analysis of Treg subpopulations in peripheral blood samples from COVID-19 patients at different stages: acute infection, early convalescence, and long-term recovery. Flow cytometry was employed to quantify Tregs including "naïve", central memory (CM), effector memory (EM), and terminally differentiated CD45RA+ effector cells (TEMRA). Additionally, the functional state of the Tregs was assessed by the expression of purinergic signaling molecules (CD39, CD73). Cytokine profiles were assessed through multiplex analysis. Our findings indicate a significant decrease in the number of Tregs during the acute phase of COVID-19, which correlates with heightened inflammatory markers and increased disease severity. Specifically, we found a decrease in the relative numbers of "naïve" and an increase in EM Tregs, as well as a decrease in the absolute numbers of "naïve" and CM Tregs. During the early convalescent period, the absolute counts of all Treg populations tended to increase, accompanied by a reduction in pro-inflammatory cytokines. Despite this, one year after recovery, the decreased subpopulations of regulatory T cells had not yet reached the levels observed in healthy donors. Finally, we observed the re-establishment of CD39 expression in all Treg subsets; however, there was no change in CD73 expression among Tregs. Understanding these immunological changes across different T regulatory subsets and adenosine signaling pathways offers important insights into the disease's pathogenesis and provides a broader view of immune system dynamics during recovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexey S. Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.A.); (A.R.); (I.K.)
| |
Collapse
|
11
|
Castro de Jesus L, Gonçalves-de-Albuquerque CF, Burth P. Onset of bipolar disorder by COVID-19: The roles of endogenous ouabain and the Na,K-ATPase. J Psychiatr Res 2024; 179:60-68. [PMID: 39260109 DOI: 10.1016/j.jpsychires.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Bipolar Disorder (BD) is a psychiatric disorder marked by mood swings between manic and depressive episodes. The reduction in the Na,K-ATPase (NKA) enzyme activity and the inability of individuals with BD to produce endogenous ouabain (EO) at sufficient levels to stimulate this enzyme during stressful events are factors proposed for BD etiology. According to these hypotheses, reduction in NKA activity would result in altered neuronal resting potential, leading to BD symptoms. Recently, damage to the adrenals (EO synthesis site) in coronavirus disease (COVID-19) patients has been reported, however studies pointing to the pathophysiological mechanisms shared by these two diseases are scarce. Through a literature review, this study aims to correlate COVID-19 and BD, focusing on the role of NKA and EO to identify possible mechanisms for the worsening of BD due to COVID-19. The search in the PubMed database for the descriptors ("bipolar disorder" AND "Na,K-ATPase"), ("bipolar disorder" AND "endogenous ouabain"), ("covid-19" AND "bipolar disorder") and ("covid-19" AND "adrenal gland") resulted in 390 articles. The studies identified the adrenals as a vulnerable organ to SARS-CoV-2 infection. Cases of adrenal damage in patients with COVID-19 showing lower levels of adrenal hormones were reported. Cases of COVID-19 patients with symptoms of mania were reported worldwide. Given these results, we propose that adrenal cortical cell damage could lead to EO deficiency following neuronal NKA activity impairment, with small reductions in activity leading to mania and greater reductions leading to depression.
Collapse
Affiliation(s)
- Louise Castro de Jesus
- Laboratory of Enzymology and Cell Signaling, Department of Cellular and Molecular Biology, Institute of Biology, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil.
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil; Laboratory Immunopharmacology, Department of Physiological Sciences, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20211-010, Brazil.
| | - Patrícia Burth
- Laboratory of Enzymology and Cell Signaling, Department of Cellular and Molecular Biology, Institute of Biology, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil.
| |
Collapse
|
12
|
Rajan MV, Sharma V, Upadhyay N, Murali A, Bandyopadhyay S, Hariprasad G. Serum proteomics for the identification of biomarkers to flag predilection of COVID19 patients to various organ morbidities. Clin Proteomics 2024; 21:61. [PMID: 39487396 PMCID: PMC11531188 DOI: 10.1186/s12014-024-09512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND COVID19 is a pandemic that has affected millions around the world since March 2020. While many patients recovered completely with mild illness, many patients succumbed to various organ morbidities. This heterogeneity in the clinical presentation of COVID19 infection has posed a challenge to clinicians around the world. It is therefore crucial to identify specific organ-related morbidity for effective treatment and better patient outcomes. We have carried out serum-based proteomic experiments to identify protein biomarkers that can flag organ dysfunctions in COVID19 patients. METHODS COVID19 patients were screened and tested at various hospitals across New Delhi, India. 114 serum samples from these patients, with and without organ morbidities were collected and annotated based on clinical presentation and treatment history. Of these, 29 samples comprising of heart, lung, kidney, gastrointestinal, liver, and neurological morbidities were considered for the discovery phase of the experiment. Proteins were isolated, quantified, trypsin digested, and the peptides were subjected to liquid chromatography assisted tandem mass spectrometry analysis. Data analysis was carried out using Proteome Discoverer software. Fold change analysis was carried out on MetaboAnalyst. KEGG, Reactome, and Wiki Pathway analysis of differentially expressed proteins were carried out using the STRING database. Potential biomarker candidates for various organ morbidities were validated using ELISA. RESULTS 254 unique proteins were identified from all the samples with a subset of 12-31 differentially expressed proteins in each of the clinical phenotypes. These proteins establish complement and coagulation cascade pathways in the pathogenesis of the organ morbidities. Validation experiments along with their diagnostic parameters confirm Secreted Protein Acidic and Rich in Cysteine, Cystatin C, and Catalase as potential biomarker candidates that can flag cardiovascular disease, renal disease, and respiratory disease, respectively. CONCLUSIONS Label free serum proteomics shows differential protein expression in COVID19 patients with morbidity as compared to those without morbidity. Identified biomarker candidates hold promise to flag organ morbidities in COVID19 for efficient patient care.
Collapse
Affiliation(s)
- Madhan Vishal Rajan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vipra Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Neelam Upadhyay
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ananya Murali
- Subbaiah Institute of Medical Sciences, New Delhi, Karnataka, India
| | - Sabyasachi Bandyopadhyay
- Proteomics Sub-Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Tandon A, Baral B, Saini V, Kandpal M, Dixit AK, Parmar HS, Meena AK, Chandra Jha H. The role of Helicobacter pylori in augmenting the severity of SARS-CoV-2 related gastrointestinal symptoms: An insight from molecular mechanism of co-infection. Heliyon 2024; 10:e37585. [PMID: 39364240 PMCID: PMC11447314 DOI: 10.1016/j.heliyon.2024.e37585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Coinfection of pathogenic bacteria and viruses is associated with multiple diseases. During the COVID-19 pandemic, the co-infection of other pathogens with SARS-CoV-2 was one of the important determinants of the severity. Although primarily a respiratory virus gastric manifestation of the SARS-CoV-2 infection was widely reported. This study highlights the possible consequences of SARS-CoV-2 -Helicobacter pylori coinfection in the gastrointestinal cells. We utilized the transfection and infection model for SARS-CoV-2 spike Delta (δ) and H. pylori respectively in colon carcinoma cell line HT-29 to develop the coinfection model to study inflammation, mitochondrial function, and cell death. The results demonstrate increased transcript levels of inflammatory markers like TLR2 (p < 0.01), IL10 (p < 0.05), TNFα (p < 0.05) and CXCL1 (p < 0.05) in pre-H. pylori infected cells as compared to the control. The protein levels of the β-Catenin (p < 0.01) and c-Myc (p < 0.01) were also significantly elevated in pre-H. pylori infected group in case of co-infection. Further investigation of apoptotic and necrotic markers (Caspase-3, Caspase-8, and RIP-1) reveals a necroptotic cell death in the coinfected cells. The infection and coinfection also damage the mitochondria in HT-29 cells, further implicating mitochondrial dysfunction in the necrotic cell death process. Our study also highlights the detrimental effect of pre-H. pylori exposure in the coinfection model compared to post-exposure and lone infection of H. pylori and SARS-CoV-2. This knowledge could aid in developing targeted interventions and therapeutic strategies to mitigate the severity of COVID-19 and improve patient outcomes.
Collapse
Affiliation(s)
- Akrati Tandon
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, Kolkata, 4-CN Block, Sector –V, Bidhannagar, Kolkata, 700 091, India
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Indore, Madhya Pradesh, 452001, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Amkhoh, Gwalior, Madhya Pradesh, 474001, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
14
|
Attiq A, Afzal S, Wahab HA, Ahmad W, Kandeel M, Almofti YA, Alameen AO, Wu YS. Cytokine Storm-Induced Thyroid Dysfunction in COVID-19: Insights into Pathogenesis and Therapeutic Approaches. Drug Des Devel Ther 2024; 18:4215-4240. [PMID: 39319193 PMCID: PMC11421457 DOI: 10.2147/dddt.s475005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 receptors (ACE2R) are requisite to enter the host cells for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACE2R is constitutive and functions as a type I transmembrane metallo-carboxypeptidase in the renin-angiotensin system (RAS). On thyroid follicular cells, ACE2R allows SARS-CoV-2 to invade the thyroid gland, impose cytopathic effects and produce endocrine abnormalities, including stiff back, neck pain, muscle ache, lethargy, and enlarged, inflamed thyroid gland in COVID-19 patients. Further damage is perpetuated by the sudden bursts of pro-inflammatory cytokines, which is suggestive of a life-threatening syndrome known as a "cytokine storm". IL-1β, IL-6, IFN-γ, and TNF-α are identified as the key orchestrators of the cytokine storm. These inflammatory mediators upregulate transcriptional turnover of nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK), paving the pathway for cytokine storm-induced thyroid dysfunctions including euthyroid sick syndrome, autoimmune thyroid diseases, and thyrotoxicosis in COVID-19 patients. Targeted therapies with corticosteroids (dexamethasone), JAK inhibitor (baricitinib), nucleotide analogue (remdesivir) and N-acetyl-cysteine have demonstrated effectiveness in terms of attenuating the severity and frequency of cytokine storm-induced thyroid dysfunctions, morbidity and mortality in severe COVID-19 patients. Here, we review the pathogenesis of cytokine storms and the mechanisms and pathways that establish the connection between thyroid disorder and COVID-19. Moreover, cross-talk interactions of signalling pathways and therapeutic strategies to address COVID-19-associated thyroid diseases are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrel Sheikh, 6860404, Egypt
| | - Yassir A Almofti
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Biochemistry, Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, 12217, Sudan
| | - Ahmed O Alameen
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Sudan
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
15
|
Ng HW, Scott DAR, Danesh-Meyer HV, Smith JR, McGhee CN, Niederer RL. Ocular manifestations of COVID-19. Prog Retin Eye Res 2024; 102:101285. [PMID: 38925508 DOI: 10.1016/j.preteyeres.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
There is an increasing body of knowledge regarding how COVID-19 may be associated with ocular disease of varying severity and duration. This article discusses the literature on the ocular manifestations associated with COVID-19, including appraisal of the current evidence, suggested mechanisms of action, associated comorbidities and risk factors, timing from initial infection to diagnosis and clinical red flags. The current literature primarily comprises case reports and case series which inevitably lack control groups and evidence to support causality. However, these early data have prompted the development of larger population-based and laboratory studies that are emerging. As new data become available, a better appraisal of the true effects of COVID-19 on the eye will be possible. While the COVID-19 pandemic was officially declared no longer a "global health emergency" by the World Health Organization (WHO) in May 2023, case numbers continue to rise. Reinfection with different variants is predicted to lead to a growing cumulative burden of disease, particularly as more chronic, multi-organ sequelae become apparent with potentially significant ocular implications. COVID-19 ocular manifestations are postulated to be due to three main mechanisms: firstly, there is a dysregulated immune response to the initial infection linked to inflammatory eye disease; secondly, patients with COVID-19 have a greater tendency towards a hypercoagulable state, leading to prothrombotic events; thirdly, patients with severe COVID-19 requiring hospitalisation and are immunosuppressed due to administered corticosteroids or comorbidities such as diabetes mellitus are at an increased risk of secondary infections, including endophthalmitis and rhino-orbital-mucormycosis. Reported ophthalmic associations with COVID-19, therefore, include a range of conditions such as conjunctivitis, scleritis, uveitis, endogenous endophthalmitis, corneal graft rejection, retinal artery and vein occlusion, non-arteritic ischaemic optic neuropathy, glaucoma, neurological and orbital sequelae. With the need to consider telemedicine consultation in view of COVID-19's infectivity, understanding the range of ocular conditions that may present during or following infection is essential to ensure patients are appropriately triaged, with prompt in-person ocular examination for management of potentially sight-threatening and life-threatening diseases.
Collapse
Affiliation(s)
- Hannah W Ng
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Daniel A R Scott
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Charles Nj McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, New Zealand.
| |
Collapse
|
16
|
Chakrabarty M, Chatterjee P, Mukherjee A, Das G, Mollah RI, Mondal B, Sardar S, Basu A, Ghosh M, Sengupta A, Pal SK, Biswas A. Mental health problems raise the odds of cognitive impairment in COVID-19 survivors. Front Psychiatry 2024; 15:1370085. [PMID: 39205850 PMCID: PMC11349739 DOI: 10.3389/fpsyt.2024.1370085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background COVID-19 survivors around the globe are suffering from mental health issues. While mental health problems can be an early warning sign of dementia, they may also increase the chances of developing the disease. In this study, we examined the mental health of COVID-19 survivors and mapped its associations with cognitive and demographic variables. Method COVID-19 survivors listed in the databases of three tertiary care hospitals in Kolkata were contacted sequentially. 376 willing patients were interviewed over the telephone. 99 COVID-19 patients and 31 matched controls participated in the in-person interviews that were arranged for a more detailed investigation. The participants were administered standardized tests that are widely used for the assessment of cognitive functioning and mental health status. Result 64.89% of COVID-19 survivors reported a deterioration in physical functioning. 44.95% reported a decline in mental health, whereas 41.49% reported a drop in cognitive performance. Detailed investigations revealed that they had an increased risk of having depression, anxiety, and poor sleep quality by 91%, 68%, and 140%, respectively. 6.1% of the patients had mild cognitive impairment, and 4% had dementia. COVID-19 patients who had depression and anxiety were 8.6 and 19.4 times more likely to have cognitive decline, respectively. Compared to the matched controls, COVID-19 patients had greater depression (p<.001), anxiety (p<.001), stress (p =.003), and insomnia (p <.001). They also scored significantly lower on Addenbrooke's Cognitive Examination-III (p =.009) and Picture Naming Test (p =.005) and took significantly longer to complete Trail Making Test-A (p =.002). Conclusion COVID-19 survivors in this study had major mental health issues even one year after contracting the virus. They had significant cognitive deficits that might progress into dementia. Strict monitoring and systematic treatment plans should be implemented as soon as possible.
Collapse
Affiliation(s)
- Madhushree Chakrabarty
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| | - Piali Chatterjee
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| | - Adreesh Mukherjee
- Department of Neuromedicine, North Bengal Medical College, Siliguri, India
| | - Gautam Das
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| | - Rafikul Islam Mollah
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| | - Banshidhar Mondal
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| | - Swarup Sardar
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| | - Ayanendranath Basu
- Interdisciplinary Statistical Research Unit (ISRU), Indian Statistical Institute, Kolkata, India
| | | | - Amitabha Sengupta
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| | - Sankar K. Pal
- Center for Soft Computing Research, A National Facility (CSCR), Indian Statistical Institute, Kolkata, India
| | - Atanu Biswas
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial (SSKM) Hospital, Kolkata, India
| |
Collapse
|
17
|
Vashisht A, Vashisht V, Singh H, Ahluwalia P, Mondal AK, Williams C, Farmaha J, Woodall J, Kolhe R. Neurological Complications of COVID-19: Unraveling the Pathophysiological Underpinnings and Therapeutic Implications. Viruses 2024; 16:1183. [PMID: 39205157 PMCID: PMC11359204 DOI: 10.3390/v16081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), induced a global pandemic with a diverse array of clinical manifestations. While the acute phase of the pandemic may be waning, the intricacies of COVID-19's impact on neurological health remain a crucial area of investigation. Early recognition of the spectrum of COVID-19 symptoms, ranging from mild fever and cough to life-threatening respiratory distress and multi-organ failure, underscored the significance of neurological complications, including anosmia, seizures, stroke, disorientation, encephalopathy, and paralysis. Notably, patients requiring intensive care unit (ICU) admission due to neurological challenges or due to them exhibiting neurological abnormalities in the ICU have shown increased mortality rates. COVID-19 can lead to a range of neurological complications such as anosmia, stroke, paralysis, cranial nerve deficits, encephalopathy, delirium, meningitis, seizures, etc., in affected patients. This review elucidates the burgeoning landscape of neurological sequelae associated with SARS-CoV-2 infection and explores the underlying neurobiological mechanisms driving these diverse manifestations. A meticulous examination of potential neuroinvasion routes by SARS-CoV-2 underscores the intricate interplay between the virus and the nervous system. Moreover, we dissect the diverse neurological manifestations emphasizing the necessity of a multifaceted approach to understanding the disease's neurological footprint. In addition to elucidating the pathophysiological underpinnings, this review surveys current therapeutic modalities and delineates prospective avenues for neuro-COVID research. By integrating epidemiological, clinical, and diagnostic parameters, we endeavor to foster a comprehensive analysis of the nexus between COVID-19 and neurological health, thereby laying the groundwork for targeted therapeutic interventions and long-term management strategies.
Collapse
Affiliation(s)
- Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Vishakha Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Colin Williams
- Lincoln Memorial DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37902, USA;
| | - Jaspreet Farmaha
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Jana Woodall
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| |
Collapse
|
18
|
Csontos K, Ernyei B, Vértes E, Watti J. [Severe choreiform movement disorder following COVID-19]. Orv Hetil 2024; 165:1130-1134. [PMID: 39033490 DOI: 10.1556/650.2024.33084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/26/2024] [Indexed: 07/23/2024]
Abstract
Bár a SARS-CoV-2-fertőzés során elsődlegesen a cardiovascularis és légzőszervek
érintettek, az utóbbi időben egyre nagyobb számban jelennek meg közlemények,
melyek COVID–19-et követően fellépő változatos neurológiai tünetekről számolnak
be. Jelen ismertetésünkben egy 54 éves férfi beteg esetét mutatjuk be, akinél
közel három hónappal a súlyos tünetekkel járó COVID–19-et követően kifejezett
choreiform mozgászavar jelent meg. Az eset kapcsán bemutatjuk a chorea
lehetséges etiológiai tényezőit, valamint összegezzük a
poszt-COVID-mozgászavarokat és feltételezett patogenezisüket. Orv Hetil. 2024;
165(29): 1130–1134.
Collapse
Affiliation(s)
- Krisztina Csontos
- 1 Gyöngyösi Bugát Pál Kórház, Neurológiai Osztály Gyöngyös Magyarország
| | - Bálint Ernyei
- 1 Gyöngyösi Bugát Pál Kórház, Neurológiai Osztály Gyöngyös Magyarország
| | - Edit Vértes
- 2 Gyöngyösi Bugát Pál Kórház, Krónikus Belgyógyászati Osztály Gyöngyös Magyarország
| | - Jezdancher Watti
- 3 Gyöngyösi Bugát Pál Kórház, Belgyógyászati Osztály Gyöngyös Magyarország
| |
Collapse
|
19
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
20
|
Li Y, Hu H, Liu J, Ma L, Wang X, Liu L, Liu Q, Ren L, Li J, Deng F, Hu Z, Zhou Y, Wang M. Crucial role played by CK8 + cells in mediating alveolar injury remodeling for patients with COVID-19. Virol Sin 2024; 39:390-402. [PMID: 38521412 PMCID: PMC11280282 DOI: 10.1016/j.virs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The high risk of SARS-CoV-2 infection and reinfection and the occurrence of post-acute pulmonary sequelae have highlighted the importance of understanding the mechanism underlying lung repair after injury. To address this concern, comparative and systematic analyses of SARS-CoV-2 infection in COVID-19 patients and animals were conducted. In the lungs of nine patients who died of COVID-19 and one recovered from COVID-19 but died of unrelated disease in early 2020, damage-related transient progenitor (DATP) cells expressing CK8 marker proliferated significantly. These CK8+ DATP cells were derived from bronchial CK5+ basal cells. However, they showed different cell fate toward differentiation into type I alveolar cells in the deceased and convalescent patients, respectively. By using a self-limiting hamster infection model mimicking the dynamic process of lung injury remodeling in mild COVID-19 patients, the accumulation and regression of CK8+ cell marker were found to be closely associated with the disease course. Finally, we examined the autopsied lungs of two patients who died of infection by the recent Omicron variant and found that they only exhibited mild pathological injury with no CK8+ cell proliferation. These results indicate a clear pulmonary cell remodeling route and suggest that CK8+ DATP cells play a primary role in mediating alveolar remodeling, highlighting their potential applications as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China.
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
21
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
Galeeva JS, Fedorov DE, Starikova EV, Manolov AI, Pavlenko AV, Selezneva OV, Klimina KM, Veselovsky VA, Morozov MD, Yanushevich OO, Krikheli NI, Levchenko OV, Andreev DN, Sokolov FS, Fomenko AK, Devkota MK, Andreev NG, Zaborovskiy AV, Bely PA, Tsaregorodtsev SV, Evdokimov VV, Maev IV, Govorun VM, Ilina EN. Microbial Signatures in COVID-19: Distinguishing Mild and Severe Disease via Gut Microbiota. Biomedicines 2024; 12:996. [PMID: 38790958 PMCID: PMC11118803 DOI: 10.3390/biomedicines12050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus's effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms. We conducted 16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases upon hospital admission. Our analysis identified a differential abundance of specific bacterial species associated with the severity of the disease. Severely affected patients showed an association with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients, showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in methodologies. The findings from this study, based on retrospective data, establish a foundation for future prospective research to confirm the role of the gut microbiome as a predictive biomarker for the severity of COVID-19.
Collapse
Affiliation(s)
- Julia S. Galeeva
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Dmitry E. Fedorov
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Elizaveta V. Starikova
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Alexander I. Manolov
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Alexander V. Pavlenko
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Oksana V. Selezneva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Vladimir A. Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Maxim D. Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Oleg O. Yanushevich
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Natella I. Krikheli
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Oleg V. Levchenko
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Dmitry N. Andreev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Filipp S. Sokolov
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Aleksey K. Fomenko
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Mikhail K. Devkota
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Nikolai G. Andreev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Andrey V. Zaborovskiy
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Petr A. Bely
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Sergei V. Tsaregorodtsev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Vladimir V. Evdokimov
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Igor V. Maev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Vadim M. Govorun
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Elena N. Ilina
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| |
Collapse
|
23
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
24
|
Mylavarapu M, Dondapati VVK, Dadana S, Sharma DD, Bollu B. Effect of Surfactant Therapy on Clinical Outcomes of COVID-19 Patients With ARDS: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e56238. [PMID: 38618452 PMCID: PMC11016323 DOI: 10.7759/cureus.56238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION The COVID-19 pandemic has brought unprecedented challenges, not only in terms of public health but also in the realm of innovative therapeutic approaches to combat the severe respiratory complications associated with the virus. The effect of surfactant therapy on reducing mortality in COVID-19 patients with acute respiratory distress syndrome (ARDS) hasn't been explored before. METHODS We conducted a search on PubMed, Scopus, Science Direct, and Clinicaltrials.gov to identify relevant studies, incorporating subject headings and keywords related to "Surfactant Therapy," "COVID-19," and "ARDS." Binary random effects were used to estimate the odds ratio (OR) for 28-day mortality, and continuous random effects were used to estimate the mean difference (MD) for length of hospitalization with their respective 95% confidence interval (CI). Analysis was performed with RevMan Version 5.4.1 (The Cochrane Collaboration, London, GBR). RESULTS We included four studies with 126 patients. Patients who received surfactant had lower odds of mortality (OR 0.53, 95% CI (0.23, 1.20), p=0.13) and a shorter duration of hospital stay (MD -5.69, 95% CI [-7.06, -4.30], p <0.00001) compared to patients who did not receive surfactant therapy. However, the findings regarding mortality were not statistically significant. CONCLUSIONS The COVID-19 patients with ARDS who received surfactant therapy had lower hospitalization stays and mortality rates, indicating that surfactant therapy may improve clinical outcomes in COVID-19 patients with ARDS. However, the results were not significant, and further research with more prospective studies and randomized clinical trials (RCTs) with larger sample sizes is needed to confirm these findings and assess their practical significance and generalizability.
Collapse
Affiliation(s)
| | | | - Sriharsha Dadana
- Internal Medicine, Cheyenne Regional Medical Center, Cheyenne, USA
| | - Dhruvikumari D Sharma
- Biochemistry, Spartan Health Sciences University, Vieux Fort, LCA
- Medicine, Avalon University School of Medicine, Willemstad, CUW
| | - Bhaswanth Bollu
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
25
|
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
26
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
27
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
28
|
Wang DX, Xiao LX, Deng XY, Deng W. Omadacycline for the treatment of severe pneumonia caused by Chlamydia psittaci complicated with acute respiratory distress syndrome during the COVID-19 pandemic. Front Med (Lausanne) 2024; 10:1207534. [PMID: 38264056 PMCID: PMC10805100 DOI: 10.3389/fmed.2023.1207534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Chlamydia psittaci infection in humans is a rare cause that mainly present as community-acquired pneumonia. Severe Chlamydia psittaci pneumonia can lead to acute respiratory distress syndrome (ARDS), septic shock, or multiple organ dysfunction with a mortality rate of 15%-20% before accurate diagnosis and targeted treatment. Metagenomic next-generation sequencing (mNGS) has an advantage in achieving early diagnosis. In the study, omadacycline implementation was described to provide a better understanding of effectiveness in severe psittacosis pneumonia with ARDS. Methods Sixteen patients with severe psittacosis pneumonia with ARDS were selected between September 2021 and October 2022. They were diagnosed using mNGS and treated with omadacycline. Retrospective analysis of clinical manifestations, laboratory data, disease progression, diagnostic tool, treatment, and prognosis was summarized. Results Common symptoms included fever, dyspnea, and cough. All patients developed ARDS, accompanied by septic shock (43.7%) and pulmonary embolism (43.7%). Laboratory data showed normal leucocytes, increased creatine kinase isoenzyme, and decreased albumin with liver dysfunction in most patients. All patients had increased neutrophils, C-reactive protein, procalcitonin, and D-dimer with decreased lymphocytes. Airspace consolidation, ground glass opacity, and pleural effusion were found on chest CT. mNGS results were obtained in 24-48 h to identify the diagnosis of Chlamydia psittacosis. All patients received mechanical ventilation with omadacycline treatment. Fourteen patients experienced complete recovery, while the other two patients died from multidrug-resistant bacterial infection and renal failure. Conclusion mNGS has a significant value in the diagnosis of Chlamydia psittaci infection. Timely treatment of omadacycline can improve prognosis and provide a promising new option for the treatment of severe Chlamydia psittaci pneumonia with ARDS.
Collapse
Affiliation(s)
- Dao-Xin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Ling-Xi Xiao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Xin-Yu Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| | - Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Medical Research Center for Respiratory and Critical Care Medicine, Chongqing, China
| |
Collapse
|
29
|
Mazzeo P, Ceccato F, Manara R, Mazzon C, Barbot M. Transient Central Diabetes Insipidus (Arginine Vasopressin Deficiency) Following SARS-CoV-2 Vaccination: A Case Report and Literature Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1856-1864. [PMID: 38243973 DOI: 10.2174/0118715303286560231124115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people, causing the COVID-19 global pandemic. The use of novel technologies led to the development of different types of SARS-CoV-2 vaccines that have reduced severe disease courses and related deaths. Besides the positive impact of vaccination on the pandemic, local and systemic side effects have been reported; they are usually mild to moderate, although also serious adverse events have been described. CASE PRESENTATION A 21-year-old female was referred to our hospital for the recent onset of severe polyuria and polydipsia, with the need for about 8 liters of daily water intake. The symptoms developed seven days after the administration of the second dose of the mRNA-based (Pfizer-BioNTech® BNT162b2) SARS-CoV-2 vaccine. In the suspicion of central diabetes insipidus (DI) development, she started treatment with desmopressin (Minirin® tablets) 60 mg/day with an improvement of symptoms and thirst. A thickening of the pituitary stalk was observed at the pituitary MRI with loss of the posterior pituitary bright spot on T1 weighted images. To confirm the diagnosis of central DI, both the water deprivation test and arginine stimulated copeptin test were performed; whilst the former gave no clear-cut indication of DI, the latter showed a reduced copeptin peak after arginine infusion consistent with the diagnosis of partial central DI. Furthermore, the development of symptoms right after the second dose of the vaccine strengthened the hypothesis that DI was related to the vaccination itself. After our evaluation, there was a progressive reduction of desmopressin dose to a complete discontinuation with the maintenance of a normal hydroelectrolytic balance. Clinical and biochemical follow-up was performed by repeating a pituitary MRI and a second arginine-stimulated copeptin test 15 months after the diagnosis. This time, copeptin levels reached a significantly higher peak after arginine stimulation that completely excluded central DI and at pituitary MRI, the thickening of the pituitary stalk previously described was no longer visible. CONCLUSION Neurohypophysitis can have an abrupt onset independently of the etiology. Central DI is a rather exceptional event after SARS-CoV-2 vaccination but should be recalled in case of sudden polyuria and polydipsia. DI is indeed reported even after SARS-CoV-2 infection, thus, this report should not discourage the use of mRNA-based vaccines. Furthermore, our case demonstrates that full recovery of posterior pituitary function is possible after immunization with anti-Covid-19 BNT162b2 vaccine. Further studies are needed to clarify the possible mechanism relating to SARS-CoV-2 vaccination and this rare adverse event.
Collapse
Affiliation(s)
- Pierluigi Mazzeo
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Filippo Ceccato
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Renzo Manara
- Neuroradiology Unit, Department of Neuroscience, University-Hospital of Padova, Padua, Italy
| | - Cinzia Mazzon
- Department of Endocrinology and Metabolic Diseases, Hospital Santa Maria degli Angeli, Pordenone, Italy
| | - Mattia Barbot
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| |
Collapse
|
30
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
31
|
Sharma KK, Devi S, Kumar D, Ali Z, Fatma N, Misra R, Kumar G. Role of Natural Products against the Spread of SARS-CoV-2 by Inhibition of ACE-2 Receptor: A Review. Curr Pharm Des 2024; 30:2562-2573. [PMID: 39041269 DOI: 10.2174/0113816128320161240703092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, and Piper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (π- π) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor- binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.
Collapse
Affiliation(s)
- Krishana Kumar Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Shoma Devi
- Department of Zoology, Krishna College of Science & Information Technology, Bijnor 246701 (UP), India
| | - Dharmendra Kumar
- Science Branch, Pt. Deendayal Upadhyay Institute of Archaeology, Archaeological Survey of India, Greater Noida 201013, India
| | - Zeeshan Ali
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Nishat Fatma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Raghvendra Misra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Gajendra Kumar
- Department of Chemistry, Constituent Government College, MJP Rohilkhand University, Bareilly, Hasanpur, Amroha 244241 (UP), India
| |
Collapse
|
32
|
Yea C, Barton M, Bitnun A, Morris SK, El Tal T, Ulloa-Gutierrez R, Brenes-Chacon H, Yock-Corrales A, Ivankovich-Escoto G, Soriano-Fallas A, Hernandez-de Mezerville M, Gill P, Nateghian A, Aski BH, Manafi AA, Dwilow R, Bullard J, Papenburg J, Scuccimarri R, Lefebvre MA, Cooke S, Dewan T, Restivo L, Lopez A, Sadarangani M, Roberts A, Wong J, Saux NL, Bowes J, Purewal R, Lautermilch J, Foo C, Merckx J, Robinson J, Yeh EA. Neurological involvement in hospitalized children with SARS-CoV-2 infection: a multinational study. Can J Neurol Sci 2024; 51:40-49. [PMID: 36597285 PMCID: PMC9947047 DOI: 10.1017/cjn.2022.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Neurological involvement associated with SARS-CoV-2 infection is increasingly recognized. However, the specific characteristics and prevalence in pediatric patients remain unclear. The objective of this study was to describe the neurological involvement in a multinational cohort of hospitalized pediatric patients with SARS-CoV-2. METHODS This was a multicenter observational study of children <18 years of age with confirmed SARS-CoV-2 infection or multisystemic inflammatory syndrome (MIS-C) and laboratory evidence of SARS-CoV-2 infection in children, admitted to 15 tertiary hospitals/healthcare centers in Canada, Costa Rica, and Iran February 2020-May 2021. Descriptive statistical analyses were performed and logistic regression was used to identify factors associated with neurological involvement. RESULTS One-hundred forty-seven (21%) of 697 hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Headache (n = 103), encephalopathy (n = 28), and seizures (n = 30) were the most reported. Neurological signs/symptoms were significantly associated with ICU admission (OR: 1.71, 95% CI: 1.15-2.55; p = 0.008), satisfaction of MIS-C criteria (OR: 3.71, 95% CI: 2.46-5.59; p < 0.001), fever during hospitalization (OR: 2.15, 95% CI: 1.46-3.15; p < 0.001), and gastrointestinal involvement (OR: 2.31, 95% CI: 1.58-3.40; p < 0.001). Non-headache neurological manifestations were significantly associated with ICU admission (OR: 1.92, 95% CI: 1.08-3.42; p = 0.026), underlying neurological disorders (OR: 2.98, 95% CI: 1.49-5.97, p = 0.002), and a history of fever prior to hospital admission (OR: 2.76, 95% CI: 1.58-4.82; p < 0.001). DISCUSSION In this study, approximately 21% of hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Future studies should focus on pathogenesis and long-term outcomes in these children.
Collapse
Affiliation(s)
- Carmen Yea
- Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Michelle Barton
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - Ari Bitnun
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shaun K. Morris
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tala El Tal
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rolando Ulloa-Gutierrez
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Helena Brenes-Chacon
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Adriana Yock-Corrales
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Gabriela Ivankovich-Escoto
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Alejandra Soriano-Fallas
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Marcela Hernandez-de Mezerville
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Peter Gill
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Pediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alireza Nateghian
- Department of Pediatrics, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Anari Manafi
- Department of Pediatrics, Iran University of Medical Sciences, Tehran, Iran
| | - Rachel Dwilow
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jared Bullard
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jesse Papenburg
- Division of Pediatric Infectious Diseases, Dept. of Pediatrics, Montreal Children’s Hospital (McGill University Health Centre), Montreal, Quebec, Canada
- Division of Microbiology, Dept. of Clinical Laboratory Medicine, Optilab Montreal, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rosie Scuccimarri
- Division of Rheumatology, Montreal Children’s Hospital (McGill University Health Centre), Montreal, Quebec, Canada
| | - Marie-Astrid Lefebvre
- Division of Pediatric Infectious Diseases, Dept. of Pediatrics, Montreal Children’s Hospital (McGill University Health Centre), Montreal, Quebec, Canada
| | - Suzette Cooke
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Tammie Dewan
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Lea Restivo
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | | | - Manish Sadarangani
- BC Children’s Hospital, Vancouver, BC, Canada
- Vaccine Evaluation Center, University of British Columbia, Vancouver, BC, Canada
| | | | - Jacqueline Wong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Nicole Le Saux
- Department of Pediatrics, University of Ottawa, Ontario, Canada
| | - Jennifer Bowes
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Rupeena Purewal
- Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janell Lautermilch
- Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cheryl Foo
- Department of Pediatrics, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Joanna Merckx
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Joan Robinson
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - E. Ann Yeh
- Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital of Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
34
|
Mirmosayyeb O, Ghaffary EM, Dehghan MS, Ghoshouni H, Bagherieh S, Barzegar M, Shaygannejad V. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease and COVID-19: A Systematic Review. J Cent Nerv Syst Dis 2023; 15:11795735231167869. [PMID: 37008248 PMCID: PMC10063869 DOI: 10.1177/11795735231167869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Background Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an uncommon neurological disease affecting the central nervous system (CNS). Numerous neurological disorders, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), acute transverse myelitis (ATM), and MOGAD, have been reported following the COVID-19 infection during the current COVID-19 pandemic. On the other hand, it has been suggested that patients with MOGAD may be at greater risk for infection (particularly in the current pandemic). Objective In this systematic review, we gathered separately 1) MOGAD cases following COVID-19 infection as well as 2) clinical course of patients with MOGAD infected with COVID-19 based on case reports/series. Methods 329 articles were collected from 4 databases. These articles were conducted from inception to March 1st, 2022. Results Following the screening, exclusion criteria were followed and eventually, 22 studies were included. In 18 studies, a mean ± SD time interval of 18.6 ± 14.9 days was observed between infection with COVID-19 and the onset of MOGAD symptoms. Symptoms were partially or completely recovered in a mean of 67 days of follow-up. Among 4 studies on MOGAD patients, the hospitalization rate was 25%, and 15% of patients were hospitalized in the intensive care unit (ICU). Conclusion Our systematic review demonstrated that following COVID-19 infection, there is a rare possibility of contracting MOGAD. Moreover, there is no clear consensus on the susceptibility of MOGAD patients to severe COVID-19. However, obtaining deterministic results requires studies with a larger sample size.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad S. Dehghan
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Bagherieh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Barzegar
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Shaygannejad
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Vahid Shaygannejad, Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Kashani Street, Kashani Hospital, Isfahan 81746 73461, Iran.
| |
Collapse
|
35
|
Salazar-Ardiles C, Asserella-Rebollo L, Cornejo C, Arias D, Vasquez-Muñoz M, Toledo C, Andrade DC. Molecular diagnostic approaches for SARS-CoV-2 detection and pathophysiological consequences. Mol Biol Rep 2023; 50:10367-10382. [PMID: 37817022 DOI: 10.1007/s11033-023-08844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
SARS-CoV-2, a novel coronavirus within the Coronaviridae family, is the causative agent behind the respiratory ailment referred to as COVID-19. Operating on a global scale, COVID-19 has led to a substantial number of fatalities, exerting profound effects on both public health and the global economy. The most frequently reported symptoms encompass fever, cough, muscle or body aches, loss of taste or smell, headaches, and fatigue. Furthermore, a subset of individuals may manifest more severe symptoms, including those consistent with viral pneumonitis, which can be so profound as to result in fatalities. Consequently, this situation has spurred the rapid advancement of disease diagnostic technologies worldwide. Predominantly employed in diagnosing COVID-19, the real-time quantitative reverse transcription PCR has been the foremost diagnostic method, effectively detecting SARS-CoV-2 viral RNA. As the pandemic has evolved, antigen and serological tests have emerged as valuable diagnostic tools. Antigen tests pinpoint specific viral proteins of SARS-CoV-2, offering swift results, while serological tests identify the presence of antibodies in blood samples. Additionally, there have been notable strides in sample collection methods, notably with the introduction of saliva-based tests, presenting a non-invasive substitute to nasopharyngeal swabs. Given the ongoing mutations in SARS-CoV-2, there has been a continuous need for genomic surveillance, encompassing full genome sequencing and the identification of new variants through Illumina technology and, more recently, nanopore metagenomic sequencing (SMTN). Consequently, while diagnostic testing methods for COVID-19 have experienced remarkable progress, no test is flawless, and there exist limitations with each technique, including sensitivity, specificity, sample collection, and the minimum viral load necessary for accurate detection. These aspects are comprehensively addressed within this current review.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | | | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Dayana Arias
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Manuel Vasquez-Muñoz
- Dirección de Docencia de Especialidades Médicas, Dirección de Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory and Sleep Physiology, Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - David C Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile.
| |
Collapse
|
36
|
Li T, Wang D, Wei H, Xu X. Cytokine storm and translating IL-6 biology into effective treatments for COVID-19. Front Med 2023; 17:1080-1095. [PMID: 38157195 DOI: 10.1007/s11684-023-1044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
As of May 3, 2023, the Coronavirus disease 2019 (COVID-19) pandemic has resulted in more than 760 million confirmed cases and over 6.9 million deaths. Several patients have developed pneumonia, which can deteriorate into acute respiratory distress syndrome. The primary etiology may be attributed to cytokine storm, which is triggered by the excessive release of proinflammatory cytokines and subsequently leads to immune dysregulation. Considering that high levels of interleukin-6 (IL-6) have been detected in several highly pathogenic coronavirus-infected diseases, such as severe acute respiratory syndrome in 2002, the Middle East respiratory syndrome in 2012, and COVID-19, the IL-6 pathway has emerged as a key in the pathogenesis of this hyperinflammatory state. Thus, we review the history of cytokine storm and the process of targeting IL-6 signaling to elucidate the pivotal role played by tocilizumab in combating COVID-19.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Geriatric Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Dongsheng Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaoling Xu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
37
|
Maezawa M, Ochi J, Kubota N, Kamoshida T, Fuji M, Tsukada Y. Herpes Simplex Virus Encephalitis after Recovery from Coronavirus Disease 2019: A Rare Case Report. Intern Med 2023; 62:3515-3518. [PMID: 37779075 PMCID: PMC10749812 DOI: 10.2169/internalmedicine.1790-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/30/2023] [Indexed: 10/03/2023] Open
Abstract
An 85-year-old woman was diagnosed with coronavirus disease 2019 (COVID-19). The patient was treated with dexamethasone, and the infection was cured. She later developed a low-grade fever and fell unconscious. Positivity for herpes simplex virus deoxyribonucleic acid polymerase chain reaction (HSV-DNA PCR) was detected in the cerebrospinal fluid, so she was diagnosed with HSV encephalitis. The patient was treated with antiviral drugs and recovered from the HSV encephalitis. This case suggests that, in patients with COVID-19 and disorders of consciousness, the possibility of HSV encephalitis should be considered along with COVID-19 encephalitis.
Collapse
Affiliation(s)
- Mari Maezawa
- Department of Pulmology, Soka Municipal Hospital, Japan
| | - Junichi Ochi
- Department of Pulmology, Soka Municipal Hospital, Japan
| | | | | | - Mayumi Fuji
- Department of Pulmology, Soka Municipal Hospital, Japan
| | | |
Collapse
|
38
|
Szafran A, Dahms K, Ansems K, Skoetz N, Monsef I, Breuer T, Benstoem C. Early versus late tracheostomy in critically ill COVID-19 patients. Cochrane Database Syst Rev 2023; 11:CD015532. [PMID: 37982427 PMCID: PMC10658650 DOI: 10.1002/14651858.cd015532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND The role of early tracheostomy as an intervention for critically ill COVID-19 patients is unclear. Previous reports have described prolonged intensive care stays and difficulty weaning from mechanical ventilation in critically ill COVID-19 patients, particularly in those developing acute respiratory distress syndrome. Pre-pandemic evidence on the benefits of early tracheostomy is conflicting but suggests shorter hospital stays and lower mortality rates compared to late tracheostomy. OBJECTIVES To assess the benefits and harms of early tracheostomy compared to late tracheostomy in critically ill COVID-19 patients. SEARCH METHODS We searched the Cochrane COVID-19 Study Register, which comprises CENTRAL, PubMed, Embase, ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, and medRxiv, as well as Web of Science (Science Citation Index Expanded and Emerging Sources Citation Index) and WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies without language restrictions. We conducted the searches on 14 June 2022. SELECTION CRITERIA We followed standard Cochrane methodology. We included randomized controlled trials (RCTs) and non-randomized studies of interventions (NRSI) evaluating early tracheostomy compared to late tracheostomy during SARS-CoV-2 infection in critically ill adults irrespective of gender, ethnicity, or setting. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess risk of bias in included studies, we used the Cochrane RoB 2 tool for RCTs and the ROBINS-I tool for NRSIs. We used the GRADE approach to assess the certainty of evidence for outcomes of our prioritized categories: mortality, clinical status, and intensive care unit (ICU) length of stay. As the timing of tracheostomy was very heterogeneous among the included studies, we applied GRADE only to studies that defined early tracheostomy as 10 days or less, which was chosen according to clinical relevance. MAIN RESULTS We included one RCT with 150 participants diagnosed with SARS-CoV-2 infection and 24 NRSIs with 6372 participants diagnosed with SARS-CoV-2 infection. All participants were admitted to the ICU, orally intubated and mechanically ventilated. The RCT was a multicenter, parallel, single-blinded study conducted in Sweden. Of the 24 NRSIs, which were mostly conducted in high- and middle-income countries, eight had a prospective design and 16 a retrospective design. We did not find any ongoing studies. RCT-based evidence We judged risk of bias for the RCT to be of low or some concerns regarding randomization and measurement of the outcome. Early tracheostomy may result in little to no difference in overall mortality (RR 0.82, 95% CI 0.52 to 1.29; RD 67 fewer per 1000, 95% CI 178 fewer to 108 more; 1 study, 150 participants; low-certainty evidence). As an indicator of improvement of clinical status, early tracheostomy may result in little to no difference in duration to liberation from invasive mechanical ventilation (MD 1.50 days fewer, 95%, CI 5.74 days fewer to 2.74 days more; 1 study, 150 participants; low-certainty evidence). As an indicator of worsening clinical status, early tracheostomy may result in little to no difference in the incidence of adverse events of any grade (RR 0.94, 95% CI 0.79 to 1.13; RD 47 fewer per 1000, 95% CI 164 fewer to 102 more; 1 study, 150 participants; low-certainty evidence); little to no difference in the incidence of ventilator-associated pneumonia (RR 1.08, 95% CI 0.23 to 5.20; RD 3 more per 1000, 95% CI 30 fewer to 162 more; 1 study, 150 participants; low-certainty evidence). None of the studies reported need for renal replacement therapy. Early tracheostomy may result in little benefit to no difference in ICU length of stay (MD 0.5 days fewer, 95% CI 5.34 days fewer to 4.34 days more; 1 study, 150 participants; low-certainty evidence). NRSI-based evidence We considered risk of bias for NRSIs to be critical because of possible confounding, study participant enrollment into the studies, intervention classification and potentially systematic errors in the measurement of outcomes. We are uncertain whether early tracheostomy (≤ 10 days) increases or decreases overall mortality (RR 1.47, 95% CI 0.43 to 5.00; RD 143 more per 1000, 95% CI 174 less to 1218 more; I2 = 79%; 2 studies, 719 participants) or duration to liberation from mechanical ventilation (MD 1.98 days fewer, 95% CI 0.16 days fewer to 4.12 more; 1 study, 50 participants), because we graded the certainty of evidence as very low. Three NRSIs reported ICU length of stay for 519 patients with early tracheostomy (≤ 10 days) as a median value, which we could not include in the meta-analyses. We are uncertain whether early tracheostomy (≤ 10 days) increases or decreases the ICU length of stay, because we graded the certainty of evidence as very low. AUTHORS' CONCLUSIONS We found low-certainty evidence that early tracheostomy may result in little to no difference in overall mortality in critically ill COVID-19 patients requiring prolonged mechanical ventilation compared with late tracheostomy. In terms of clinical improvement, early tracheostomy may result in little to no difference in duration to liberation from mechanical ventilation compared with late tracheostomy. We are not certain about the impact of early tracheostomy on clinical worsening in terms of the incidence of adverse events, need for renal replacement therapy, ventilator-associated pneumonia, or the length of stay in the ICU. Future RCTs should provide additional data on the benefits and harms of early tracheostomy for defined main outcomes of COVID-19 research, as well as of comparable diseases, especially for different population subgroups to reduce clinical heterogeneity, and report a longer observation period. Then it would be possible to draw conclusions regarding which patient groups might benefit from early intervention. Furthermore, validated scoring systems for more accurate predictions of the need for prolonged mechanical ventilation should be developed and used in new RCTs to ensure safer indication and patient safety. High-quality (prospectively registered) NRSIs should be conducted in the future to provide valuable answers to clinical questions. This could enable us to draw more reliable conclusions about the potential benefits and harms of early tracheostomy in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Agnieszka Szafran
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karolina Dahms
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kelly Ansems
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Breuer
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Carina Benstoem
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Sun D, Tu L, Wang X, Du Q, Wang R, Shi Z, Chen H, Zhou H. Association between COVID-19 and myasthenia gravis (MG): A genetic correlation and Mendelian randomization study. Brain Behav 2023; 13:e3239. [PMID: 37638499 PMCID: PMC10636397 DOI: 10.1002/brb3.3239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Observational studies have suggested an association between coronavirus disease 2019 (COVID-19) and myasthenia gravis (MG). Here, we aimed to estimate the genetic correlation and causal relationship between COVID-19 susceptibility, hospitalization, severity, and MG phenotypes using linkage disequilibrium score regression (LDSC) and Mendelian randomization (MR) approach. METHODS Summary statistics of COVID-19 susceptibility, hospitalization, and severity were used as instrumental variables for exposure traits. Large-scale genome-wide association study (GWAS) data for MG were used as outcome traits. The inverse variance weighted approach was used for the main MR analysis, complemented by MR-Egger, weighted median, simple mode, and weighted mode methods. Sensitivity analysis was implemented using Cochran's Q test, MR-PRESSO method, and MR-Egger intercept test. RESULTS LDSC analysis did not reveal any genetic correlation among COVID-19 susceptibility, hospitalization, severity, and MG phenotypes, including MG, early-onset MG, and late-onset MG (p > .05). Our MR analysis did not provide evidence supporting a causal effect of COVID-19 susceptibility, hospitalization, or severity on MG phenotypes (p > .05). Extensive sensitivity analysis strengthened the robustness and consistency of the MR estimates. CONCLUSION Our study did not find evidence of a genetic correlation or causal relationship among COVID-19 susceptibility, hospitalization, severity, and MG. Future studies with more GWAS data are needed to evaluate the association between COVID-19 phenotypes and MG and its subgroups.
Collapse
Affiliation(s)
- Dongren Sun
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Liangdan Tu
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaofei Wang
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qin Du
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Rui Wang
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyan Shi
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hongxi Chen
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hongyu Zhou
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
40
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
41
|
Ahmed W, Feng J, Zhang Y, Chen L. SARS-CoV-2 and Brain Health: New Challenges in the Era of the Pandemic. Microorganisms 2023; 11:2511. [PMID: 37894169 PMCID: PMC10609574 DOI: 10.3390/microorganisms11102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections have been found to have a negative impact on neurological functions, potentially leading to significant neurological impairment. The SARS-CoV-2 virus has precipitated a worldwide pandemic, posing a substantial threat to human lives. Growing evidence suggests that SARS-CoV-2 may severely affect the CNS and respiratory system. The current prevalence of clinical neurological issues associated with SARS-CoV-2 has raised significant concerns. However, there needs to be a more comprehensive understanding of the specific pathways by which SARS-CoV-2 enters the nervous system. Based on the available evidence, this review focuses on the clinical neurological manifestations of SARS-CoV-2 and the possible mechanisms by which SARS-CoV-2 invades the brain.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
42
|
Reveret L, Leclerc M, Emond V, Tremblay C, Loiselle A, Bourassa P, Bennett DA, Hébert SS, Calon F. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer's disease. Acta Neuropathol Commun 2023; 11:159. [PMID: 37784209 PMCID: PMC10544218 DOI: 10.1186/s40478-023-01647-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Cognitive decline due to Alzheimer's disease (AD) is frequent in the geriatric population, which has been disproportionately affected by the COVID-19 pandemic. In this study, we investigated the levels of angiotensin-converting enzyme 2 (ACE2), a regulator of the renin-angiotensin system and the main entry receptor of SARS-CoV-2 in host cells, in postmortem parietal cortex samples from two independent AD cohorts, totalling 142 persons. Higher concentrations of ACE2 protein (p < 0.01) and mRNA (p < 0.01) were found in individuals with a neuropathological diagnosis of AD compared to age-matched healthy control subjects. Brain levels of soluble ACE2 were inversely associated with cognitive scores (p = 0.02) and markers of pericytes (PDGFRβ, p = 0.02 and ANPEP, p = 0.007), but positively correlated with concentrations of soluble amyloid-β peptides (Aβ) (p = 0.01) and insoluble phospho-tau (S396/404, p = 0.002). However, no significant differences in ACE2 were observed in the 3xTg-AD mouse model of tau and Aβ neuropathology. Results from immunofluorescence and Western blots showed that ACE2 protein is predominantly localized in microvessels in the mouse brain whereas it is more frequently found in neurons in the human brain. The present data suggest that higher levels of soluble ACE2 in the human brain may contribute to AD, but their role in CNS infection by SARS-CoV-2 remains unclear.
Collapse
Affiliation(s)
- Louise Reveret
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Vincent Emond
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Cyntia Tremblay
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Andréanne Loiselle
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - Philippe Bourassa
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sébastien S Hébert
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada
- Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada.
- CHU de Quebec Research Center, 2705, Boulevard Laurier, Room T2-05, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
43
|
Wertenauer C, Pfeifer C, Roskos M, März W. Rapid antigen tests for SARS-CoV-2-a synopsis of the medical evidence. Diagn Microbiol Infect Dis 2023; 107:116027. [PMID: 37516068 DOI: 10.1016/j.diagmicrobio.2023.116027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, continues to influence health, economy, and stability worldwide. Diagnostic testing for SARS-CoV-2 is important to contain the COVID-19 pandemic. With the commercial availability of certified antigen (Ag) rapid diagnostic tests (RDTs), which can be used to identify an infection with SARS-CoV-2 an easy-to-use tool was introduced. Self-tests can offer advantages to complement professionally administered rapid antigen detection or nucleic acid amplification testing (NAAT). Compared to real-time polymerase chain reaction (RT-PCR), Ag-RDTs are cost inexpensive, do not need specialized laboratory equipment, facilitating high-throughput testing. However, Ag-RDT sensitivities are strongly dependent on the viral load within the specimen, which has limited their application in clinical settings so far. The methodical limitations of Ag-RDTs may produce false negative test results, particularly when specimens with low viral loads are examined. This may facilitate viral transmissions if protective measurements are lifted mistakenly.
Collapse
Affiliation(s)
- Christoph Wertenauer
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | - Winfried März
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
44
|
Dhawan A, Ganduboina R, Dutta P, Gandrakota G, Kumar Y, Palagati K, Avvaru SN, Sreekumar A, Mylavarapu S, Nizami A, Babu AT, Alam M. COVID-associated cystitis: the culprit behind the bladder woes post-COVID infection? A review. Int Urol Nephrol 2023; 55:2367-2372. [PMID: 37410305 DOI: 10.1007/s11255-023-03700-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE SARS-CoV-2 had a significant impact on public health since its declaration as a pandemic. It is linked to a high rate of multiple organ dysfunction syndrome (MODS) and a slew of long-term symptoms that are yet to be thoroughly investigated. Among these, genitourinary symptoms of an overactive bladder (increased frequency, urgency, and nocturia) have recently been identified and labeled as COVID-associated cystitis (CAC). This current research is performed to review this phenomenon. METHODS A literature search was performed in MEDLINE, Cochrane, and Google Scholar databases and 185 articles were obtained in total, including reviews and trials involving CAC, which were screened using various methods, and 42 articles were gathered for the review. RESULTS Among its multitude of symptoms, overactive bladder (OAB) leads to poorer outcomes. The inflammatory mediator-based theory and the ACE-2 receptor-based theory are two probable theories for how it harms the bladder urothelium. The expression of ACE-2 receptors during the pathogenesis of CAC warrants further investigation as ACE modulation may reveal more information about COVID-19 complications. Other comorbidities, immunocompromised patients, or patients with a history of urinary tract infections can also exacerbate this condition. CONCLUSION The scarce literature collected related to CAC gives us an insight into the symptomatology, pathophysiology, and possible treatment plans. Treatment choices are diverse among COVID-19-afflicted and unaffected patients for treating urinary symptoms which highlights the importance to distinguish between the two. CAC shows greater prevalence and morbidity when linked to other conditions, thereby warranting future developments in it.
Collapse
Affiliation(s)
| | - Rohit Ganduboina
- NRI Institute of Medical Sciences, Sangivalasa, Visakhapatnam, 531162, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lin HF, Liu MQ, Jiang RD, Gong QC, Su J, Guo ZS, Chen Y, Jia JK, Dong TY, Zhu Y, Li A, Shen XR, Wang Y, Li B, Xie TT, Yang XL, Hu B, Shi ZL. Characterization of a mouse-adapted strain of bat severe acute respiratory syndrome-related coronavirus. J Virol 2023; 97:e0079023. [PMID: 37607058 PMCID: PMC10537601 DOI: 10.1128/jvi.00790-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/18/2023] [Indexed: 08/24/2023] Open
Abstract
Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.
Collapse
Affiliation(s)
- Hao-Feng Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian-Chun Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Su
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Shuo Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Kun Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Yi Dong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Rui Shen
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yi Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ting-Ting Xie
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
46
|
Awad AM, Hansen K, Del Rio D, Flores D, Barghash RF, Kakkola L, Julkunen I, Awad K. Insights into COVID-19: Perspectives on Drug Remedies and Host Cell Responses. Biomolecules 2023; 13:1452. [PMID: 37892134 PMCID: PMC10604481 DOI: 10.3390/biom13101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Kamryn Hansen
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Diana Del Rio
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Derek Flores
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laura Kakkola
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland
| | - Kareem Awad
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
47
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
48
|
Keshtgar Z, Chalabianloo G, Esmaeili N. Probable Neuropsychological and Cognitive Complications Due to Cytokine Storm in Patients With COVID-19. Basic Clin Neurosci 2023; 14:549-564. [PMID: 38628831 PMCID: PMC11016882 DOI: 10.32598/bcn.2022.3202.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/28/2021] [Accepted: 06/28/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction COVID-19 (coronavirus disease 2019) was first identified in China in December 2019 and is rapidly spreading worldwide as a pandemic. Since COVID-19 causes mild to severe acute respiratory syndrome, most studies in this context have focused on pathogenesis primarily in the respiratory system. However, evidence shows that the central nervous system (CNS) may also be affected by COVID-19. Since COVID-19 is spreading, it is necessary to study its possible cognitive effects on COVID-19 patients and their recovery. Methods The articles used in this study were searched by keywords, such as cytokine storm and COVID-19, COVID-19 and executive dysfunction, cognitive disorder, and COVID-19, central nervous system (CNS) and COVID-19, coronavirus, neuroinvasion in Science Direct, Scopus, PubMed, Embase, and Web of Science databases based on preferred reporting items for systematic reviews and meta-analysis (PRISMA) checklist. The study evaluates all observational studies published between December 2019 and April 2021 in peer-reviewed journals, including cross-sectional, cohort, case-control studies, case reports, and case series. The search result was 106 articles, of which 73 articles related to COVID-19, the stages of infection by this virus, its effect on the nervous system and neurological symptoms, the cytokine storm caused by this infection, and the possible cognitive consequences caused by this virus in patients, has been reviewed. Other articles were not checked due to their limited relevance to the topic under discussion. Results Studies showed that neurons may be directly affected by severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and SARS-CoV-2. Furthermore, various studies indicated that systemic inflammation (so-called "cytokine storm") is also responsible for brain damage induced by infection with SARS-CoV-1 and SARS-CoV-2. In such a way that these patients showed elevated levels of interleukin (IL-), 6, 8, and 10 and of tumor necrosis factor-alpha (TNF-α) in their blood. Conclusion Various cognitive defects have been observed following an increased level of cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, 8. Therefore, due to the increased level of these pro-inflammatory factors in the brains of these patients, cognitive deficits can be expected, which need further investigation.
Collapse
Affiliation(s)
- Zahra Keshtgar
- Department of Neuroscience, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Chalabianloo
- Department of Neuroscience, School of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Niloofar Esmaeili
- Department of Hematology & Oncology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
|
50
|
Tyagi K, Rai P, Gautam A, Kaur H, Kapoor S, Suttee A, Jaiswal PK, Sharma A, Singh G, Barnwal RP. Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders. Eur J Med Res 2023; 28:307. [PMID: 37649125 PMCID: PMC10469568 DOI: 10.1186/s40001-023-01293-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Coronaviruses such as Severe Acute Respiratory Syndrome coronavirus (SARS), Middle Eastern Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are associated with critical illnesses, including severe respiratory disorders. SARS-CoV-2 is the causative agent of the deadly COVID-19 illness, which has spread globally as a pandemic. SARS-CoV-2 may enter the human body through olfactory lobes and interact with the angiotensin-converting enzyme2 (ACE2) receptor, further facilitating cell binding and entry into the cells. Reports have shown that the virus can pass through the blood-brain barrier (BBB) and enter the central nervous system (CNS), resulting in various disorders. Cell entry by SARS-CoV-2 largely relies on TMPRSS2 and cathepsin L, which activate S protein. TMPRSS2 is found on the cell surface of respiratory, gastrointestinal and urogenital epithelium, while cathepsin-L is a part of endosomes. AIM The current review aims to provide information on how SARS-CoV-2 infection affects brain function.. Furthermore, CNS disorders associated with SARS-CoV-2 infection, including ischemic stroke, cerebral venous thrombosis, Guillain-Barré syndrome, multiple sclerosis, meningitis, and encephalitis, are discussed. The many probable mechanisms and paths involved in developing cerebrovascular problems in COVID patients are thoroughly detailed. MAIN BODY There have been reports that the SARS-CoV-2 virus can cross the blood-brain barrier (BBB) and enter the central nervous system (CNS), where it could cause a various illnesses. Patients suffering from COVID-19 experience a range of neurological complications, including sleep disorders, viral encephalitis, headaches, dysgeusia, and cognitive impairment. The presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of COVID-19 patients has been reported. Health experts also reported its presence in cortical neurons and human brain organoids. The possible mechanism of virus infiltration into the brain can be neurotropic, direct infiltration and cytokine storm-based pathways. The olfactory lobes could also be the primary pathway for the entrance of SARS-CoV-2 into the brain. CONCLUSIONS SARS-CoV-2 can lead to neurological complications, such as cerebrovascular manifestations, motor movement complications, and cognitive decline. COVID-19 infection can result in cerebrovascular symptoms and diseases, such as strokes and thrombosis. The virus can affect the neural system, disrupt cognitive function and cause neurological disorders. To combat the epidemic, it is crucial to repurpose drugs currently in use quickly and develop novel therapeutics.
Collapse
Affiliation(s)
- Kritika Tyagi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Prachi Rai
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Anuj Gautam
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Harjeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Sumeet Kapoor
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | |
Collapse
|