1
|
Iliopoulou L, Tzaferis C, Prados A, Roumelioti F, Koliaraki V, Kollias G. Different fibroblast subtypes propel spatially defined ileal inflammation through TNFR1 signalling in murine ileitis. Nat Commun 2025; 16:3023. [PMID: 40155385 PMCID: PMC11953319 DOI: 10.1038/s41467-025-57570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/25/2025] [Indexed: 04/01/2025] Open
Abstract
Crohn's disease (CD) is a persistent inflammatory disorder primarily affecting the terminal ileum. The TnfΔΑRE mice, which spontaneously develop CD-like ileitis due to TNF overexpression, represent a faithful model of the human disease. Here, via single-cell RNA sequencing in TnfΔΑRE mice, we show that murine TNF-dependent ileitis is characterized by cell expansion in tertiary lymphoid organs (TLO), T cell effector reprogramming, and accumulation of activated macrophages in the submucosal granulomas. Within the stromal cell compartment, fibroblast subsets (telocytes, trophocytes, PdgfraloCd81- cells) are less abundant while lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC) show relative expansion compared to the wild type. All three fibroblast subsets show strong pro-inflammatory signature. TNFR1 loss or gain of function experiments in specific fibroblast subsets suggest that the TnfΔΑRE-induced ileitis is initiated in the lamina propria via TNF pathway activation in villus-associated fibroblasts (telocytes and PdgfraloCd81- cells), which are responsible for the organization of TLOs. Trophocytes drive disease progression in the submucosal layer, accompanied by the excessive formation of granulomas. These findings provide evidence for spatial regulation of inflammation by fibroblast subsets and underscore the pivotal role of fibroblasts in the inception and advancement of ileitis.
Collapse
Affiliation(s)
- Lida Iliopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fani Roumelioti
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Tran LS, Chia J, Le Guezennec X, Tham KM, Nguyen AT, Sandrin V, Chen WC, Leng TT, Sechachalam S, Leong KP, Bard FA. ER O-glycosylation in synovial fibroblasts drives cartilage degradation. Nat Commun 2025; 16:2535. [PMID: 40087276 PMCID: PMC11909126 DOI: 10.1038/s41467-025-57401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
How arthritic synovial fibroblasts (SFs) activate cartilage ECM degradation remains unclear. GALNT enzymes initiate O-glycosylation in the Golgi; when relocated to the ER, their activity stimulates ECM degradation. Here, we show that in human rheumatoid and osteoarthritic synovial SFs, GALNTs are relocated to the ER. In an RA mouse model, GALNTs relocation occurs shortly before arthritis symptoms and abates as the animal recovers. An ER GALNTs inhibitor prevents cartilage ECM degradation in vitro and expression of this chimeric protein in SFs results in the protection of cartilage. One of the ER targets of GALNTs is the resident protein Calnexin, which is exported to the cell surface of arthritic SFs. Calnexin participates in matrix degradation by reducing ECM disulfide bonds. Anti-Calnexin antibodies block ECM degradation and protect animals from RA. In sum, ER O-glycosylation is a key switch in arthritic SFs and glycosylated surface Calnexin could be a therapeutic target.
Collapse
Affiliation(s)
- Le Son Tran
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Xavier Le Guezennec
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Keit Min Tham
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Anh Tuan Nguyen
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Virginie Sandrin
- Roche Pharma Research & Early Development, Innovation Center Basel, Basel, Switzerland
| | | | - Tan Tong Leng
- Department of Orthopaedic Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sreedharan Sechachalam
- Department of Hand and Reconstructive Microsurgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy & Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Frederic A Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore.
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore.
- Cancer Research Center of Marseille (CRCM), Marseille, France.
| |
Collapse
|
3
|
Dilek G, Kalcik Unan M, Nas K. Immune response and cytokine pathways in psoriatic arthritis: A systematic review. Arch Rheumatol 2025; 40:144-156. [PMID: 40264485 PMCID: PMC12010266 DOI: 10.46497/archrheumatol.2025.10934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/03/2025] [Indexed: 04/24/2025] Open
Abstract
Objectives This review aims to focus on the role of innate and adaptive immune system cells and their molecular signaling pathways in the pathophysiology of clinical phenotypes of psoriatic arthritis (PsA). Materials and methods A systematic literature search was conducted in the PubMed database using the key words "psoriasis," "psoriatic arthritis," "pathogenesis," "adaptive immune system," "pathophysiology," "bone and cartilage damage," and "cytokine pathways." Results Clinical studies and in vitro studies on adaptive and innate immune system cells and mediators that cause activation of these cells in the pathogenesis of PsA were examined. The role of cytokine pathways affecting the pathogenesis of PsA on the most common clinical phenotypes of the disease were explained in detail. Conclusion In this article, we reviewed the cytokine pathways that may contribute to the immunological pathogenesis of psoriatic arthritis. We believe that this review will contribute to a better understanding of the pathogenesis of the clinical phenotypes of the disease and to disease management.
Collapse
Affiliation(s)
- Gamze Dilek
- Abant İzzet Baysal University Training and Research Hospital, Rheumatology Clinic, Bolu, Türkiye
| | - Mehtap Kalcik Unan
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology and Immunology, Sakarya University School of Medicine, Sakarya, Türkiye
| | - Kemal Nas
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology and Immunology, Sakarya University School of Medicine, Sakarya, Türkiye
| |
Collapse
|
4
|
Muhsen A, Hertz A, Amital H. The association between physical trauma and autoimmune articular and dermatological disorders. Autoimmun Rev 2025; 24:103711. [PMID: 39586388 DOI: 10.1016/j.autrev.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This review investigates the association between physical trauma and the onset and progression of various inflammatory diseases, including psoriatic arthritis (PsA), rheumatoid arthritis (RA), spondyloarthropathies (SpA), and Familial Mediterranean Fever (FMF). In addition, we will refer to the linkage between physical injury and skin manifestations in patients with psoriasis, sarcoidosis and systemic sclerosis. The aim is to summarize the current evidence and explore the potential mechanisms through which trauma may affect these conditions. METHODS A detailed literature review was conducted, focusing on studies linking physical trauma with the development of psoriasis, SpA, PsA, RA, FMF, systemic sclerosis and sarcoidosis. The review includes observational data, case reports, and experimental studies that highlight the impact of trauma on disease initiation and exacerbation. RESULTS Physical trauma is implicated in the pathogenesis of several dermatological and rheumatological conditions. Biomechanical stress and microdamage at entheses contribute to the development of SpA. In PsA, trauma is associated with the onset of enthesitis and arthritis, supported by increased prevalence in affected patients and is often regarded as "deep Koebner phenomenon". The Koebner phenomenon links skin trauma with psoriasis, where new lesions appear at injury sites. RA shows a notable association with physical trauma, with retrospective studies suggesting that trauma can trigger disease onset, although the exact mechanisms remain unclear. The concept of the synovio-entheseal complex is discussed in order to elucidate how mechanical stress and immune responses interplay in SpA. Physical exertion or injury might precipitate FMF attacks, though existing data remain limited. Sarcoidosis has been linked to tattoo-related trauma, suggesting a potential role of localized injury in sarcoid-like reactions. Several case reports describe the occurrence of dermatologic manifestations of scleroderma, including morphea in patients with localized disease and perifollicular hypopigmentation in patients with systemic sclerosis. CONCLUSION This review consolidates current evidence on the relationship between physical trauma and various inflammatory conditions, emphasizing the need for further research to fully understand these connections. These findings highlight the importance of considering trauma in the clinical management of these diseases and suggest avenues for future investigation.
Collapse
Affiliation(s)
- Aia Muhsen
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Hertz
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Howard Amital
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Giacomini F, Rho HS, Eischen‐Loges M, Tahmasebi Birgani Z, van Blitterswijk C, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller R. Enthesitis on Chip - A Model for Studying Acute and Chronic Inflammation of the Enthesis and its Pharmacological Treatment. Adv Healthc Mater 2024; 13:e2401815. [PMID: 39188199 PMCID: PMC11650547 DOI: 10.1002/adhm.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Enthesitis, the inflammation of the enthesis, which is the point of attachment of tendons and ligaments to bones, is a common musculoskeletal disease. The inflammation often originates from the fibrocartilage region of the enthesis as a consequence of mechanical overuse or -load and consequently tissue damage. During enthesitis, waves of inflammatory cytokines propagate in(to) the fibrocartilage, resulting in detrimental, heterotopic bone formation. Understanding of human enthesitis and its treatment options is limited, also because of lacking in vitro model systems that can closely mimic the pathophysiology of the enthesis and can be used to develop therapies. In this study, an enthes(it)is-on-chip model is developed. On opposite sides of a porous culture membrane separating the chip's two microfluidic compartments, human mesenchymal stromal cells are selectively differentiated into tenocytes and fibrochondrocytes. By introducing an inflammatory cytokine cocktail into the fibrochondrocyte compartment, key aspects of acute and chronic enthesitis, measured as increased expression of inflammatory markers, can be recapitulated. Upon inducing chronic inflammatory conditions, hydroxyapatite deposition, enhanced osteogenic marker expression and reduced secretion of tissue-related extracellular matrix components are observed. Adding the anti-inflammatory drug celecoxib to the fibrochondrocyte compartment mitigates the inflammatory state, demonstrating the potential of the enthesitis-on-chip model for drug testing.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Hoon Suk Rho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Maria Eischen‐Loges
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Martijn van Griensven
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
6
|
Wang QS, Fan KJ, Teng H, Liu J, Yang YL, Chen D, Wang TY. MiR-204/-211 double knockout exacerbates rheumatoid arthritis progression by promoting splenic inflammation. Int Immunopharmacol 2024; 140:112850. [PMID: 39116488 DOI: 10.1016/j.intimp.2024.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Collagen-induced arthritis (CIA) model was induced in C57BL/6 wild-type (wt) and C57BL/6 miR-204/-211 double-knockout (dKO) mice to investigate the role of miR-204/-211 in suppressing splenic inflammation in rheumatoid arthritis (RA). METHODS Differences of miR-204/-211 and structure-specific recognition protein 1 (SSRP1) in the spleen of DBA/1J wt and CIA mice were detected via PCR and immunohistochemistry. CIA was induced in both C57BL/6 wt and C57BL/6 miR-204/-211 dKO mice, and the onset of CIA and disease severity were statistically analyzed. Immunohistochemistry staining of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and SSRP1 in spleen or knee joints was performed and analyzed. In CIA miR-204/-211 dKO mice, AAV-shSSRP1 was intra-articularly injected, with both the AAV-shRNA Ctrl and AAV-shRNA Ctrl CIA groups receiving the same dose of AAV-shRNA. Spleen sections were stained with hematoxylin and eosin (H&E). RESULTS Compared to wt mouse spleens, aberrant expression of miR-204/-211 and SSRP1 was observed in the spleens of CIA mice. Immunized dKO mice exhibited a higher incidence of CIA onset and a more exacerbated RA disease phenotype, characterized by increased spleen inflammation score and elevated levels of IL-1β, TNF-α, and SSRP1 expression. AAV-shSSRP1 injection in CIA dKO mice significantly reduced spleen inflammation scores, IL-1β and TNF-α expression levels, and down-regulated Ki-67 expression compared to CIA dKO mice. CONCLUSION Knockout of miR-204/-211 exacerbated the onset of CIA in C57BL/6 mice, while miR-204/-211 played a protective role against the progression of splenic inflammatory and proliferative progression in RA by targeting SSRP1.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Kai-Jian Fan
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Pharmacy, Mental Health Center, Chongming District, Shanghai 202150, China
| | - Hui Teng
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Liu
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi-Lei Yang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ting-Yu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
7
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Roumelioti F, Tzaferis C, Konstantopoulos D, Papadopoulou D, Prados A, Sakkou M, Liakos A, Chouvardas P, Meletakos T, Pandis Y, Karagianni N, Denis MC, Fousteri M, Armaka M, Kollias G. Mir221/222 drive synovial hyperplasia and arthritis by targeting cell cycle inhibitors and chromatin remodeling components. eLife 2024; 13:e84698. [PMID: 39235454 PMCID: PMC11377061 DOI: 10.7554/elife.84698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that Mir221/222 expression is upregulated in RA SFs. Here, we demonstrate that TNF and IL-1β but not IFN-γ activated Mir221/222 gene expression in murine SFs. SF-specific overexpression of Mir221/222 in huTNFtg mice led to further expansion of SFs and disease exacerbation, while its total ablation led to reduced SF expansion and attenuated disease. Mir221/222 overexpression altered the SF transcriptional profile igniting pathways involved in cell cycle and ECM (extracellular matrix) regulation. Validation of targets of Mir221/222 revealed cell cycle inhibitors Cdkn1b and Cdkn1c, as well as the epigenetic regulator Smarca1. Single-cell ATAC-seq data analysis revealed increased Mir221/222 gene activity in pathogenic SF subclusters and transcriptional regulation by Rela, Relb, Junb, Bach1, and Nfe2l2. Our results establish an SF-specific pathogenic role of Mir221/222 in arthritis and suggest that its therapeutic targeting in specific subpopulations could lead to novel fibroblast-targeted therapies.
Collapse
Grants
- 115142-2 BTCure Innovative Medicines Initiative
- MIS 5002135 ΙnfrafrontierGR Operational Programme "Competitiveness, Entrepreneurship and Innovation", NSRF 2014-2020, ERDF, EU/Greece
- MIS 6004752 Regional Operational Programme "ATTICA" (NSRF 2021-2027), ERDF, Greece/EU
- HFRI-FM17C3-3780, SingleOut Hellenic Foundation for Research and Innovation
- 10.3030/101055093 HORIZON EUROPE European Research Council
- MIS 5002802 pMedGR Operational Programme "Competitiveness, Entrepreneurship and Innovation", NSRF 2014-2020, ERDF, EU/Greece
Collapse
Affiliation(s)
- Fani Roumelioti
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Konstantopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Anastasios Liakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Panagiotis Chouvardas
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | - Theodore Meletakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Yiannis Pandis
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
| | | | | | - Maria Fousteri
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Maria Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
9
|
Rinotas V, Iliaki K, Pavlidi L, Meletakos T, Mosialos G, Armaka M. Cyld restrains the hyperactivation of synovial fibroblasts in inflammatory arthritis by regulating the TAK1/IKK2 signaling axis. Cell Death Dis 2024; 15:584. [PMID: 39122678 PMCID: PMC11316070 DOI: 10.1038/s41419-024-06966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
TNF is a potent cytokine known for its involvement in physiology and pathology. In Rheumatoid Arthritis (RA), persistent TNF signals cause aberrant activation of synovial fibroblasts (SFs), the resident cells crucially involved in the inflammatory and destructive responses of the affected synovial membrane. However, the molecular switches that control the pathogenic activation of SFs remain poorly defined. Cyld is a major component of deubiquitination (DUB) machinery regulating the signaling responses towards survival/inflammation and programmed necrosis that induced by cytokines, growth factors and microbial products. Herein, we follow functional genetic approaches to understand how Cyld affects arthritogenic TNF signaling in SFs. We demonstrate that in spontaneous and induced RA models, SF-Cyld DUB deficiency deteriorates arthritic phenotypes due to increased levels of chemokines, adhesion receptors and bone-degrading enzymes generated by mutant SFs. Mechanistically, Cyld serves to restrict the TNF-induced hyperactivation of SFs by limiting Tak1-mediated signaling, and, therefore, leading to supervised NF-κB and JNK activity. However, Cyld is not critically involved in the regulation of TNF-induced death of SFs. Our results identify SF-Cyld as a regulator of TNF-mediated arthritis and inform the signaling landscape underpinning the SF responses.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - Kalliopi Iliaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - Lydia Pavlidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - Theodore Meletakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece.
| |
Collapse
|
10
|
Menche C, Schuhwerk H, Armstark I, Gupta P, Fuchs K, van Roey R, Mosa MH, Hartebrodt A, Hajjaj Y, Clavel Ezquerra A, Selvaraju MK, Geppert CI, Bärthel S, Saur D, Greten FR, Brabletz S, Blumenthal DB, Weigert A, Brabletz T, Farin HF, Stemmler MP. ZEB1-mediated fibroblast polarization controls inflammation and sensitivity to immunotherapy in colorectal cancer. EMBO Rep 2024; 25:3406-3431. [PMID: 38937629 PMCID: PMC11315988 DOI: 10.1038/s44319-024-00186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.
Collapse
Affiliation(s)
- Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Clavel Ezquerra
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Manoj K Selvaraju
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- German Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Huynh NCN, Ling R, Komagamine M, Shi T, Tsukasaki M, Matsuda K, Okamoto K, Asano T, Muro R, Pluemsakunthai W, Kollias G, Kaneko Y, Takeuchi T, Tanaka S, Komatsu N, Takayanagi H. Oncostatin M-driven macrophage-fibroblast circuits as a drug target in autoimmune arthritis. Inflamm Regen 2024; 44:36. [PMID: 39080781 PMCID: PMC11289929 DOI: 10.1186/s41232-024-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent single-cell RNA sequencing (scRNA-seq) analysis revealed the functional heterogeneity and pathogenic cell subsets in immune cells, synovial fibroblasts and bone cells in rheumatoid arthritis (RA). JAK inhibitors which ameliorate joint inflammation and bone destruction in RA, suppress the activation of various types of cells in vitro. However, the key cellular and molecular mechanisms underlying the potent clinical effects of JAK inhibitors on RA remain to be determined. Our aim is to identify a therapeutic target for JAK inhibitors in vivo. METHODS We performed scRNA-seq analysis of the synovium of collagen-induced arthritis (CIA) mice treated with or without a JAK inhibitor, followed by a computational analysis to identify the drug target cells and signaling pathways. We utilized integrated human RA scRNA-seq datasets and genetically modified mice administered with the JAK inhibitor for the confirmation of our findings. RESULTS scRNA-seq analysis revealed that oncostatin M (OSM) driven macrophage-fibroblast interaction is highly activated under arthritic conditions. OSM derived from macrophages, acts on OSM receptor (OSMR)-expressing synovial fibroblasts, activating both inflammatory and tissue-destructive subsets. Inflammatory synovial fibroblasts stimulate macrophages, mainly through IL-6, to exacerbate inflammation. Tissue-destructive synovial fibroblasts promote osteoclast differentiation by producing RANKL to accelerate bone destruction. scRNA-seq analysis also revealed that OSM-signaling in synovial fibroblasts is the main signaling pathway targeted by JAK inhibitors in vivo. Mice specifically lacking OSMR in synovial fibroblasts (Osmr∆Fibro) displayed ameliorated inflammation and joint destruction in arthritis. The JAK inhibitor was effective on the arthritis of the control mice while it had no effect on the arthritis of Osmr∆Fibro mice. CONCLUSIONS OSM functions as one of the key cytokines mediating pathogenic macrophage-fibroblast interaction. OSM-signaling in synovial fibroblasts is one of the main signaling pathways targeted by JAK inhibitors in vivo. The critical role of fibroblast-OSM signaling in autoimmune arthritis was shown by a combination of mice specifically deficient for OSMR in synovial fibroblasts and administration of the JAK inhibitor. Thus, the OSM-driven synovial macrophage-fibroblast circuit is proven to be a key driver of autoimmune arthritis, serving as a crucial drug target in vivo.
Collapse
Affiliation(s)
- Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Unit of Prosthodontics, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Rui Ling
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masatsugu Komagamine
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tianshu Shi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Matsuda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Immune Environment Dynamics, Cancer Research Institute of Kanazawa University, Kakuma-Machi, Kanazawa, Japan
| | - Tatsuo Asano
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Warunee Pluemsakunthai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming', Vari, Attika, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Saitama Medical University, Saitama, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Immune Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Downton P, Dickson SH, Ray DW, Bechtold DA, Gibbs JE. Fibroblast-like synoviocytes orchestrate daily rhythmic inflammation in arthritis. Open Biol 2024; 14:240089. [PMID: 38981514 DOI: 10.1098/rsob.240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.
Collapse
Affiliation(s)
- Polly Downton
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Suzanna H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - David W Ray
- NIHR Oxford Health Biomedical Research Centre and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, and Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX3 7LE, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
13
|
Iliopoulou L, Koliaraki V, Bamias G, Kollias G. Re-evaluating the Conclusions of the Study by Steiner et al: Insufficient Evidence to Support TNF ΔARE Mice as a Model of Intestinal Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1154-1155. [PMID: 38749610 DOI: 10.1016/j.ajpath.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 02/04/2025]
Affiliation(s)
- Lida Iliopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Giorgios Bamias
- Gastrointestinal Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Papadopoulou D, Mavrikaki V, Charalampous F, Tzaferis C, Samiotaki M, Papavasileiou KD, Afantitis A, Karagianni N, Denis MC, Sanchez J, Lane JR, Faidon Brotzakis Z, Skretas G, Georgiadis D, Matralis AN, Kollias G. Discovery of the First-in-Class Inhibitors of Hypoxia Up-Regulated Protein 1 (HYOU1) Suppressing Pathogenic Fibroblast Activation. Angew Chem Int Ed Engl 2024; 63:e202319157. [PMID: 38339863 DOI: 10.1002/anie.202319157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Vasiliki Mavrikaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Filippos Charalampous
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Konstantinos D Papavasileiou
- Department of ChemoInformatics, Novamechanics Ltd., 1070, Nicosia, Cyprus
- Department of Chemoinformatics, Novamechanics MIKE, 18545, Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, 6059, Larnaca, Cyprus
| | - Antreas Afantitis
- Department of ChemoInformatics, Novamechanics Ltd., 1070, Nicosia, Cyprus
- Department of Chemoinformatics, Novamechanics MIKE, 18545, Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, 6059, Larnaca, Cyprus
| | | | | | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, NG2 7AG, Midlands, U.K
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, NG2 7AG, Midlands, U.K
| | - Zacharias Faidon Brotzakis
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Georgios Skretas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Alexios N Matralis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Research Institute of New Biotechnologies and Precision Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
15
|
Chalkidi N, Melissari MT, Henriques A, Stavropoulou A, Kollias G, Koliaraki V. Activation and Functions of Col6a1+ Fibroblasts in Colitis-Associated Cancer. Int J Mol Sci 2023; 25:148. [PMID: 38203319 PMCID: PMC10778587 DOI: 10.3390/ijms25010148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) comprise a group of heterogeneous subpopulations with distinct identities indicative of their diverse origins, activation patterns, and pro-tumorigenic functions. CAFs originate mainly from resident fibroblasts, which are activated upon different stimuli, including growth factors and inflammatory mediators, but the extent to which they also maintain some of their homeostatic properties, at least at the earlier stages of carcinogenesis, is not clear. In response to cytokines, such as interleukin 1 (IL-1) and tumor necrosis factor (TNF), as well as microbial products, CAFs acquire an immunoregulatory phenotype, but its specificity and pathophysiological significance in individual CAF subsets is yet to be determined. In this study, we analyzed the properties of Col6a1-positive fibroblasts in colitis-associated cancer. We found that Col6a1+ cells partly maintain their homeostatic features during adenoma development, while their activation is characterized by the acquisition of a distinct proangiogenic signature associated with their initial perivascular location. In vitro and in vivo experiments showed that Col6a1+ cells respond to innate immune stimuli and exert pro-tumorigenic functions. However, Col6a1+-specific inhibition of TNF receptor 1 (TNFR1) or IL-1 receptor (IL-1R) signaling does not significantly affect tumorigenesis, suggesting that activation of other subsets acts in a compensatory way or that multiple immune stimuli are necessary to drive the proinflammatory activation of this subset. In conclusion, our results show that adenoma-associated CAF subsets can partly maintain the properties of homeostatic fibroblasts while they become activated to support tumor growth through distinct and compensatory mechanisms.
Collapse
Affiliation(s)
- Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - Ana Henriques
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - Athanasia Stavropoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To commemorate the 50th anniversary of the groundbreaking discovery of a remarkably strong association between HLA-B*27 and ankylosing spondylitis (AS). RECENT FINDINGS In addition to HLA-B*27, more than 116 other recognized genetic risk variants have been identified, while epigenetic factors largely remain unexplored in this context. Among patients with AS who carry the HLA-B*27 gene, clonally expanded CD8 + T cells can be found in their bloodstream and within inflamed tissues. Moreover, the α and β chain motifs of these T-cell receptors demonstrate a distinct affinity for certain self- and microbial-derived peptides, leading to an autoimmune response that ultimately results in the onset of the disease. These distinctive peptide-binding and presentation characteristics are a hallmark of the disease-associated HLA-B*27:05 subtype but are absent in HLA-B*27:09, a subtype not associated with the disease, differing by only a single amino acid. This discovery represents a significant advancement in unraveling the 50-year-old puzzle of how HLA-B*27 contributes to the development of AS. These findings will significantly accelerate the process of identifying peptides, both self- and microbial-derived, that instigate autoimmunity. This, in return, will pave the way for the development of more accurate and effective targeted treatments. Moreover, the discovery of improved biomarkers, in conjunction with the emerging technology of electric field molecular fingerprinting, has the potential to greatly bolster early diagnosis capabilities. A very recently published groundbreak paper underscores the remarkable effectiveness of targeting and eliminating disease-causing T cells in a HLA-B*27 patients with AS. This pivotal advancement not only signifies a paradigm shift but also bolsters the potential for preventing the disease in individuals carrying high-risk genetic variants.
Collapse
Affiliation(s)
- Muhammad A Khan
- Case Western Reserve School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
17
|
Dar E, Mobashar A, Shabbir A, Mushtaq MN, Anjum I, Z. Gaafar AR, Nafidi HA, Bourhia M. Mechanistic Evaluation of Antiarthritic Effects of Citronellol in CFA-Induced Arthritic Rats. ACS OMEGA 2023; 8:44955-44963. [PMID: 38046326 PMCID: PMC10688163 DOI: 10.1021/acsomega.3c06374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation, joint tissue damage, pain, and synovitis. It leads to deformity of joints, disability, and even premature death. Markers of inflammation are highly expressed in synovium fluid and serum of arthritic patients and play an important role in the pathophysiology of RA. These transcription factors promote the fabrication of type I interferons and inflammatory cytokines. In RA, degradation of synovial cartilage and bone results from stimulation of proinflammatory cytokines. Citronellol (Ct), a monoterpene alcohol, is found in citrus fruits and essential oils of many aromatic plants. It possesses numerous pharmacological properties such as antioxidant activity and potential antinociceptive and anti-inflammatory effects. Keeping in view the significant anti-inflammatory role of Ct, a trial of 28 days was conducted. Ct was administered orally at three different doses (25, 50, and 100) mg/kg in Freund's adjuvant-induced arthritic rats, and the results were compared with piroxicam, chosen as the standard drug. The antiarthritic activity of the compound was evaluated through measurements of arthritic scoring and plethysmometry before and after treatment. The blood biochemical and hematological parameters and histopathological analyses were performed. Additionally, qPCR was conducted to analyze the mRNA expression levels of TNF-α, IL-1β, NF-κB, MMP3, IL-6, and IL-4 in the blood. ELISA was performed to evaluate the levels of PGE2. The results demonstrated that Ct showed significant results at all doses, but the highest dose proved to be most significant in terms of decreasing arthritic scoring and paw edema, indicating the antiarthritic potential of Ct. Furthermore, the compound was found to downregulate all the proinflammatory cytokines (TNF-α, IL-1β, NF-κB, MMP3, and IL-6) and upregulate the anti-inflammatory cytokine (IL-4). The levels of PGE2 were also reduced which further supported the antiarthritic effects of Ct and validated it as a potential antiarthritic candidate.
Collapse
Affiliation(s)
- Eshwa Dar
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 55150, Pakistan
| | - Aisha Mobashar
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 55150, Pakistan
| | - Arham Shabbir
- Department
of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical
and Allied Health Sciences, Lahore College
for Women University, Jail Road, 54000 Lahore, Pakistan
| | - Muhammad Naveed Mushtaq
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 55150, Pakistan
| | - Irfan Anjum
- Department
of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Abdel-Rhman Z. Gaafar
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, Quebec G1 V 0A6, Canada
| | - Mohammed Bourhia
- Department
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| |
Collapse
|
18
|
Guo D, Pan H, Lu X, Chen Z, Zhou L, Chen S, Huang J, Liang X, Xiao Z, Zeng H, Shao Y, Qi W, Xie D, Lin C. Rspo2 exacerbates rheumatoid arthritis by targeting aggressive phenotype of fibroblast-like synoviocytes and disrupting chondrocyte homeostasis via Wnt/β-catenin pathway. Arthritis Res Ther 2023; 25:217. [PMID: 37946278 PMCID: PMC10634117 DOI: 10.1186/s13075-023-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The aggressive phenotype of fibroblast-like synoviocytes (FLS) has been identified as a contributing factor to the exacerbation of rheumatoid arthritis (RA) through the promotion of synovitis and cartilage damage. Regrettably, there is currently no effective therapeutic intervention available to address this issue. Recent research has shed light on the crucial regulatory role of R-spondin-2 (Rspo2) in cellular proliferation, cartilage degradation, and tumorigenesis. However, the specific impact of Rspo2 on RA remains poorly understood. We aim to investigate the function and mechanism of Rspo2 in regulating the aggressive phenotype of FLS and maintaining chondrocyte homeostasis in the context of RA. METHODS The expression of Rspo2 in knee joint synovium and cartilage were detected in RA mice with antigen-induced arthritis (AIA) and RA patients. Recombinant mouse Rspo2 (rmRspo2), Rspo2 neutralizing antibody (Rspo2-NAb), and recombinant mouse DKK1 (rmDKK1, a potent inhibitor of Wnt signaling pathway) were used to explore the role and mechanism of Rspo2 in the progression of RA, specifically in relation to the aggressive phenotype of FLS and chondrocyte homeostasis, both in vivo and in vitro. RESULTS We indicated that Rspo2 expression was upregulated both in synovium and articular cartilage as RA progressed in RA mice and RA patients. Increased Rspo2 upregulated the expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), as the ligand for Rspo2, and β-catenin in FLS and chondrocytes. Subsequent investigations revealed that intra-articular administration of rmRspo2 caused striking progressive synovitis and articular cartilage destruction to exacerbate RA progress in mice. Conversely, neutralization of Rspo2 or inhibition of the Wnt/β-catenin pathway effectively alleviated experimental RA development. Moreover, Rspo2 facilitated FLS aggressive phenotype and disrupted chondrocyte homeostasis primarily through activating Wnt/β-catenin pathway, which were effectively alleviated by Rspo2-NAb or rmDKK1. CONCLUSIONS Our data confirmed a critical role of Rspo2 in enhancing the aggressive phenotype of FLS and disrupting chondrocyte homeostasis through the Wnt/β-catenin pathway in the context of RA. Furthermore, the results indicated that intra-articular administration of Rspo2 neutralizing antibody or recombinant DKK1 might represent a promising therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Dong Guo
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Haoyan Pan
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Xueying Lu
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, 518100, People's Republic of China
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Shuxin Chen
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Jin Huang
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Xinzhi Liang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Zhisheng Xiao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Hua Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Yan Shao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Weizhong Qi
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China.
| |
Collapse
|
19
|
Iyer P, Hwang M, Ridley L, Weisman MM. Biomechanics in the onset and severity of spondyloarthritis: a force to be reckoned with. RMD Open 2023; 9:e003372. [PMID: 37949613 PMCID: PMC10649803 DOI: 10.1136/rmdopen-2023-003372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Increasing evidence suggests that there is a pivotal role for physical force (mechanotransduction) in the initiation and/or the perpetuation of spondyloarthritis; the review contained herein examines that evidence. Furthermore, we know that damage and inflammation can limit spinal mobility, but is there a cycle created by altered spinal mobility leading to additional damage and inflammation?Over the past several years, mechanotransduction, the mechanism by which mechanical perturbation influences gene expression and cellular behaviour, has recently gained popularity because of emerging data from both animal models and human studies of the pathogenesis of ankylosing spondylitis (AS). In this review, we provide evidence towards an appreciation of the unsolved paradigm of how biomechanical forces may play a role in the initiation and propagation of AS.
Collapse
Affiliation(s)
- Priyanka Iyer
- Division of Rheumatology, Department of Medicine, UC Irvine Healthcare, Orange, California, USA
| | - Mark Hwang
- Rheumatology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Lauren Ridley
- Rheumatology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | | |
Collapse
|
20
|
Parker JB, Valencia C, Akras D, DiIorio SE, Griffin MF, Longaker MT, Wan DC. Understanding Fibroblast Heterogeneity in Form and Function. Biomedicines 2023; 11:2264. [PMID: 37626760 PMCID: PMC10452440 DOI: 10.3390/biomedicines11082264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Sarah E. DiIorio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| |
Collapse
|
21
|
Venken K, Jarlborg M, Decruy T, Mortier C, Vlieghe C, Gilis E, De Craemer AS, Coudenys J, Cambré I, Fleury D, Klimowicz A, Van den Bosch F, Hoorens A, Lobaton T, de Roock S, Sparwasser T, Nabozny G, Jacques P, Elewaut D. Distinct immune modulatory roles of regulatory T cells in gut versus joint inflammation in TNF-driven spondyloarthritis. Ann Rheum Dis 2023; 82:1076-1090. [PMID: 37197892 DOI: 10.1136/ard-2022-223757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVES Gut and joint inflammation commonly co-occur in spondyloarthritis (SpA) which strongly restricts therapeutic modalities. The immunobiology underlying differences between gut and joint immune regulation, however, is poorly understood. We therefore assessed the immunoregulatory role of CD4+FOXP3+ regulatory T (Treg) cells in a model of Crohn's-like ileitis and concomitant arthritis. METHODS RNA-sequencing and flow cytometry was performed on inflamed gut and joint samples and tissue-derived Tregs from tumour necrosis factor (TNF)∆ARE mice. In situ hybridisation of TNF and its receptors (TNFR) was applied to human SpA gut biopsies. Soluble TNFR (sTNFR) levels were measured in serum of mice and patients with SpA and controls. Treg function was explored by in vitro cocultures and in vivo by conditional Treg depletion. RESULTS Chronic TNF exposure induced several TNF superfamily (TNFSF) members (4-1BBL, TWEAK and TRAIL) in synovium and ileum in a site-specific manner. Elevated TNFR2 messenger RNA levels were noted in TNF∆ARE/+ mice leading to increased sTNFR2 release. Likewise, sTNFR2 levels were higher in patients with SpA with gut inflammation and distinct from inflammatory and healthy controls. Tregs accumulated at both gut and joints of TNF∆ARE mice, yet their TNFR2 expression and suppressive function was significantly lower in synovium versus ileum. In line herewith, synovial and intestinal Tregs displayed a distinct transcriptional profile with tissue-restricted TNFSF receptor and p38MAPK gene expression. CONCLUSIONS These data point to profound differences in immune-regulation between Crohn's ileitis and peripheral arthritis. Whereas Tregs control ileitis they fail to dampen joint inflammation. Synovial resident Tregs are particularly maladapted to chronic TNF exposure.
Collapse
Affiliation(s)
- Koen Venken
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Matthias Jarlborg
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tine Decruy
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Céline Mortier
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Carolien Vlieghe
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Elisabeth Gilis
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Ann-Sophie De Craemer
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Julie Coudenys
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Isabelle Cambré
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Devan Fleury
- Immunology and Respiratory Department, Boehringer Ingelheim Corp Pharmaceutical Research and Development Centre Ridgefield, Ridgefield, Connecticut, USA
| | - Alexander Klimowicz
- Immunology and Respiratory Department, Boehringer Ingelheim Corp Pharmaceutical Research and Development Centre Ridgefield, Ridgefield, Connecticut, USA
| | - Filip Van den Bosch
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, University Hospital Ghent, Gent, Belgium
| | - Triana Lobaton
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Gastroenterology unit), Ghent University, Ghent, Belgium
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sytze de Roock
- Department of Pediatric Immunology, Center for Molecular and Cellular Intervention CMCI, Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim Sparwasser
- University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gerald Nabozny
- Immunology and Respiratory Department, Boehringer Ingelheim Corp Pharmaceutical Research and Development Centre Ridgefield, Ridgefield, Connecticut, USA
| | - Peggy Jacques
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Koncina E, Nurmik M, Pozdeev VI, Gilson C, Tsenkova M, Begaj R, Stang S, Gaigneaux A, Weindorfer C, Rodriguez F, Schmoetten M, Klein E, Karta J, Atanasova VS, Grzyb K, Ullmann P, Halder R, Hengstschläger M, Graas J, Augendre V, Karapetyan YE, Kerger L, Zuegel N, Skupin A, Haan S, Meiser J, Dolznig H, Letellier E. IL1R1 + cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer. Nat Commun 2023; 14:4251. [PMID: 37460545 DOI: 10.1038/s41467-023-39953-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Fibroblasts have a considerable functional and molecular heterogeneity and can play various roles in the tumor microenvironment. Here we identify a pro-tumorigenic IL1R1+, IL-1-high-signaling subtype of fibroblasts, using multiple colorectal cancer (CRC) patient single cell sequencing datasets. This subtype of fibroblasts is linked to T cell and macrophage suppression and leads to increased cancer cell growth in 3D co-culture assays. Furthermore, both a fibroblast-specific IL1R1 knockout and IL-1 receptor antagonist Anakinra administration reduce tumor growth in vivo. This is accompanied by reduced intratumoral Th17 cell infiltration. Accordingly, CRC patients who present with IL1R1-expressing cancer-associated-fibroblasts (CAFs), also display elevated levels of immune exhaustion markers, as well as an increased Th17 score and an overall worse survival. Altogether, this study underlines the therapeutic value of targeting IL1R1-expressing CAFs in the context of CRC.
Collapse
Affiliation(s)
- E Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Nurmik
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V I Pozdeev
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Gilson
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Begaj
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - S Stang
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - A Gaigneaux
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Weindorfer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - F Rodriguez
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Schmoetten
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - E Klein
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V S Atanasova
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - K Grzyb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - P Ullmann
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - M Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - J Graas
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - V Augendre
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | | | - L Kerger
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - N Zuegel
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - A Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - S Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - H Dolznig
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - E Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg.
| |
Collapse
|
23
|
Mauro D, Gandolfo S, Tirri E, Schett G, Maksymowych WP, Ciccia F. The bone marrow side of axial spondyloarthritis. Nat Rev Rheumatol 2023:10.1038/s41584-023-00986-6. [PMID: 37407716 DOI: 10.1038/s41584-023-00986-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Spondyloarthritis (SpA) is characterized by the infiltration of innate and adaptive immune cells into entheses and bone marrow. Molecular, cellular and imaging evidence demonstrates the presence of bone marrow inflammation, a hallmark of SpA. In the spine and the peripheral joints, bone marrow is critically involved in the pathogenesis of SpA. Evidence suggests that bone marrow inflammation is associated with enthesitis and that there are roles for mechano-inflammation and intestinal inflammation in bone marrow involvement in SpA. Specific cell types (including mesenchymal stem cells, innate lymphoid cells and γδ T cells) and mediators (Toll-like receptors and cytokines such as TNF, IL-17A, IL-22, IL-23, GM-CSF and TGFβ) are involved in these processes. Using this evidence to demonstrate a bone marrow rather than an entheseal origin for SpA could change our understanding of the disease pathogenesis and the relevant therapeutic approach.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Saviana Gandolfo
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Enrico Tirri
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
24
|
McGonagle DG, Bridgewood C, Marzo-Ortega H. Correspondence on 'Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial'. Ann Rheum Dis 2023; 82:e164. [PMID: 34158372 DOI: 10.1136/annrheumdis-2021-220871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals Trust, Leeds, West Yorkshire, UK
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Helena Marzo-Ortega
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals Trust, Leeds, West Yorkshire, UK
| |
Collapse
|
25
|
Kouri VP, Olkkonen J, Nurmi K, Peled N, Ainola M, Mandelin J, Nordström DC, Eklund KK. IL-17A and TNF synergistically drive expression of proinflammatory mediators in synovial fibroblasts via IκBζ-dependent induction of ELF3. Rheumatology (Oxford) 2023; 62:872-885. [PMID: 35792833 PMCID: PMC9891425 DOI: 10.1093/rheumatology/keac385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE IL-17A and TNF act in synergy to induce proinflammatory mediators in synovial fibroblasts thus contributing to diseases associated with chronic arthritis. Many of these factors are regulated by transcription factor E74-like factor-3 (ELF3). Therefore, we sought to investigate ELF3 as a downstream target of IL-17A and TNF signalling and to characterize its role in the molecular mechanism of synergy between IL-17A and TNF. METHODS Regulation of ELF3 expression by IL-17A and TNF was studied in synovial fibroblasts of RA and OA patients and RA synovial explants. Signalling leading to ELF3 mRNA induction and the impact of ELF3 on the response to IL-17A and TNF were studied using siRNA, transient overexpression and signalling inhibitors in synovial fibroblasts and HEK293 cells. RESULTS ELF3 was marginally affected by IL-17A or TNF alone, but their combination resulted in high and sustained expression. ELF3 expression was regulated by the nuclear factor-κB (NF-κB) pathway and CCAAT/enhancer-binding protein β (C/EBPβ), but its induction required synthesis of the NF-κB co-factor IκB (inhibitor of NF-κB) ζ. siRNA-mediated depletion of ELF3 attenuated the induction of cytokines and matrix metalloproteinases by the combination of IL-17A and TNF. Overexpression of ELF3 or IκBζ showed synergistic effect with TNF in upregulating expression of chemokine (C-C motif) ligand 8 (CCL8), and depletion of ELF3 abrogated CCL8 mRNA induction by the combination of IκBζ overexpression and TNF. CONCLUSION Altogether, our results establish ELF3 as an important mediator of the synergistic effect of IL-17A and TNF in synovial fibroblasts. The findings provide novel information of the pathogenic mechanisms of IL-17A in chronic arthritis and implicate ELF3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Vesa-Petteri Kouri
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital
| | - Juri Olkkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Katariina Nurmi
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Nitai Peled
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Mari Ainola
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Jami Mandelin
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Dan C Nordström
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Internal Medicine and Rehabilitation
| | - Kari K Eklund
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Inflammation Center, Division of Rheumatology, Helsinki University Hospital.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| |
Collapse
|
26
|
Stromal regulation of the intestinal barrier. Mucosal Immunol 2023; 16:221-231. [PMID: 36708806 DOI: 10.1016/j.mucimm.2023.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The intestinal barrier is a complex structure that allows the absorption of nutrients while ensuring protection against intestinal pathogens and balanced immunity. The development and maintenance of a functional intestinal barrier is a multifactorial process that is only partially understood. Here we review novel findings on the emerging role of mesenchymal cells in this process using insights gained from lineage tracing approaches, Cre-based gene deletion, and single-cell transcriptomics. The current evidence points toward a key organizer role for distinct mesenchymal lineages in intestinal development and homeostasis, regulating both epithelial and immune components of the intestinal barrier. We further discuss recent findings on functional mesenchymal heterogeneity and implications for intestinal regeneration and inflammatory intestinal pathologies.
Collapse
|
27
|
Cavagnero KJ, Gallo RL. Essential immune functions of fibroblasts in innate host defense. Front Immunol 2022; 13:1058862. [PMID: 36591258 PMCID: PMC9797514 DOI: 10.3389/fimmu.2022.1058862] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
The term fibroblast has been used generally to describe spindle-shaped stromal cells of mesenchymal origin that produce extracellular matrix, establish tissue structure, and form scar. Current evidence has found that cells with this morphology are highly heterogeneous with some fibroblastic cells actively participating in both innate and adaptive immune defense. Detailed analysis of barrier tissues such as skin, gut, and lung now show that some fibroblasts directly sense pathogens and other danger signals to elicit host defense functions including antimicrobial activity, leukocyte recruitment, and production of cytokines and lipid mediators relevant to inflammation and immunosuppression. This review will synthesize current literature focused on the innate immune functions performed by fibroblasts at barrier tissues to highlight the previously unappreciated importance of these cells in immunity.
Collapse
Affiliation(s)
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Paul C, Tang R, Longobardi C, Lattanzio R, Eguether T, Turali H, Bremond J, Maurizy C, Gabola M, Poupeau S, Turtoi A, Denicolai E, Cufaro MC, Svrcek M, Seksik P, Castronovo V, Delvenne P, de Laurenzi V, Da Costa Q, Bertucci F, Lemmers B, Pieragostino D, Mamessier E, Janke C, Pinet V, Hahne M. Loss of primary cilia promotes inflammation and carcinogenesis. EMBO Rep 2022; 23:e55687. [PMID: 36281991 PMCID: PMC9724674 DOI: 10.15252/embr.202255687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Primary cilia (PC) are important signaling hubs, and we here explored their role in colonic pathology. In the colon, PC are mostly present on fibroblasts, and exposure of mice to either chemically induced colitis-associated colon carcinogenesis (CAC) or dextran sodium sulfate (DSS)-induced acute colitis decreases PC numbers. We generated conditional knockout mice with reduced numbers of PC on colonic fibroblasts. These mice show increased susceptibility to CAC, as well as DSS-induced colitis. Secretome and immunohistochemical analyses of DSS-treated mice display an elevated production of the proinflammatory cytokine IL-6 in PC-deficient colons. An inflammatory environment diminishes PC presence in primary fibroblast cultures, which is triggered by IL-6 as identified by RNA-seq analysis together with blocking experiments. These findings suggest an activation loop between IL-6 production and PC loss. An analysis of PC presence on biopsies of patients with ulcerative colitis or colorectal cancer (CRC) reveals decreased numbers of PC on colonic fibroblasts in pathological compared with surrounding normal tissue. Taken together, we provide evidence that a decrease in colonic PC numbers promotes colitis and CRC.
Collapse
Affiliation(s)
- Conception Paul
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Ruizhi Tang
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Ciro Longobardi
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance,Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands,Oncode Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Thibaut Eguether
- Centre de Recherche Saint AntoineSorbonne Université, INSERM, APHPParisFrance
| | - Hulya Turali
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Julie Bremond
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Chloé Maurizy
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Monica Gabola
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Sophie Poupeau
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Laboratory, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
| | - Emilie Denicolai
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Maria Concetta Cufaro
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Magali Svrcek
- Department of Pathology, AP‐HP, Hôpital Saint‐AntoineSorbonne UniversitéParisFrance
| | - Philippe Seksik
- Centre de Recherche Saint AntoineSorbonne Université, INSERM, APHPParisFrance
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA CancerUniversity of LiègeLiègeBelgium
| | - Philippe Delvenne
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance,Department of Pathology, University Hospital (CHU)University of LiègeLiègeBelgium
| | - Vincenzo de Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Quentin Da Costa
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - François Bertucci
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Emilie Mamessier
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3348Label “Equipe FRM”OrsayFrance,Université Paris Sud, Université Paris‐Saclay, CNRS UMR 3348OrsayFrance
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| |
Collapse
|
29
|
Affiliation(s)
- Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece.
| | - Gian-Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Personalized Cancer Prevention Program, University of Lausanne, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - Christopher D Buckley
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - George Kollias
- Institute for Innovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Evangelatos G, Bamias G, Kitas GD, Kollias G, Sfikakis PP. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol Int 2022; 42:1493-1511. [PMID: 35503130 PMCID: PMC9063259 DOI: 10.1007/s00296-022-05136-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable efficacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pandemic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. Moreover, the current implementation of the "treat-to-target" approach and treatment de-escalation strategies of IMIDs were based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
| | - George Kollias
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Yan M, Komatsu N, Muro R, Huynh NCN, Tomofuji Y, Okada Y, Suzuki HI, Takaba H, Kitazawa R, Kitazawa S, Pluemsakunthai W, Mitsui Y, Satoh T, Okamura T, Nitta T, Im SH, Kim CJ, Kollias G, Tanaka S, Okamoto K, Tsukasaki M, Takayanagi H. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat Immunol 2022; 23:1330-1341. [PMID: 35999392 DOI: 10.1038/s41590-022-01285-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications.
Collapse
Affiliation(s)
- Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory of Oral-Maxillofacial Biology, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University, Graduate School of Medicine, Osaka, Japan.,Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Toon City, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Graduate School of Medicine, Ehime University, Toon City, Japan
| | - Warunee Pluemsakunthai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Mitsui
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Innate Cell Therapy, Osaka, Japan
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Innate Cell Therapy, Osaka, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), POSTECH Biotech Center, Pohang, Republic of Korea.,ImmunoBiome, Pohang, Republic of Korea.,Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), POSTECH Biotech Center, Pohang, Republic of Korea
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming,' Vari, Attika, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Chalkidi N, Paraskeva C, Koliaraki V. Fibroblasts in intestinal homeostasis, damage, and repair. Front Immunol 2022; 13:924866. [PMID: 36032088 PMCID: PMC9399414 DOI: 10.3389/fimmu.2022.924866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
The mammalian intestine is a self-renewing tissue that ensures nutrient absorption while acting as a barrier against environmental insults. This is achieved by mature intestinal epithelial cells, the renewing capacity of intestinal stem cells at the base of the crypts, the development of immune tolerance, and the regulatory functions of stromal cells. Upon intestinal injury or inflammation, this tightly regulated mucosal homeostasis is disrupted and is followed by a series of events that lead to tissue repair and the restoration of organ function. It is now well established that fibroblasts play significant roles both in the maintenance of epithelial and immune homeostasis in the intestine and the response to tissue damage mainly through the secretion of a variety of soluble mediators and ligands and the remodeling of the extracellular matrix. In addition, recent advances in single-cell transcriptomics have revealed an unexpected heterogeneity of fibroblasts that comprise distinct cell subsets in normal and inflammatory conditions, indicative of diverse functions. However, there is still little consensus on the number, terminology, and functional properties of these subsets. Moreover, it is still unclear how individual fibroblast subsets can regulate intestinal repair processes and what is their impact on the pathogenesis of inflammatory bowel disease. In this mini-review, we aim to provide a concise overview of recent advances in the field, that we believe will help clarify current concepts on fibroblast heterogeneity and functions and advance our understanding of the contribution of fibroblasts in intestinal damage and repair.
Collapse
|
33
|
Waltereit-Kracke V, Wehmeyer C, Beckmann D, Werbenko E, Reinhardt J, Geers F, Dienstbier M, Fennen M, Intemann J, Paruzel P, Korb-Pap A, Pap T, Dankbar B. Deletion of activin A in mesenchymal but not myeloid cells ameliorates disease severity in experimental arthritis. Ann Rheum Dis 2022; 81:1106-1118. [PMID: 35418478 PMCID: PMC9279851 DOI: 10.1136/annrheumdis-2021-221409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/06/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE The aim of this study was to assess the extent and the mechanism by which activin A contributes to progressive joint destruction in experimental arthritis and which activin A-expressing cell type is important for disease progression. METHODS Levels of activin A in synovial tissues were evaluated by immunohistochemistry, cell-specific expression and secretion by PCR and ELISA, respectively. Osteoclast (OC) formation was assessed by tartrat-resistant acid phosphatase (TRAP) staining and activity by resorption assay. Quantitative assessment of joint inflammation and bone destruction was performed by histological and micro-CT analysis. Immunoblotting was applied for evaluation of signalling pathways. RESULTS In this study, we demonstrate that fibroblast-like synoviocytes (FLS) are the main producers of activin A in arthritic joints. Most significantly, we show for the first time that deficiency of activin A in arthritic FLS (ActβAd/d ColVI-Cre) but not in myeloid cells (ActβAd/d LysM-Cre) reduces OC development in vitro, indicating that activin A promotes osteoclastogenesis in a paracrine manner. Mechanistically, activin A enhanced OC formation and activity by promoting the interaction of activated Smad2 with NFATc1, the key transcription factor of osteoclastogenesis. Consistently, ActβAd/d LysM-Cre hTNFtg mice did not show reduced disease severity, whereas deficiency of activin A in ColVI-Cre-expressing cells such as FLS highly diminished joint destruction reflected by less inflammation and less bone destruction. CONCLUSIONS The results highly suggest that FLS-derived activin A plays a crucial paracrine role in inflammatory joint destruction and may be a promising target for treating inflammatory disorders associated with OC formation and bone destruction like rheumatoid arthritis.
Collapse
Affiliation(s)
- Vanessa Waltereit-Kracke
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Corinna Wehmeyer
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Denise Beckmann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Eugenie Werbenko
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Julia Reinhardt
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Fabienne Geers
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Mike Dienstbier
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Michelle Fennen
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Johanna Intemann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Peter Paruzel
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| | - Berno Dankbar
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Nordrhein-Westfalen, Germany
| |
Collapse
|
34
|
Műzes G, Sipos F. Mesenchymal Stem Cell-Derived Secretome: A Potential Therapeutic Option for Autoimmune and Immune-Mediated Inflammatory Diseases. Cells 2022; 11:2300. [PMID: 35892597 PMCID: PMC9367576 DOI: 10.3390/cells11152300] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass several entities such as "classic" autoimmune disorders or immune-mediated diseases with autoinflammatory characteristics. Adult stem cells including mesenchymal stem cells (MSCs) are by far the most commonly used type in clinical practice. However, due to the possible side effects of MSC-based treatments, there is an increase in interest in the MSC-secretome (containing large extracellular vesicles, microvesicles, and exosomes) as an alternative therapeutic option in IMIDs. A wide spectrum of MSC-secretome-related biological activities has been proven thus far including anti-inflammatory, anti-apoptotic, and immunomodulatory properties. In comparison with MSCs, the secretome is less immunogenic but exerts similar biological actions, so it can be considered as an ideal cell-free therapeutic alternative. Additionally, since the composition of the MSC-secretome can be engineered, for a future perspective, it could also be viewed as part of a potential delivery system within nanomedicine, allowing us to specifically target dysfunctional cells or tissues. Although many encouraging results from pre-clinical studies have recently been obtained that strongly support the application of the MSC-secretome in IMIDs, human studies with MSC-secretome administration are still in their infancy. This article reviews the immunomodulatory effects of the MSC-secretome in IMIDs and provides insight into the interpretation of its beneficial biological actions.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, Szentkirályi Street 46, 1088 Budapest, Hungary;
| | | |
Collapse
|
35
|
Armaka M, Konstantopoulos D, Tzaferis C, Lavigne MD, Sakkou M, Liakos A, Sfikakis PP, Dimopoulos MA, Fousteri M, Kollias G. Single-cell multimodal analysis identifies common regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med 2022; 14:78. [PMID: 35879783 PMCID: PMC9316748 DOI: 10.1186/s13073-022-01081-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial fibroblasts (SFs) are specialized cells of the synovium that provide nutrients and lubricants for the proper function of diarthrodial joints. Recent evidence appreciates the contribution of SF heterogeneity in arthritic pathologies. However, the normal SF profiles and the molecular networks that govern the transition from homeostatic to arthritic SF heterogeneity remain poorly defined. METHODS We applied a combined analysis of single-cell (sc) transcriptomes and epigenomes (scRNA-seq and scATAC-seq) to SFs derived from naïve and hTNFtg mice (mice that overexpress human TNF, a murine model for rheumatoid arthritis), by employing the Seurat and ArchR packages. To identify the cellular differentiation lineages, we conducted velocity and trajectory analysis by combining state-of-the-art algorithms including scVelo, Slingshot, and PAGA. We integrated the transcriptomic and epigenomic data to infer gene regulatory networks using ArchR and custom-implemented algorithms. We performed a canonical correlation analysis-based integration of murine data with publicly available datasets from SFs of rheumatoid arthritis patients and sought to identify conserved gene regulatory networks by utilizing the SCENIC algorithm in the human arthritic scRNA-seq atlas. RESULTS By comparing SFs from healthy and hTNFtg mice, we revealed seven homeostatic and two disease-specific subsets of SFs. In healthy synovium, SFs function towards chondro- and osteogenesis, tissue repair, and immune surveillance. The development of arthritis leads to shrinkage of homeostatic SFs and favors the emergence of SF profiles marked by Dkk3 and Lrrc15 expression, functioning towards enhanced inflammatory responses and matrix catabolic processes. Lineage inference analysis indicated that specific Thy1+ SFs at the root of trajectories lead to the intermediate Thy1+/Dkk3+/Lrrc15+ SF states and culminate in a destructive and inflammatory Thy1- SF identity. We further uncovered epigenetically primed gene programs driving the expansion of these arthritic SFs, regulated by NFkB and new candidates, such as Runx1. Cross-species analysis of human/mouse arthritic SF data determined conserved regulatory and transcriptional networks. CONCLUSIONS We revealed a dynamic SF landscape from health to arthritis providing a functional genomic blueprint to understand the joint pathophysiology and highlight the fibroblast-oriented therapeutic targets for combating chronic inflammatory and destructive arthritic disease.
Collapse
Affiliation(s)
- Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Dimitris Konstantopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matthieu D Lavigne
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Heraklion, Crete, Greece
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Liakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Petros P Sfikakis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Meletios A Dimopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Fousteri
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
36
|
Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol 2022; 18:415-429. [PMID: 35705856 DOI: 10.1038/s41584-022-00793-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation and destruction of bone and cartilage in affected joints. Autoimmune responses lead to increased osteoclastic bone resorption and impaired osteoblastic bone formation, the imbalance of which underlies bone loss in RA, which includes bone erosion, periarticular bone loss and systemic osteoporosis. The crucial role of osteoclasts in bone erosion has been demonstrated in basic studies as well as by the clinical efficacy of antibodies targeting RANKL, an important mediator of osteoclastogenesis. Synovial fibroblasts contribute to joint damage by stimulating both pro-inflammatory and tissue-destructive pathways. New technologies, such as single-cell RNA sequencing, have revealed the heterogeneity of synovial fibroblasts and of immune cells including T cells and macrophages. To understand the mechanisms of bone damage in RA, it is important to clarify how the immune system promotes the tissue-destructive properties of synovial fibroblasts and influences bone cells. The interaction between immune cells and fibroblasts underlies the imbalance between regulatory T cells and T helper 17 cells, which in turn exacerbates not only inflammation but also bone destruction, mainly by promoting RANKL expression on synovial fibroblasts. An improved understanding of the immune mechanisms underlying joint damage and the interplay between the immune system, synovial fibroblasts and bone will contribute to the identification of novel therapeutic targets in RA.
Collapse
Affiliation(s)
- Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
37
|
Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int J Mol Sci 2022; 23:ijms23095181. [PMID: 35563571 PMCID: PMC9100044 DOI: 10.3390/ijms23095181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs.
Collapse
|
38
|
Saeki N, Inoue K, Ideta-Otsuka M, Watamori K, Mizuki S, Takenaka K, Igarashi K, Miura H, Takeda S, Imai Y. Epigenetic regulator UHRF1 suppressively orchestrates pro-inflammatory gene expression in rheumatoid arthritis. J Clin Invest 2022; 132:150533. [PMID: 35472067 PMCID: PMC9151705 DOI: 10.1172/jci150533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation with aberrant epigenetic alterations, eventually leading to joint destruction. However, the epigenetic regulatory mechanisms underlying RA pathogenesis remain largely unknown. Here we showed that Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) is a central epigenetic regulator that suppressively orchestrates multiple pathogeneses in RA. UHRF1 expression was remarkably up-regulated in synovial fibroblasts (SF) from arthritis model mice and RA patients. Mice with SF-specific Uhrf1 conditional knockout showed more severe arthritic phenotypes than littermate control. Uhrf1-deficient SF also exhibited enhanced apoptosis resistance and up-regulated expression of several cytokines including Ccl20. In RA patients, DAS28, CRP, and Th17 accumulation as well as apoptosis resistance were negatively correlated with UHRF1 expression in synovium. Finally, Ryuvidine administration that stabilizes UHRF1 ameliorated arthritis pathogeneses in a mouse model of RA. This study demonstrated that UHRF1 expressed in RA SF can contribute to negative feedback mechanisms that suppress multiple pathogenic events in arthritis, suggesting that targeting UHRF1 could be one of the therapeutic strategies for RA.
Collapse
Affiliation(s)
- Noritaka Saeki
- Division of Laboratory Animal Research, Ehime University, Toon, Japan
| | - Kazuki Inoue
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Maky Ideta-Otsuka
- Laboratory of Instrumental Analysis, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Kunihiko Watamori
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinichi Mizuki
- The Center for Rheumatic Diseases, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Katsuhide Igarashi
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo, Japan
| | - Yuuki Imai
- Division of Laboratory Animal Research, Ehime University, Toon, Japan
| |
Collapse
|
39
|
Targeting STAT3 Signaling in COL1+ Fibroblasts Controls Colitis-Associated Cancer in Mice. Cancers (Basel) 2022; 14:cancers14061472. [PMID: 35326623 PMCID: PMC8946800 DOI: 10.3390/cancers14061472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is a common disease and has limited treatment options. The importance of cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) in CRC has been increasingly recognized. However, the role of CAF subsets in CRC is hardly understood and opposing functions of type I (COL1+) vs. type VI (COL6+) collagen-expressing subsets were reported before with respect to NFκB-related signaling. Here, we have focused on COL1+ fibroblasts, which represent a frequent CAF population in CRC and studied their role upon STAT3 activation in vivo. Using a dual strategy with a conditional gain-of-function and a conditional loss-of-function approach in an in vivo model of colitis-associated cancer, tumor development was evaluated by different readouts, including advanced imaging methodologies, e.g., light sheet microscopy and CT-scan. Our data demonstrate that the inhibition of STAT3 activation in COL1+ fibroblasts reduces tumor burden, whereas the constitutive activation of STAT3 promotes the development of inflammation-driven CRC. In addition, our work characterizes the co-expression and distribution of type I and type VI collagen by CAFs in inflammation-associated colorectal cancer using reporter mice. This work indicates a critical contribution of STAT3 signaling in COL1+ CAFs, suggesting that the blockade of STAT3 activation in type I collagen-expressing fibroblasts could serve as promising therapeutic targets in colitis-associated CRC. In combination with previous work by others and us, our current findings highlight the context-dependent roles of COL1+ CAFs and COL6+ CAFs that might be variable according to the specific pathway activated.
Collapse
|
40
|
Pharmacogenomics of Anti-TNF Treatment Response Marks a New Era of Tailored Rheumatoid Arthritis Therapy. Int J Mol Sci 2022; 23:ijms23042366. [PMID: 35216481 PMCID: PMC8879844 DOI: 10.3390/ijms23042366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most commonly occurring chronic inflammatory arthritis, the exact mechanism of which is not fully understood. Tumor Necrosis Factor (TNF)-targeting drugs has been shown to exert high effectiveness for RA, which indicates the key importance of this cytokine in this disease. Nevertheless, the response to TNF inhibitors varies, and approximately one third of RA patients are non-responders, which is explained by the influence of genetic factors. Knowledge in the field of pharmacogenomics of anti-TNF drugs is growing, but has not been applied in the clinical practice so far. Different genome-wide association studies identified a few single nucleotide polymorphisms associated with anti-TNF treatment response, which largely map genes involved in T cell function. Studies of the gene expression profile of RA patients have also indicated specific gene signatures that may be useful to develop novel prognostic tools. In this article, we discuss the significance of TNF in RA and present the current knowledge in pharmacogenomics related to anti-TNF treatment response.
Collapse
|
41
|
Kerdidani D, Aerakis E, Verrou KM, Angelidis I, Douka K, Maniou MA, Stamoulis P, Goudevenou K, Prados A, Tzaferis C, Ntafis V, Vamvakaris I, Kaniaris E, Vachlas K, Sepsas E, Koutsopoulos A, Potaris K, Tsoumakidou M. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J Exp Med 2022; 219:212965. [PMID: 35029648 PMCID: PMC8764966 DOI: 10.1084/jem.20210815] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced C1q, which acted on T cell C1qbp to rescue them from apoptosis. Fibroblast-specific MHCII or C1q deletion impaired CD4 T cell immunity and accelerated tumor growth, while inducing C1qbp in adoptively transferred CD4 T cells expanded their numbers and reduced tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Emmanouil Aerakis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Kleio-Maria Verrou
- Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Angelidis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Katerina Douka
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Maria-Anna Maniou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Petros Stamoulis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Katerina Goudevenou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Alejandro Prados
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Christos Tzaferis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasileios Ntafis
- Animal House Facility, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | | | - Evangelos Kaniaris
- Department of Respiratory Medicine, Sotiria Chest Hospital, Athens, Greece
| | | | - Evangelos Sepsas
- Department of Thoracic Surgery, Sotiria Chest Hospital, Athens, Greece
| | | | | | - Maria Tsoumakidou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
42
|
Harnessing murine models of Crohn's disease ileitis to advance concepts of pathophysiology and treatment. Mucosal Immunol 2022; 15:10-26. [PMID: 34316007 DOI: 10.1038/s41385-021-00433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are both characterized by chronic inflammation and severe dysfunction of the gastrointestinal tract. These two forms of inflammatory bowel disease (IBD) represent distinct clinical disorders with diverse driving mechanisms; however, this divergence is not reflected in currently approved therapeutics that commonly target general proinflammatory pathways. A compelling need therefore remains to understand factors that differentiate the topology and the distinct clinical manifestations of CD versus UC, in order to develop more effective and specialized therapies. Animal models provide valuable platforms for studying IBD heterogeneity and deciphering disease-specific mechanisms. Both the established and the newly developed ileitis mouse models are characterized by various disease initiating mechanisms and diverse phenotypic outcomes that reflect the complexity of human CD-ileitis. Microbial dysbiosis, destruction of epithelial barrier integrity, immune cell deregulation, as well as the recently described genome instability and stromal cell activation have all been proposed as the triggering factors for the development of ileitis-associated pathology. In this review, we aim to critically evaluate the mechanistic underpinnings of murine models of CD-ileitis, discuss their phenotypic similarities to human disease, and envisage their further exploitation for the development of novel targeted and personalized therapeutics.
Collapse
|
43
|
Kocatürk B, Balık Z, Pişiren G, Kalyoncu U, Özmen F, Özen S. Spondyloarthritides: Theories and beyond. Front Pediatr 2022; 10:1074239. [PMID: 36619518 PMCID: PMC9816396 DOI: 10.3389/fped.2022.1074239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Spondyloarthritides (SpA) are a family of interrelated rheumatic disorders with a typical disease onset ranging from childhood to middle age. If left untreated, they lead to a severe decrease in patients' quality of life. A succesfull treatment strategy starts with an accurate diagnosis which is achieved through careful analysis of medical symptoms. Classification criterias are used to this process and are updated on a regular basis. Although there is a lack of definite knowledge on the disease etiology of SpA, several studies have paved the way for understanding plausible risk factors and developing treatment strategies. The significant increase of HLA-B27 positivity in SpA patients makes it a strong candidate as a predisposing factor and several theories have been proposed to explain HLA-B27 driven disease progression. However, the presence of HLA-B27 negative patients underlines the presence of additional risk factors. The current treatment options for SpAs are Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), TNF inhibitors (TNFis), Disease-Modifying Anti-Rheumatic Drugs (DMARDs) and physiotherapy yet there are ongoing clinical trials. Anti IL17 drugs and targeted synthetic DMARDs such as JAK inhibitors are also emerging as treatment alternatives. This review discusses the current diagnosis criteria, treatment options and gives an overview of the previous findings and theories to clarify the possible contributors to SpA pathogenesis with a focus on Ankylosing Spondylitis (AS) and enthesitis-related arthritis (ERA).
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Zeynep Balık
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gaye Pişiren
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Umut Kalyoncu
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seza Özen
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
44
|
OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:4535-4546. [DOI: 10.1093/rheumatology/keac124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/28/2022] [Indexed: 11/13/2022] Open
|
45
|
Edwards V, Smith DL, Meylan F, Tiffany L, Poncet S, Wu WW, Phue JN, Santana-Quintero L, Clouse KA, Gabay O. Analyzing the Role of Gut Microbiota on the Onset of Autoimmune Diseases Using TNF ΔARE Murine Model. Microorganisms 2021; 10:73. [PMID: 35056521 PMCID: PMC8779571 DOI: 10.3390/microorganisms10010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Very little is known about disease transmission via the gut microbiome. We hypothesized that certain inflammatory features could be transmitted via the gut microbiome and tested this hypothesis using an animal model of inflammatory diseases. Twelve-week-old healthy C57 Bl/6 and Germ-Free (GF) female and male mice were fecal matter transplanted (FMT) under anaerobic conditions with TNFΔARE-/+ donors exhibiting spontaneous Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease (IBD) or with conventional healthy mice control donors. The gut microbiome analysis was performed using 16S rRNA sequencing amplification and bioinformatics analysis with the HIVE bioinformatics platform. Histology, immunohistochemistry, ELISA Multiplex analysis, and flow cytometry were conducted to confirm the inflammatory transmission status. We observed RA and IBD features transmitted in the GF mice cohort, with gut tissue disruption, cartilage alteration, elevated inflammatory mediators in the tissues, activation of CD4/CD8+ T cells, and colonization and transmission of the gut microbiome similar to the donors' profile. We did not observe a change or transmission when conventional healthy mice were FMT with TNFΔARE-/+ donors, suggesting that a healthy microbiome might withstand an unhealthy transplant. These findings show the potential involvement of the gut microbiome in inflammatory diseases. We identified a cluster of bacteria playing a role in this mechanism.
Collapse
Affiliation(s)
- Vivienne Edwards
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Dylan L. Smith
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Francoise Meylan
- Translational Immunology Section, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA;
| | - Linda Tiffany
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Sarah Poncet
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Luis Santana-Quintero
- U.S. Food and Drug Administration, Center for Biologics Evaluation & Research, Office of Biostatistics and Epidemiology, HIVE, Silver Spring, MD 20993, USA;
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Hematology and Oncology Products, Silver Spring, MD 20993, USA
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Odile Gabay
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| |
Collapse
|
46
|
Melissari MT, Henriques A, Tzaferis C, Prados A, Sarris ME, Chalkidi N, Mavroeidi D, Chouvardas P, Grammenoudi S, Kollias G, Koliaraki V. Col6a1 +/CD201 + mesenchymal cells regulate intestinal morphogenesis and homeostasis. Cell Mol Life Sci 2021; 79:1. [PMID: 34910257 PMCID: PMC11073078 DOI: 10.1007/s00018-021-04071-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022]
Abstract
Intestinal mesenchymal cells encompass multiple subsets, whose origins, functions, and pathophysiological importance are still not clear. Here, we used the Col6a1Cre mouse, which targets distinct fibroblast subsets and perivascular cells that can be further distinguished by the combination of the CD201, PDGFRα and αSMA markers. Developmental studies revealed that the Col6a1Cre mouse also targets mesenchymal aggregates that are crucial for intestinal morphogenesis and patterning, suggesting an ontogenic relationship between them and homeostatic PDGFRαhi telocytes. Cell depletion experiments in adulthood showed that Col6a1+/CD201+ mesenchymal cells regulate homeostatic enteroendocrine cell differentiation and epithelial proliferation. During acute colitis, they expressed an inflammatory and extracellular matrix remodelling gene signature, but they also retained their properties and topology. Notably, both in homeostasis and tissue regeneration, they were dispensable for normal organ architecture, while CD34+ mesenchymal cells expanded, localised at the top of the crypts, and showed increased expression of villous-associated morphogenetic factors, providing thus evidence for the plasticity potential of intestinal mesenchymal cells. Our results provide a comprehensive analysis of the identities, origin, and functional significance of distinct mesenchymal populations in the intestine.
Collapse
Affiliation(s)
- Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Ana Henriques
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michalis E Sarris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Dimitra Mavroeidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Panagiotis Chouvardas
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sofia Grammenoudi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece.
| |
Collapse
|
47
|
Nayar S, Cho JH. From single-target to cellular niche targeting in Crohn's disease: intercepting bad communications. EBioMedicine 2021; 74:103690. [PMID: 34773892 PMCID: PMC8601974 DOI: 10.1016/j.ebiom.2021.103690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The mainstay of moderate to severe Crohn's disease (CD), anti-TNF treatment, shows no clinical benefit in ∼40% of patients, likely due to incomplete cellular targeting and delayed treatment institution. While single-target therapeutics have been highly effective for some CD patients, substantial limitations with respect to safety, efficacy, and long-term, complete remission remain. Deconvolution of the cellular and molecular circuitry of tissue lesions underscores the importance of combinatorial strategies targeting cellular niches. This review aims to evaluate current therapeutic approaches used to manage CD, and highlight recent advances to our cellular, genetic, and molecular understanding of mechanisms driving pathogenic niche activation in CD. We propose new frameworks outlining that combinatorial therapies, along with serial tissue sampling and studies guided by genetics and genomics, can advance on current treatment approaches and will inform newer strategies upon which we can move towards precision therapeutics in IBD.
Collapse
Affiliation(s)
- Shikha Nayar
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Hess CSM Building Room 8-201, New York, NY 10029, USA.
| | - Judy H Cho
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Hess CSM Building Room 8-201, New York, NY 10029, USA
| |
Collapse
|
48
|
Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol 2021; 21:704-717. [PMID: 33911232 DOI: 10.1038/s41577-021-00540-z] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
In chronic infection, inflammation and cancer, the tissue microenvironment controls how local immune cells behave, with tissue-resident fibroblasts emerging as a key cell type in regulating activation or suppression of an immune response. Fibroblasts are heterogeneous cells, encompassing functionally distinct populations, the phenotypes of which differ according to their tissue of origin and type of inciting disease. Their immunological properties are also diverse, ranging from the maintenance of a potent inflammatory environment in chronic inflammation to promoting immunosuppression in malignancy, and encapsulating and incarcerating infectious agents within tissues. In this Review, we compare the mechanisms by which fibroblasts control local immune responses, as well as the factors regulating their inflammatory and suppressive profiles, in different tissues and pathological settings. This cross-disease perspective highlights the importance of tissue context in determining fibroblast-immune cell interactions, as well as potential therapeutic avenues to exploit this knowledge for the benefit of patients with chronic infection, inflammation and cancer.
Collapse
|
49
|
Kondo N, Kuroda T, Kobayashi D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222010922. [PMID: 34681582 PMCID: PMC8539723 DOI: 10.3390/ijms222010922] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic systemic inflammation causing progressive joint damage that can lead to lifelong disability. The pathogenesis of RA involves a complex network of various cytokines and cells that trigger synovial cell proliferation and cause damage to both cartilage and bone. Involvement of the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 is central to the pathogenesis of RA, but recent research has revealed that other cytokines such as IL-7, IL-17, IL-21, IL-23, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1β, IL-18, IL-33, and IL-2 also play a role. Clarification of RA pathology has led to the development of therapeutic agents such as biological disease-modifying anti-rheumatic drugs (DMARDs) and Janus kinase (JAK) inhibitors, and further details of the immunological background to RA are emerging. This review covers existing knowledge regarding the roles of cytokines, related immune cells and the immune system in RA, manipulation of which may offer the potential for even safer and more effective treatments in the future.
Collapse
Affiliation(s)
- Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City 951-8510, Japan;
| | - Takeshi Kuroda
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City 950-2181, Japan
- Correspondence: ; Tel.: +81-25-262-6244; Fax: +81-25-262-7517
| | - Daisuke Kobayashi
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City 951-8510, Japan;
| |
Collapse
|
50
|
Wang H, Li X, Kajikawa T, Shin J, Lim JH, Kourtzelis I, Nagai K, Korostoff JM, Grossklaus S, Naumann R, Chavakis T, Hajishengallis G. Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis. J Clin Invest 2021; 131:e150578. [PMID: 34403362 PMCID: PMC8483759 DOI: 10.1172/jci150578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1-deficient mice. Compared with WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jieun Shin
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonathan M. Korostoff
- Department of Periodontics, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia Grossklaus
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|