1
|
Elsner RA, Shlomchik MJ. Coordinated Regulation of Extrafollicular B Cell Responses by IL-12 and IFNγ. Immunol Rev 2025; 331:e70027. [PMID: 40211749 PMCID: PMC11986407 DOI: 10.1111/imr.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Upon activation, B cells undergo either the germinal center (GC) or extrafollicular (EF) response. While GC are known to generate high-affinity memory B cells and long-lived plasma cells, the role of the EF response is less well understood. Initially, it was thought to be limited to that of a source of fast but lower-quality antibodies until the GC can form. However, recent evidence strongly supports the EF response as an important component of the humoral response to infection. EF responses are now also recognized as a source of pathogenic B cells in autoimmune diseases. The EF response itself is dynamic and regulated by pathways that are only recently being uncovered. We have identified that the cytokine IL-12 acts as a molecular switch, enhancing the EF response and suppressing GC through multiple mechanisms. These include direct effects on both B cells themselves and the coordinated differentiation of helper CD4 T cells. Here, we explore this pathway in relation to other recent advancements in our understanding of the EF response's role and highlight areas for future research. A better understanding of how the EF response forms and is regulated is essential for advancing treatments for many disease states.
Collapse
Affiliation(s)
- Rebecca A. Elsner
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mark J. Shlomchik
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Zerrouk N, Augé F, Niarakis A. Building a modular and multi-cellular virtual twin of the synovial joint in Rheumatoid Arthritis. NPJ Digit Med 2024; 7:379. [PMID: 39719524 DOI: 10.1038/s41746-024-01396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Rheumatoid arthritis is a complex disease marked by joint pain, stiffness, swelling, and chronic synovitis, arising from the dysregulated interaction between synoviocytes and immune cells. Its unclear etiology makes finding a cure challenging. The concept of digital twins, used in engineering, can be applied to healthcare to improve diagnosis and treatment for complex diseases like rheumatoid arthritis. In this work, we pave the path towards a digital twin of the arthritic joint by building a large, modular biochemical reaction map of intra- and intercellular interactions. This network, featuring over 1000 biomolecules, is then converted to one of the largest executable Boolean models for biological systems to date. Validated through existing knowledge and gene expression data, our model is used to explore current treatments and identify new therapeutic targets for rheumatoid arthritis.
Collapse
Affiliation(s)
- Naouel Zerrouk
- GenHotel, Laboratoire Européen de Recherche Pour La Polyarthrite Rhumatoïde, University Paris-Saclay, University Evry, Evry, France
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, Chilly-Mazarin, France
| | - Franck Augé
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, Chilly-Mazarin, France
| | - Anna Niarakis
- GenHotel, Laboratoire Européen de Recherche Pour La Polyarthrite Rhumatoïde, University Paris-Saclay, University Evry, Evry, France.
- Lifeware Group, Inria Saclay, Palaiseau, France.
- University of Toulouse III-Paul Sabatier, Laboratory of Molecular, Cellular and Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse, France.
| |
Collapse
|
3
|
El-Howati A, Edmans JG, Santocildes-Romero ME, Madsen LS, Murdoch C, Colley HE. A Tissue-Engineered Model of T-Cell-Mediated Oral Mucosal Inflammatory Disease. J Invest Dermatol 2024:S0022-202X(24)02163-8. [PMID: 39366520 DOI: 10.1016/j.jid.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 10/06/2024]
Abstract
T-cell-mediated oral mucocutaneous inflammatory conditions, including oral lichen planus, are common, but development of new treatments aimed at relieving symptoms and controlling oral lichen planus progression is hampered by the lack of experimental models. In this study, we developed a tissue-engineered oral mucosal equivalent containing polarized T-cells to replicate oral lichen planus pathogenesis. Peripheral blood CD4+ and CD8+ T-cells were isolated, activated, and polarized into T helper 1 and cytotoxic T cells. Oral mucosal equivalents were constructed by culturing oral keratinocytes on an oral fibroblast-populated hydrogel to produce a stratified squamous epithelium. Oral mucosal equivalent stimulated with IFN-γ and TNF-α or medium from T helper 1 cells caused increased secretion of inflammatory cytokines and chemokines. A model of T-cell-mediated inflammatory disease was developed by combining oral mucosal equivalent on top of a T helper 1 and cytotoxic T-cell-containing hydrogel, followed by epithelial stimulation with IFN-γ and TNF-α. T-cell recruitment toward the epithelium was associated with increased secretion of T-cell chemoattractants CCL5, CXCL9, and CXCL10. Histological assessment showed tissue damage associated with cleaved caspase-3 and altered laminin-5 expression. Treatment with inhibitors directed against Jak, KCa3.1 channels, or clobetasol in solution and through a mucoadhesive patch prevented cytokine and chemokine release and tissue damage. This disease model has potential to probe for mechanisms of pathogenesis or as a test platform for novel therapeutics or treatment modalities.
Collapse
Affiliation(s)
- Asma El-Howati
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Department of Oral Medicine, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Jake G Edmans
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute, University of Sheffield, Sheffield, United Kingdom.
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Tolomeo M, Cascio A. STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases. Int Rev Immunol 2024; 43:394-418. [PMID: 39188021 DOI: 10.1080/08830185.2024.2395274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/23/2023] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Signal transducer and activator of transcription (STAT) 4 and STAT6 play a crucial role in immune cells by transducing signals from specific cytokine receptors, and inducing transcription of genes involved in cell-mediated and humoral immunity. These two different defense mechanisms against pathogens are regulated by two specific CD4+ T helper (Th) cells known as Th1 and Th2 cells. Many studies have shown that several diseases including cancer, inflammatory, autoimmune and allergic diseases are associated with a Th1/Th2 imbalance caused by increased or decreased expression/activity of STAT4 or STAT6 often due to genetic and epigenetic aberrances. An altered expression of STAT4 has been observed in different tumors and autoimmune diseases, while a dysregulation of STAT6 signaling pathway is frequently observed in allergic conditions, such as atopic dermatitis, allergic asthma, food allergy, and tumors such as Hodgkin and non-Hodgkin lymphomas. Recently, dysregulations of STAT4 and STAT6 expression have been observed in SARS-CoV2 and monkeypox infections, which are still public health emergencies in many countries. SARS-CoV-2 can induce an imbalance in Th1 and Th2 responses with a predominant activation of STAT6 in the cytosol and nuclei of pneumocytes that drives Th2 polarization and cytokine storm. In monkeypox infection the virus can promote an immune evasion by inducing a Th2 response that in turn inhibits the Th1 response essential for virus elimination. Furthermore, genetic variations of STAT4 that are associated with an increased risk of developing systemic lupus erythematosus seem to play a role in defense against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, Palermo, Italy
| |
Collapse
|
5
|
Ren J, Wu PP, Xue JH, Zhao WL, Zhu YH, Chen YY, Yang QJ, Luo Q, Cheng X, Bi EG. Discovery of an immunosuppressive functional metabolite from the insect-derived endophytic Aspergillus taichungensis SMU01. Fitoterapia 2024; 176:106007. [PMID: 38744384 DOI: 10.1016/j.fitote.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping-Ping Wu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China; School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia-Hao Xue
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China
| | - Wen-Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Han Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Yang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jun Yang
- Department of Stomatology, Jiangmen Central Hospital, Jiangmen 529000, China
| | - Qi Luo
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - Xia Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - En-Guang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Elsner RA, Smita S, Shlomchik MJ. IL-12 induces a B cell-intrinsic IL-12/IFNγ feed-forward loop promoting extrafollicular B cell responses. Nat Immunol 2024; 25:1283-1295. [PMID: 38862796 PMCID: PMC11992614 DOI: 10.1038/s41590-024-01858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/26/2024] [Indexed: 06/13/2024]
Abstract
While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
8
|
Zhang H, Han K, Li H, Zhang J, Zhao Y, Wu Y, Wang B, Ma J, Luan X. hPMSCs Regulate the Level of TNF-α and IL-10 in Th1 Cells and Improve Hepatic Injury in a GVHD Mouse Model via CD73/ADO/Fyn/Nrf2 Axis. Inflammation 2024; 47:244-263. [PMID: 37833615 DOI: 10.1007/s10753-023-01907-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Mesenchymal stem cells (MSCs) ameliorate graft-versus-host disease (GVHD)-induced tissue damage by exerting immunosuppressive effects. However, the related mechanism remains unclear. Here, we explored the therapeutic effect and mechanism of action of human placental-derived MSCs (hPMSCs) on GVHD-induced mouse liver tissue damage, which shows association with inflammatory responses, fibrosis accompanied by hepatocyte tight junction protein loss, the upregulation of Bax, and the downregulation of Bcl-2. It was observed in GVHD mice and Th1 cell differentiation system that hPMSCs treatment increased IL-10 levels and decreased TNF-α levels in the Th1 subsets via CD73. Moreover, hPMSCs treatment reduced tight junction proteins loss and inhibited hepatocyte apoptosis in the livers of GVHD mice via CD73. ADO level analysis in GVHD mice and the Th1 cell differentiation system showed that hPMSCs could also upregulate ADO levels via CD73. Moreover, hPMSCs enhanced Nrf2 expression and diminished Fyn expression via the CD73/ADO pathway in Th1, TNF-α+, and IL-10+ cells. These results indicated that hPMSCs promoted and inhibited the secretion of IL-10 and TNF-α, respectively, during Th1 cell differentiation through the CD73/ADO/Fyn/Nrf2 axis signaling pathway, thereby alleviating liver tissue injury in GVHD mice.
Collapse
Affiliation(s)
- Hengchao Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Heng Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, 264100, Shandong Province, China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| |
Collapse
|
9
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
10
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Ganjali F, Asri N, Rostami-Nejad M, Hashemi M, Ainy E, Masotti A, Asadzadeh Aghdaei H. Expression analysis of IL-2, TBX21 and SOCS1 in peripheral blood cells of celiac disease patients reveals the diagnostic potential of IL-2. Mol Biol Rep 2023; 50:4841-4849. [PMID: 37039998 DOI: 10.1007/s11033-023-08394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Celiac disease (CD) is a chronic immune-mediated enteropathy and a cytokine network is involved in its pathogenesis. Interleukin-2 (IL-2) has a key role in the adaptive immune pathogenesis of CD and has been reported to be one of the earliest cytokines to be elicited after gluten exposure by CD patients. This study aimed at investigating the expression level of IL-2 and functionally related genes SOCS1 and TBX21 in active and treated CD patients compared to controls. METHODS AND RESULTS Peripheral blood (PB) samples were collected from 40 active CD (ACD), 100 treated CD, and 100 healthy subjects. RNA was extracted, cDNA was synthesized and mRNA expression levels of the desired genes were investigated by Real-time PCR. The gene-gene interaction network was also constructed by GeneMANIA. Our results showed a higher PB mRNA expression of IL-2 in ACD patients compared to controls (p = 0.001) and treated CD patients (p˂0.0001). The mRNA expression level of TBX21 was also significantly up-regulated in ACD patients compared to controls (P = 0.03). SOCS1 mRNA level did not differ between active and treated CD patients and controls (p˃0.05) but showed a significant correlation with the patient's aphthous stomatitis symptom (r = 0.37, p = 0.01). ROC curve analysis suggested that the use of IL-2 levels can reach a high specificity and sensitivity in discriminating active CD patients. CONCLUSIONS The PB level of IL-2 has the potential to be introduced as a diagnostic biomarker for CD. Larger cohort studies, including pediatric patients, are needed to achieve more insights in this regard.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Department of Cellular and molecular biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Ainy
- Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, V.le San Paolo 15, 00146, Rome, Italy
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
León B. A model of Th2 differentiation based on polarizing cytokine repression. Trends Immunol 2023; 44:399-407. [PMID: 37100645 PMCID: PMC10219849 DOI: 10.1016/j.it.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Conventional dendritic cells (cDCs) can integrate multiple stimuli from the environment and provide three separate outputs in terms of antigen presentation, costimulation, and cytokine production; this guides the activation, expansion, and differentiation of distinct functional T helper subsets. Accordingly, the current dogma posits that T helper cell specification requires these three signals in sequence. Data show that T helper 2 (Th2) cell differentiation requires antigen presentation and costimulation from cDCs but does not require polarizing cytokines. In this opinion article, we propose that the 'third signal' driving Th2 cell responses is, in fact, the absence of polarizing cytokines; indeed, the secretion of the latter is actively suppressed in cDCs, concomitant with acquired pro-Th2 functions.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Iacob S, Iacob R, Manea I, Uta M, Chiosa A, Dumbrava M, Becheanu G, Stoica L, Popa C, Brasoveanu V, Hrehoret D, Gheorghe C, Gheorghe L, Dima S, Popescu I. Host and immunosuppression-related factors influencing fibrosis occurrence post liver transplantation. Front Pharmacol 2022; 13:1042664. [PMID: 36330082 PMCID: PMC9622773 DOI: 10.3389/fphar.2022.1042664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Post liver transplantation (LT) fibrosis has a negative impact on graft function. Cytokine production in the host immune response after LT may contribute to the variable CYP3A-dependent immunosuppressive drug disposition, with subsequent impact on liver fibrogenesis, together with host-related factors. We aimed to investigate whether the cytochrome P4503A5*3 (CYP3A5*3) or TBX21 genotypes impact post-LT liver fibrogenesis. Furthermore, the impact of immunosuppressants on cellular apoptosis has been evaluated using human hepatocytes harvested from cirrhotic explanted livers. We have enrolled 98 LT recipients that were followed for occurrence of liver fibrosis for at least 12 months. There was a statistically significant higher trough level of TAC in patients with homozygous CC-TBX21 genotype (7.83 ± 2.84 ng/ml) vs. 5.66 ± 2.16 ng/ml in patients without this genotype (p = 0.009). The following variables were identified as risk factors for fibrosis ≥2: donor age (p = 0.02), neutrophil to lymphocyte ratio (p = 0.04) and TBX21 genotype CC (p = 0.009). In the cell culture model cytometry analysis has indicated the lowest apoptotic cells percentage in human cirrhotic hepatocytes cultures treated with mycophenolate mofetil (MMF) (5%) and TAC + MMF (2%) whereas the highest apoptosis percentage was registered for the TAC alone (11%). The gene expression results are concordant to cytometry study results, indicating the lowest apoptotic effect for MMF and MMF + TAC immunosuppressive regimens. The allele 1993C of the SNP rs4794067 may predispose to the development of late significant fibrosis of the liver graft. MMF-based regimens have a favourable anti-apoptotic profile in vitro, supporting its use in case of LT recipients at high risk for liver graft fibrosis.
Collapse
Affiliation(s)
- Speranta Iacob
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Ioana Manea
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
| | - Mihaela Uta
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Andrei Chiosa
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Mona Dumbrava
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Becheanu
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Luminita Stoica
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Codruta Popa
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Vlad Brasoveanu
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Doina Hrehoret
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Cristian Gheorghe
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Liana Gheorghe
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
- *Correspondence: Simona Dima,
| | - Irinel Popescu
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
16
|
Yánez DC, Lau CI, Papaioannou E, Chawda MM, Rowell J, Ross S, Furmanski A, Crompton T. The Pioneer Transcription Factor Foxa2 Modulates T Helper Differentiation to Reduce Mouse Allergic Airway Disease. Front Immunol 2022; 13:890781. [PMID: 36003391 PMCID: PMC9393229 DOI: 10.3389/fimmu.2022.890781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
Foxa2, a member of the Forkhead box (Fox) family of transcription factors, plays an important role in the regulation of lung function and lung tissue homeostasis. FOXA2 expression is reduced in the lung and airways epithelium of asthmatic patients and in mice absence of Foxa2 from the lung epithelium contributes to airway inflammation and goblet cell hyperplasia. Here we demonstrate a novel role for Foxa2 in the regulation of T helper differentiation and investigate its impact on lung inflammation. Conditional deletion of Foxa2 from T-cells led to increased Th2 cytokine secretion and differentiation, but decreased Th1 differentiation and IFN-γ expression in vitro. Induction of mouse allergic airway inflammation resulted in more severe disease in the conditional Foxa2 knockout than in control mice, with increased cellular infiltration to the lung, characterized by the recruitment of eosinophils and basophils, increased mucus production and increased production of Th2 cytokines and serum IgE. Thus, these experiments suggest that Foxa2 expression in T-cells is required to protect against the Th2 inflammatory response in allergic airway inflammation and that Foxa2 is important in T-cells to maintain the balance of effector cell differentiation and function in the lung.
Collapse
Affiliation(s)
- Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Mira M Chawda
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anna Furmanski
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- School of Life Sciences, University of Bedfordshire, Luton, United Kingdom
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
17
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
18
|
Webster HC, Gamino V, Andrusaite AT, Ridgewell OJ, McCowan J, Shergold AL, Heieis GA, Milling SWF, Maizels RM, Perona-Wright G. Tissue-based IL-10 signalling in helminth infection limits IFNγ expression and promotes the intestinal Th2 response. Mucosal Immunol 2022; 15:1257-1269. [PMID: 35428872 PMCID: PMC9705258 DOI: 10.1038/s41385-022-00513-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Type 2 immunity is activated in response to both allergens and helminth infection. It can be detrimental or beneficial, and there is a pressing need to better understand its regulation. The immunosuppressive cytokine IL-10 is known as a T helper 2 (Th2) effector molecule, but it is currently unclear whether IL-10 dampens or promotes Th2 differentiation during infection. Here we show that helminth infection in mice elicits IL-10 expression in both the intestinal lamina propria and the draining mesenteric lymph node, with higher expression in the infected tissue. In vitro, exogenous IL-10 enhanced Th2 differentiation in isolated CD4+ T cells, increasing expression of GATA3 and production of IL-5 and IL-13. The ability of IL-10 to amplify the Th2 response coincided with its suppression of IFNγ expression and in vivo we found that, in intestinal helminth infection, IL-10 receptor expression was higher on Th1 cells in the small intestine than on Th2 cells in the same tissue, or on any Th cell in the draining lymph node. In vivo blockade of IL-10 signalling during helminth infection resulted in an expansion of IFNγ+ and Tbet+ Th1 cells in the small intestine and a coincident decrease in IL-13, IL-5 and GATA3 expression by intestinal T cells. These changes in Th2 cytokines correlated with reduced expression of type 2 effector molecules, such as RELMα, and increased parasite egg production. Together our data indicate that IL-10 signalling promotes Th2 differentiation during helminth infection at least in part by regulating competing Th1 cells in the infected tissue.
Collapse
Affiliation(s)
- Holly C Webster
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Virginia Gamino
- Department of Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Anna T Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Olivia J Ridgewell
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jack McCowan
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Amy L Shergold
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Graham A Heieis
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Georgia Perona-Wright
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Hertweck A, Vila de Mucha M, Barber PR, Dagil R, Porter H, Ramos A, Lord GM, Jenner RG. The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes. Nucleic Acids Res 2022; 50:4557-4573. [PMID: 35438764 PMCID: PMC9071441 DOI: 10.1093/nar/gkac258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3's sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways.
Collapse
Affiliation(s)
- Arnulf Hertweck
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Maria Vila de Mucha
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Paul R Barber
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK.,Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Robert Dagil
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Hayley Porter
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| |
Collapse
|
20
|
Lo JW, de Mucha MV, Henderson S, Roberts LB, Constable LE, Garrido‐Mesa N, Hertweck A, Stolarczyk E, Houlder EL, Jackson I, MacDonald AS, Powell N, Neves JF, Howard JK, Jenner RG, Lord GM. A population of naive-like CD4 + T cells stably polarized to the T H 1 lineage. Eur J Immunol 2022; 52:566-581. [PMID: 35092032 PMCID: PMC9304323 DOI: 10.1002/eji.202149228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
T-bet is the lineage-specifying transcription factor for CD4+ TH 1 cells. T-bet has also been found in other CD4+ T cell subsets, including TH 17 cells and Treg, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell differentiation and function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells that have naïve cell surface markers and transcriptional profile and that this novel cell population is phenotypically and functionally distinct from previously described populations of naïve and memory CD4+ T cells. Naïve-like T-bet-experienced cells are polarized to the TH 1 lineage, predisposed to produce IFN-γ upon cell activation, and resist repolarization to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can polarize T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T-helper response.
Collapse
Affiliation(s)
- Jonathan W. Lo
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Maria Vila de Mucha
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Stephen Henderson
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Luke B. Roberts
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Laura E. Constable
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Natividad Garrido‐Mesa
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- School of Life Sciences, Pharmacy and ChemistryKingston UniversityLondonUK
| | - Arnulf Hertweck
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Emilie Stolarczyk
- Abcam Plc.Cambridge Biomedical CampusCambridgeUK
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Emma L. Houlder
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Ian Jackson
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nick Powell
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Joana F. Neves
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Centre for Host‐Microbiome InteractionsKing's College LondonLondonUK
| | - Jane K. Howard
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Richard G. Jenner
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Graham M. Lord
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
21
|
Low Activation of CD8+ T Cells in response to Viral Peptides in Mexican Patients with Severe Dengue. J Immunol Res 2022; 2022:9967594. [PMID: 35372587 PMCID: PMC8975689 DOI: 10.1155/2022/9967594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
It is acknowledged that antiviral immune response contributes to dengue immunopathogenesis. To identify immunological markers that distinguish dengue fever (DF) and dengue hemorrhagic fever (DHF), 113 patients with confirmed dengue infection were analyzed at 6 or 7 days after fever onset. Peripheral blood mononuclear cells (PBMC) were isolated, lymphocyte subsets and activation biomarkers were identified by flow cytometry, and differentiation of T helper (Th) lymphocytes was achieved by the relative expression analysis of T-bet (Th1), GATA-3 (Th2), ROR-γ (Th17), and FOXP-3 (T regulatory) transcription factors quantified by real-time PCR. CD8+, CD40L+, and CD45+ cells show higher numbers in DF compared to DHF patients, whereas CD4+, CD19+, and CD25+ cells show higher numbers in DHF than DF patients. High expression of GATA-3 accompanied by low expression of T-bet indicates predominance of Th2 response. In addition, higher expression of FOXP-3 and reduced functional cytotoxic T cells (CD8+perforin+) were observed in DHF patients. In further experiments, PBMC were stimulated ex vivo with dengue virus E, NS3, NS4, and NS5 peptides, and proliferating T cell subsets were determined. Lower proliferative responses to NS3 and NS4 peptides and reduced CD8+ cytotoxic T cells were observed in DHF patients. Our results suggest that immune response to dengue is dysregulated with predominance of CD4+ T cells, low activation of Th1 cells, and downregulation of the antiviral cytotoxic activity during severe dengue, likely induced by regulatory T cells.
Collapse
|
22
|
Capelle CM, Chen A, Zeng N, Baron A, Grzyb K, Arns T, Skupin A, Ollert M, Hefeng FQ. Stress hormone signaling inhibits Th1 polarization in a CD4 T-cell-intrinsic manner via mTORC1 and the circadian gene PER1. Immunology 2022; 165:428-444. [PMID: 35143696 PMCID: PMC9426625 DOI: 10.1111/imm.13448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Stress hormones are believed to skew the CD4 T‐cell differentiation towards a Th2 response via a T‐cell‐extrinsic mechanism. Using isolated primary human naïve and memory CD4 T cells, here we show that both adrenergic‐ and glucocorticoid‐mediated stress signalling pathways play a CD4 naïve T‐cell‐intrinsic role in regulating the Th1/Th2 differentiation balance. Both stress hormones reduced the Th1 programme and cytokine production by inhibiting mTORC1 signalling via two parallel mechanisms. Stress hormone signalling inhibited mTORC1 in naïve CD4 T cells (1) by affecting the PI3K/AKT pathway and (2) by regulating the expression of the circadian rhythm gene, period circadian regulator 1 (PER1). Both stress hormones induced the expression of PER1, which inhibited mTORC1 signalling, thus reducing Th1 differentiation. This previously unrecognized cell‐autonomous mechanism connects stress hormone signalling with CD4 T‐cell differentiation via mTORC1 and a specific circadian clock gene, namely PER1.
Collapse
Affiliation(s)
- Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, 2, avenue de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Anna Chen
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, 2, avenue de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Thais Arns
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000 C, Denmark
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, D-45122, Essen, Germany
| |
Collapse
|
23
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
24
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Sarkar MH, Yagi R, Endo Y, Koyama-Nasu R, Wang Y, Hasegawa I, Ito T, Junttila IS, Zhu J, Kimura MY, Nakayama T. IFNγ suppresses the expression of GFI1 and thereby inhibits Th2 cell proliferation. PLoS One 2021; 16:e0260204. [PMID: 34807911 PMCID: PMC8608330 DOI: 10.1371/journal.pone.0260204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
While IFNγ is a well-known cytokine that actively promotes the type I immune response, it is also known to suppress the type II response by inhibiting the differentiation and proliferation of Th2 cells. However, the mechanism by which IFNγ suppresses Th2 cell proliferation is still not fully understood. We found that IFNγ decreases the expression of growth factor independent-1 transcriptional repressor (GFI1) in Th2 cells, resulting in the inhibition of Th2 cell proliferation. The deletion of the Gfi1 gene in Th2 cells results in the failure of their proliferation, accompanied by an impaired cell cycle progression. In contrast, the enforced expression of GFI1 restores the defective Th2 cell proliferation, even in the presence of IFNγ. These results demonstrate that GFI1 is a key molecule in the IFNγ-mediated inhibition of Th2 cell proliferation.
Collapse
Affiliation(s)
- Murshed H. Sarkar
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ryoji Yagi
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- * E-mail: (RY); (MYK)
| | - Yukihiro Endo
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ryo Koyama-Nasu
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Yangsong Wang
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ichita Hasegawa
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Toshihiro Ito
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Ilkka S. Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Motoko Y. Kimura
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Department of Experimental Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- * E-mail: (RY); (MYK)
| | - Toshinori Nakayama
- Department of Immunology, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
26
|
Yang R, Weisshaar M, Mele F, Benhsaien I, Dorgham K, Han J, Croft CA, Notarbartolo S, Rosain J, Bastard P, Puel A, Fleckenstein B, Glimcher LH, Di Santo JP, Ma CS, Gorochov G, Bousfiha A, Abel L, Tangye SG, Casanova JL, Bustamante J, Sallusto F. High Th2 cytokine levels and upper airway inflammation in human inherited T-bet deficiency. J Exp Med 2021; 218:e20202726. [PMID: 34160550 PMCID: PMC8225679 DOI: 10.1084/jem.20202726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
We have described a child suffering from Mendelian susceptibility to mycobacterial disease (MSMD) due to autosomal recessive, complete T-bet deficiency, which impairs IFN-γ production by innate and innate-like adaptive, but not mycobacterial-reactive purely adaptive, lymphocytes. Here, we explore the persistent upper airway inflammation (UAI) and blood eosinophilia of this patient. Unlike wild-type (WT) T-bet, the mutant form of T-bet from this patient did not inhibit the production of Th2 cytokines, including IL-4, IL-5, IL-9, and IL-13, when overexpressed in T helper 2 (Th2) cells. Moreover, Herpesvirus saimiri-immortalized T cells from the patient produced abnormally large amounts of Th2 cytokines, and the patient had markedly high plasma IL-5 and IL-13 concentrations. Finally, the patient's CD4+ αβ T cells produced most of the Th2 cytokines in response to chronic stimulation, regardless of their antigen specificities, a phenotype reversed by the expression of WT T-bet. T-bet deficiency thus underlies the excessive production of Th2 cytokines, particularly IL-5 and IL-13, by CD4+ αβ T cells, causing blood eosinophilia and UAI. The MSMD of this patient results from defective IFN-γ production by innate and innate-like adaptive lymphocytes, whereas the UAI and eosinophilia result from excessive Th2 cytokine production by adaptive CD4+ αβ T lymphocytes.
Collapse
Affiliation(s)
- Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Marc Weisshaar
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland, Bellinzona, Switzerland
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
- Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Centre Hospitalo-Universitaire Averroes, Casablanca, Morocco
| | - Karim Dorgham
- Sorbonne University, Institut national de la santé et de la recherche médicale, Center for Immunology and Microbial Infections-Paris, Paris, France
| | - Jing Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Carys A. Croft
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Institut national de la santé et de la recherche médicale U1223, Paris, France
- University of Paris, Paris, France
| | - Samuele Notarbartolo
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland, Bellinzona, Switzerland
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale Unité Mixte de Recherches 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale Unité Mixte de Recherches 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale Unité Mixte de Recherches 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Bernhard Fleckenstein
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Laurie H. Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Darlinghurst, Australia
| | - Guy Gorochov
- Sorbonne University, Institut national de la santé et de la recherche médicale, Center for Immunology and Microbial Infections-Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris, Department of Immunology, Paris, France
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
- Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Centre Hospitalo-Universitaire Averroes, Casablanca, Morocco
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale Unité Mixte de Recherches 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Darlinghurst, Australia
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale Unité Mixte de Recherches 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale Unité Mixte de Recherches 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Federica Sallusto
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland, Bellinzona, Switzerland
| |
Collapse
|
27
|
Solé P, Santamaria P. Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Front Immunol 2021; 12:684240. [PMID: 34335585 PMCID: PMC8320845 DOI: 10.3389/fimmu.2021.684240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of peptide-major histocompatibility complex (pMHC) class II-based nanomedicines can re-program cognate autoantigen-experienced CD4+ T cells into disease-suppressing T-regulatory type 1 (TR1)-like cells. In turn, these TR1-like cells trigger the formation of complex regulatory cell networks that can effectively suppress organ-specific autoimmunity without impairing normal immunity. In this review, we summarize our current understanding of the transcriptional, phenotypic and functional make up of TR1-like cells as described in the literature. The true identity and direct precursors of these cells remain unclear, in particular whether TR1-like cells comprise a single terminally-differentiated lymphocyte population with distinct transcriptional and epigenetic features, or a collection of phenotypically different subsets sharing key regulatory properties. We propose that detailed transcriptional and epigenetic characterization of homogeneous pools of TR1-like cells will unravel this conundrum.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Bermudez LG, Madariaga I, Zuñiga MI, Olaya M, Cañas A, Rodriguez LS, Moreno OM, Rojas A. RUNX1 gene expression changes in the placentas of women smokers. Exp Ther Med 2021; 22:902. [PMID: 34257715 PMCID: PMC8243315 DOI: 10.3892/etm.2021.10334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
The placenta can be affected by environmental factors, such as exposure to cigarette smoke. This exposure in the fetal context is considered a risk factor for the development of short-term postnatal diseases, such as asthma. Asthma is an inflammatory disease characterized by predominant acquisition of CD4 T lymphocytes (TLs) of the Th2 type. Transcription factors such as GATA binding protein 3 (GATA3) and STAT6 actively participate in the differentiation of virgin TLs towards the Th2 profile, while transcription factors such as STAT1, T-Box transcription factor 21 (T-BET), RUNX1 and RUNX3 participate in their differentiation towards the Th1 profile. The objective of the current study was to evaluate the impact of exposure to cigarette smoke on the gene expression of STAT1, T-BET, GATA3, IL-4, RUNX1 and RUNX3 during the gestation period, and to determine whether the expression levels of these genes are associated with changes in global methylation. STAT1, GATA3, RUNX1 and RUNX3 protein and mRNA expression levels in the placental tissue of women smokers and non-smoking women were determined via immunohistochemistry and quantitative PCR (qPCR) respectively. Additionally, T-BET and IL-4 mRNA expression levels were determined by qPCR. On the other hand, global methylation was determined via ELISA. In the present study, significant increases were observed in RUNX1 transcription factor expression in placentas from women smokers when compared with placentas of non-smoking women. Similarly, significant increases in the expression of GATA3, IL-4 and RUNX3 mRNA were observed. The changes in gene expression were not associated with changes in the global methylation levels. Finally, a higher frequency of low-birth-weight infants were identified in cases of exposure to cigarette smoke during pregnancy when compared with infants not exposed to cigarette smoke during pregnancy. Thus, the data of the present study contributed to the understanding of the genetic and clinical impacts of exposure to cigarette smoke during pregnancy and its importance in maternal and fetal health.
Collapse
Affiliation(s)
- Litzy Gisella Bermudez
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ithzayana Madariaga
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Maria Isabel Zuñiga
- Department of Pathology, School of Medicine, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Mercedes Olaya
- Department of Pathology, School of Medicine, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alejandra Cañas
- Department of Internal Medicine, School of Medicine, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Luz-Stella Rodriguez
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Olga Maria Moreno
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
29
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
30
|
Mehdi SJ, Moerman-Herzog A, Wong HK. Normal and cancer fibroblasts differentially regulate TWIST1, TOX and cytokine gene expression in cutaneous T-cell lymphoma. BMC Cancer 2021; 21:492. [PMID: 33941102 PMCID: PMC8091512 DOI: 10.1186/s12885-021-08142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mycosis fungoides (MF) is a primary cutaneous T-cell lymphoma (CTCL) that transforms from mature, skin-homing T cells and progresses during the early stages in the skin. The role of the skin microenvironment in MF development is unclear, but recent findings in a variety of cancers have highlighted the role of stromal fibroblasts in promoting or inhibiting tumorigenesis. Stromal fibroblasts are an important part of the cutaneous tumor microenvironment (TME) in MF. Here we describe studies into the interaction of TME-fibroblasts and malignant T cells to gain insight into their role in CTCL. METHODS Skin from normal (n = 3) and MF patients (n = 3) were analyzed for FAPα by immunohistochemistry. MyLa is a CTCL cell line that retains expression of biomarkers TWIST1 and TOX that are frequently detected in CTCL patients. MyLa cells were cultured in the presence or absence of normal or MF skin derived fibroblasts for 5 days, trypsinized to detached MyL a cells, and gene expression analyzed by RT-PCR for MF biomarkers (TWIST1 and TOX), Th1 markers (IFNG, TBX21), Th2 markers (GATA3, IL16), and proliferation marker (MKI67). Purified fibroblasts were assayed for VIM and ACTA2 gene expression. Cellular senescence assay was performed to assess senescence. RESULTS MF skin fibroblast showed increased expression of FAP-α with increasing stage compared to normal. Normal fibroblasts co-cultured with MyLa cells suppressed expression of TWIST1 (p < 0.0006), and TOX (p < 0.03), GATA3 (p < 0.02) and IL16 (p < 0.03), and increased expression of IFNG (p < 0.03) and TBX21 (p < 0.03) in MyLa cells. In contrast, MyLa cells cultured with MF fibroblasts retained high expression of TWIST1, TOX and GATA3. MF fibroblasts co-culture with MyLa cells increased expression of IL16 (p < 0.01) and IL4 (p < 0.02), and suppressed IFNG and TBX21 in MyLa cells. Furthermore, expression of MKI67 in MyLa cells was suppressed by normal fibroblasts compared to MF fibroblasts. CONCLUSION Skin fibroblasts represent important components of the TME in MF. In co-culture model, normal and MF fibroblasts have differential influence on T-cell phenotype in modulating expression of Th1 cytokine and CTCL biomarker genes to reveal distinct roles with implications in MF progression.
Collapse
Affiliation(s)
- Syed Jafar Mehdi
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Andrea Moerman-Herzog
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA.
| |
Collapse
|
31
|
Abstract
For over 35 years since Mosmann and Coffman proposed the seminal “type 1 T helper (Th1)/type 2 T helper (Th2)” hypothesis in 1986, the immunological community has appreciated that naïve CD4 T cells need to make important decisions upon their activation, namely to differentiate towards a Th1, Th2, Th17 (interleukin-17-producing T helper), follicular T helper (Tfh), or regulatory T cell (Treg) fate to orchestrate a variety of adaptive immune responses. The major molecular underpinnings of the Th1/Th2 effector fate choice had been initially characterized using excellent reductionist in vitro culture systems, through which the transcription factors T-bet and GATA3 were identified as the master regulators for the differentiation of Th1 and Th2 cells, respectively. However, Th1/Th2 cell differentiation and their cellular heterogeneity are usually determined by a combinatorial expression of multiple transcription factors, particularly in vivo, where dendritic cell (DC) and innate lymphoid cell (ILC) subsets can also influence T helper lineage choices. In addition, inflammatory cytokines that are capable of inducing Th17 cell differentiation are also found to be induced during typical Th1- or Th2-related immune responses, resulting in an alternative differentiation pathway, transiting from a Th17 cell phenotype towards Th1 or Th2 cells. In this review, we will discuss the recent advances in the field, focusing on some new players in the transcriptional network, contributions of DCs and ILCs, and alternative differentiation pathways towards understanding the Th1/Th2 effector choice in vivo.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Chronic Hepatitis C Virus Infection Modulates the Transcriptional Profiles of CD4 + T Cells. ACTA ACUST UNITED AC 2021; 2021:6689834. [PMID: 33777278 PMCID: PMC7979312 DOI: 10.1155/2021/6689834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 01/18/2023]
Abstract
Background Chronic hepatitis C (CHC) is associated with altered cell-mediated immune response. Objective The aim of the study was to characterize functional alterations in CD4+ T cell subsets and myeloid-derived suppressor cells (MDSCs) during chronic hepatitis C virus (HCV) infection. Methodology. The expression levels of the lineage-defining transcriptional factors (TFs) T-bet, Gata3, Rorγt, and Foxp3 in circulating CD4+ T cells and percentages of MDSCs in peripheral blood were evaluated in 33 patients with CHC, 31 persons, who had spontaneously cleared the HCV infection, and 30 healthy subjects. Analysis. The CD4+ T cells TFs T-bet (T-box expressed in T cells), Foxp3 (Forkhead box P3 transcription factor), Gata3 (Gata-binding protein 3), and Rorγt (retinoic-acid-related orphan receptor gamma) and activation of CD8+ T cells, as well as percentages of MDSCs, were measured by multicolor flow cytometry after intracellular and surface staining of peripheral blood mononuclear cells with fluorescent monoclonal antibodies. Result The patients with CHC had significantly lower percentages of CD4+ T cells expressing Rorγt and Gata3 and higher percentages of Foxp3-expressing CD4+ T cells than healthy controls and persons who spontaneously cleared HCV infection. The ratios of T-bet+/Gata3+ and Foxp3+/Rorγt+ CD4+ T cells were the highest in the patients with CHC. In the patients with CHC, the percentages of Gata3+ and Rorγt+ CD4+ T cells and the percentages of T-bet+ CD4+ T cells and CD38+/HLA-DR+ CD8+ T cells demonstrated significant positive correlations. In addition, the percentage of CD38+/HLA-DR+ CD8+ T cells correlated negatively with the percentage of MDSCs. Conclusion Chronic HCV infection is associated with downregulation of TFs Gata3 and Rorγt polarizing CD4+ T cells into Th2 and Th17 phenotypes together with upregulation of Foxp3 responsible for induction of regulatory T cells suppressing immune response.
Collapse
|
33
|
Duckworth BC, Groom JR. Conversations that count: Cellular interactions that drive T cell fate. Immunol Rev 2021; 300:203-219. [PMID: 33586207 PMCID: PMC8048805 DOI: 10.1111/imr.12945] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The relationship between the extrinsic environment and the internal transcriptional network is circular. Naive T cells first engage with antigen‐presenting cells to set transcriptional differentiation networks in motion. In turn, this regulates specific chemokine receptors that direct migration into distinct lymph node niches. Movement into these regions brings newly activated T cells into contact with accessory cells and cytokines that reinforce the differentiation programming to specify T cell function. We and others have observed similarities in the transcriptional networks that specify both CD4+ T follicular helper (TFH) cells and CD8+ central memory stem‐like (TSCM) cells. Here, we compare and contrast the current knowledge for these shared differentiation programs, compared to their effector counterparts, CD4+ T‐helper 1 (TH1) and CD8+ short‐lived effector (TSLEC) cells. Understanding the interplay between cellular interactions and transcriptional programming is essential to harness T cell differentiation that is fit for purpose; to stimulate potent T cell effector function for the elimination of chronic infection and cancer; or to amplify the formation of humoral immunity and longevity of cellular memory to prevent infectious diseases.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
34
|
Xiong Y, Zhong Q, Palmer T, Benner A, Wang L, Suresh K, Damico R, D’Alessio FR. Estradiol resolves pneumonia via ERβ in regulatory T cells. JCI Insight 2021; 6:133251. [PMID: 33290273 PMCID: PMC7934849 DOI: 10.1172/jci.insight.133251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Current treatments for pneumonia (PNA) are focused on the pathogens. Mortality from PNA-induced acute lung injury (PNA-ALI) remains high, underscoring the need for additional therapeutic targets. Clinical and experimental evidence exists for potential sex differences in PNA survival, with males having higher mortality. In a model of severe pneumococcal PNA, when compared with male mice, age-matched female mice exhibited enhanced resolution characterized by decreased alveolar and lung inflammation and increased numbers of Tregs. Recognizing the critical role of Tregs in lung injury resolution, we evaluated whether improved outcomes in female mice were due to estradiol (E2) effects on Treg biology. E2 promoted a Treg-suppressive phenotype in vitro and resolution of PNA in vivo. Systemic rescue administration of E2 promoted resolution of PNA in male mice independent of lung bacterial clearance. E2 augmented Treg expression of Foxp3, CD25, and GATA3, an effect that required ERβ, and not ERα, signaling. Importantly, the in vivo therapeutic effects of E2 were lost in Treg-depleted mice (Foxp3DTR mice). Adoptive transfer of ex vivo E2-treated Tregs rescued Streptococcuspneumoniae–induce PNA-ALI, a salutary effect that required Treg ERβ expression. E2/ERβ was required for Tregs to control macrophage proinflammatory responses. Our findings support the therapeutic role for E2 in promoting resolution of lung inflammation after PNA via ERβ Tregs.
Collapse
|
35
|
Lin KH, Chiang JC, Chen WM, Ho YH, Yao CL, Lee H. Transcriptional regulation of lysophosphatidic acid receptors 2 and 3 regulates myeloid commitment of hematopoietic stem cells. Am J Physiol Cell Physiol 2021; 320:C509-C519. [PMID: 33406026 DOI: 10.1152/ajpcell.00506.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) is one of the lipids identified to be involved in stem cell differentiation. It exerts various functions through activation of G protein-coupled lysophosphatidic acid receptors (LPARs). In previous studies, we have demonstrated that activation of LPA receptor 3 (LPA3) promotes erythropoiesis of human hematopoietic stem cells (HSCs) and zebrafish using molecular and pharmacological approaches. Our results show that treatment with lysophosphatidic acid receptor 2 (LPA2) agonist suppressed erythropoiesis, whereas activation of LPA3 by 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted it, both in vitro and in vivo. Furthermore, we have demonstrated the inhibitory role of LPA3 during megakaryopoiesis. However, the mechanism underlying these observations remains elusive. In the present study, we suggest that the expression pattern of LPARs may be correlated with the transcriptional factors GATA-1 and GATA-2 at different stages of myeloid progenitors. We determined that manipulation of GATA factors affected the expression levels of LPA2 and LPA3 in K562 leukemia cells. Using luciferase assays, we demonstrate that the promoter regions of LPAR2 and LPAR3 genes were regulated by these GATA factors in HEK293T cells. Mutation of GATA-binding sites in these regions abrogated luciferase activity, suggesting that LPA2 and LPA3 are regulated by GATA factors. Moreover, physical interaction between GATA factors and the promoter region of LPAR genes was verified in K562 cells using chromatin immunoprecipitation (ChIP) studies. Taken together, our results suggest that balance between LPA2 and LPA3 expression, which may be determined by GATA factors, is a regulatory switch for lineage commitment in myeloid progenitors. The expression-level balance of LPA receptor subtypes represents a novel mechanism regulating erythropoiesis and megakaryopoiesis.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei-Min Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.,Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
37
|
Ikeogu NM, Edechi CA, Akaluka GN, Feiz-Barazandeh A, Zayats RR, Salako ES, Onwah SS, Onyilagha C, Jia P, Mou Z, Shan L, Murooka TT, Gounni AS, Uzonna JE. Semaphorin 3E Promotes Susceptibility to Leishmania major Infection in Mice by Suppressing CD4 + Th1 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 206:588-598. [PMID: 33443083 DOI: 10.4049/jimmunol.2000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
Protective immunity to cutaneous leishmaniasis is mediated by IFN-γ-secreting CD4+ Th1 cells. IFN-γ binds to its receptor on Leishmania-infected macrophages, resulting in their activation, production of NO, and subsequent destruction of parasites. This study investigated the role of Semaphorin 3E (Sema3E) in host immunity to Leishmania major infection in mice. We observed a significant increase in Sema3E expression at the infection site at different timepoints following L. major infection. Sema3E-deficient (Sema3E knockout [KO]) mice were highly resistant to L. major infection, as evidenced by significantly (p < 0.05-0.01) reduced lesion sizes and lower parasite burdens at different times postinfection when compared with their infected wild-type counterpart mice. The enhanced resistance of Sema3E KO mice was associated with significantly (p < 0.05) increased IFN-γ production by CD4+ T cells. CD11c+ cells from Sema3E KO mice displayed increased expression of costimulatory molecules and IL-12p40 production following L. major infection and were more efficient at inducing the differentiation of Leishmania-specific CD4+ T cells to Th1 cells than their wild-type counterpart cells. Furthermore, purified CD4+ T cells from Sema3E KO mice showed increased propensity to differentiate into Th1 cells in vitro, and this was significantly inhibited by the addition of recombinant Sema3E in vitro. These findings collectively show that Sema3E is a negative regulator of protective CD4+ Th1 immunity in mice infected with L. major and suggest that its neutralization may be a potential therapeutic option for treating individuals suffering from cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Nnamdi M Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada; and
| | - Gloria N Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Aida Feiz-Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Romaniya R Zayats
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Enitan S Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Somtochukwu S Onwah
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chukuwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
38
|
Modelling of Immune Checkpoint Network Explains Synergistic Effects of Combined Immune Checkpoint Inhibitor Therapy and the Impact of Cytokines in Patient Response. Cancers (Basel) 2020; 12:cancers12123600. [PMID: 33276543 PMCID: PMC7761568 DOI: 10.3390/cancers12123600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The future of cancer immunotherapy relies on a combination of individually targeted therapies. However, a lot of experiments are needed to define the most effective combinations of drugs. A computational and modelling approach could help reduce the number of experiments and suggest optimal treatments to test. This article presents a logical model of T cell activation influenced by immune checkpoints, and explores the effect of these checkpoints, suggests mechanisms that would explain why some treatments might be better suited than others. The model includes not only programmed cell death protein 1 (PD1) and cytotoxic T-lymphocyte-associated protein 4 (CTL4) downstream pathways but also those of other immune checkpoints such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), cluster of differentiation 226 (CD226), inducible T-cell costimulator (ICOS), and tumour necrosis factor receptors (TNFRs). Abstract After the success of the new generation of immune therapies, immune checkpoint receptors have become one important center of attention of molecular oncologists. The initial success and hopes of anti-programmed cell death protein 1 (anti-PD1) and anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4) therapies have shown some limitations since a majority of patients have continued to show resistance. Other immune checkpoints have raised some interest and are under investigation, such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), inducible T-cell costimulator (ICOS), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which appear as promising targets for immunotherapy. To explore their role and study possible synergetic effects of these different checkpoints, we have built a model of T cell receptor (TCR) regulation including not only PD1 and CTLA4, but also other well studied checkpoints (TIGIT, TIM3, lymphocyte activation gene 3 (LAG3), cluster of differentiation 226 (CD226), ICOS, and tumour necrosis factor receptors (TNFRs)) and simulated different aspects of T cell biology. Our model shows good correspondence with observations from available experimental studies of anti-PD1 and anti-CTLA4 therapies and suggest efficient combinations of immune checkpoint inhibitors (ICI). Among the possible candidates, TIGIT appears to be the most promising drug target in our model. The model predicts that signal transducer and activator of transcription 1 (STAT1)/STAT4-dependent pathways, activated by cytokines such as interleukin 12 (IL12) and interferon gamma (IFNG), could improve the effect of ICI therapy via upregulation of Tbet, suggesting that the effect of the cytokines related to STAT3/STAT1 activity is dependent on the balance between STAT1 and STAT3 downstream signalling.
Collapse
|
39
|
Ji W, Zhang Q, Shi H, Dong R, Ge D, Du X, Ren B, Wang X, Wang Q. The mediatory role of Majie cataplasm on inflammation of allergic asthma through transcription factors related to Th1 and Th2. Chin Med 2020; 15:53. [PMID: 32489402 PMCID: PMC7247251 DOI: 10.1186/s13020-020-00334-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Asthma, a common respiratory disease, is harmful biological effect to our health. As a traditional Chinese medicine for asthma, Majie cataplasm could alleviate the symptoms of asthma and its compositions have immunomodulatory effects. Previous experiments showed that Majie cataplasm was an effective approach to mitigate asthma airway remodeling and had the potential to regulate Th2 cytokines of IL-5 and IL-13. Therefore, our further research focuses on the explanation about the regulatory effect of Majie cataplasm on reshaping Th1/Th2 through their related transcription factors. Methods In this experiment, the launch of asthma model was made by inducing with Ovalbumin (OVA) in C57 mice (n = 40), including 4 groups: the untreated control group (n = 10), the asthma model group (n = 10), the dexamethasone group (n = 10) and the Majie cataplasm group (n = 10). After the intervention, all groups of animals got detected for serum IgE levels, and HE staining of lung tissues was to observe and examine pathological changes. Meanwhile, we analyzed the secretion of IL-4+ T cells and IFN-γ+ T cells in spleen by flow cytometry. The expressions of transcription factor STAT6 mRNA, GATA-3 mRNA and T-bet mRNA in lung tissues was tested by PCR, and western blot had been used to detect levels of JAK2 and STAT3. Results We found that Majie cataplasm eased the content of serum IgE and lung inflammation. It could lower the increased number of IL-4+ T cells and IFN-γ+ T cells (P < 0.0001, P < 0.01) in asthmatic mice and curb the expression of STAT6 mRNA and GATA-3 (P < 0.0001, P < 0.01) mRNA as well as the protein levels of JAK2 (P < 0.001) and the ratio of pSTAT3/STAT3 (P < 0.05). Besides, Majie cataplasm made its mark on T-bet mRNA by improving it (P < 0.0001). Conclusion These data suggest that Majie cataplasm exert an anti-inflammatory effect of Th2 by rebalancing Th1/Th2 through corresponding transcription factor STAT6, GATA-3, STAT3, and T-bet, which providing a strong cornerstone for asthma control.
Collapse
Affiliation(s)
- Wenting Ji
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qianyi Zhang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Hanfen Shi
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Ruijuan Dong
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Dongyu Ge
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xin Du
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Beida Ren
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
40
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Ledbetter L, Cherla R, Chambers C, Zhang Y, Mitchell WJ, Zhang G. Major Histocompatibility Complex Class II-Restricted, CD4 + T Cell-Dependent and -Independent Mechanisms Are Required for Vaccine-Induced Protective Immunity against Coxiella burnetii. Infect Immun 2020; 88:e00824-19. [PMID: 31792078 PMCID: PMC7035945 DOI: 10.1128/iai.00824-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
To understand the role of major histocompatibility complex class I (MHC-I) and MHC-II in vaccine-mediated protection against Coxiella burnetii, we evaluated the protective efficacy of a formalin-inactivated C. burnetii Nine Mile phase I vaccine (PIV) in β2-microglobulin-deficient (B2m KO) and MHC-II-deficient (MHC-II KO) mice. Vaccination reduced disease severity in wild-type (WT) and B2m KO mice but failed to reduce bacterial burden in MHC-II KO mice. This suggests that the MHC-II antigen presentation pathway is required for PIV-mediated protection against C. burnetii infection. MHC-I and MHC-II affect antibody isotype switching, since both PIV-vaccinated B2m KO and MHC-II KO mice produced less Coxiella-specific IgG than PIV-vaccinated WT mice. Interestingly, MHC-II and CD4 deficiencies were not equivalent in terms of splenomegaly and bacterial clearance. This demonstrates a partial role for CD4+ T cells while revealing MHC-II-restricted, CD4-independent mechanisms. Adoptive transfer of CD4+ T cells from PIV-vaccinated WT mice to naive CD4-deficient (CD4 KO) mice demonstrated that antigen-experienced CD4+ T cells are sufficient to generate protection. Conversely, transfer of naive CD4+ T cells to PIV-vaccinated CD4 KO mice exacerbates disease. Using Tbet-deficient (Tbet KO) mice, we showed a partial role for Th1 subset CD4+ T cells in vaccine protection. Furthermore, Th1-independent roles for Tbet were suggested by significant differences in disease between PIV-vaccinated Tbet KO and CD4 KO mice. Interferon gamma was shown to contribute to the host inflammatory response but not bacterial clearance. Collectively, these findings suggest that vaccine-induced protective immunity against a murine model of experimental Q fever requires MHC-II-restricted, CD4+ T cell-dependent and -independent mechanisms that can be exploited for a new-generation human Q fever vaccine.
Collapse
Affiliation(s)
- Lindsey Ledbetter
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Rama Cherla
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Catherine Chambers
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Yan Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - William J Mitchell
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Guoquan Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
42
|
Tamaura M, Satoh-Takayama N, Tsumura M, Sasaki T, Goda S, Kageyama T, Hayakawa S, Kimura S, Asano T, Nakayama M, Koseki H, Ohara O, Okada S, Ohno H, Kobayashi M. Human gain-of-function STAT1 mutation disturbs IL-17 immunity in mice. Int Immunol 2019; 32:259-272. [DOI: 10.1093/intimm/dxz079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023] Open
Abstract
Abstract
Gain-of-function (GOF) mutations in the gene for signal transducer and activator of transcription 1 (STAT1) account for approximately one-half of patients with chronic mucocutaneous candidiasis (CMC) disease. Patients with GOF-STAT1 mutations display a broad variety of infectious and autoimmune manifestations in addition to CMC, and those with severe infections and/or autoimmunity have a poor prognosis. The establishment of safe and effective treatments based on a precise understanding of the molecular mechanisms of this disorder is required to improve patient care. To tackle this problem, we introduced the human R274Q GOF mutation into mice [GOF-Stat1 knock-in (GOF-Stat1R274Q)]. To investigate the immune responses, we focused on the small intestine (SI), which contains abundant Th17 cells. Stat1R274Q/R274Q mice showed excess phosphorylation of STAT1 in CD4+ T cells upon IFN-γ stimulation, consistent with the human phenotype in patients with the R274Q mutation. We identified two subpopulations of CD4+ T cells, those with ‘normal’ or ‘high’ level of basal STAT1 protein in Stat1R274Q/R274Q mice. Upon IFN-γ stimulation, the ‘normal’ level CD4+ T cells were more efficiently phosphorylated than those from WT mice, whereas the ‘high’ level CD4+ T cells were not, suggesting that the level of STAT1 protein does not directly correlate with the level of pSTAT1 in the SI. Inoculation of Stat1R274Q/R274Q mice with Candida albicans elicited decreased IL-17-producing CD4+RORγt+ cells. Stat1R274Q/R274Q mice also excreted larger amounts of C. albicans DNA in their feces than control mice. Under these conditions, there was up-regulation of T-bet in CD4+ T cells. GOF-Stat1R274Q mice thus should be a valuable model for functional analysis of this disorder.
Collapse
Affiliation(s)
- Moe Tamaura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Goda
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kageyama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Roy S, Awasthi A. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. Int Rev Immunol 2019; 38:232-245. [PMID: 31411520 DOI: 10.1080/08830185.2019.1648454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Noncoding RNA comprises of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that are abundantly present in mammalian transcriptome. These noncoding RNAs have been implicated in multiple biological processes through the regulation of gene expression. Each of these noncoding RNAs were found to have multiple genes targets. Emerging literature indicated the role of noncoding RNAs in shaping the immune responses which include immune cell development, helper T (Th) cell differentiation as well as maintenance of immune homeostasis by inducing the interplay between effector and regulatory T cells. Dysregulated expression and functions of noncoding RNAs in the immune system leads to aberrations in immune response that lead to the induction of tissue inflammation in autoimmune diseases. In this review, we summarize the current advances of post-transcriptional regulation, focusing on the functions of noncoding RNAs (miRNAs and lncRNAs) during differentiation of Th cells in tissue inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Lab, Translational Health Science and Technology Institute , Faridabad , India
| | - Amit Awasthi
- Immuno-Biology Lab, Translational Health Science and Technology Institute , Faridabad , India
| |
Collapse
|
44
|
Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol 2019; 16:634-643. [PMID: 30867582 PMCID: PMC6804569 DOI: 10.1038/s41423-019-0220-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
CD4+ T helper cells are key regulators of host health and disease. In the original model, specialized subsets of T helper cells are generated following activation through lineage-specifying cytokines and transcriptional programs, but recent studies have revealed increasing complexities for CD4+ T-cell differentiation. Here, we first discuss CD4+ T-cell differentiation from a historical perspective by highlighting the major studies that defined the distinct subsets of T helper cells. We next describe the mechanisms underlying CD4+ T-cell differentiation, including cytokine-induced signaling and transcriptional networks. We then review current and emerging topics of differentiation, including the plasticity and heterogeneity of T cells, the tissue-specific effects, and the influence of cellular metabolism on cell fate decisions. Importantly, recent advances in cutting-edge approaches, especially systems biology tools, have contributed to new concepts and mechanisms underlying T-cell differentiation and will likely continue to advance this important research area of adaptive immunity.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
45
|
Saleh ME, Gadalla R, Hassan H, Afifi A, Götte M, El-Shinawi M, Mohamed MM, Ibrahim SA. The immunomodulatory role of tumor Syndecan-1 (CD138) on ex vivo tumor microenvironmental CD4+ T cell polarization in inflammatory and non-inflammatory breast cancer patients. PLoS One 2019; 14:e0217550. [PMID: 31145753 PMCID: PMC6542534 DOI: 10.1371/journal.pone.0217550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Herein, we aimed to identify the immunomodulatory role of tumor Syndecan-1 (CD138) in the polarization of CD4+ T helper (Th) subsets isolated from the tumor microenvironment of inflammatory breast cancer (IBC) and non-IBC patients. Lymphocytes and mononuclear cells isolated from the axillary tributaries of non-IBC and IBC patients during modified radical mastectomy were either stimulated with the secretome as indirect co-culture or directly co-cultured with control and Syndecan-1-silenced SUM-149 IBC cells. In addition, peripheral blood mononuclear cells (PBMCs) of normal subjects were used for the direct co-culture. Employing flow cytometry, we analyzed the expression of the intracellular IFN-γ, IL-4, IL-17, and Foxp3 markers as readout for basal and co-cultured Th1, Th2, Th17, and Treg CD4+ subsets, respectively. Our data revealed that IBC displayed a lower basal frequency of Th1 and Th2 subsets than non-IBC. Syndecan-1-silenced SUM-149 cells significantly upregulated only Treg subset polarization of normal subjects relative to controls. However, Syndecan-1 silencing significantly enhanced the polarization of Th17 and Treg subsets of non-IBC under both direct and indirect conditions and induced only Th1 subset polarization under indirect conditions compared to control. Interestingly, qPCR revealed that there was a negative correlation between Syndecan-1 and each of IL-4, IL-17, and Foxp3 mRNA expression in carcinoma tissues of IBC and that the correlation was reversed in non-IBC. Mechanistically, Syndecan-1 knockdown in SUM-149 cells promoted Th17 cell expansion via upregulation of IL-23 and the Notch ligand DLL4. Overall, this study indicates a low frequency of the circulating antitumor Th1 subset in IBC and suggests that tumor Syndecan-1 silencing enhances ex vivo polarization of CD4+ Th17 and Treg cells of non-IBC, whereby Th17 polarization is possibly mediated via upregulation of IL-23 and DLL4. These findings suggest the immunoregulatory role of tumor Syndecan-1 expression in Th cell polarization that may have therapeutic implications for breast cancer.
Collapse
Affiliation(s)
| | - Ramy Gadalla
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Afifi
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
46
|
Wei SC, Sharma R, Anang NAAS, Levine JH, Zhao Y, Mancuso JJ, Setty M, Sharma P, Wang J, Pe'er D, Allison JP. Negative Co-stimulation Constrains T Cell Differentiation by Imposing Boundaries on Possible Cell States. Immunity 2019; 50:1084-1098.e10. [PMID: 30926234 DOI: 10.1016/j.immuni.2019.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/07/2018] [Accepted: 03/01/2019] [Indexed: 12/31/2022]
Abstract
Co-stimulation regulates T cell activation, but it remains unclear whether co-stimulatory pathways also control T cell differentiation. We used mass cytometry to profile T cells generated in the genetic absence of the negative co-stimulatory molecules CTLA-4 and PD-1. Our data indicate that negative co-stimulation constrains the possible cell states that peripheral T cells can acquire. CTLA-4 imposes major boundaries on CD4+ T cell phenotypes, whereas PD-1 subtly limits CD8+ T cell phenotypes. By computationally reconstructing T cell differentiation paths, we identified protein expression changes that underlied the abnormal phenotypic expansion and pinpointed when lineage choice events occurred during differentiation. Similar alterations in T cell phenotypes were observed after anti-CTLA-4 and anti-PD-1 antibody blockade. These findings implicate negative co-stimulation as a key regulator and determinant of T cell differentiation and suggest that checkpoint blockade might work in part by altering the limits of T cell phenotypes.
Collapse
Affiliation(s)
- Spencer C Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Nana-Ama A S Anang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H Levine
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James J Mancuso
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Higazi HMKI, He L, Fang J, Sun F, Zhou Q, Huang T, He X, Wang Y, Xiong F, Yang P, Yu Q, Li J, Wagner KU, Adam BL, Zhang S, Wang CY. Loss of Jak2 protects cardiac allografts from chronic rejection by attenuating Th1 response along with increased regulatory T cells. Am J Transl Res 2019; 11:624-640. [PMID: 30899367 PMCID: PMC6413256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Chronic rejection acts as the most formidable obstacle for organ transplantation in clinical settings. Herein we demonstrated in a cardiac transplantation model that blockade of Janus kinase 2 (Jak2) provides protection for cardiac allografts against chronic rejection. Specifically, loss of Jak2 almost completely abolished the production of IFN-γ+ Th1 cells, while the percentage of Foxp3+ regulatory T cells (Tregs) was significantly increased. As a result, loss of Jak2 significantly prolonged allograft survival (58 ± 30.6 days vs. 7 ± 0.3 days). Particularly, 4 out of 13 Jak2 deficient recipients (30%) showed long-term acceptance of allografts as manifested by the graft survival time > 100 days. Cellular studies revealed that Jak2 deficiency did not impact the intrinsic proliferative capability for CD4+ T cells in response to nonspecific polyclonal and allogenic stimulation. Mechanistic studies documented that the impaired Th1 development was caused by the attenuated IFN-γ/STAT1 and IL-12/STAT4 signaling along with repressed expression of Th1 transcription factors T-bet, Hlx and Runx3. However, the IL-2/STAT5 signaling remained intact, which ensured normal Treg development in Jak2-/- naïve CD4 T cells. Together, our data support that blockade of Jak2 may have therapeutic potential for prevention and treatment of allograft rejection in clinical settings.
Collapse
Affiliation(s)
- Hassan Mohammed Khair Ibrahim Higazi
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Long He
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jing Fang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Fei Sun
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Qing Zhou
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Teng Huang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xiaoyu He
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Yi Wang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Ping Yang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jinxiu Li
- Shenzhen Third People’s Hospital29 Bujibulan Road, Longgang District, Shenzhen, Guangdong 518000, China
| | - Kay-Uwe Wagner
- University of Nebraska Medical Center, 985950 Nebraska Medical CenterDRCII, Omaha, NE 68198-5950, USA
| | - Bao-Ling Adam
- Department of Surgery, Medical College of Georgia at Augusta University1120 15th Street, BI-4074, Augusta, GA 30912, USA
| | - Shu Zhang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|
48
|
Erhart F, Buchroithner J, Reitermaier R, Fischhuber K, Klingenbrunner S, Sloma I, Hibsh D, Kozol R, Efroni S, Ricken G, Wöhrer A, Haberler C, Hainfellner J, Krumpl G, Felzmann T, Dohnal AM, Marosi C, Visus C. Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathol Commun 2018; 6:135. [PMID: 30518425 PMCID: PMC6280511 DOI: 10.1186/s40478-018-0621-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023] Open
Abstract
Audencel is a dendritic cell (DC)-based cellular cancer immunotherapy against glioblastoma multiforme (GBM). It is characterized by loading of DCs with autologous whole tumor lysate and in vitro maturation via “danger signals”. The recent phase II “GBM-Vax” trial showed no clinical efficacy for Audencel as assessed with progression-free and overall survival in all patients. Here we present immunological research accompanying the trial with a focus on immune system factors related to outcome and Audencel’s effect on the immune system. Methodologically, peripheral blood samples (from apheresis before Audencel or venipuncture during Audencel) were subjected to functional characterization via enzyme-linked immunospot (ELISPOT) assays connected with cytokine bead assays (CBAs) as well as phenotypical characterization via flow cytometry and mRNA quantification. GBM tissue samples (from surgery) were subjected to T cell receptor sequencing and immunohistochemistry. As results we found: Patients with favorable pre-existing anti-tumor characteristics lived longer under Audencel than Audencel patients without them. Pre-vaccination blood CD8+ T cell count and ELISPOT Granzyme B production capacity in vitro upon tumor antigen exposure were significantly correlated with overall survival. Despite Audencel’s general failure to induce a significant clinical response, it nevertheless seemed to have an effect on the immune system. For instance, Audencel led to a significant up-regulation of the Th1-related immunovariables ELISPOT IFNγ, the transcription factor T-bet in the blood and ELISPOT IL-2 in a dose-dependent manner upon vaccination. Post-vaccination levels of ELISPOT IFNγ and CD8+ cells in the blood were indicative of a significantly better survival. In summary, Audencel failed to reach an improvement of survival in the recent phase II clinical trial. No clinical efficacy was registered. Our concomitant immunological work presented here indicates that outcome under Audencel was influenced by the state of the immune system. On the other hand, Audencel also seemed to have stimulated the immune system. Overall, these immunological considerations suggest that DC immunotherapy against glioblastoma should be studied further – with the goal of translating an apparent immunological response into a clinical response. Future research should concentrate on investigating augmentation of immune reactions through combination therapies or on developing meaningful biomarkers.
Collapse
|
49
|
Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030338. [PMID: 28847903 DOI: 10.1101/cshperspect.a030338] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naïve CD4 T cells, on activation, differentiate into distinct T helper (Th) subsets that produce lineage-specific cytokines. By producing unique sets of cytokines, effector Th subsets play critical roles in orchestrating immune responses to a variety of infections and are involved in the pathogenesis of many inflammatory diseases including autoimmunity, allergy, and asthma. The differentiation of Th cells relies on the strength of T-cell receptor (TCR) signaling and signals triggered by polarizing cytokines that activate and/or up-regulate particular transcription factors. Several lineage-specific master transcription factors dictate Th cell fates and functions. Although these master regulators cross-regulate each other, their expression can be dynamic. Sometimes, they are even coexpressed, resulting in massive Th-cell heterogeneity and plasticity. Similar regulation mediated by these master regulators is also found in innate lymphoid cells (ILCs) that are innate counterparts of Th cells.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
50
|
Yu JC, Lin G, Field JJ, Linden J. Induction of antiinflammatory purinergic signaling in activated human iNKT cells. JCI Insight 2018; 3:91954. [PMID: 30185656 DOI: 10.1172/jci.insight.91954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are activated at sites of local tissue injury, or globally during vaso-occlusive episodes of sickle cell disease (SCD). Tissue damage stimulates production of CD1d-restricted lipid antigens that activate iNKT cells to produce Th1- and Th2-type cytokines. Here, we show that circulating iNKT cells in SCD patients express elevated levels of the ectonucleoside triphosphate diphosphosphohydrolase, CD39, as well the adenosine A2A receptor (A2AR). We also investigated the effects of stimulating cultured human iNKT cells on the expression of genes involved in the regulation of purinergic signaling. iNKT cell stimulation caused induction of ADORA2A, P2RX7, CD38, CD39, ENPP1, CD73, PANX1, and ENT1. Transcription of ADA, which degrades adenosine, was reduced. Induction of CD39 mRNA was associated with increased ecto-ATPase activity on iNKT cells that was blocked by POM1. Exposure of iNKT cells to A2AR agonists during stimulation reduced production of IFN-γ and enhanced production of IL-13 and CD39. Based on these findings, we define "purinergic Th2-type cytokine bias" as an antiinflammatory purinergic response to iNKT cell stimulation resulting from changes in the transcription of several genes involved in purine release, extracellular metabolism, and signaling.
Collapse
Affiliation(s)
- Jennifer C Yu
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology La Jolla, California, USA.,Division of Pediatric Hematology/Oncology, University of California/Rady Children's Hospital, San Diego, California, USA
| | - Gene Lin
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology La Jolla, California, USA
| | - Joshua J Field
- BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology La Jolla, California, USA.,Department of Pharmacology, University of California San Diego, San Diego, California, USA
| |
Collapse
|