1
|
Cully MD, Nolte JE, Patel A, Vaughan AE, May MJ. Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects against Influenza. Immunohorizons 2024; 8:478-491. [PMID: 39007717 PMCID: PMC11294277 DOI: 10.4049/immunohorizons.2400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
IκB kinase (IKK)α controls noncanonical NF-κB signaling required for lymphoid organ development. We showed previously that lymph node formation is ablated in IkkαLyve-1 mice constitutively lacking IKKα in lymphatic endothelial cells (LECs). We now reveal that loss of IKKα in LECs leads to the formation of BALT in the lung. Tertiary lymphoid structures appear only in the lungs of IkkαLyve-1 mice and are not present in any other tissues, and these highly organized BALT structures form after birth and in the absence of inflammation. Additionally, we show that IkkαLyve-1 mice challenged with influenza A virus (IAV) exhibit markedly improved survival and reduced weight loss compared with littermate controls. Importantly, we determine that the improved morbidity and mortality of IkkαLyve-1 mice is independent of viral load and rate of clearance because both mice control and clear IAV infection similarly. Instead, we show that IFN-γ levels are decreased, and infiltration of CD8 T cells and monocytes into IkkαLyve-1 lungs is reduced. We conclude that ablating IKKα in LECs promotes BALT formation and reduces the susceptibility of IkkαLyve-1 mice to IAV infection through a decrease in proinflammatory stimuli.
Collapse
Affiliation(s)
- Michelle D. Cully
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Julianne E. Nolte
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Athena Patel
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Andrew E. Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Michael J. May
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| |
Collapse
|
2
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
3
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
4
|
Sedney CJ, Harvill ET. The Neonatal Immune System and Respiratory Pathogens. Microorganisms 2023; 11:1597. [PMID: 37375099 PMCID: PMC10301501 DOI: 10.3390/microorganisms11061597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Neonates are more susceptible to some pathogens, particularly those that cause infection in the respiratory tract. This is often attributed to an incompletely developed immune system, but recent work demonstrates effective neonatal immune responses to some infection. The emerging view is that neonates have a distinctly different immune response that is well-adapted to deal with unique immunological challenges of the transition from a relatively sterile uterus to a microbe-rich world, tending to suppress potentially dangerous inflammatory responses. Problematically, few animal models allow a mechanistic examination of the roles and effects of various immune functions in this critical transition period. This limits our understanding of neonatal immunity, and therefore our ability to rationally design and develop vaccines and therapeutics to best protect newborns. This review summarizes what is known of the neonatal immune system, focusing on protection against respiratory pathogens and describes challenges of various animal models. Highlighting recent advances in the mouse model, we identify knowledge gaps to be addressed.
Collapse
Affiliation(s)
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
5
|
Devi-Marulkar P, Fastenackels S, Karapentiantz P, Goc J, Germain C, Kaplon H, Knockaert S, Olive D, Panouillot M, Validire P, Damotte D, Alifano M, Murris J, Katsahian S, Lawand M, Dieu-Nosjean MC. Regulatory T cells infiltrate the tumor-induced tertiary lymphoïd structures and are associated with poor clinical outcome in NSCLC. Commun Biol 2022; 5:1416. [PMID: 36566320 PMCID: PMC9789959 DOI: 10.1038/s42003-022-04356-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.
Collapse
Affiliation(s)
- Priyanka Devi-Marulkar
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418596.70000 0004 0639 6384Present Address: Institut Curie, Paris, France
| | - Solène Fastenackels
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Karapentiantz
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,Present Address: Inserm, Sorbonne Université, université Paris 13, Laboratoire d’informatique médicale et d’ingénierie des connaissances en e-santé, LIMICS, F-75006 Paris, France
| | - Jérémy Goc
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.5386.8000000041936877XPresent Address: Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, USA
| | - Claire Germain
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,Present Address: Biomunex Pharmaceuticals, Paris, France
| | - Hélène Kaplon
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Samantha Knockaert
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Daniel Olive
- Inserm U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France ,grid.463833.90000 0004 0572 0656Laboratory « Immunity and Cancer », Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Marylou Panouillot
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Validire
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418120.e0000 0001 0626 5681Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Diane Damotte
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.411784.f0000 0001 0274 3893Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin hospital, Paris, France
| | - Marco Alifano
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.50550.350000 0001 2175 4109Department of Thoracic Surgery, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Juliette Murris
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Sandrine Katsahian
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Myriam Lawand
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
6
|
Parlak Ak T. Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies. Vet Med Sci 2021. [DOI: 10.5772/intechopen.99366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The lower respiratory tract is in direct communication with the external environment for gas exchange to occur. Therefore, it is constantly exposed to allergens, antigens, bacteria, viruses, and a wide variety of airborne foreign bodies. Bronchus-associated lymphoid tissue (BALT), which develops in response to these exposures and is one of the most prominent representatives of mucosa-associated lymphoid tissue (MALT), is important for generating rapid and specific bronchopulmonary adaptive immune responses. Therefore, this chapter focuses on the lymphoid architecture of BALT, which was first discovered in the bronchial wall of rabbits, its inducible form called inducible BALT (iBALT), its immunological response mechanisms, and its roles in certain pathologies including infectious and autoimmune diseases as well as in allergic and malignant conditions. In conclusion, it is hypothesized that BALT plays an important role in maintaining health and in the development of lower respiratory tract diseases; thanks to the pulmonary immune system in which it functions as a functional lymphoid tissue.
Collapse
|
7
|
Hwang JY, Silva-Sanchez A, Carragher DM, Garcia-Hernandez MDLL, Rangel-Moreno J, Randall TD. Inducible Bronchus-Associated Lymphoid Tissue (iBALT) Attenuates Pulmonary Pathology in a Mouse Model of Allergic Airway Disease. Front Immunol 2020; 11:570661. [PMID: 33101290 PMCID: PMC7545112 DOI: 10.3389/fimmu.2020.570661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
Inducible Bronchus Associated Lymphoid Tissue (iBALT) is an ectopic lymphoid tissue associated with severe forms of chronic lung diseases, including chronic obstructive pulmonary disease, rheumatoid lung disease, hypersensitivity pneumonitis and asthma, suggesting that iBALT may exacerbate these clinical conditions. However, despite the link between pulmonary pathology and iBALT formation, the role of iBALT in pathogenesis remains unknown. Here we tested whether the presence of iBALT in the lung prior to sensitization and challenge with a pulmonary allergen altered the biological outcome of disease. We found that the presence of iBALT did not exacerbate Th2 responses to pulmonary sensitization with ovalbumin. Instead, we found that mice with iBALT exhibited delayed Th2 accumulation in the lung, reduced eosinophil recruitment, reduced goblet cell hyperplasia and reduced mucus production. The presence of iBALT did not alter Th2 priming, but instead delayed the accumulation of Th2 cells in the lung following challenge and altered the spatial distribution of T cells in the lung. These results suggest that the formation of iBALT and sequestration of effector T cells in the context of chronic pulmonary inflammation may be a mechanism by which the immune system attenuates pulmonary inflammation and prevents excessive pathology.
Collapse
Affiliation(s)
- Ji Young Hwang
- Division of Clinical Immunology and Rheumatology, The Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Aaron Silva-Sanchez
- Division of Clinical Immunology and Rheumatology, The Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Maria de la Luz Garcia-Hernandez
- Division of Allergy Immunology and Rheumatology, The Department of Medicine, University of Rochester, Rochester, NY, United States
| | - Javier Rangel-Moreno
- Division of Allergy Immunology and Rheumatology, The Department of Medicine, University of Rochester, Rochester, NY, United States
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, The Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Efficacy of Neuraminidase Inhibitors against H5N6 Highly Pathogenic Avian Influenza Virus in a Nonhuman Primate Model. Antimicrob Agents Chemother 2020; 64:AAC.02561-19. [PMID: 32284377 DOI: 10.1128/aac.02561-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Attention has been paid to H5N6 highly pathogenic avian influenza virus (HPAIV) because of its heavy burden on the poultry industry and human mortality. Since an influenza A virus carrying N6 neuraminidase (NA) has never spread in humans, the potential for H5N6 HPAIV to cause disease in humans and the efficacy of antiviral drugs against the virus need to be urgently assessed. We used nonhuman primates to elucidate the pathogenesis of H5N6 HPAIV as well as to determine the efficacy of antiviral drugs against the virus. H5N6 HPAIV infection led to high fever in cynomolgus macaques. The lung injury caused by the virus was severe, with diffuse alveolar damage and neutrophil infiltration. In addition, an increase in interferon alpha (IFN-α) showed an inverse correlation with virus titers during the infection process. Oseltamivir was effective for reducing H5N6 HPAIV propagation, and continuous treatment with peramivir reduced virus propagation and the severity of symptoms in the early stage. This study also showed pathologically severe lung injury states in cynomolgus macaques infected with H5N6 HPAIV, even in those that received early antiviral drug treatments, indicating the need for close monitoring and further studies on virus pathogenicity and new antiviral therapies.
Collapse
|
9
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Manifold Roles of CCR7 and Its Ligands in the Induction and Maintenance of Bronchus-Associated Lymphoid Tissue. Cell Rep 2019; 23:783-795. [PMID: 29669284 DOI: 10.1016/j.celrep.2018.03.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
The processes underlying the development and maintenance of tertiary lymphoid organs are incompletely understood. Using a Ccr7 knockout/knockin approach, we show that spontaneous bronchus-associated lymphoid tissue (BALT) formation can be caused by CCR7-mediated migration defects of dendritic cells (DCs) in the lung. Plt/plt mice that lack the CCR7 ligands CCL19 and CCL21-serine do not form BALT spontaneously because lung-expressed CCL21-leucine presumably suffices to maintain steady-state DC egress. However, plt/plt mice are highly susceptible to modified vaccinia virus infection, showing enhanced recruitment of immune cells as well as alterations in CCR7-ligand-mediated lymphocyte egress from the lungs, leading to dramatically enhanced BALT. Furthermore, we identify two independent BALT homing routes for blood-derived lymphocytes. One is HEV mediated and depends on CCR7 and L-selectin, while the second route is via the lung parenchyma and is independent of these molecules. Together, these data provide insights into CCR7/CCR7-ligand-orchestrated aspects in BALT formation.
Collapse
|
11
|
Nagatake T, Suzuki H, Hirata SI, Matsumoto N, Wada Y, Morimoto S, Nasu A, Shimojou M, Kawano M, Ogami K, Tsujimura Y, Kuroda E, Iijima N, Hosomi K, Ishii KJ, Nosaka T, Yasutomi Y, Kunisawa J. Immunological association of inducible bronchus-associated lymphoid tissue organogenesis in Ag85B-rHPIV2 vaccine-induced anti-tuberculosis mucosal immune responses in mice. Int Immunol 2019; 30:471-481. [PMID: 30011025 PMCID: PMC6153728 DOI: 10.1093/intimm/dxy046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
We previously reported that Ag85B-expressing human parainfluenza type 2 virus (Ag85B-rHPIV2) was effective as a nasal vaccine against tuberculosis in mice; however, the mechanism by which it induces an immune response remains to be investigated. In the present study, we found that organogenesis of inducible bronchus-associated lymphoid tissue (iBALT) played a role in the induction of antigen-specific T cells and IgA antibody responses in the lung of mice intra-nasally administered Ag85B-rHPIV2. We found that expression of Ag85B was dispensable for the development of iBALT, suggesting that HPIV2 acted as an iBALT-inducing vector. When iBALT organogenesis was disrupted in Ag85B-rHPIV2-immunized mice, either by neutralization of the lymphotoxin pathway or depletion of CD11b+ cells, Ag85B-specific immune responses (i.e. IFN γ-producing T cells and IgA antibody) were diminished in the lung. Furthermore, we found that immunization with Ag85B-rHPIV2 induced neutrophil and eosinophil infiltration temporally after the immunization in the lung. Thus, our results show that iBALT organogenesis contributes to the induction of antigen-specific immune responses by Ag85B-rHPIV2 and that Ag85B-rHPIV2 provokes its immune responses without inducing long-lasting inflammation.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan
| | - Naomi Matsumoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Yasuko Wada
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Ayaka Nasu
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Michiko Shimojou
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Mitsuo Kawano
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kentaro Ogami
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Hachimandai, Tsukuba, Ibaraki, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Hachimandai, Tsukuba, Ibaraki, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, NIBIOHN, Ibaraki, Osaka, Japan
| | - Norifumi Iijima
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, NIBIOHN, Ibaraki, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, NIBIOHN, Ibaraki, Osaka, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Hachimandai, Tsukuba, Ibaraki, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Abstract
Although common evolutionary principles drive the growth of cancer cells regardless of the tissue of origin, the microenvironment in which tumours arise substantially differs across various organ sites. Recent studies have established that, in addition to cell-intrinsic effects, tumour growth regulation also depends on local cues driven by tissue environmental factors. In this Review, we discuss how tissue-specific determinants might influence tumour development and argue that unravelling the tissue-specific contribution to tumour immunity should help the development of precise immunotherapeutic strategies for patients with cancer.
Collapse
Affiliation(s)
- Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- INSERM U932, Institut Curie, Paris, France.
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Hirahara K, Shinoda K, Morimoto Y, Kiuchi M, Aoki A, Kumagai J, Kokubo K, Nakayama T. Immune Cell-Epithelial/Mesenchymal Interaction Contributing to Allergic Airway Inflammation Associated Pathology. Front Immunol 2019; 10:570. [PMID: 30972065 PMCID: PMC6443630 DOI: 10.3389/fimmu.2019.00570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
The primary function of the lung is efficient gas exchange between alveolar air and alveolar capillary blood. At the same time, the lung protects the host from continuous invasion of harmful viruses and bacteria by developing unique epithelial barrier systems. Thus, the lung has a complex architecture comprising a mixture of various types of cells including epithelial cells, mesenchymal cells, and immune cells. Recent studies have revealed that Interleukin (IL-)33, a member of the IL-1 family of cytokines, is a key environmental cytokine that is derived from epithelial cells and induces type 2 inflammation in the barrier organs, including the lung. IL-33 induces allergic diseases, such as asthma, through the activation of various immune cells that express an IL-33 receptor, ST2, including ST2+ memory (CD62LlowCD44hi) CD4+ T cells. ST2+ memory CD4+ T cells have the capacity to produce high levels of IL-5 and Amphiregulin and are involved in the pathology of asthma. ST2+ memory CD4+ T cells are maintained by IL-7- and IL-33-produced lymphatic endothelial cells within inducible bronchus-associated lymphoid tissue (iBALT) around the bronchioles during chronic lung inflammation. In this review, we will discuss the impact of these immune cells-epithelial/mesenchymal interaction on shaping the pathology of chronic allergic inflammation. A better understanding of pathogenic roles of the cellular and molecular interaction between immune cells and non-immune cells is crucial for the development of new therapeutic strategies for intractable allergic diseases.
Collapse
Affiliation(s)
- Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-PRIME, AMED, Chiba, Japan
| | - Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory of Genome Integrity, National Institutes of Health, Bethesda, MD, United States
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ami Aoki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jin Kumagai
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
14
|
Seillet C, Arvell EH, Lacey D, Stutz MD, Pellegrini M, Whitehead L, Rimes J, Hawkins ED, Roediger B, Belz GT, Bouillet P. Constitutive overexpression of TNF in BPSM1 mice causes iBALT and bone marrow nodular lymphocytic hyperplasia. Immunol Cell Biol 2019; 97:29-38. [PMID: 30107066 PMCID: PMC6378607 DOI: 10.1111/imcb.12197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023]
Abstract
BPSM1 (Bone phenotype spontaneous mutant 1) mice develop severe polyarthritis and heart valve disease as a result of a spontaneous mutation in the Tnf gene. In these mice, the insertion of a retrotransposon in the 3' untranslated region of Tnf causes a large increase in the expression of the cytokine. We have found that these mice also develop inducible bronchus-associated lymphoid tissue (iBALT), as well as nodular lymphoid hyperplasia (NLH) in the bone marrow. Loss of TNFR1 prevents the development of both types of follicles, but deficiency of TNFR1 in the hematopoietic compartment only prevents the iBALT and not the NLH phenotype. We show that the development of arthritis and heart valve disease does not depend on the presence of the tertiary lymphoid tissues. Interestingly, while loss of IL-17 or IL-23 limits iBALT and NLH development to some extent, it has no effect on polyarthritis or heart valve disease in BPSM1 mice.
Collapse
Affiliation(s)
- Cyril Seillet
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elysa H Arvell
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia
| | - Derek Lacey
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Michael D Stutz
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Joel Rimes
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Ben Roediger
- The Centenary InstituteCamperdownNSW2050Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVIC3052Australia,Department of Medical BiologyThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
15
|
Abstract
Pulmonary respiration inevitably exposes the mucosal surface of the lung to potentially noxious stimuli, including pathogens, allergens, and particulates, each of which can trigger pulmonary damage and inflammation. As inflammation resolves, B and T lymphocytes often aggregate around large bronchi to form inducible Bronchus-Associated Lymphoid Tissue (iBALT). iBALT formation can be initiated by a diverse array of molecular pathways that converge on the activation and differentiation of chemokine-expressing stromal cells that serve as the scaffolding for iBALT and facilitate the recruitment, retention, and organization of leukocytes. Like conventional lymphoid organs, iBALT recruits naïve lymphocytes from the blood, exposes them to local antigens, in this case from the airways, and supports their activation and differentiation into effector cells. The activity of iBALT is demonstrably beneficial for the clearance of respiratory pathogens; however, it is less clear whether it dampens or exacerbates inflammatory responses to non-infectious agents. Here, we review the evidence regarding the role of iBALT in pulmonary immunity and propose that the final outcome depends on the context of the disease.
Collapse
|
16
|
Tokunaga R, Naseem M, Lo JH, Battaglin F, Soni S, Puccini A, Berger MD, Zhang W, Baba H, Lenz HJ. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev 2018; 73:10-19. [PMID: 30551036 DOI: 10.1016/j.ctrv.2018.12.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/10/2023]
Abstract
B cells are recognized as the main effector cells of humoral immunity which suppress tumor progression by secreting immunoglobulins, promoting T cell response, and killing cancer cells directly. Given these properties, their anti-tumor immune response in the tumor micro-environment (TME) is of great interest. Although T cell-related immune responses have become a therapeutic target with the introduction of immune checkpoint inhibitors, not all patients benefit from these treatments. B cell and B cell-related pathways (CCL19, -21/CCR7 axis and CXCL13/CXCR5 axis) play key roles in activating immune response through humoral immunity and local immune activation via tertiary lymphoid structure (TLS) formation. However they have some protumorigenic works in the TME. Thus, a better understanding of B cell and B cell-related pathways is necessary to develop effective cancer control. In this review, we summarize recent evidences regarding the roles of B cell and B cell-related pathways in the TME and immune response and discuss their potential roles for novel cancer treatment strategies.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| |
Collapse
|
17
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Moschovakis GL, Bubke A, Friedrichsen M, Ristenpart J, Back JW, Falk CS, Kremmer E, Förster R. The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cell Mol Immunol 2018; 16:791-799. [PMID: 29973648 DOI: 10.1038/s41423-018-0056-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/27/2018] [Indexed: 01/04/2023] Open
Abstract
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 guide the homing and positioning of dendritic and T cells in lymphoid organs, thereby contributing to several aspects of adaptive immunity and immune tolerance. In the present study, we investigated the role of CCR7 in the pathogenesis of collagen-induced arthritis (CIA). By using a novel anti-human CCR7 antibody and humanized CCR7 mice, we evaluated CCR7 as a target in this autoimmune model of rheumatoid arthritis (RA). Ccr7-deficient mice were completely resistant to CIA and presented severely impaired antibody responses to collagen II (CII). Selective CCR7 expression on dendritic cells restored arthritis severity and anti-CII antibody titers. Prophylactic and therapeutic treatment of humanized CCR7 mice with anti-human CCR7 mAb 8H3-16A12 led to complete resistance to CIA and halted CIA progression, respectively. Our data demonstrate that CCR7 signaling is essential for the induction of CIA and identify CCR7 as a potential therapeutic target in RA.
Collapse
Affiliation(s)
- Georgios L Moschovakis
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Michaela Friedrichsen
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Jasmin Ristenpart
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | | | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, IFB.Tx, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Elisabeth Kremmer
- Helmholtz-Zentrum München, Institute of Molecular Immunology, D-81377, Munich, Germany.,Biozentrum Martinsried, Dept. Bio II., LMU München, Grosshaderner Str. 2, D-82152, Martinsried, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
19
|
Mzinza DT, Fleige H, Laarmann K, Willenzon S, Ristenpart J, Spanier J, Sutter G, Kalinke U, Valentin-Weigand P, Förster R. Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice. Cell Mol Immunol 2018; 15:875-887. [PMID: 29429996 PMCID: PMC6207560 DOI: 10.1038/cmi.2017.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/09/2023] Open
Abstract
Bronchus-associated lymphoid tissue (BALT) develops at unpredictable locations around lung bronchi following pulmonary inflammation. The formation and composition of BALT have primarily been investigated by immunohistology that, due to the size of the invested organ, is usually restricted to a limited number of histological sections. To assess the entire BALT of the lung, other approaches are urgently needed. Here, we introduce a novel light sheet microscopy-based approach for assessing lymphoid tissue in the lung. Using antibody staining of whole lung lobes and optical clearing by organic solvents, we present a method that allows in-depth visualization of the entire bronchial tree, the lymphatic vasculature and the immune cell composition of the induced BALT. Furthermore, three-dimensional analysis of the entire lung allows the qualitative and quantitative enumeration of the induced BALT. Using this approach, we show that a single intranasal application of the replication-deficient poxvirus MVA induces BALT that constitutes up to 8% of the entire lung volume in mice deficient in CCR7, in contrast to wild type mice (WT). Furthermore, BALT induced by heat-inactivated E. coli is dominated by a pronounced T cell infiltration in Cxcr5-deficient mice, in contrast to WT mice.
Collapse
Affiliation(s)
| | - Henrike Fleige
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz-Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz-Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
20
|
Abstract
Bronchus-associated lymphoid tissue (BALT) forms spontaneously in the lung after pulmonary infection and has been identified as a highly organized lymphoid structure supporting the efficient priming of T cells in the lung. To explore the mechanisms and instructive signals controlling BALT neogenesis we used both, a single dose of vaccinia virus MVA and repeated inhalations of heat-inactivated Pseudomonas aeruginosa (P. aeruginosa). Intranasal administration of both pathogens induces highly organized BALT but distinct pathways and molecules are used to promote the development of BALT. Here, we describe the induction and phenotype of the distinct types of BALT as well as the immunofluorescence microscopy-based analysis of the induced lymphoid tissue in the lung.
Collapse
Affiliation(s)
- Henrike Fleige
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
21
|
Tertiary Lymphoid Structures Among the World of Noncanonical Ectopic Lymphoid Organizations. Methods Mol Biol 2018; 1845:1-15. [PMID: 30141004 DOI: 10.1007/978-1-4939-8709-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tertiary lymphoid structures (TLOs), also known as ectopic lymphoid structures, are associated with chronic infections and inflammatory diseases. Despite their association with pathology, these structures are actually a normal, albeit transient, component of the immune system and facilitate local immune responses that are meant to mitigate inflammation and resolve infection. Many of the mechanisms controlling the formation and function of tertiary lymphoid structures have been identified, in part by experimentally triggering their formation using defined stimuli under controlled conditions. Here, we introduce the experimental and pathological conditions in which tertiary lymphoid tissues are formed, describe the mechanisms linked to their formation, and discuss their functions in the context of both infection and inflammation.
Collapse
|
22
|
Huppé CA, Blais Lecours P, Lechasseur A, Gendron DR, Lemay AM, Bissonnette EY, Blanchet MR, Duchaine C, Morissette MC, Rosen H, Marsolais D. A sphingosine-1-phosphate receptor 1 agonist inhibits tertiary lymphoid tissue reactivation and hypersensitivity in the lung. Mucosal Immunol 2018; 11:112-119. [PMID: 28422187 DOI: 10.1038/mi.2017.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/22/2017] [Indexed: 02/04/2023]
Abstract
Hypersensitivity pneumonitis is characterized by pulmonary accumulation of B-cell-rich tertiary lymphoid tissues (TLTs), which are alleged sites of amplification for antigen-specific responses. The sphingosine-1-phosphate receptor 1 (S1P1) regulates key mechanisms underlying lymphoid tissue biology and its chemical modulation causes lymphocyte retention in lymph nodes. Given the putative immunopathogenic impact of lymphocyte accumulation in TLTs, we investigated whether or not chemical modulation of S1P1 caused lymphocyte retention within TLTs in a model of hypersensitivity pneumonitis. Mice were exposed subchronically to Methanosphaera stadtmanae (MSS) in order to induce an hypersensitivity pneumonitis-like disease. MSS exposure induced B-cell-rich TLTs surrounded by S1P1-positive microvessels. Upon MSS rechallenge, the S1P1 agonist RP001 prevented the pulmonary increase of CXCL13, a chief regulator of B-cell recruitment in lymphoid tissues. This was associated with a complete inhibition of MSS rechallenge-induced TLT enlargement and with a 2.3-fold reduction of MSS-specific antibody titers in the lung. Interference with TLT reactivation was associated with a 77% reduction of neutrophil accumulation and with full inhibition of protein-rich leakage in the airways. Thus, an S1P1 agonist hinders TLT enlargement upon antigenic rechallenge and inhibits key pathognomonic features of experimental hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- C A Huppé
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - P Blais Lecours
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - A Lechasseur
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - D R Gendron
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - A M Lemay
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - E Y Bissonnette
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| | - M R Blanchet
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| | - C Duchaine
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Science and Engineering, Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, Quebec, Canada
| | - M C Morissette
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| | - H Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - D Marsolais
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
23
|
Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary Lymphoid Structures in Cancer: Drivers of Antitumor Immunity, Immunosuppression, or Bystander Sentinels in Disease? Front Immunol 2017; 8:1830. [PMID: 29312327 PMCID: PMC5742143 DOI: 10.3389/fimmu.2017.01830] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
Secondary lymphoid organs are integral to initiation and execution of adaptive immune responses. These organs provide a setting for interactions between antigen-specific lymphocytes and antigen-presenting cells recruited from local infected or inflamed tissues. Secondary lymphoid organs develop as a part of a genetically preprogrammed process during embryogenesis. However, organogenesis of secondary lymphoid tissues can also be recapitulated in adulthood during de novo lymphoid neogenesis of tertiary lymphoid structures (TLSs). These ectopic lymphoid-like structures form in the inflamed tissues afflicted by various pathological conditions, including cancer, autoimmunity, infection, or allograft rejection. Studies are beginning to shed light on the function of such structures in different disease settings, raising important questions regarding their contribution to progression or resolution of disease. Data show an association between the tumor-associated TLSs and a favorable prognosis in various types of human cancer, attracting the speculation that TLSs support effective local antitumor immune responses. However, definitive evidence for the role for TLSs in fostering immune responses in vivo are lacking, with current data remaining largely correlative by nature. In fact, some more recent studies have even demonstrated an immunosuppressive, tumor-promoting role for cancer-associated TLSs. In this review, we will discuss what is known about the development of cancer-associated TLSs and the current understanding of their potential role in the antitumor immune response.
Collapse
Affiliation(s)
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Awen Gallimore
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Gareth Wyn Jones
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Eddens T, Elsegeiny W, Garcia-Hernadez MDLL, Castillo P, Trevejo-Nunez G, Serody K, Campfield BT, Khader SA, Chen K, Rangel-Moreno J, Kolls JK. Pneumocystis-Driven Inducible Bronchus-Associated Lymphoid Tissue Formation Requires Th2 and Th17 Immunity. Cell Rep 2017; 18:3078-3090. [PMID: 28355561 DOI: 10.1016/j.celrep.2017.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
Inducible bronchus-associated lymphoid tissue (iBALT) is an ectopic lymphoid structure composed of highly organized T cell and B cell zones that forms in the lung in response to infectious or inflammatory stimuli. Here, we develop a model for fungal-mediated iBALT formation, using infection with Pneumocystis that induces development of pulmonary lymphoid follicles. Pneumocystis-dependent iBALT structure formation and organization required CXCL13 signaling. Cxcl13 expression was regulated by interleukin (IL)-17 family members, as Il17ra-/-, Il17rb-/-, and Il17rc-/- mice failed to develop iBALT. Interestingly, Il17rb-/- mice have intact Th17 responses, but failed to generate an anti-Pneumocystis Th2 response. Given a role for Th2 and Th17 immunity in iBALT formation, we demonstrated that primary pulmonary fibroblasts synergistically upregulated Cxcl13 transcription following dual stimulation with IL-13 and IL-17A in a STAT3/GATA3-dependent manner. Together, these findings uncover a role for Th2/Th17 cells in regulating Cxcl13 expression and provide an experimental model for fungal-driven iBALT formation.
Collapse
Affiliation(s)
- Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | | | - Patricia Castillo
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Giraldina Trevejo-Nunez
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Katelin Serody
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Brian T Campfield
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Allergy/Immunology, and Rheumatology, University of Rochester, Rochester, NY 14624, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
| |
Collapse
|
25
|
Maintenance of pathogenic Th2 cells in allergic disorders. Allergol Int 2017; 66:369-376. [PMID: 28391979 DOI: 10.1016/j.alit.2017.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
Immunological memory is an important protective mechanism that enables host organisms to respond rapidly and vigorously to pathogens that have been previously encountered. In addition to the protective function, memory CD4+ T helper (Th) cells play a central role in the pathogenesis of chronic inflammatory disorders, including asthma. Recently, several investigators have identified phenotypically and functionally distinct memory Th2 cell subsets that produce IL-5. These memory Th2 cell subsets play an important role in the pathology of allergic inflammation and function as memory-type "pathogenic Th2 (Tpath2) cells" both in mice and humans. We review the role of lung Tpath2 cells in the development of allergic inflammation and, in the context of recent findings, propose a mechanism by which Tpath2 cells not only survive but also continue to function at the sites where antigens were encountered. A greater understanding of the functional molecules or signaling pathways that regulate the inflammatory niche for Tpath2 cells may aid in the design of more effective treatments for chronic inflammatory disorders.
Collapse
|
26
|
García-Hernández MDLL, Uribe-Uribe NO, Espinosa-González R, Kast WM, Khader SA, Rangel-Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol 2017; 8:563. [PMID: 28567040 PMCID: PMC5434117 DOI: 10.3389/fimmu.2017.00563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Multiple solid cancers contain tertiary lymphoid organs (TLO). However, it is unclear whether they promote tumor rejection, facilitate tumor evasion, or simply whether they are a byproduct of chronic inflammation. We hypothesize that although chronic inflammation induces TLO formation, the tumor milieu can modulate TLO organization and functions in prostate cancer. Therefore, our study seeks to elucidate the cellular and molecular signatures in unique prostatectomy specimens from evanescent carcinoma patients to identify markers of cancer regression, which could be harnessed to modulate local immunosuppression or potentially enhance TLO function. METHODS We used multicolor immunofluorescence to stain prostate tissues, collected at different stages of cancer progression (prostatic intraepithelial neoplasia, intermediate and advanced cancer) or from patients with evanescent prostate carcinoma. Tissues were stained with antibodies specific for pro-inflammatory molecules (cyclooxygenase 2, CXCL10, IL17), tumor-infiltrating immune cells (mature DC-LAMP+ dendritic cells, CD3+ T cells, CD3+Foxp3+ regulatory T cells (Treg), T bet+ Th1 cells, granzyme B+ cytotoxic cells), and stromal cell populations (lymphatic vessels, tumor neovessels, high endothelial venules (HEV), stromal cells), which promote prostate tumor growth or are critical components of tumor-associated TLO. RESULTS Generally, inflammatory cells are located at the margins of tumors. Unexpectedly, we found TLO within prostate tumors from patients at different stages of cancer and in unique samples from patients with spontaneous cancer remission. In evanescent prostate carcinomas, accumulation of Treg was compromised, while Tbet+ T cells and CD8 T cells were abundant in tumor-associated TLO. In addition, we found a global decrease in tumor neovascularization and the coverage by cells positive for cyclooxygenase 2 (COX2). Finally, consistent with tumor regression, prostate stem cell antigen was considerably reduced in TLO and tumor areas from evanescent carcinoma patients. CONCLUSION Collectively, our results suggest that COX2 and Treg are attractive therapeutic targets that can be harnessed to enhance TLO-driven tumor immunity against prostate cancer. Specially, the presence of HEV and lymphatics indicate that TLO can be used as a platform for delivery of cell-based and/or COX2 blocking therapies to improve control of tumor growth in prostate cancer.
Collapse
Affiliation(s)
| | - Norma Ofelia Uribe-Uribe
- Department of Anatomy and Anatomical Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Ricardo Espinosa-González
- Department of Anatomy and Anatomical Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO, USA
| | | |
Collapse
|
27
|
Ting HA, Schaller MA, de Almeida Nagata DE, Rasky AJ, Maillard IP, Lukacs NW. Notch Ligand Delta-like 4 Promotes Regulatory T Cell Identity in Pulmonary Viral Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:1492-1502. [PMID: 28077598 DOI: 10.4049/jimmunol.1601654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
Regulatory T (Treg) cells establish tolerance, prevent inflammation at mucosal surfaces, and regulate immunopathology during infectious responses. Recent studies have shown that Delta-like ligand 4 (Dll4) was upregulated on APC after respiratory syncytial virus (RSV) infection, and its inhibition leads to exaggerated immunopathology. In the present study, we outline the role of Dll4 in Treg cell differentiation, stability, and function in RSV infection. We found that Dll4 was expressed on CD11b+ pulmonary dendritic cells in the lung and draining lymph nodes in wild-type BALB/c mice after RSV infection. Dll4 neutralization exacerbated RSV-induced disease pathology, mucus production, group 2 innate lymphoid cell infiltration, IL-5 and IL-13 production, as well as IL-17A+ CD4 T cells. Dll4 inhibition decreased the abundance of CD62LhiCD44loFoxp3+ central Treg cells in draining lymph nodes. The RSV-induced disease was accompanied by an increase in Th17-like effector phenotype in Foxp3+ Treg cells and a decrease in granzyme B expression after Dll4 blockade. Finally, Dll4-exposed induced Treg cells maintained the CD62LhiCD44lo central Treg cell phenotype, had increased Foxp3 expression, became more suppressive, and were resistant to Th17 skewing in vitro. These results suggest that Dll4 activation during differentiation sustained Treg cell phenotype and function to control RSV infection.
Collapse
Affiliation(s)
- Hung-An Ting
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Ivan P Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
28
|
Cruz-Migoni S, Caamaño J. Fat-Associated Lymphoid Clusters in Inflammation and Immunity. Front Immunol 2016; 7:612. [PMID: 28066422 PMCID: PMC5174133 DOI: 10.3389/fimmu.2016.00612] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/05/2016] [Indexed: 01/15/2023] Open
Abstract
Fat-associated lymphoid clusters (FALCs) are atypical lymphoid tissues that were originally identified in mouse and human mesenteries due to that they contain a high number of type 2 innate lymphoid cells/nuocytes/natural helper cells. FALCs are located on adipose tissues in mucosal surfaces such as the mediastinum, pericardium, and gonadal fat. Importantly, these clusters contain B1, B2 and T lymphocytes as well as myeloid and other innate immune cell populations. The developmental cues of FALC formation have started to emerge, showing that these clusters depend on a different set of molecules and cells than secondary lymphoid tissues for their formation. Here, we review the current knowledge on FALC formation, and we compare FALCs and omental milky spots and their responses to inflammation.
Collapse
Affiliation(s)
- Sara Cruz-Migoni
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Jorge Caamaño
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| |
Collapse
|
29
|
Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw 2016; 16:271-280. [PMID: 27799872 PMCID: PMC5086451 DOI: 10.4110/in.2016.16.5.271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
30
|
Sautès-Fridman C, Lawand M, Giraldo NA, Kaplon H, Germain C, Fridman WH, Dieu-Nosjean MC. Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Front Immunol 2016; 7:407. [PMID: 27752258 PMCID: PMC5046074 DOI: 10.3389/fimmu.2016.00407] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/22/2016] [Indexed: 01/03/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates that reflect lymphoid neogenesis occurring in tissues at sites of inflammation. They are detected in tumors where they orchestrate local and systemic anti-tumor responses. A correlation has been found between high densities of TLS and prolonged patient's survival in more than 10 different types of cancer. TLS can be regulated by the same set of chemokines and cytokines that orchestrate lymphoid organogenesis and by regulatory T cells. Thus, TLS offer a series of putative new targets that could be used to develop therapies aiming to increase the anti-tumor immune response.
Collapse
Affiliation(s)
- Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Myriam Lawand
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Nicolas A Giraldo
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Hélène Kaplon
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Claire Germain
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- INSERM, UMR_S 1138, Team "Cancer, Immune Control and Escape", Cordeliers Research Center, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, University Paris Descartes, Paris, France; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne University, UPMC University Paris 06, Paris, France
| |
Collapse
|
31
|
McNamee EN, Rivera-Nieves J. Ectopic Tertiary Lymphoid Tissue in Inflammatory Bowel Disease: Protective or Provocateur? Front Immunol 2016; 7:308. [PMID: 27579025 PMCID: PMC4985530 DOI: 10.3389/fimmu.2016.00308] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Organized lymphoid tissues like the thymus first appeared in jawed vertebrates around 500 million years ago and have evolved to equip the host with a network of specialized sites, strategically located to orchestrate strict immune-surveillance and efficient immune responses autonomously. The gut-associated lymphoid tissues maintain a mostly tolerant environment to dampen our responses to daily dietary and microbial products in the intestine. However, when this homeostasis is perturbed by chronic inflammation, the intestine is able to develop florid organized tertiary lymphoid tissues (TLT), which heralds the onset of regional immune dysregulation. While TLT are a pathologic hallmark of Crohn's disease (CD), their role in the overall process remains largely enigmatic. A critical question remains; are intestinal TLT generated by the immune infiltrated intestine to modulate immune responses and rebuild tolerance to the microbiota or are they playing a more sinister role by generating dysregulated responses that perpetuate disease? Herein, we discuss the main theories of intestinal TLT neogenesis and focus on the most recent findings that open new perspectives to their role in inflammatory bowel disease.
Collapse
Affiliation(s)
- Eóin N McNamee
- Mucosal Inflammation Program, Department of Anesthesiology, School of Medicine, University of Colorado - Anschutz Medical Campus , Aurora, CO , USA
| | - Jesús Rivera-Nieves
- Division of Gastroenterology, Inflammatory Bowel Disease Center, San Diego VAMC, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
32
|
Hwang JY, Randall TD, Silva-Sanchez A. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung. Front Immunol 2016; 7:258. [PMID: 27446088 PMCID: PMC4928648 DOI: 10.3389/fimmu.2016.00258] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023] Open
Abstract
Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.
Collapse
Affiliation(s)
- Ji Young Hwang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Aaron Silva-Sanchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
33
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
34
|
Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc Natl Acad Sci U S A 2016; 113:E2842-51. [PMID: 27140620 DOI: 10.1073/pnas.1512600113] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory CD4(+) T helper (Th) cells are central to long-term protection against pathogens, but they can also be pathogenic and drive chronic inflammatory disorders. How these pathogenic memory Th cells are maintained, particularly at sites of local inflammation, remains unclear. We found that ectopic lymphoid-like structures called inducible bronchus-associated lymphoid tissue (iBALT) are formed during chronic allergic inflammation in the lung, and that memory-type pathogenic Th2 (Tpath2) cells capable of driving allergic inflammation are maintained within the iBALT structures. The maintenance of memory Th2 cells within iBALT is supported by Thy1(+)IL-7-producing lymphatic endothelial cells (LECs). The Thy1(+)IL-7-producing LECs express IL-33 and T-cell-attracting chemokines CCL21 and CCL19. Moreover, ectopic lymphoid structures consisting of memory CD4(+) T cells and IL-7(+)IL-33(+) LECs were found in nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, Thy1(+)IL-7-producing LECs control chronic allergic airway inflammation by providing a survival niche for memory-type Tpath2 cells.
Collapse
|
35
|
Hsao HM, Li W, Gelman AE, Krupnick AS, Kreisel D. The Role of Lymphoid Neogenesis in Allografts. Am J Transplant 2016; 16:1079-85. [PMID: 26614734 PMCID: PMC4803576 DOI: 10.1111/ajt.13645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 01/25/2023]
Abstract
De novo induction of organized lymphoid aggregates at nonlymphoid sites has been observed in many chronic inflammatory conditions where foreign antigens such as infectious agents, autoantigens or alloantigens, persist. The prevailing opinion in the field of transplantation is that lymphoid neogenesis within allografts is detrimental to the establishment of immune tolerance. These structures, commonly referred to as tertiary lymphoid organs (TLOs), are thought to contribute to graft rejection by generating and propagating local alloimmune responses. However, recent studies have shown that TLOs rich in regulatory Foxp3(+) cells are present in long-term accepting allografts. The notion that TLOs can contribute to the local downregulation of immune responses has been corroborated in other chronic inflammation models. These findings suggest that contrary to previous suggestions that the induction of TLOs in allografts is necessarily harmful, the induction of "tolerogenic" TLOs may prove advantageous. In this review, we discuss our current understanding of how TLOs are induced and how they regulate immune responses with a particular focus on alloimmunity.
Collapse
Affiliation(s)
- Hsi-Min Hsao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Alexander S. Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO,Correspondence to: Daniel Kreisel, MD PhD, Professor of Surgery, Pathology & Immunology, Campus Box 8234, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO 63110, Tel: (314) 362-6021, Fax: (314) 367-8459,
| |
Collapse
|
36
|
CCL21 Facilitates Chemoresistance and Cancer Stem Cell-Like Properties of Colorectal Cancer Cells through AKT/GSK-3β/Snail Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5874127. [PMID: 27057280 PMCID: PMC4707330 DOI: 10.1155/2016/5874127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
Abstract
Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp) and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC) HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3β mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3β. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3β/Snail signals, which suggested a potential therapeutic approach to CRC patients.
Collapse
|
37
|
Gómez D, Diehl MC, Crosby EJ, Weinkopff T, Debes GF. Effector T Cell Egress via Afferent Lymph Modulates Local Tissue Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3531-6. [PMID: 26355150 DOI: 10.4049/jimmunol.1500626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/09/2015] [Indexed: 01/01/2023]
Abstract
Memory/effector T cells recirculate through extralymphoid tissues by entering from blood and egressing via afferent lymph. Although T cell entry into effector sites is key to inflammation, the relevance of T cell egress to this process is unknown. In this study, we found that Ag recognition at the effector site reduced the tissue egress of proinflammatory Th1 cells in a mouse model of delayed hypersensitivity. Transgenic expression of "tissue exit receptor" CCR7 enhanced lymphatic egress of Ag-sequestered Th1 cells from the inflamed site and alleviated inflammation. In contrast, lack of CCR7 on Th1 cells diminished their tissue egress while enhancing inflammation. Lymph-borne Th1 and Th17 cells draining the inflamed skin of sheep migrated toward the CCR7 ligand CCL21, suggesting the CCR7-CCL21 axis as a physiological target in regulating inflammation. In conclusion, exit receptors can be targeted to modulate T cell dwell time and inflammation at effector sites, revealing T cell tissue egress as a novel control point of inflammation.
Collapse
Affiliation(s)
- Daniela Gómez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Malissa C Diehl
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Erika J Crosby
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tiffany Weinkopff
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gudrun F Debes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
38
|
Donaldson DS, Bradford BM, Artis D, Mabbott NA. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol 2015; 8:582-95. [PMID: 25249168 PMCID: PMC4424384 DOI: 10.1038/mi.2014.90] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/29/2014] [Indexed: 02/04/2023]
Abstract
Isolated lymphoid follicles (ILFs) develop after birth in the small and large intestines (SI and LI) and represent a dynamic response of the gut immune system to the microbiota. Despite their similarities, ILF development in the SI and LI differs on a number of levels. We show that unlike ILF in the SI, the microbiota inhibits ILF development in the colon as conventionalization of germ-free mice reduced colonic ILFs. From this, we identified a novel mechanism regulating colonic ILF development through the action of interleukin (IL)-25 on IL-23 and its ability to modulate T regulatory cell (Treg) differentiation. Colonic ILF develop in the absence of a number of factors required for the development of their SI counterparts and can be specifically suppressed by factors other than IL-25. However, IL-23 is the only factor identified that specifically promotes colonic ILFs without affecting SI-ILF development. Both IL-23 and ILFs are associated with inflammatory bowel disease, suggesting that disruption to this pathway may have an important role in the breakdown of microbiota-immune homeostasis.
Collapse
Affiliation(s)
- D S Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - B M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - D Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - N A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK,
| |
Collapse
|
39
|
Foo SY, Zhang V, Lalwani A, Lynch JP, Zhuang A, Lam CE, Foster PS, King C, Steptoe RJ, Mazzone SB, Sly PD, Phipps S. Regulatory T cells prevent inducible BALT formation by dampening neutrophilic inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:4567-76. [PMID: 25810394 DOI: 10.4049/jimmunol.1400909] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022]
Abstract
Inducible BALT (iBALT) can amplify pulmonary or systemic inflammatory responses to the benefit or detriment of the host. We took advantage of the age-dependent formation of iBALT to interrogate the underlying mechanisms that give rise to this ectopic, tertiary lymphoid organ. In this study, we show that the reduced propensity for weanling as compared with neonatal mice to form iBALT in response to acute LPS exposure is associated with greater regulatory T cell expansion in the mediastinal lymph nodes. Ab- or transgene-mediated depletion of regulatory T cells in weanling mice upregulated the expression of IL-17A and CXCL9 in the lungs, induced a tissue neutrophilia, and increased the frequency of iBALT to that observed in neonatal mice. Remarkably, neutrophil depletion in neonatal mice decreased the expression of the B cell active cytokines, a proliferation-inducing ligand and IL-21, and attenuated LPS-induced iBALT formation. Taken together, our data implicate a role for neutrophils in lymphoid neogenesis. Neutrophilic inflammation is a common feature of many autoimmune diseases in which iBALT are present and pathogenic, and hence the targeting of neutrophils or their byproducts may serve to ameliorate detrimental lymphoid neogenesis in a variety of disease contexts.
Collapse
Affiliation(s)
- Shen Yun Foo
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vivian Zhang
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Amit Lalwani
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jason P Lynch
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aowen Zhuang
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chuan En Lam
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Cecile King
- Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Raymond J Steptoe
- Diamantina Institute, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, University of Queensland, Herston, Queensland 4006, Australia; and Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4006, Australia
| | - Simon Phipps
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4006, Australia
| |
Collapse
|
40
|
Germain C, Gnjatic S, Dieu-Nosjean MC. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity. Front Immunol 2015; 6:67. [PMID: 25755654 PMCID: PMC4337382 DOI: 10.3389/fimmu.2015.00067] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools.
Collapse
Affiliation(s)
- Claire Germain
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| | - Sacha Gnjatic
- Division of Hematology, Oncology and Immunology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Marie-Caroline Dieu-Nosjean
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| |
Collapse
|
41
|
Holbrook BC, Hayward SL, Blevins LK, Kock N, Aycock T, Parks GD, Alexander-Miller MA. Nonhuman primate infants have an impaired respiratory but not systemic IgG antibody response following influenza virus infection. Virology 2015; 476:124-133. [PMID: 25543963 PMCID: PMC4323840 DOI: 10.1016/j.virol.2014.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/06/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Respiratory infection of young infants results in increased morbidity and mortality compared to infection of adults. In spite of the significance of this health issue, our understanding of the immune response elicited in infants especially in the respiratory tract is highly limited. We developed a nonhuman primate model to probe the virus-specific antibody response in infants following infection with influenza virus. Infection of infants resulted in more pulmonary damage and higher viral loads compared to adults. While the systemic IgG antibody response was similar in infant and adult animals, the response in the upper respiratory tract of the infant was compromised. This lower response was associated with an increased prevalence of Treg cells and low levels of BALT. These data suggest a defect in the ability to produce effective virus-specific antibody responses at the local infection site is a contributor to increased pulmonary damage in the at-risk infant population.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/immunology
- Antibody Formation
- Chlorocebus aethiops
- Disease Models, Animal
- Female
- Humans
- Immunoglobulin G/immunology
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/immunology
- Infant, Newborn, Diseases/virology
- Influenza A virus/physiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Male
- Respiratory Tract Infections/immunology
- Respiratory Tract Infections/virology
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, United States
| | - Sarah L Hayward
- Department of Microbiology and Immunology, Wake Forest School of Medicine, United States
| | - Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, United States
| | - Nancy Kock
- Department of Pathology, Wake Forest School of Medicine, United States
| | - Tyler Aycock
- Animal Resources Program, Wake Forest School of Medicine, United States
| | - Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest School of Medicine, United States
| | | |
Collapse
|
42
|
McNamee EN, Masterson JC, Veny M, Collins CB, Jedlicka P, Byrne FR, Ng GY, Rivera-Nieves J. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn's-like murine ileitis. J Leukoc Biol 2015; 97:1011-22. [PMID: 25637591 DOI: 10.1189/jlb.3hi0614-303r] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022] Open
Abstract
The regulation of T cell and DC retention and lymphatic egress within and from the intestine is critical for intestinal immunosurveillance; however, the cellular processes that orchestrate this balance during IBD remain poorly defined. With the use of a mouse model of TNF-driven Crohn's-like ileitis (TNF(Δ) (ARE)), we examined the role of CCR7 in the control of intestinal T cell and DC retention/egress during experimental CD. We observed that the frequency of CCR7-expressing TH1/TH17 effector lymphocytes increased during active disease in TNF(Δ) (ARE) mice and that ΔARE/CCR7(-/-) mice developed exacerbated ileitis and multiorgan inflammation, with a marked polarization and ileal retention of TH1 effector CD4(+) T cells. Furthermore, adoptive transfer of ΔARE/CCR7(-/-) effector CD4(+) into lymphopenic hosts resulted in ileo-colitis, whereas those transferred with ΔARE/CCR7(+/+) CD4(+) T cells developed ileitis. ΔARE/CCR7(-/-) mice had an acellular draining MLN, decreased CD103(+) DC, and decreased expression of RALDH enzymes and of CD4(+)CD25(+)FoxP3(+) Tregs. Lastly, a mAb against CCR7 exacerbated ileitis in TNF(Δ) (ARE) mice, phenocopying the effects of congenital CCR7 deficiency. Our data underscore a critical role for the lymphoid chemokine receptor CCR7 in orchestrating immune cell traffic and TH1 versus TH17 bias during chronic murine ileitis.
Collapse
Affiliation(s)
- Eóin N McNamee
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| | - Joanne C Masterson
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| | - Marisol Veny
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| | - Colm B Collins
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| | - Paul Jedlicka
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| | - Fergus R Byrne
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| | - Gordon Y Ng
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| | - Jesús Rivera-Nieves
- *Mucosal Inflammation Program, School of Medicine, Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, and Department of Pathology, University of Colorado Denver, Colorado, USA; Department of Inflammation Research, Amgen, Thousand Oaks, California, USA; and Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego and San Diego VA Medical Center, San Diego, California, USA
| |
Collapse
|
43
|
Nogueira CV, Zhang X, Giovannone N, Sennott EL, Starnbach MN. Protective immunity against Chlamydia trachomatis can engage both CD4+ and CD8+ T cells and bridge the respiratory and genital mucosae. THE JOURNAL OF IMMUNOLOGY 2015; 194:2319-29. [PMID: 25637024 DOI: 10.4049/jimmunol.1402675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the cellular populations and mechanisms responsible for overcoming immune compartmentalization is valuable for designing vaccination strategies targeting distal mucosae. In this study, we show that the human pathogen Chlamydia trachomatis infects the murine respiratory and genital mucosae and that T cells, but not Abs, elicited through intranasal immunization can protect against a subsequent transcervical challenge. Unlike the genital infection where CD8(+) T cells are primed, yet fail to confer protection, we found that intranasal priming engages both CD4(+) and CD8(+) T cells, allowing for protection against genital infection with C. trachomatis. The protection is largely dependent on IFN-γ secretion by T cells. Moreover, different chemokine receptors are critical for C. trachomatis-specific CD4(+) T cells to home to the lung, rather than the CXCR3- and CCR5-dependent migration observed during genital infection. Overall, this study demonstrates that the cross-mucosa protective immunity against genital C. trachomatis infection following intranasal immunization is not dependent on Ab response but is mediated by not only CD4(+) T cells but also by CD8(+) T cells. This study provides insights for the development of vaccines against mucosal pathogens that threaten reproductive health worldwide.
Collapse
Affiliation(s)
- Catarina V Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Nicholas Giovannone
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Erica L Sennott
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
44
|
Abstract
The respiratory tract is served by a variety of lymphoid tissues, including the tonsils, adenoids, nasal-associated lymphoid tissue (NALT), and bronchus-associated lymphoid tissue (BALT), as well as the lymph nodes that drain the upper and lower respiratory tract. Each of these tissues uses unique mechanisms to acquire antigens and respond to pathogens in the local environment and supports immune responses that are tailored to protect those locations. This chapter will review the important features of NALT and BALT and define how these tissues contribute to immunity in the upper and lower respiratory tract, respectively.
Collapse
|
45
|
Yang E, Zou T, Leichner TM, Zhang SL, Kambayashi T. Both retention and recirculation contribute to long-lived regulatory T-cell accumulation in the thymus. Eur J Immunol 2014; 44:2712-20. [PMID: 24894919 DOI: 10.1002/eji.201444529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 11/06/2022]
Abstract
Natural Treg cells acquire their lineage-determining transcription factor Foxp3 during development in the thymus and are important in maintaining immunologic tolerance. Here, we analyzed the composition of the thymic Treg-cell pool using RAG2-GFP/FoxP3-RFP dual reporter mice and found that a population of long-lived GFP(-) Treg cells exists in the thymus. These long-lived Treg cells substantially increased with age, to a point where they represent >90% of the total thymic Treg-cell pool at 6 months of age. In contrast, long-lived conventional T cells remained at ∼ 15% of the total thymic pool at 6 months of age. Consistent with these studies, we noticed that host-derived Treg cells represented a large fraction (∼ 10%) of the total thymic Treg-cell pool in bone marrow chimeras, suggesting that long-lived Treg cells also reside in the thymus of these mice. The pool of long-lived Treg cells in the thymus was sustained by retention of Treg cells in the thymus and by recirculation of peripheral Treg cells back into the thymus. These long-lived thymic Treg cells suppressed T-cell proliferation to an equivalent extent to splenic Treg cells. Together, these data demonstrate that long-lived Treg cells accumulate in the thymus by both retention and recirculation.
Collapse
Affiliation(s)
- EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
46
|
Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, Solt S, Dorman A, Wamwea A, Yager A, Laheru D, Wolfgang CL, Wang J, Hruban RH, Anders RA, Jaffee EM, Zheng L. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2014; 2:616-31. [PMID: 24942756 PMCID: PMC4082460 DOI: 10.1158/2326-6066.cir-14-0027] [Citation(s) in RCA: 405] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered a "nonimmunogenic" neoplasm. Single-agent immunotherapies have failed to demonstrate significant clinical activity in PDAC and other "nonimmunogenic" tumors, in part due to a complex tumor microenvironment (TME) that provides a formidable barrier to immune infiltration and function. We designed a neoadjuvant and adjuvant clinical trial comparing an irradiated, granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic PDAC vaccine (GVAX) given as a single agent or in combination with low-dose cyclophosphamide to deplete regulatory T cells (Treg) as a means to study how the TME is altered by immunotherapy. Examination of resected PDACs revealed the formation of vaccine-induced intratumoral tertiary lymphoid aggregates in 33 of 39 patients 2 weeks after vaccine treatment. Immunohistochemical analysis showed these aggregates to be regulatory structures of adaptive immunity. Microarray analysis of microdissected aggregates identified gene-expression signatures in five signaling pathways involved in regulating immune-cell activation and trafficking that were associated with improved postvaccination responses. A suppressed Treg pathway and an enhanced Th17 pathway within these aggregates were associated with improved survival, enhanced postvaccination mesothelin-specific T-cell responses, and increased intratumoral Teff:Treg ratios. This study provides the first example of immune-based therapy converting a "nonimmunogenic" neoplasm into an "immunogenic" neoplasm by inducing infiltration of T cells and development of tertiary lymphoid structures in the TME. Post-GVAX T-cell infiltration and aggregate formation resulted in the upregulation of immunosuppressive regulatory mechanisms, including the PD-1-PD-L1 pathway, suggesting that patients with vaccine-primed PDAC may be better candidates than vaccine-naïve patients for immune checkpoint and other immunomodulatory therapies.
Collapse
Affiliation(s)
- Eric R Lutz
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Annie A Wu
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center
| | - Elaine Bigelow
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center
| | | | - Guanglan Mo
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Kevin Soares
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Sara Solt
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Alvin Dorman
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Anthony Wamwea
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Allison Yager
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center
| | - Daniel Laheru
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Christopher L Wolfgang
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ralph H Hruban
- Authors' Affiliations: Departments of Oncology, Pathology, and The Sidney Kimmel Cancer Center; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Robert A Anders
- Authors' Affiliations: Departments of Oncology, Pathology, and The Sidney Kimmel Cancer Center; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Elizabeth M Jaffee
- Authors' Affiliations: Departments of Oncology, Pathology, and The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Lei Zheng
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
47
|
Fleige H, Ravens S, Moschovakis GL, Bölter J, Willenzon S, Sutter G, Häussler S, Kalinke U, Prinz I, Förster R. IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. ACTA ACUST UNITED AC 2014; 211:643-51. [PMID: 24663215 PMCID: PMC3978277 DOI: 10.1084/jem.20131737] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The requirements for BALT formation are pathogen-dependent and, in the absence of FDC maturation, IL-17 can drive BALT formation via CXCL12 B cell recruitment. Ectopic lymphoid tissue, such as bronchus-associated lymphoid tissue (BALT) in the lung, develops spontaneously at sites of chronic inflammation or during infection. The molecular mechanisms underlying the neogenesis of such tertiary lymphoid tissue are still poorly understood. We show that the type of inflammation-inducing pathogen determines which key factors are required for the formation and maturation of BALT. Thus, a single intranasal administration of the poxvirus modified vaccinia virus Ankara (MVA) is sufficient to induce highly organized BALT with densely packed B cell follicles containing a network of CXCL13-expressing follicular DCs (FDCs), as well as CXCL12-producing follicular stromal cells. In contrast, mice treated with P. aeruginosa (P.a.) develop BALT but B cell follicles lack FDCs while still harboring CXCL12-positive follicular stromal cells. Furthermore, in IL-17–deficient mice, P.a.-induced BALT largely lacks B cells as well as CXCL12-expressing stromal cells, and only loose infiltrates of T cells are present. We show that Toll-like receptor pathways are required for BALT induction by P.a., but not MVA, and provide evidence that IL-17 drives the differentiation of lung stroma toward podoplanin-positive CXCL12-expressing cells that allow follicle formation even in the absence of FDCs. Taken together, our results identify distinct pathogen-dependent induction and maturation pathways for BALT formation.
Collapse
Affiliation(s)
- Henrike Fleige
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Reinhardt A, Ravens S, Fleige H, Haas JD, Oberdörfer L, Łyszkiewicz M, Förster R, Prinz I. CCR7-mediated migration in the thymus controls γδ T-cell development. Eur J Immunol 2014; 44:1320-9. [PMID: 24500801 DOI: 10.1002/eji.201344330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/19/2013] [Accepted: 01/28/2014] [Indexed: 01/15/2023]
Abstract
αβ T-cell development and selection proceed while thymocytes successively migrate through distinct regions of the thymus. For γδ T cells, the interplay of intrathymic migration and cell differentiation is less well understood. Here, we crossed C-C chemokine receptor (CCR)7-deficient (Ccr7(-/-) ) and CCR9-deficient mice (Ccr9(-/-) ) to mice with a TcrdH2BeGFP reporter background to investigate the impact of thymic localization on γδ T-cell development. γδ T-cell frequencies and numbers were decreased in CCR7-deficient and increased in CCR9-deficient mice. Transfer of CCR7- or CCR9-deficient BM into irradiated C57BL/6 WT recipients reproduced these phenotypes, pointing toward cell-intrinsic migration defects. Monitoring recent thymic emigrants by intrathymic labeling allowed us to identify decreased thymic γδ T-cell output in CCR7-deficient mice. In vitro, CCR7-deficient precursors showed normal γδ T-cell development. Immunohistology revealed that CCR7 and CCR9 expression was important for γδ T-cell localization within thymic medulla or cortex, respectively. However, γδ T-cell motility was unaltered in CCR7- or CCR9-deficient thymi. Together, our results suggest that proper intrathymic localization is important for normal γδ T-cell development.
Collapse
Affiliation(s)
- Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Luo CT, Li MO. Transcriptional control of regulatory T cell development and function. Trends Immunol 2013; 34:531-9. [PMID: 24016547 PMCID: PMC7106436 DOI: 10.1016/j.it.2013.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022]
Abstract
An intermediate amount of T cell stimulation induces Foxp3 transcription. Treg cell lineage factor Foxp3 cooperates with its partners to promote Treg cell function. Cell signaling-regulated Foxo1 is indispensable for Treg cell function.
Regulatory T (Treg) cells differentiate from thymocytes or peripheral T cells in response to host and environmental cues, culminating in induction of the transcription factor forkhead box P3 (Foxp3) and the Treg cell-specific epigenome. An intermediate amount of antigen stimulation is required to induce Foxp3 expression by engaging T cell receptor (TCR)-activated [e.g., nuclear factor (NF)-κB] and TCR-inhibited (e.g., Foxo) transcription factors. Furthermore, Treg cell differentiation is associated with attenuated Akt signaling, resulting in enhanced nuclear retention of Foxo1, which is indispensable for Treg cell function. These findings reveal that Treg cell lineage commitment is not only controlled by genetic and epigenetic imprinting, but also modulated by transcriptional programs responding to extracellular signals.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Humans
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Chong T. Luo
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan–Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
50
|
Shilling RA, Williams JW, Perera J, Berry E, Wu Q, Cummings OW, Sperling AI, Huang H. Autoreactive T and B cells induce the development of bronchus-associated lymphoid tissue in the lung. Am J Respir Cell Mol Biol 2013; 48:406-14. [PMID: 23371062 DOI: 10.1165/rcmb.2012-0065oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is associated with significant morbidity and mortality. Studies in humans have found that the incidence of bronchus-associated lymphoid tissue (BALT) correlates with the severity of lung injury. However, the mechanisms underlying the development of BALT during systemic autoimmunity remain unknown. We have determined whether systemic autoimmunity in a murine model of autoimmune arthritis can promote the development of BALT by generating a novel murine model derived from K/BxN mice. Transgenic mice with the KRN T-cell receptor specific for the autoantigen, glucose-6-phosphate isomerase (GPI), were crossed with GPI-specific immunoglobulin heavy and light chain knock-in mice, producing mice with a majority of T and B cells specific for the same autoantigen. We found that 67% of these mice demonstrated lymphocytic infiltration in the lungs, localized to either the perivascular or peribronchial regions. Fifty percent of the mice with lymphocytic infiltration manifested lymphoid-like lesions resembling BALT, with distinct T and B cell follicles. The lungs from mice with lymphoid infiltrates had increased numbers of cytokine-producing T cells, including IL-17A(+) T cells and increased major histocompatibility complex Class II expression on B cells. Interestingly, challenge with bleomycin failed to elicit a significant fibrotic response, compared with wild-type control mice. Our data suggest that systemic autoreactivity promotes ectopic lymphoid tissue development in the lung through the cooperation of autoreactive T and B cells. However, these BALT-like lesions may not be sufficient to promote fibrotic lung disease at steady state or after inflammatory challenge.
Collapse
Affiliation(s)
- Rebecca A Shilling
- Center for Immunobiology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|