1
|
Lindkvist M, Göthlin Eremo A, Paramel GV, Anisul Haque S, Rydberg Millrud C, Rattik S, Grönberg C, Liberg D, Sirsjö A, Fransén K. IL1RAP Expression in Human Atherosclerosis: A Target of Novel Antibodies to Reduce Vascular Inflammation and Adhesion. J Am Heart Assoc 2025:e039557. [PMID: 40371594 DOI: 10.1161/jaha.124.039557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Blockade of IL1RAP (interleukin 1 receptor associated protein) was recently shown to reduce atherosclerosis in mice, but the effect on human vascular cells is largely unknown. Targeting the IL1RAP coreceptor represents a novel strategy to block the IL1RAP-dependent cytokines IL (interleukin)-1, IL-33, and IL-36. In the present study, we aimed to evaluate the role of novel antibodies targeting IL1RAP to reduce the effects of IL-1β, IL-33, or IL-36γ in human vascular cells. METHODS Expression of IL1RAP was observed in human atherosclerotic plaques by immunohistochemistry and microarray and in endothelial cells by flow cytometry. Endothelial cells were cultured with IL-1β, IL-33, or IL-36γ cytokines with or without IL1RAP antibodies and analyzed with Olink proteomics, ELISA, Western blot, and real-time quantitative polymerase chain reaction. The functional effect of IL1RAP antibodies on endothelial cells were analyzed with adhesion and permeability assays. RESULTS Olink proteomics showed inhibition of the inflammatory proteins LIF (leukemia inhibitory factor), OPG (osteoprotegerin), CCL4 (C-C motif chemokine ligand 4), and MCP-3 (monocyte chemoattractant protein 3) by IL1RAP-blockade in endothelial cells after IL-1β stimulation. In addition, the IL1RAP antibodies inhibited IL-1β, and IL-33 induced IL-6 and IL-8 secretion. Secretion of MCP-1 (monocyte chemoattractant protein 1) was induced by IL-1β, IL-33, and IL-36γ, and subsequently was inhibited by IL1RAP antibodies. Similar effects were found on mRNA expression level. Endothelial expression of the adhesion markers ICAM1, VCAM1, and SELE were significantly reduced by IL1RAP antibodies, and neutrophil adhesion to endothelial cells induced by IL-1β and IL-33 was reduced by IL1RAP blockade. In human atherosclerotic lesions, IL1RAP expression correlated with markers of inflammation like IL6, IL8, and MCP1. CONCLUSIONS IL1RAP-targeting antibodies can reduce the expression of inflammatory cytokines and markers of adhesion in endothelial cells, which may be of importance for future putative targeted treatments against cardiovascular disease.
Collapse
Affiliation(s)
- Madelene Lindkvist
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Anna Göthlin Eremo
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- Department of Clinical Research Laboratory, School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Geena Varghese Paramel
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Sheikh Anisul Haque
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | | | | | | | | | - Allan Sirsjö
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Karin Fransén
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| |
Collapse
|
2
|
Yoshimura T, Okamura T, Yuge H, Hosomi Y, Kimura T, Ushigome E, Nakanishi N, Sasano R, Ogata T, Hamaguchi M, Fukui M. Gut dysbiosis induced by a high-salt diet aggravates atherosclerosis by increasing the absorption of saturated fatty acids in ApoE-deficient mice. J Clin Biochem Nutr 2025; 76:210-220. [PMID: 40151404 PMCID: PMC11936735 DOI: 10.3164/jcbn.24-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 03/29/2025] Open
Abstract
Excessive salt intake has been associated with gut dysbiosis and increased cardiovascular risk. This study investigates the role of gut dysbiosis induced by a high-salt diet in the progression of atherosclerosis in ApoE-deficient mice. Sixteen-week-old male ApoE-deficient mice were fed either a high-fat, high-sucrose diet or high-fat, high-sucrose diet supplemented with 4% NaCl for eight weeks. The group on the HFHSD with high salt showed significant progression of atherosclerosis compared to the high-fat, high-sucrose diet group. Analysis of the gut microbiota revealed reduced abundance of beneficial bacteria such as Allobaculum spp., Lachnospiraceae, and Alphaproteobacteria in the high-salt group. Additionally, this group exhibited increased expression of the Cd36 gene, a transporter of long-chain fatty acids, in the small intestine. Serum and aortic levels of saturated fatty acids, known contributors to atherosclerosis, were markedly elevated in the high-salt group. These findings suggest that a high-salt diet exacerbates atherosclerosis by altering gut microbiota and increasing the absorption of saturated fatty acids through upregulation of intestinal fatty acid transporters. This study provides new insights into how dietary salt can influence cardiovascular health through its effects on the gut microbiome and lipid metabolism.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroki Yuge
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yukako Hosomi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomonori Kimura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Ikeda S. Is soluble ST2 an useful biomarker for early diagnosis of coronary atherosclerosis? Hypertens Res 2025; 48:839-841. [PMID: 39537983 DOI: 10.1038/s41440-024-01987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Shuntaro Ikeda
- Department of Heart Failure Management, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
4
|
Shi P, Sun P, Lou C, Fang J, Zhang L, Xie B, Zhang C. Adventitial Injection of Hyaluronic Acid/Sodium Alginate Hydrogel Loaded With IL-33 Antibody Decreases Neointimal Hyperplasia. J Surg Res 2025; 305:107-117. [PMID: 39667249 DOI: 10.1016/j.jss.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Neointimal hyperplasia is one of the persistent complications after vascular interventions, and is the major cause of treatment failure. Interleukin-33 (IL-33) emerges as a crucial factor in many biological processes and plays an important role in vascular diseases. Adventitial injection is catching attention for its effectiveness and fewer side effects. We hypothesize that targeting IL-33 by adventitial injection can be a therapeutic method to inhibit neointimal hyperplasia. METHOD IL-33 expression was examined in human vein graft. The hydrogel was fabricated by the interaction of hyaluronic acid, sodium alginate, and CaCO3; and phosphate buffered saline (PBS) or IL-33 antibody or recombinant IL-33 was mixed within the hydrogel uniformly. A rat aortic wire injury-induced neointimal hyperplasia model was developed; rats were divided into three groups and received an adventitial injection of a hydrogel loaded with PBS or IL-33 antibody or recombinant IL-33 after wire injury. Tissues were harvested at day 21 and analyzed by histology and immunohistochemical staining. Hydrogel loaded with PBS, IL-33 antibody, or IL-33 was also used in a mouse carotid artery ligation neointimal hyperplasia model. RESULT There was a high expression of IL-33 in human vein graft neointima. Hydrogel can be successfully injected into the aortic wall and is encapsulated by the adventitia. The hydrogel could be seen beneath the adventitia after adventitial injection and was partly degraded at day 21. There was a significantly thinner neointimal thickness and less proliferation and inflammation in the IL-33 antibody group compared to the control group. On the contrary, the IL-33 group has a thicker neointima, increased proliferation, and inflammation. The mouse carotid artery ligation model showed similar results. CONCLUSIONS IL-33 plays a role in arterial neointimal hyperplasia in both human and rodent models; adventitial injection of hydrogel loaded with IL-33 antibody can effectively decrease neointimal thickness. Neutralizing IL-33 by IL-33 antibody may be a potential therapeutic method to inhibit intimal hyperplasia after vascular interventions.
Collapse
Affiliation(s)
- Pengfei Shi
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Peng Sun
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China; Department of Cardiovascular Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Chunyang Lou
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbang Fang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Yu J, Li Y, Hu J, Wang Y. Interleukin-33 induces angiogenesis after myocardial infarction via AKT/eNOS signaling pathway. Int Immunopharmacol 2024; 143:113433. [PMID: 39486188 DOI: 10.1016/j.intimp.2024.113433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality and morbidity worldwide. MI-damaged vascular structures are difficult to completely restore due to the heart's low regenerative capacity. Given interleukin-33 (IL-33) as a potent endothelial activator promoting angiogenesis, this study investigated the role of IL-33 in angiogenesis and cardiac repair after MI. A mouse model of MI was established. IL-33 improved cardiac function and induced an increase in vascular density after MI. Besides, IL-33 promoted human endothelial cells proliferation, migration, and differentiation under both normoxic and hypoxic conditions, consistently with increased angiogenesis in vivo. Mechanistic studies demonstrated that IL-33 could promote angiogenesis by activating eNOS and AKT, and stimulating NO production in vivo and in vitro. Given that injection of exogenous IL-33 induced an inflammatory response, we employed a multifunctional biomimetic nanoparticle drug delivery system to deliver IL-33, thereby enhancing its targeting to the heart for fibrotic therapy and reducing inflammation. In conclusion, our results indicate that IL-33 promotes endothelial angiogenesis after MI through AKT/eNOS/NO signaling pathway. PM&EM/IL-33 nanoparticles may hold promising therapeutic potential for protecting cardiac ischemic injury and mitigating inflammation.
Collapse
Affiliation(s)
- Jiaqi Yu
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yuyu Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jiaxin Hu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
6
|
Shao Y, Yang WY, Nanayakkara G, Saaoud F, Ben Issa M, Xu K, Lu Y, Jiang X, Mohsin S, Wang H, Yang X. Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4 +Foxp3 + Regulatory T Cell Immunosuppression. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100022. [PMID: 39926714 PMCID: PMC11804271 DOI: 10.53941/ijddp.2024.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.
Collapse
Affiliation(s)
- Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - William Y. Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Gayani Nanayakkara
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT84112, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Sadia Mohsin
- Aging + Cardiovascular Discovery Center (ACDC), Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| |
Collapse
|
7
|
Liu W, Luo D, Liu X, Zhang Y, Wang Z. Predictive value of low serum interleukin-33 levels in acute ischemic stroke outcomes. Front Neurol 2024; 15:1503443. [PMID: 39650246 PMCID: PMC11621050 DOI: 10.3389/fneur.2024.1503443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
Background Human interleukin-33 (IL-33), a member of the IL-1 family, has been identified as a therapeutic target due to its role as a proinflammatory mediator in various diseases. This study aims to evaluate the prognostic value of serum IL-33 levels in patients admitted with their first-ever acute ischemic stroke. Methods This single-center, prospective, observational study included 216 patients with acute ischemic stroke. Serum IL-33 levels were measured at hospital admission to assess their predictive value for functional outcomes and mortality within 3 months. IL-33 levels were dichotomized at the median into two groups: the reduced group (IL-33 ≤ median) and the normal group (IL-33 > median). Results The median age of the 216 patients was 66 years (interquartile range [IQR], 56-75), with 132 (61.6%) being women. IL-33 serum levels were inversely correlated with stroke severity, as measured by the National Institutes of Health Stroke Scale (NIHSS) score and lesion size. Patients in the reduced IL-33 group had a higher rate of unfavorable outcomes (55.6% vs. 18.5%; absolute difference, 29.2% [95% confidence interval (CI), 24.5% to 34.4%]; odds ratio (OR), 3.19 [95% CI, 1.72 to 5.91]) and mortality (24.1% vs. 3.7%; absolute difference, 15.8% [95% CI, 13.1% to 18.3%]; OR, 4.12 [95% CI, 1.38 to 12.31]) compared to the normal group. Furthermore, IL-33 levels enhanced the prognostic accuracy of the NIHSS for predicting functional outcomes (combined area under the curve [AUC], 0.84; 95% CI, 0.79-0.84; P < 0.001) and mortality (combined AUC, 0.88; 95% CI, 0.83-0.94; P < 0.001). Conclusion This study demonstrates that lower IL-33 levels are associated with increased stroke severity and poorer prognosis. These findings suggest that IL-33 may serve as a valuable biomarker for predicting poor outcomes following acute ischemic stroke.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Dongliang Luo
- Department of Neurosurgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xingyu Liu
- Department of Neurosurgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yuqing Zhang
- Department of Neurosurgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Roehm B, McAdams M, Gordon J, Zhang S, Xu P, Grodin JL, Hedayati SS. Association of suPAR, ST2, and galectin-3 with eGFR decline and mortality in patients with advanced heart failure with reduced ejection fraction. J Investig Med 2024; 72:640-651. [PMID: 38715217 PMCID: PMC11995849 DOI: 10.1177/10815589241249991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) are at risk for chronic kidney disease (CKD). Elevated levels of circulating biomarkers soluble urokinase plasminogen activator receptor (suPAR), galectin-3, soluble suppression of tumorigenicity 2 (ST2), and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) are associated with CKD progression and mortality. The predictive value of these biomarkers in a population with HFrEF and kidney disease is relatively unknown. We sought to determine whether these biomarkers were associated with longitudinal trajectory of estimated glomerular filtration rate (eGFR) in HFrEF and assess their association with mortality using a joint model to account for competing risks of ventricular assist device (VAD) implantation and heart transplantation. We included participants from the Registry Evaluation of Vital Information for Ventricular Assist Devices in Ambulatory Life with repeated eGFR measures over 2 years. Of 309 participants, mean age was 59 years, median eGFR 60 ml/min/1.73 m2, 45 participants died, 33 received VAD, and 25 received orthotopic heart transplantation. Higher baseline serum standardized suPAR (β coefficient = -0.36 √(ml/min/1.73 m2), 95% confidence interval (-0.48 to -0.24), p < 0.001), standardized galectin-3 (-0.14 √(ml/min/1.73 m2) (-0.27 to -0.02), p = 0.02), and log NT-proBNP (-0.23 √(ml/min/1.73 m2) (-0.31 to -0.15), p < 0.001) were associated with eGFR decline. ST2 and log NT-proBNP were associated with mortality. Higher baseline suPAR, galectin-3, and NT-proBNP are associated with eGFR decline in patients with HFrEF. Only ST2 and NT-proBNP are associated with greater mortality after controlling for other factors including change in eGFR. These biomarkers may provide prognostic value for kidney disease progression in HFrEF and inform candidacy for advanced heart failure therapies.
Collapse
Affiliation(s)
- Bethany Roehm
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meredith McAdams
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Gordon
- Division of Cardiology, Rush University Medical Center, Chicago, IL, USA
| | - Song Zhang
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pin Xu
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Grodin
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Susan Hedayati
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology and Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Hussain S, Majumder N, Mazumder MHH, Lewis SE, Olapeju O, Velayutham M, Amin MS, Brundage K, Kelley EE, Vanoirbeek J. Intermittent ozone inhalation during house dust mite-induced sensitization primes for adverse asthma phenotype. Redox Biol 2024; 76:103330. [PMID: 39244793 PMCID: PMC11407077 DOI: 10.1016/j.redox.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The ability of air pollution to induce acute exacerbation of asthma is well documented. However, the ability of ozone (O3), the most reactive gaseous component of air pollution, to function as a modulator during sensitization is not well established. C57BL/6 J male mice were intranasally sensitized to house dust mite (HDM) (40 μg/kg) for 3 weeks on alternate days in parallel with once-a-week O3 exposure (1 ppm). Mice were euthanized 24 h following the last HDM challenge. Lung lavage, histology, lung function (both forced oscillation and forced expiration-based), immune cell profiling, inflammation (pulmonary and systemic), and immunoglobulin production were assessed. Compared to HDM alone, HDM + O3 leads to a significant increase in peribronchial inflammation (p < 0.01), perivascular inflammation (p < 0.001) and methacholine-provoked large airway hyperreactivity (p < 0.05). Serum total IgG and IgE and HDM-specific IgG1 were 3-5 times greater in HDM + O3 co-exposure compared to PBS and O3-exposed groups. An increase in activated/mature lung total and monocyte-derived dendritic cells (p < 0.05) as well as T-activated, and T memory lymphocyte subset numbers (p < 0.05) were noted in the HDM + O3 group compared to HDM alone group. Concurrent O3 inhalation and HDM sensitization also caused significantly greater (p < 0.05) lung tissue interleukin-17 pathway gene expression and mediator levels in the serum. Redox imbalance was manifested by impaired lung antioxidant defense and increased oxidants. O3 inhalation during allergic sensitization coalesces in generating a significantly worse TH17 asthmatic phenotype.
Collapse
Affiliation(s)
- Salik Hussain
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA; Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA.
| | - Nairrita Majumder
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sara E Lewis
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Olapeju
- Pathology, Anatomy and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Murugesan Velayutham
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Md Shahrier Amin
- Pathology, Anatomy and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Kathleen Brundage
- Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jeroen Vanoirbeek
- KU Leuven, Department of Public Health and Primary Care, Centre for Environment and Health, Leuven, Belgium
| |
Collapse
|
10
|
Nyárády BB, Dósa E, Kőhidai L, Pállinger É, Gubán R, Szőnyi Á, Kiss LZ, Bagyura Z. Associations between Various Inflammatory Markers and Carotid Findings in a Voluntary Asymptomatic Population Sample. Int J Mol Sci 2024; 25:9656. [PMID: 39273602 PMCID: PMC11394953 DOI: 10.3390/ijms25179656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and atherosclerosis is the key factor promoting its development. Carotid intima-media thickening and the presence of carotid plaques are important indices of cardiovascular risk. In addition, inflammation is a major and complex factor in the development of atherosclerosis. The relationships between carotid atherosclerosis and certain inflammatory markers have rarely been studied in healthy individuals. Therefore, we aimed to investigate the associations between subclinical carotid atherosclerosis and various inflammatory biomarkers in a large Caucasian population free of evident CVD. In addition to recording study participants' demographic characteristics, anthropometric characteristics, and atherosclerotic risk factors, laboratory tests were performed to measure levels of hemoglobin A1c (HbA1c), high-sensitivity C-reactive protein, and inflammatory cytokines/chemokines, including interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-18, IL-23, IL-33, interferon (IFN)-α2, IFN-γ, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP)-1. This study included 264 asymptomatic individuals with a median age of 61.7 years (interquartile range, 54.5-67.5 years); 45.7% of participants were male. Participants were divided into two groups according to their carotid status: the normal carotid group, comprising 120 participants; and the pathological carotid group, comprising 144 participants. Compared with the normal carotid group, hypertension and diabetes mellitus were significantly more common and serum levels of HbA1c, IL-8, and MCP-1 were significantly higher in the pathological carotid group. Multivariate regression analysis revealed significant positive associations between pathological carotid findings and serum levels of IL-8 (highest tertile, OR: 2.4, p = 0.030) and MCP-1 (highest tertile, OR: 2.4, p = 0.040). Our results suggest that IL-8 and MCP-1 may serve as early indicators of subclinical atherosclerosis, thereby helping to identify individuals at increased risk of CVD before the onset of clinical symptoms.
Collapse
Affiliation(s)
| | - Edit Dósa
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Renáta Gubán
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Ádám Szőnyi
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Loretta Zsuzsa Kiss
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Institute for Clinical Data Management, Semmelweis University, 1085 Budapest, Hungary
| | - Zsolt Bagyura
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Institute for Clinical Data Management, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
11
|
Kiełbowski K, Skórka P, Plewa P, Bakinowska E, Pawlik A. The Role of Alarmins in the Pathogenesis of Atherosclerosis and Myocardial Infarction. Curr Issues Mol Biol 2024; 46:8995-9015. [PMID: 39194749 DOI: 10.3390/cimb46080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Atherosclerosis is a condition that is associated with lipid accumulation in the arterial intima. Consequently, the enlarging lesion, which is also known as an atherosclerotic plaque, may close the blood vessel lumen, thus leading to organ ischaemia. Furthermore, the plaque may rupture and initiate the formation of a thrombus, which can cause acute ischaemia. Atherosclerosis is a background pathological condition that can eventually lead to major cardiovascular diseases such as acute coronary syndrome or ischaemic stroke. The disorder is associated with an altered profile of alarmins, stress response molecules that are secreted due to cell injury or death and that induce inflammatory responses. High-mobility group box 1 (HMGB1), S100 proteins, interleukin-33, and heat shock proteins (HSPs) also affect the behaviour of endothelial cells and vascular smooth muscle cells (VSMCs). Thus, alarmins control the inflammatory responses of endothelial cells and proliferation of VSMCs, two important processes implicated in the pathogenesis of atherosclerosis. In this review, we will discuss the role of alarmins in the pathophysiology of atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
12
|
Chang S, Wang Z, An T. T-Cell Metabolic Reprogramming in Atherosclerosis. Biomedicines 2024; 12:1844. [PMID: 39200308 PMCID: PMC11352190 DOI: 10.3390/biomedicines12081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a key pathological basis for cardiovascular diseases, significantly influenced by T-cell-mediated immune responses. T-cells differentiate into various subtypes, such as pro-inflammatory Th1/Th17 and anti-inflammatory Th2/Treg cells. The imbalance between these subtypes is critical for the progression of atherosclerosis (AS). Recent studies indicate that metabolic reprogramming within various microenvironments can shift T-cell differentiation towards pro-inflammatory or anti-inflammatory phenotypes, thus influencing AS progression. This review examines the roles of pro-inflammatory and anti-inflammatory T-cells in atherosclerosis, focusing on how their metabolic reprogramming regulates AS progression and the associated molecular mechanisms of mTOR and AMPK signaling pathways.
Collapse
Affiliation(s)
| | | | - Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.C.); (Z.W.)
| |
Collapse
|
13
|
Ye Y, Chang F, Xu Y. IL-33 in Atherosclerosis: An Insufficiently Explored and Controversial Research Area. Cardiovasc Drugs Ther 2024; 38:419-420. [PMID: 38294596 DOI: 10.1007/s10557-024-07553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Affiliation(s)
- Yanyan Ye
- Department of Cardiology, The Second People's Hospital of Liaocheng, Liaocheng, 252000, People's Republic of China
| | - Fangyuan Chang
- Department of Cardiology, The Second People's Hospital of Liaocheng, Liaocheng, 252000, People's Republic of China
| | - Yingchun Xu
- Department of Cardiology, The Second People's Hospital of Liaocheng, Liaocheng, 252000, People's Republic of China.
| |
Collapse
|
14
|
Qian Z, Shaofang F, Chen C, Chunhua S, Nan W, Chao L. IL-33 Suppresses the Progression of Atherosclerosis via the ERK1/2-IRF1-VCAM-1 Pathway. Cardiovasc Drugs Ther 2024; 38:569-580. [PMID: 37957490 DOI: 10.1007/s10557-023-07523-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE This study was designed to explore the effects of interleukin 33 (IL-33) on the progression of atherosclerosis and the possible mechanism. METHODS The adhesion assay was performed on isolated peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC). The expression of proteins and messenger RNA (mRNA) were detected by western blot and quantitative real-time polymerase chain reaction (PCR), including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and P-selectin. The effect of IL-33 on the interaction of growth stimulation expressed gene 2 (ST2) with myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase (IRAK) 1/4 were investigated using co-immunoprecipitation assay. An apolipoprotein (Apo) E-/- mice model was used to confirm the effect of IL-33 on atherosclerosis progression. Area of plaques was recorded by hematoxylin-eosin (H&E) staining. The severity of atherosclerosis plaque was evaluated using immunohistochemistry assay, and lipid accumulation was measured by an oil red O staining. In contrast, western blot was performed to detect the expression levels of VCAM-1, extracellular signal-regulated kinase (ERK) 1/2, and interferon regulatory factor 1 (IRF1). RESULTS Our study observed that IL-33 suppressed cell adhesion and the expression of VCAM-1 in tumor necrosis factor-α (TNF-α) exposed HUVEC. Moreover, the addition of IL-33 significantly inhibited the expression of IRF1 and the binding level of IRF1 to VCAM-1 and also promoted the phosphorylation level of IRAK1/4 and ERK1/2 compared to TNF-α-stimulated HUVEC. The ST2 neutralizing antibody or ERK pathway inhibitor SCH772984 reversed the regulatory effects of IL-33 on HUVEC, suggesting that IL-33 suppressed IRF1 and VCAM-1 dependent on binding to ST2 and activating the ERK1/2 signaling pathway. Further investigation in vivo confirmed that IL-33 decreased the expressions of IRF1 and VCAM-1 by activating the phosphorylation of ERK1/2 in the thoracic aorta of Apo E-/- mice. CONCLUSION In conclusion, our results demonstrated that IL-33 plays a protective role in the progression of atherosclerosis by inhibiting cell adhesion via the ERK1/2-IRF1-VCAM-1 pathway. This study may provide a potential therapeutic way to prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Zhang Qian
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China
| | - Feng Shaofang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Chen Chen
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China
| | - Shi Chunhua
- Medical Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Wang Nan
- Jinling Hospital, Medical School of Nanjing University, 22 Hankou Rd, Nanjing, 210093, Jiangsu, China.
| | - Liu Chao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
15
|
Piccioni A, Baroni S, Manca F, Sarlo F, Savioli G, Candelli M, Bronzino A, Covino M, Gasbarrini A, Franceschi F. Multi-Marker Approach in Patients with Acute Chest Pain in the Emergency Department. J Pers Med 2024; 14:564. [PMID: 38929785 PMCID: PMC11204991 DOI: 10.3390/jpm14060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Chest pain is a prevalent reason for emergency room referrals and presents diagnostic challenges. The physician must carefully differentiate between cardiac and noncardiac causes, including various vascular and extracardiovascular conditions. However, it is crucial not to overlook serious conditions such as acute coronary syndrome (ACS). Diagnosis of acute myocardial infarction (AMI) and early discharge management become difficult when traditional clinical criteria, ECG, and troponin values are insufficient. Recently, the focus has shifted to a "multi-marker" approach to improve diagnostic accuracy and prognosis in patients with chest pain. METHODS This observational, prospective, single-center study involved, with informed consent, 360 patients presenting to the emergency department with typical chest pain and included a control group of 120 healthy subjects. In addition to routine examinations, including tests for hsTnI (Siemens TNIH kit), according to the 0-1 h algorithm, biochemical markers sST2 (tumorigenicity suppression-2) and suPAR (soluble urokinase plasminogen activator receptor) were also evaluated for each patient. A 12-month follow-up was conducted to monitor outcomes and adverse events. RESULTS We identified two groups of patients: a positive one (112 patients) with high levels of hsTnI, sST2 > 24.19 ng/mL, and suPAR > 2.9 ng/mL, diagnosed with ACS; and a negative one (136 patients) with low levels of hsTnI, suPAR < 2.9 ng/mL, and sST2 < 24.19 ng/mL. During the 12-month follow-up, no adverse events were observed in the negative group. In the intermediate group, patients with hsTnI between 6 ng/L and the ischemic limit, sST2 > 29.1 ng/mL and suPAR > 2.9 ng/mL, showed the highest probability of adverse events during follow-up, while those with sST2 < 24.19 ng/mL and suPAR < 2.9 ng/mL had a better outcome with no adverse events at 12 months. CONCLUSION Our data suggest that sST2 and suPAR, together with hsTnI, may be useful in the prognosis of cardiovascular patients with ACS, providing additional information on endothelial damage. These biomarkers could guide the clinical decision on further diagnostic investigations. In addition, suPAR and sST2 emerge as promising for event prediction in patients with chest pain. Their integration into the standard approach in PS could facilitate more efficient patient management, allowing safe release or timely admission based on individual risk.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Roma, Italy; (F.M.); (M.C.); (A.B.); (M.C.); (F.F.)
| | - Silvia Baroni
- Unit of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (S.B.); (F.S.)
| | - Federica Manca
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Roma, Italy; (F.M.); (M.C.); (A.B.); (M.C.); (F.F.)
| | - Francesca Sarlo
- Unit of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (S.B.); (F.S.)
| | - Gabriele Savioli
- Departement of Emergency, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Roma, Italy; (F.M.); (M.C.); (A.B.); (M.C.); (F.F.)
| | - Alessandra Bronzino
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Roma, Italy; (F.M.); (M.C.); (A.B.); (M.C.); (F.F.)
| | - Marcello Covino
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Roma, Italy; (F.M.); (M.C.); (A.B.); (M.C.); (F.F.)
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Roma, Italy; (F.M.); (M.C.); (A.B.); (M.C.); (F.F.)
| |
Collapse
|
16
|
Wu J, Apaer S, Fulati X, Vuitton DA, Zhang Y, Payiziwula J, Anweier N, Li T, Tuerxun K, Aji T, Zhao J, Shao Y, Tuxun T, Wen H. Soluble suppression of tumourigenicity 2 as a predictor of postoperative hepatic failure. BJS Open 2024; 8:zrae043. [PMID: 38935425 PMCID: PMC11210312 DOI: 10.1093/bjsopen/zrae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/11/2024] [Accepted: 03/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Posthepatectomy liver failure remains a potentially life-threatening complication after hepatectomy. Soluble suppression of tumourigenicity 2 is an injury-related biomarker. The aim of the study was to assess soluble suppression of tumourigenicity 2 elevation after hepatectomy and whether it can predict posthepatectomy liver failure. METHODS This was a single-centre retrospective study including all patients who underwent a liver resection between 2015 and 2019. Plasma concentrations of soluble suppression of tumourigenicity 2 were measured before surgery and at postoperative days 1, 2, 5 and 7. Posthepatectomy liver failure was defined according to the International Study Group of Liver Surgery and the morbidity rate was graded according to the Clavien-Dindo classification. RESULTS A total of 173 patients were included (75 underwent major and 98 minor resection); plasma levels of soluble suppression of tumourigenicity 2 increased from 43.42 (range 18.69-119.96) pg/ml to 2622.23 (range 1354.18-4178.27) pg/ml on postoperative day 1 (P < 0.001). Postoperative day 1 soluble suppression of tumourigenicity 2 concentration accurately predicted posthepatectomy liver failure ≥ grade B (area under curve = 0.916, P < 0.001) and its outstanding performance was not affected by underlying disease, liver pathological status and extent of resection. The cut-off value, sensitivity, specificity, positive predictive value and negative predictive value of postoperative day 1 soluble suppression of tumourigenicity 2 in predicting posthepatectomy liver failure ≥ grade B were 3700, 92%, 85%, 64% and 97% respectively. Soluble suppression of tumourigenicity 2high patients more frequently experienced posthepatectomy liver failure ≥ grade B (64.3% (n = 36) versus 2.6% (n = 3)) and Clavien-Dindo IIIa higher morbidity rate (23.2% (n = 13) versus 5.1% (n = 6)) compared with soluble suppression of tumourigenicity 2low patients. CONCLUSIONS Soluble suppression of tumourigenicity 2 may be a reliable predictor of posthepatectomy liver failure ≥ grade B as early as postoperative day 1 for patients undergoing liver resection. Its role in controlling hepatic injury/regeneration needs further investigation. Registration number: ChiCTR-OOC-15007210 (www.chictr.org.cn/).
Collapse
Affiliation(s)
- Jing Wu
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shadike Apaer
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiapukaiti Fulati
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- WHO Collaborating Centre for Prevention and Treatment of Human Echinococcosis and French National Centre for Echinococcosis, University Bourgogne Franche-Comté and National Reference Centre for Echinococcosis/EurEchino Network, Besançon, France
| | - Yunfei Zhang
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiangduosi Payiziwula
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nuerzhatijiang Anweier
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tao Li
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kahaer Tuerxun
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Kashi Perfecture, Kashi, China
| | - Tuerganaili Aji
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Jinming Zhao
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Tuerhongjiang Tuxun
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Hao Wen
- Department of Liver Transplantation & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
17
|
Mulholland M, Depuydt MAC, Jakobsson G, Ljungcrantz I, Grentzmann A, To F, Bengtsson E, Jaensson Gyllenbäck E, Grönberg C, Rattik S, Liberg D, Schiopu A, Björkbacka H, Kuiper J, Bot I, Slütter B, Engelbertsen D. Interleukin-1 receptor accessory protein blockade limits the development of atherosclerosis and reduces plaque inflammation. Cardiovasc Res 2024; 120:581-595. [PMID: 38563353 PMCID: PMC11074796 DOI: 10.1093/cvr/cvae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
AIMS The interleukin-1 receptor accessory protein (IL1RAP) is a co-receptor required for signalling through the IL-1, IL-33, and IL-36 receptors. Using a novel anti-IL1RAP-blocking antibody, we investigated the role of IL1RAP in atherosclerosis. METHODS AND RESULTS Single-cell RNA sequencing data from human atherosclerotic plaques revealed the expression of IL1RAP and several IL1RAP-related cytokines and receptors, including IL1B and IL33. Histological analysis showed the presence of IL1RAP in both the plaque and adventitia, and flow cytometry of murine atherosclerotic aortas revealed IL1RAP expression on plaque leucocytes, including neutrophils and macrophages. High-cholesterol diet fed apolipoprotein E-deficient (Apoe-/-) mice were treated with a novel non-depleting IL1RAP-blocking antibody or isotype control for the last 6 weeks of diet. IL1RAP blockade in mice resulted in a 20% reduction in subvalvular plaque size and limited the accumulation of neutrophils and monocytes/macrophages in plaques and of T cells in adventitia, compared with control mice. Indicative of reduced plaque inflammation, the expression of several genes related to leucocyte recruitment, including Cxcl1 and Cxcl2, was reduced in brachiocephalic arteries of anti-IL1RAP-treated mice, and the expression of these chemokines in human plaques was mainly restricted to CD68+ myeloid cells. Furthermore, in vitro studies demonstrated that IL-1, IL-33, and IL-36 induced CXCL1 release from both macrophages and fibroblasts, which could be mitigated by IL1RAP blockade. CONCLUSION Limiting IL1RAP-dependent cytokine signalling pathways in atherosclerotic mice reduces plaque burden and plaque inflammation, potentially by limiting plaque chemokine production.
Collapse
Affiliation(s)
- Megan Mulholland
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Gabriel Jakobsson
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Andrietta Grentzmann
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Fong To
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | | | - Sara Rattik
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
- Cantargia AB, Lund, Sweden
| | | | - Alexandru Schiopu
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences, Cardiovascular Research—Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Daniel Engelbertsen
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| |
Collapse
|
18
|
Hosomi Y, Okamura T, Sakai K, Yuge H, Yoshimura T, Majima S, Okada H, Senmaru T, Ushigome E, Nakanishi N, Satoh T, Akira S, Hamaguchi M, Fukui M. IL-33 Reduces Saturated Fatty Acid Accumulation in Mouse Atherosclerotic Foci. Nutrients 2024; 16:1195. [PMID: 38674885 PMCID: PMC11054828 DOI: 10.3390/nu16081195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The cellular and molecular mechanisms of atherosclerosis are still unclear. Type 2 innate lymphocytes (ILC2) exhibit anti-inflammatory properties and protect against atherosclerosis. This study aimed to elucidate the pathogenesis of atherosclerosis development using atherosclerosis model mice (ApoE KO mice) and mice deficient in IL-33 receptor ST2 (ApoEST2 DKO mice). Sixteen-week-old male ApoE KO and ApoEST2 DKO mice were subjected to an 8-week regimen of a high-fat, high-sucrose diet. Atherosclerotic foci were assessed histologically at the aortic valve ring. Chronic inflammation was assessed using flow cytometry and real-time polymerase chain reaction. In addition, saturated fatty acids (palmitic acid) and IL-33 were administered to human aortic endothelial cells (HAECs) to assess fatty acid metabolism. ApoEST2 DKO mice with attenuated ILC2 had significantly worse atherosclerosis than ApoE KO mice. The levels of saturated fatty acids, including palmitic acid, were significantly elevated in the arteries and serum of ApoEST2 DKO mice. Furthermore, on treating HAECs with saturated fatty acids with or without IL-33, the Oil Red O staining area significantly decreased in the IL-33-treated group compared to that in the non-treated group. IL-33 potentially prevented the accumulation of saturated fatty acids within atherosclerotic foci.
Collapse
Affiliation(s)
- Yukako Hosomi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Kimiko Sakai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Hiroki Yuge
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Takashi Yoshimura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan;
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan;
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.H.); (T.O.); (K.S.); (H.Y.); (T.Y.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.F.)
| |
Collapse
|
19
|
Mehraj V, Chen J, Routy JP. Effects of statins beyond lipid-lowering agents in ART-treated HIV infection. Front Immunol 2024; 15:1339338. [PMID: 38655259 PMCID: PMC11035727 DOI: 10.3389/fimmu.2024.1339338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Antiretroviral therapies (ART) have reduced human immunodeficiency virus (HIV) infection-associated morbidity and mortality improving the life of people with HIV (PWH). However, ART lead to residual HIV production, which in conjunction with microbial translocation and immune dysfunction contributes to chronic inflammation and immune activation. PWH on ART remain at an increased risk for cardiovascular diseases (CVDs) including myocardial infarction and stroke; which in part is explained by chronic inflammation and immune activation. Lifestyle factors and certain ART are associated with dyslipidemia characterized by an increase of low-density lipoprotein (LDL), which further contributes in the increased risk for CVDs. Lipid-lowering agents like statins are emerging as immune modulators in decreasing inflammation in a variety of conditions including HIV. The international randomized clinical trial REPRIEVE has shed light on the reduction of CVDs with statin therapy among PWH. Such reports indicate a more than expected benefit of statins beyond their lipid-lowering effects. Bempedoic acid, a first-in-class non-statin LDL-lowering drug with immune modulatory effects, may further aid PWH in combination with statins. Herein, we critically reviewed studies aimed at lipid-lowering and immune-modulating roles of statins that may benefit aging PWH.
Collapse
Affiliation(s)
- Vikram Mehraj
- Research Centre McGill University Health Centre, Montreal, QC, Canada
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jean-Pierre Routy
- Research Centre McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
20
|
Anaraki KT, Zahed Z, Javid RN, Shafiei S, Beiranvandi F, Kahrizsangi NG, Golafshan F, Arzhangzade A, Kojuri J, Almassian S, Hadi R, Gholizadeh P, Kazeminava F. Immune response following transcatheter aortic valve procedure. Vascul Pharmacol 2024; 154:107283. [PMID: 38340884 DOI: 10.1016/j.vph.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Aortic valve stenosis is the most common type of heart valve disease in the United States and Europe and calcific aortic stenosis (AS) affects 2-7% of people aged 65 years and older. Aortic valve replacement (AVR) is the only effective treatment for individuals with this condition. Transcatheter Aortic Valve Replacement (TAVR) has been widely accepted as a minimally invasive therapeutic approach for addressing symptomatic AS in patients who are considered to have a high risk for traditional surgical intervention. TAVR procedure may have a paradoxical effect on the immune system and inflammatory status. A major portion of these immune responses is regulated by activating or inhibiting inflammatory monocytes and the complement system with subsequent changes in inflammatory cytokines. TAVR has the potential to induce various concurrent exposures, including disruption of the native valve, hemodynamic changes, antigenicity of the bioprosthesis, and vascular damage, which finally lead to the development of inflammation. On the other hand, it is important to acknowledge that TAVR may also have anti-inflammatory effects by helping in the resolution of stenosis.The inflammation and immune response following TAVR are complex processes that significantly impact procedural outcomes and patient well-being. Understanding the underlying mechanisms, identifying biomarkers of inflammation, and exploring therapeutic interventions to modulate these responses are crucial for optimizing TAVR outcomes. Further research is warranted to elucidate the precise immunological dynamics and develop tailored strategies to attenuate inflammation and enhance post-TAVR healing while minimizing complications.
Collapse
Affiliation(s)
- Kasra Talebi Anaraki
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Sasan Shafiei
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Beiranvandi
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Faraz Golafshan
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Arzhangzade
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Kojuri
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samin Almassian
- Heart Valve Disease Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raha Hadi
- Department of Chemistry, Faculty of Basic Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Kral M, van der Vorst EP, Surnov A, Weber C, Döring Y. ILC2-mediated immune crosstalk in chronic (vascular) inflammation. Front Immunol 2023; 14:1326440. [PMID: 38179045 PMCID: PMC10765502 DOI: 10.3389/fimmu.2023.1326440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Kral
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Alexey Surnov
- Type 1 Diabetes Immunology (TDI), Helmholtz Diabetes Center (HDC), Helmholtz Center Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR) Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Chatterton C, Romero R, Jung E, Gallo DM, Suksai M, Diaz-Primera R, Erez O, Chaemsaithong P, Tarca AL, Gotsch F, Bosco M, Chaiworapongsa T. A biomarker for bacteremia in pregnant women with acute pyelonephritis: soluble suppressor of tumorigenicity 2 or sST2. J Matern Fetal Neonatal Med 2023; 36:2183470. [PMID: 36997168 PMCID: PMC10352993 DOI: 10.1080/14767058.2023.2183470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/15/2023] [Indexed: 04/01/2023]
Abstract
Objective: Sepsis is a leading cause of maternal death, and its diagnosis during the golden hour is critical to improve survival. Acute pyelonephritis in pregnancy is a risk factor for obstetrical and medical complications, and it is a major cause of sepsis, as bacteremia complicates 15-20% of pyelonephritis episodes in pregnancy. The diagnosis of bacteremia currently relies on blood cultures, whereas a rapid test could allow timely management and improved outcomes. Soluble suppression of tumorigenicity 2 (sST2) was previously proposed as a biomarker for sepsis in non-pregnant adults and children. This study was designed to determine whether maternal plasma concentrations of sST2 in pregnant patients with pyelonephritis can help to identify those at risk for bacteremia.Study design: This cross-sectional study included women with normal pregnancy (n = 131) and pregnant women with acute pyelonephritis (n = 36). Acute pyelonephritis was diagnosed based on a combination of clinical findings and a positive urine culture. Patients were further classified according to the results of blood cultures into those with and without bacteremia. Plasma concentrations of sST2 were determined by a sensitive immunoassay. Non-parametric statistics were used for analysis.Results: The maternal plasma sST2 concentration increased with gestational age in normal pregnancies. Pregnant patients with acute pyelonephritis had a higher median (interquartile range) plasma sST2 concentration than those with a normal pregnancy [85 (47-239) ng/mL vs. 31 (14-52) ng/mL, p < .001]. Among patients with pyelonephritis, those with a positive blood culture had a median plasma concentration of sST2 higher than that of patients with a negative blood culture [258 (IQR: 75-305) ng/mL vs. 83 (IQR: 46-153) ng/mL; p = .03]. An elevated plasma concentration of sST2 ≥ 215 ng/mL had a sensitivity of 73% and a specificity of 95% (area under the receiver operating characteristic curve, 0.74; p = .003) with a positive likelihood ratio of 13.8 and a negative likelihood ratio of 0.3 for the identification of patients who had a positive blood culture.Conclusion: sST2 is a candidate biomarker to identify bacteremia in pregnant women with pyelonephritis. Rapid identification of these patients may optimize patient care.
Collapse
Affiliation(s)
- Carolyn Chatterton
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
23
|
Kanninen T, Jung E, Gallo DM, Diaz-Primera R, Romero R, Gotsch F, Suksai M, Bosco M, Chaiworapongsa T. Soluble suppression of tumorigenicity-2 in pregnancy with a small-for-gestational-age fetus and with preeclampsia. J Matern Fetal Neonatal Med 2023; 36:2153034. [PMID: 36521862 PMCID: PMC10291739 DOI: 10.1080/14767058.2022.2153034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Preeclampsia and fetal growth disorders are pregnancy-specific conditions that share common pathophysiological mechanisms. Yet, why some patients develop preeclampsia while others experience fetal growth restriction, or a combination of both clinical presentations, is unknown. We propose that the difference in severity of the maternal inflammatory response can contribute to the clinical phenotypes of preeclampsia vs. small for gestational age (SGA). To assess this hypothesis, we measured maternal plasma concentrations of the soluble isoform of suppression of tumorigenicity-2 (sST2), a member of the interleukin-1 receptor family that buffers proinflammatory responses. Previous reports showed that serum sST2 concentrations rise in the presence of intravascular inflammation and Th1-type immune responses and are significantly higher in patients with preeclampsia compared to those with normal pregnancy. The behavior of sST2 in pregnancies complicated by SGA has not been reported. This study was conducted to compare sST2 plasma concentrations in normal pregnancies, in those with preeclampsia, and in those with an SGA fetus. METHODS This retrospective cross-sectional study included women with an SGA fetus (n = 52), women with preeclampsia (n = 106), and those with normal pregnancy (n = 131). Maternal plasma concentrations of sST2 were determined by enzyme-linked immunosorbent assay. Doppler velocimetry of the uterine and umbilical arteries was available in a subset of patients with SGA (42 patients and 43 patients, respectively). RESULTS (1) Women with an SGA fetus had a significantly higher median plasma concentration of sST2 than normal pregnant women (p = .008); (2) women with preeclampsia had a significantly higher median plasma concentration of sST2 than those with normal pregnancy (p < .001) and those with an SGA fetus (p < .001); (3) patients with SGA and abnormal uterine artery Doppler velocimetry had a higher median plasma concentration of sST2 than controls (p < .01) and those with SGA and normal uterine artery Doppler velocimetry (p = .02); (4) there was no significant difference in the median plasma sST2 concentration between patients with SGA who had normal uterine artery Doppler velocimetry and controls (p = .4); (5) among patients with SGA, those with abnormal and those with normal umbilical artery Doppler velocimetry had higher median plasma sST2 concentrations than controls (p = .001 and p = .02, respectively); and (6) there was no significant difference in the median plasma sST2 concentrations between patients with SGA who did and those who did not have abnormal umbilical artery Doppler velocimetry (p = .06). CONCLUSIONS Preeclampsia and disorders of fetal growth are conditions characterized by intravascular inflammation, as reflected by maternal plasma concentrations of sST2. The severity of intravascular inflammation is highest in patients with preeclampsia.
Collapse
Affiliation(s)
- Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
Henry A, Lee WL. Unexpected Antiatherogenic Effect: Myeloid-Derived Growth Factor Inhibits LDL Transcytosis. Arterioscler Thromb Vasc Biol 2023; 43:2115-2118. [PMID: 37823266 DOI: 10.1161/atvbaha.123.320163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Affiliation(s)
- Andria Henry
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Canada (A.H., L.W.W.)
- Department of Biochemistry, University of Toronto, Canada (A.H., L.W.W.)
| | - Warren L Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada (W.L.L.)
- Department of Medicine and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Canada (W.L.L.)
- St. Michael's Hospital, Unity Health Toronto, Canada (W.L.L.)
| |
Collapse
|
25
|
Jiang C, Jin X, Li C, Wen L, Wang Y, Li X, Zhang Z, Tan R. Roles of IL-33 in the Pathogenesis of Cardiac Disorders. Exp Biol Med (Maywood) 2023; 248:2167-2174. [PMID: 37828753 PMCID: PMC10800126 DOI: 10.1177/15353702231198075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family and is believed to play important roles in different diseases by binding to its specific receptor suppression of tumorigenicity 2 (ST2). In the heart, IL-33 is expressed in different cells including cardiomyocytes, fibroblasts, endothelium, and epithelium. Although many studies have been devoted to investigating the effects of IL-33 on heart diseases, its roles in myocardial injuries remain obscure, and thus further studies are mandatory to unravel the underlying molecular mechanisms. We highlighted the current knowledge of the molecular and cellular characteristics of IL-33 and then summarized its major roles in different myocardial injuries, mainly focusing on infection, heart transplantation, coronary atherosclerosis, myocardial infarction, and diabetic cardiomyopathy. This narrative review will summarize current understanding and insights regarding the implications of IL-33 in cardiac diseases and its diagnostic and therapeutic potential for cardiac disease management.
Collapse
Affiliation(s)
- Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xuemei Jin
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji 133002, China
| | - Chunlei Li
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Luona Wen
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yuqi Wang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xiaojian Li
- Department of Burns, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220 China
| | - Zhi Zhang
- Department of Burns, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220 China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| |
Collapse
|
26
|
Quan QL, Yoon KN, Lee JS, Kim EJ, Lee DH. Impact of ultraviolet radiation on cardiovascular and metabolic disorders: The role of nitric oxide and vitamin D. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:573-581. [PMID: 37731181 DOI: 10.1111/phpp.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND/PURPOSE Ultraviolet (UV) radiation has both harmful and beneficial effects on human skin and health. It causes skin damage, aging, and cancer; however, it is also a primary source of vitamin D. Additionally, UV radiation can impact energy metabolism and has protective effects on several cardiovascular and metabolic disorders in mice and humans. However, the mechanisms of UV protection against these diseases have not been clearly identified. METHODS This review summarizes the systemic effects of UV radiation on hypertension and several metabolic diseases such as obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in mice, and we also consider the mechanisms of action of the related regulators nitric oxide (NO) and vitamin D. RESULTS UV exposure can lower blood pressure and prevent the development of cardiovascular diseases and metabolic disorders, such as metabolic syndrome, obesity, and type 2 diabetes, primarily through mechanisms that depend on UV-induced NO. UV radiation may also effectively delay the onset of type 1 diabetes through mechanisms that rely on UV-induced vitamin D. UV-induced NO and vitamin D play roles in preventing and slowing the progression of NAFLD. CONCLUSION UV exposure is a promising nonpharmacological intervention for cardiovascular and metabolic disorders. NO and vitamin D may play a crucial role in mediating these effects. However, further investigations are required to elucidate the exact mechanisms and determine the optimal dosage and exposure duration of UV radiation.
Collapse
Affiliation(s)
- Qing-Ling Quan
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Kyeong-No Yoon
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
27
|
Guo S, Qian C, Li W, Zeng Z, Cai J, Luo Y. Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke. Neuroimmunomodulation 2023; 30:226-236. [PMID: 37729881 PMCID: PMC10614518 DOI: 10.1159/000533984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengli Qian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenfeng Li
- Department of Clinical Medicine, The Second Clinical College, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junlong Cai
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Witkowska A, Staciwa M, Duraj I, Wozniak E, Broncel M, Gorzelak-Pabis P. Interleukin-33/sST2: Dynamic assessment in patients with acute coronary syndrome. Adv Med Sci 2023; 68:195-201. [PMID: 37216709 DOI: 10.1016/j.advms.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Interleukin (IL)-33 and its soluble receptor ST2 (sST2) play a crucial role in the immune response. sST2 has been approved by the Food and Drug Administration as a prognostic biomarker of mortality in chronic heart failure patients, however, the role of IL-33 and sST2 in atherosclerotic cardiovascular disease remains unclear. The aim of this study was to measure serum level of IL-33 and sST2 of patients at the onset of acute coronary syndrome (ACS) and 3 months after primary percutaneous revascularization. PATIENTS AND METHODS Forty patients were divided into ST segment elevation myocardial infarction (STEMI) group, non-ST segment elevation myocardial infarction (NSTEMI) and unstable angina (UA) group. IL-33 and sST2 level were measured with ELISA. Additionally, IL-33 expression in peripheral blood mononuclear cells (PBMCs), was evaluated. RESULTS All ACS patients had a significantly lower level of sST2 3 months after ACS as compared to the baseline (p < 0.039). The STEMI patients had higher serum levels of IL-33 at the moment of ACS as compared to 3 months after the event, with an average decrease of 17.87 pg/ml (p < 0.007). Conversely, sST2 serum levels were still high after 3 months following an ACS in STEMI patients. ROC curve demonstrated that increased IL-33 serum level could be STEMI predictor. CONCLUSIONS The assessment of the baseline and dynamics of changes in IL-33 and sST2 concentrations in patients with ACS may be important for the diagnostic process and may help in understanding of how the immune mechanisms work at the moment of an ACS event.
Collapse
Affiliation(s)
- Anna Witkowska
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland.
| | - Mateusz Staciwa
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Iwona Duraj
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Wozniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Paulina Gorzelak-Pabis
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
Wang M, Gao M, Yi Z. Biological effects of IL-33/ST2 axis on oral diseases: autoimmune diseases and periodontal diseases. Int Immunopharmacol 2023; 122:110524. [PMID: 37393839 DOI: 10.1016/j.intimp.2023.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
IL-33 is a relatively new member of the IL-1 cytokine family, which plays a unique role in autoimmune diseases, particularly some oral diseases dominated by immune factors. The IL-33/ST2 axis is the main pathway by which IL-33 signals affect downstream cells to produce an inflammatory response or tissue repair. As a newly discovered pro-inflammatory cytokine, IL-33 can participate in the pathogenesis of autoimmune oral diseases such as Sjogren's syndrome and Behcet's disease. Moreover, the IL-33/ST2 axis also recruits and activates mast cells in periodontitis, producing inflammatory chemokines and mediating gingival inflammation and alveolar bone destruction. Interestingly, the high expression of IL-33 in the alveolar bone, which exhibits anti-osteoclast effects under appropriate mechanical loading, also confirms its dual role of destruction and repair in an immune-mediated periodontal environment. This study reviewed the biological effects of IL-33 in autoimmune oral diseases, periodontitis and periodontal bone metabolism, and elaborated its potential role and impact as a disease enhancer or a repair factor.
Collapse
Affiliation(s)
- Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Mingcen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Witz A, Effertz D, Goebel N, Schwab M, Franke UFW, Torzewski M. Pro-Calcifying Role of Enzymatically Modified LDL (eLDL) in Aortic Valve Sclerosis via Induction of IL-6 and IL-33. Biomolecules 2023; 13:1091. [PMID: 37509127 PMCID: PMC10377083 DOI: 10.3390/biom13071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
One of the contributors to atherogenesis is enzymatically modified LDL (eLDL). eLDL was detected in all stages of aortic valve sclerosis and was demonstrated to trigger the activation of p38 mitogen-activated protein kinase (p38 MAPK), which has been identified as a pro-inflammatory protein in atherosclerosis. In this study, we investigated the influence of eLDL on IL-6 and IL-33 induction, and also the impact of eLDL on calcification in aortic valve stenosis (AS). eLDL upregulated phosphate-induced calcification in valvular interstitial cells (VICs)/myofibroblasts isolated from diseased aortic valves, as demonstrated by alizarin red staining. Functional studies demonstrated activation of p38 MAPK as well as an altered gene expression of osteogenic genes known to be involved in vascular calcification. In parallel with the activation of p38 MAPK, eLDL also induced upregulation of the cytokines IL-6 and IL-33. The results suggest a pro-calcifying role of eLDL in AS via induction of IL-6 and IL-33.
Collapse
Affiliation(s)
- Annemarie Witz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Denise Effertz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Nora Goebel
- Department of Cardiovascular Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- Department of Clinical Pharmacology, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ulrich F W Franke
- Department of Cardiovascular Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| |
Collapse
|
31
|
Reid C, Flores-Villalva S, Remot A, Kennedy E, O'Farrelly C, Meade KG. Long-term in vivo vitamin D 3 supplementation modulates bovine IL-1 and chemokine responses. Sci Rep 2023; 13:10846. [PMID: 37407588 DOI: 10.1038/s41598-023-37427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Vitamin D deficiency at birth, followed by prolonged insufficiency in early life may predispose bovine calves to infection and disease. However, the effects of vitamin D levels on innate immunity are unclear due to the lack of long-term supplementation trials in vivo and reliable approaches for reproducibly assessing immune function. Here, a standardized whole blood immunophenotyping assay was used to compare innate immune responses to infection relevant ligands (LPS, Pam3CSK4 and R848) between Holstein-Friesian calves supplemented with vitamin D (n = 12) from birth until 7 months of age and control calves (n = 10) raised on an industry standard diet. Transcriptomic analysis in unstimulated whole blood cells revealed increased expression of type I interferons and chemokines in vitamin D supplemented calves, while IL-1 and inflammasome gene expression was decreased. In response to stimulation with the bacterial ligand LPS, supplemented calves had significantly increased expression of CASP1, CX3CR1, CAT, whereas STAT1 was decreased. Stimulation with the bacterial ligand Pam3CSK4 revealed increased expression of IL1A, IL1B and CAT genes; and decreased C5AR1 expression. In response to the viral ligand R848, STAT1 and S100A8 expression was significantly decreased. An increased IL-1 and inflammasome gene expression signature in vitamin D supplemented calves in response to LPS and Pam3CSK4 was also found, with ELISA confirming increased IL-1β protein production. In contrast, a decreased chemokine gene expression signature was found in response to R848 in supplemented animals, with decreased IL-8 protein expression exhibited in response to all PAMPs also found. These results demonstrated expression of several cytokine, chemokine and inflammasome genes were impacted by vitamin D supplementation in the first 7 months of life, with IL-8 expression particularly responsive to vitamin D. Overall, vitamin D supplementation induced differential innate immune responses of blood immune cells that could have important implications for disease susceptibility in cattle.
Collapse
Affiliation(s)
- Cian Reid
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Susana Flores-Villalva
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- CENID Salud Animal e Inocuidad, INIFAP, Mexico, Mexico
| | - Aude Remot
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Emer Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Udomsinprasert W. Interleukin-1 family cytokines in liver cell death: a new therapeutic target for liver diseases. Expert Opin Ther Targets 2023; 27:1125-1143. [PMID: 37975716 DOI: 10.1080/14728222.2023.2285763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Liver cell death represents a basic biological process regulating the progression of liver diseases via distinct mechanisms. Accumulating evidence has uncovered participation of interleukin (IL)-1 family cytokines in liver cell death. Upon activation of cell death induced by hepatotoxic stimuli, IL1 family cytokines released by hepatic dead cells stimulate recruitment of immune cells, which in turn influence inflammation and subsequent liver injury, thus highlighting their potential as therapeutic targets in liver diseases. Enhancing our comprehension of mechanisms underlying IL1 family cytokine signaling in cell death responses could pave the way for novel therapeutic interventions aimed at addressing liver cell death-related liver pathologies. AREAS COVERED This review summarizes the recent findings reported in preclinical and clinical studies on mechanisms of liver cell death, alongside participation of IL1 family members consisting of IL1α, ILβ, IL18, and IL33 in liver cell death and their significant implications in liver diseases. EXPERT OPINION Discovery of new and innovative therapeutic approaches for liver diseases will need close cooperation between fundamental and clinical scientists to better understand the multi-step processes behind IL1 family cytokines' contributions to liver cell death.
Collapse
|
33
|
Brunetti G, Barile B, Nicchia GP, Onorati F, Luciani GB, Galeone A. The ST2/IL-33 Pathway in Adult and Paediatric Heart Disease and Transplantation. Biomedicines 2023; 11:1676. [PMID: 37371771 DOI: 10.3390/biomedicines11061676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
ST2 is a member of interleukin 1 receptor family with soluble sST2 and transmembrane ST2L isoforms. The ligand of ST2 is IL-33, which determines the activation of numerous intracytoplasmic mediators following the binding with ST2L and IL-1RAcP, leading to nuclear signal and cardiovascular effect. Differently, sST2 is released in the blood and works as a decoy receptor, binding IL-33 and blocking IL-33/ST2L interaction. sST2 is mainly involved in maintaining homeostasis and/or alterations of different tissues, as counterbalance/activation of IL-33/ST2L axis is typically involved in the development of fibrosis, tissue damage, inflammation and remodeling. sST2 has been described in different clinical reports as a fundamental prognostic marker in patients with cardiovascular disease, as well as marker for the treatment monitoring of patients with heart failure; however, further studies are needed to better elucidate its role. In this review we reported the current knowledge about its role in coronary artery disease, heart failure, heart transplantation, heart valve disease, pulmonary arterial hypertension, and cardiovascular interventions.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| |
Collapse
|
34
|
Thanikachalam PV, Ramamurthy S, Mallapu P, Varma SR, Narayanan J, Abourehab MA, Kesharwani P. Modulation of IL-33/ST2 signaling as a potential new therapeutic target for cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:94-104. [PMID: 37422366 DOI: 10.1016/j.cytogfr.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
IL-33 belongs to the IL-1 family of cytokines, which function as inducers of Th2 cytokine production by binding with ST2L and IL-1RAcP. This, in turn, activates various signaling pathways, including the mitogen-activated protein kinase (MAPK), the inhibitor of Kappa-B kinase (IKK) pathway, and the phospholipase D-sphingosine kinase pathway. IL-33 has demonstrated protective effects against various cardiovascular diseases (CVDs) by inducing Th2 cytokines and promoting alternative activating M2 polarization. However, the soluble decoy form of ST2 (sST2) mitigates the biological effects of IL-33, exacerbating CVDs. Furthermore, IL-33 also plays a significant role in the development of asthma, arthritis, atopic dermatitis, and anaphylaxis through the activation of Th2 cells and mast cells. In this review, we aim to demonstrate the protective role of IL-33 against CVDs from 2005 to the present and explore the potential of serum soluble ST2 (sST2) as a diagnostic biomarker for CVDs. Therefore, IL-33 holds promise as a potential therapeutic target for the treatment of CVDs.
Collapse
Affiliation(s)
- Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| | - Srinivasan Ramamurthy
- College of Pharmacy and Health Sciences, University of Science and Technology of Fujairah, Fujairah, United Arab Emirates
| | - Poojitha Mallapu
- Department of Pharmacology, GRT Institute of Pharmaceutical Education and Research, Tiruttani, India
| | - Sudhir Rama Varma
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Jayaraj Narayanan
- Department of Basic Sciences, Center of Medical and Bio-allied Health Sciences Research, Ajman university, Ajman, United Arab Emirates
| | - Mohammed As Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
35
|
Stojkovic S, Kampf S, Harkot O, Nackenhorst M, Brekalo M, Huber K, Hengstenberg C, Neumayer C, Wojta J, Demyanets S. Soluble ST2 in Patients with Carotid Artery Stenosis-Association with Plaque Morphology and Long-Term Outcome. Int J Mol Sci 2023; 24:ijms24109007. [PMID: 37240352 DOI: 10.3390/ijms24109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Interleukin (IL-33) and the ST2 receptor are implicated in the pathogenesis of atherosclerosis. Soluble ST2 (sST2), which negatively regulates IL-33 signaling, is an established biomarker in coronary artery disease and heart failure. Here we aimed to investigate the association of sST2 with carotid atherosclerotic plaque morphology, symptom presentation, and the prognostic value of sST2 in patients undergoing carotid endarterectomy. A total of 170 consecutive patients with high-grade asymptomatic or symptomatic carotid artery stenosis undergoing carotid endarterectomy were included in the study. The patients were followed up for 10 years, and the primary endpoint was defined as a composite of adverse cardiovascular events and cardiovascular mortality, with all-cause mortality as the secondary endpoint. The baseline sST2 showed no association with carotid plaque morphology assessed using carotid duplex ultrasound (B 0.051, 95% CI -0.145-0.248, p = 0.609), nor with modified histological AHA classification based on morphological description following surgery (B -0.032, 95% CI -0.194-0.130, p = 0.698). Furthermore, sST2 was not associated with baseline clinical symptoms (B -0.105, 95% CI -0.432-0.214, p = 0.517). On the other hand, sST2 was an independent predictor for long-term adverse cardiovascular events after adjustment for age, sex, and coronary artery disease (HR 1.4, 95% CI 1.0-2.4, p = 0.048), but not for all-cause mortality (HR 1.2, 95% CI 0.8-1.7, p = 0.301). Patients with high baseline sST2 levels had a significantly higher adverse cardiovascular event rate as compared to patients with lower sST2 (log-rank p < 0.001). Although IL-33 and ST2 play a role in the pathogenesis of atherosclerosis, sST2 is not associated with carotid plaque morphology. However, sST2 is an excellent prognostic marker for long-term adverse cardiovascular outcomes in patients with high-grade carotid artery stenosis.
Collapse
Affiliation(s)
- Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephanie Kampf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Olesya Harkot
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maja Nackenhorst
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Klinik Ottakring, 1160 Vienna, Austria
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
36
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
Chen D, Untaru R, Stavropoulou G, Assadi-Khansari B, Kelly C, Croft AJ, Sugito S, Collins NJ, Sverdlov AL, Ngo DTM. Elevated Soluble Suppressor of Tumorigenicity 2 Predict Hospital Admissions Due to Major Adverse Cardiovascular Events (MACE). J Clin Med 2023; 12:jcm12082790. [PMID: 37109127 PMCID: PMC10142832 DOI: 10.3390/jcm12082790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The role of soluble suppression of tumorigenicity (sST2) as a biomarker in predicting clinical outcomes in patients with cardiovascular diseases (CVD) has not been fully elucidated. In this study, we sought to determine the relationship between sST2 levels and any unplanned hospital readmissions due to a major adverse cardiovascular event (MACE) within 1 year of first admission. Patients (n = 250) admitted to the cardiology unit at John Hunter Hospital were recruited. Occurrences of MACE, defined as the composite of total death, myocardial infarction (MI), stroke, readmissions for heart failure (HF), or coronary revascularization, were recorded after 30, 90, 180, and 365 days of first admission. On univariate analysis, patients with atrial fibrillation (AF) and HF had significantly higher sST2 levels vs. those who did not. Increasing levels of sST2 by quartiles were significantly associated with AF, HF, older age, low hemoglobin, low eGFR, and high CRP levels. On multivariate analysis: high sST2 levels and diabetes remained as risk predictors of any MACE occurrence; an sST2 level in the highest quartile (Q4: >28.4 ng/mL) was independently associated with older age, use of beta-blockers, and number of MACE events within a 1 year period. In this patient cohort, elevated sST2 levels are associated with unplanned hospital admission due to MACE within 1 year, independent of the nature of the index cardiovascular admission.
Collapse
Affiliation(s)
- Dongqing Chen
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rossana Untaru
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Glykeria Stavropoulou
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Bahador Assadi-Khansari
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cardiovascular Department, John Hunter Hospital, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Conagh Kelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Amanda J Croft
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Stuart Sugito
- Cardiovascular Department, John Hunter Hospital, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Nicholas J Collins
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cardiovascular Department, John Hunter Hospital, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Aaron L Sverdlov
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cardiovascular Department, John Hunter Hospital, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Doan T M Ngo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
38
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Mok MY, Law KS, Kong WY, Luo CY, Asfaw ET, Chan KW, Huang FP, Lau CS, Chan GCF. Interleukin-33 Ameliorates Murine Systemic Lupus Erythematosus and Is Associated with Induction of M2 Macrophage Polarisation and Regulatory T Cells. J Innate Immun 2023; 15:485-498. [PMID: 36889298 PMCID: PMC10134067 DOI: 10.1159/000529931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
The innate cytokine IL-33 is increasingly recognised to possess biological effects on various immune cells. We have previously demonstrated elevated serum level of soluble ST2 in patients with active systemic lupus erythematosus suggesting involvement of IL-33 and its receptor in the lupus pathogenesis. This study sought to examine the effect of exogenous IL-33 on disease activity of pre-disease lupus-prone mice and the underlying cellular mechanisms. Recombinant IL-33 was administered to MRL/lpr mice for 6 weeks, whereas control group received phosphate-buffered saline. IL-33-treated mice displayed less proteinuria, renal histological inflammatory changes, and had lower serum levels of pro-inflammatory cytokines including IL-6 and TNF-α. Renal tissue and splenic CD11b+ extracts showed features of M2 polarisation with elevated mRNA expression of Arg1, FIZZI, and reduced iNOS. These mice also had increased IL-13, ST2, Gata3, and Foxp3 mRNA expression in renal and splenic tissues. Kidneys of these mice displayed less CD11b+ infiltration, had downregulated MCP-1, and increased infiltration of Foxp3-expressing cells. Splenic CD4+ T cells showed increased ST2-expressing CD4+Foxp3+ population and reduced IFN-γ+ population. There were no differences in serum anti-dsDNA antibodies and renal C3 and IgG2a deposit in these mice. Exogenous IL-33 was found to ameliorate disease activity in lupus-prone mice with induction of M2 polarisation, Th2 response, and expansion of regulatory T cells. IL-33 likely orchestrated autoregulation of these cells through upregulation of ST2 expression.
Collapse
Affiliation(s)
- Mo Yin Mok
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ka Sin Law
- Department of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Wing Yin Kong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Cai Yun Luo
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Endale T. Asfaw
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wah Chan
- Department of Pathology, University of Hong Kong, Hong Kong SAR, China
| | - Fang Ping Huang
- Department of Pathology, University of Hong Kong, Hong Kong SAR, China
| | - Chak Sing Lau
- Department of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
40
|
Zhang Y, Liu T, Deng Z, Fang W, Zhang X, Zhang S, Wang M, Luo S, Meng Z, Liu J, Sukhova GK, Li D, McKenzie ANJ, Libby P, Shi G, Guo J. Group 2 Innate Lymphoid Cells Protect Mice from Abdominal Aortic Aneurysm Formation via IL5 and Eosinophils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206958. [PMID: 36592421 PMCID: PMC9982556 DOI: 10.1002/advs.202206958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Development of abdominal aortic aneurysms (AAA) enhances lesion group-2 innate lymphoid cell (ILC2) accumulation and blood IL5. ILC2 deficiency in Rorafl/fl Il7rCre/+ mice or induced ILC2 depletion in Icosfl-DTR-fl/+ Cd4Cre/+ mice expedites AAA growth, increases lesion inflammation, but leads to systemic IL5 and eosinophil (EOS) deficiency. Mechanistic studies show that ILC2 protect mice from AAA formation via IL5 and EOS. IL5 or ILC2 from wild-type (WT) mice, but not ILC2 from Il5-/- mice induces EOS differentiation in bone-marrow cells from Rorafl/fl Il7rCre/+ mice. IL5, IL13, and EOS or ILC2 from WT mice, but not ILC2 from Il5-/- and Il13-/- mice block SMC apoptosis and promote SMC proliferation. EOS but not ILC2 from WT or Il5-/- mice block endothelial cell (EC) adhesion molecule expression, angiogenesis, dendritic cell differentiation, and Ly6Chi monocyte polarization. Reconstitution of WT EOS and ILC2 but not Il5-/- ILC2 slows AAA growth in Rorafl/fl Il7rCre/+ mice by increasing systemic EOS. Besides regulating SMC pathobiology, ILC2 play an indirect role in AAA protection via the IL5 and EOS mechanism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tianxiao Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Guangdong Provincial Geriatrics InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhiyong Deng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Department of GeriatricsNational Key Clinic SpecialtyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Wenqian Fang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Xian Zhang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Shuya Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Minjie Wang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Songyuan Luo
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Zhaojie Meng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Jing Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Galina K. Sukhova
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Dazhu Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Andrew N. J. McKenzie
- Division of Protein & Nucleic Acid ChemistryMRC Laboratory of Molecular BiologyCambridgeCB2 0QHUK
| | - Peter Libby
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
| |
Collapse
|
41
|
Ji C, Wang X, Xue B, Li S, Li J, Qiao B, Du J, Yin M, Wang Y. A fluorescent nano vector for early diagnosis and enhanced Interleukin-33 therapy of thoracic aortic dissection. Biomaterials 2023; 293:121958. [PMID: 36566550 DOI: 10.1016/j.biomaterials.2022.121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Thoracic aortic dissection (TAD) is the most devastating complication of vascular disease. The accuracy of the clinical diagnosis and treatment of TAD at the early stage is still limited. Herein, we report a nano-delivery strategy for early diagnosis and the first case of interleukin-33 (IL-33) based therapy for the effective intervention of TAD. A targeted fluorescent nano vector (FNV) is designed to co-assemble with IL-33, which protects IL-33 and prolongs its half-life. With specific targeting ability to the thoracic aorta, FNV can diagnose TAD at its early stage through fluorescent imaging. FNV@IL-33 nanocomplex presents better therapeutic effects on mice TAD progression compared with that of IL-33 alone by reducing smooth muscle apoptosis. Administration of FNV@IL-33 two weeks before onset, the development of TAD is greatly intervened. Our study provides a novel approach for early diagnosis and effective IL-33 therapy of TAD, which opens attractive opportunities for clinical prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xue Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Bingjie Xue
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Shuolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jianhao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Bokang Qiao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Yuan Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China.
| |
Collapse
|
42
|
Zhang W, He J, Liu M, Huang M, Chen Q, Dong J, Zhang H, Xie T, Yuan J, Zha L. Genetic Analysis Reveals Different Mechanisms of IL-5 Involved in the Development of CAD in a Chinese Han Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1700857. [PMID: 36760349 PMCID: PMC9904894 DOI: 10.1155/2023/1700857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Background Coronary artery disease (CAD) is a complex disease and the leading cause of death worldwide. It is caused by genetic and environmental factors or their interactions. Candidate gene association studies are an important genetic strategy for the study of complex diseases, and multiple variants of inflammatory cytokines have been found to be associated with CAD using this method. Interleukin-5 (IL-5) is an important inflammatory immune response factor that plays a role in a various inflammatory disease. Clinical tests and animal experiments indicated that IL-5 is involved in CAD development, but the exact mechanisms are unclear. This study investigated the genetic relationship between the single nucleotide polymorphisms (SNPs) in IL5 and CAD. Materials and Methods Based on the Chinese Han population, we collected 1,824 patients with CAD and 1,920 control subjects and performed a two-stage case-control association analysis for three SNPs in IL5 (rs2057687, rs78546665, and rs2069812) using the high resolution melt (HRM) technology. Logistic regression analyses were applied to adjust for traditional risk factors for CAD and to perform haplotype and gene interaction analyses. Multiple linear regression analyses were used to study relationships between the selected SNPs and serum lipid levels. Results In this study, two-stage case-control association analysis revealed that the allele and genotype frequency distributions of the three IL5 SNPs were not statistically significant between the case and control groups. In addition, none of the IL5 haplotypes were associated with CAD. Further stratified analyses were conducted by sex, age, hypertension, and disease status, respectively, and the results revealed that the rs2057687 and rs2069812 of IL5 were associated with CAD in the male group (p adj = 0.025, OR, 0.77 (95% CI, 0.62-0.97); p adj = 0.016, OR, 0.82 (95% CI, 0.70-0.97), respectively); the rs2057687 and rs78546665 of IL5 were associated with late-onset CAD (p adj = 0.039, OR, 0.78 (95% CI, 0.62-0.99); p adj = 0.036, OR, 1.46 (95% CI, 1.02-1.53), respectively); the rs2069812 of IL5 was associated with CAD in the hypertension group (p adj = 0.036, OR, 0.84 (95% CI, 0.71-0.99)); and none of the SNPs in IL5 were associated with different CAD states (anatomical CAD and clinical CAD). In addition, the association between SNPs and the serum lipid levels indicated that rs78546665 was positively correlated with triglyceride levels (p = 0.012). Finally, SNP-SNP interaction analyses revealed that interactions of rs2057687 and rs2069812 were associated with CAD (p adj = 0.046, OR, 0.77 (95% CI, 0.13-4.68)). Conclusion This study suggested that the common variants of IL5 might play a role in CAD by affecting the risk factors for CAD and through SNP-SNP interactions, which provides a new target for specific treatment of CAD patients and a theoretical basis for personalized medicine.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Geriatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingkai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
43
|
Initial and ongoing tobacco smoking elicits vascular damage and distinct inflammatory response linked to neurodegeneration. Brain Behav Immun Health 2023; 28:100597. [PMID: 36817509 PMCID: PMC9931921 DOI: 10.1016/j.bbih.2023.100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 01/30/2023] Open
Abstract
Tobacco smoking is strongly linked to vascular damage contributing to the development of hypertension, atherosclerosis, as well as increasing the risk for neurodegeneration. Still, the involvement of the innate immune system in the development of vascular damage upon chronic tobacco use before the onset of clinical symptoms is not fully characterized. Our data provide evidence that a single acute exposure to tobacco elicits the secretion of extracellular vesicles expressing CD105 and CD49e from endothelial cells, granting further recognition of early preclinical biomarkers of vascular damage. Furthermore, we investigated the effects of smoking on the immune system of healthy asymptomatic chronic smokers compared to never-smokers, focusing on the innate immune system. Our data reveal a distinct immune landscape representative for early stages of vascular damage in clinically asymptomatic chronic smokers, before tobacco smoking related diseases develop. These results indicate a dysregulated immuno-vascular axis in chronic tobacco smokers that are otherwise considered as healthy individuals. The distinct alterations are characterized by increased CD36 expression by the blood monocyte subsets, neutrophilia and increased plasma IL-18 and reduced levels of IL-33, IL-10 and IL-8. Additionally, reduced levels of circulating BDNF and elevated sTREM2, which are associated with neurodegeneration, suggest a considerable impact of tobacco smoking on CNS function in clinically healthy individuals. These findings provide profound insight into the initial and ongoing effects of tobacco smoking and the potential vascular damage contributing to neurodegenerative disorders, specifically cerebrovascular dysfunction and dementia.
Collapse
|
44
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:15937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
Affiliation(s)
| | | | | | - Dimitris Tousoulis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
45
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
46
|
Tembhre MK, Sriwastva MK, Hote MP, Srivastava S, Solanki P, Imran S, Lakshmy R, Sharma A, Jaiswal K, Upadhyay AD. Interleukin-33 Induces Neutrophil Extracellular Trap (NET) Formation and Macrophage Necroptosis via Enhancing Oxidative Stress and Secretion of Proatherogenic Factors in Advanced Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11122343. [PMID: 36552551 PMCID: PMC9774908 DOI: 10.3390/antiox11122343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Interleukin-33 (IL-33) acts as an 'alarmin', and its role has been demonstrated in driving immune regulation and inflammation in many human diseases. However, the precise mechanism of action of IL-33 in regulating neutrophil and macrophage functioning is not defined in advanced atherosclerosis (aAT) patients. Further, the role of IL-33 in neutrophil extracellular trap (NET) formation in aAT and its consequent effect on macrophage function is not known. In the present study, we recruited n = 52 aAT patients and n = 52 control subjects. The neutrophils were isolated from both groups via ficoll/percoll-based density gradient centrifugation. The effect of IL-33 on the NET formation ability of the neutrophils was determined in both groups. Monocytes, isolated via a positive selection method, were used to differentiate them into macrophages from each of the study subjects and were challenged by IL-33-primed NETs, followed by the measurement of oxidative stress by calorimetric assay and the expression of the proinflammatory molecules by quantitative PCR (qPCR). Transcript and protein expression was determined by qPCR and immunofluorescence/ELISA, respectively. The increased expression of IL-33R (ST-2) was observed in the neutrophils, along with an increased serum concentration of IL-33 in aAT compared to the controls. IL-33 exacerbates NET formation via specifically upregulating CD16 expression in aAT. IL-33-primed NETs/neutrophils increased the cellular oxidative stress levels in the macrophages, leading to enhanced macrophage necroptosis and the release of atherogenic factors and matrix metalloproteinases (MMPs) in aAT compared to the controls. These findings suggested a pathogenic effect of the IL-33/ST-2 pathway in aAT patients by exacerbating NET formation and macrophage necroptosis, thereby facilitating the release of inflammatory factors and the release of MMPs that may be critical for the destabilization/rupture of atherosclerotic plaques in aAT. Targeting the IL-33/ST-2-NETs axis may be a promising therapeutic target for preventing plaque instability/rupture and its adverse complications in aAT.
Collapse
Affiliation(s)
- Manoj Kumar Tembhre
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Correspondence: ; Tel.: +91-880-050-2994
| | | | - Milind Padmakar Hote
- Department of Cardiothoracic & Vascular Surgery, C. T. Centre, AIIMS, New Delhi 110029, India
| | - Shikha Srivastava
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Priyanka Solanki
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Shafaque Imran
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ramakrishnan Lakshmy
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Alpana Sharma
- Department of Biochemistry, AIIMS, New Delhi 110029, India
| | - Kailash Jaiswal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | |
Collapse
|
47
|
Chen J, Xiao P, Song D, Song D, Chen Z, Li H. Growth stimulation expressed gene 2 (ST2): Clinical research and application in the cardiovascular related diseases. Front Cardiovasc Med 2022; 9:1007450. [PMID: 36407452 PMCID: PMC9671940 DOI: 10.3389/fcvm.2022.1007450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
As an interleukin (IL)-1 receptor family member, scientists found that when circulating soluble growth stimulation expressed gene 2 (sST2) is low, its ligand, IL-33, will bind to ST2L to exert protective effects on various types of cells. On the other hand, competitive binding of IL-33 occurs when sST2 concentrations are increased, followed by a reduction in the amount available for cell protection. Based on this mechanism, the usage of sST2 is to identify the population of high-risk patients with cardiovascular disease. In recent years, the role of serum sST2 in the occurrence, diagnosis, prognosis, and treatment of cardiovascular diseases has been gradually accepted by doctors. This manuscript systemically reviews the biological functions and applications of sST2 in disease diagnosis and treatment, especially for cardiovascular diseases. In clinical testing, since IL-33 can negatively impact sST2 measurement accuracy, the properties of current assay kits have been summarized and discussed to provide a clear view of the clinical chemistry results. Although sST2 is a promising biomarker, there are few quantitative approaches available for clinical testing. In this context, a mass spectrometry (MS)-based approach might be an option, as this is a powerful analytical tool to distinguish structurally related molecules in the matrix and decrease false-positive results in clinical testing. Moreover, approaches developed based on MS would be an ideal way to further study sST2 standardization.
Collapse
Affiliation(s)
- Jinchao Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- *Correspondence: Peng Xiao,
| | - Dan Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Dewei Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- Hongmei Li,
| |
Collapse
|
48
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
49
|
Liu R, Liu L, Wei C, Li D. IL-33/ST2 immunobiology in coronary artery disease: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:990007. [PMID: 36337880 PMCID: PMC9630943 DOI: 10.3389/fcvm.2022.990007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
The IL-33/ST2 axis is reported to be controversially associated with coronary artery disease (CAD). A systematic review of the association between the IL-33/ST2 axis and CAD revealed that IL-33/ST2 plays a protective role in CAD and serum sST2 and IL-33 levels are increased in patients with cardiovascular disease. Therefore, the association of IL-33/ST2 single nucleotide polymorphisms (SNPs) with CAD prevalence, prognosis, and risk factors was assessed by performing a meta-analysis. Through a literature search of relevant articles in various databases using the relevant keywords, seven studies were included in the analysis. The meta-analysis showed that the IL-33/ST2 axis was associated with increased CAD risk [pooled odds ratio (OR) = 1.17, 95% confidence interval (CI): 1.13–1.20]. Gene subgroup analysis showed a close association of IL1RL1 (OR = 1.25, 95% CI: 1.20–1.30; I2 = 85.9%; p = 0.000) and IL1RAcP (OR = 1.42, 95% CI: 1.26–1.60; I2 = 27.1%; p = 0.203) with increased CAD risk. However, the association for the IL-33 gene was not statistically significant. SNPs rs7044343 (T), rs10435816 (G), rs11792633 (C) in IL-33 gene were associated with a protective effect in CAD. However, rs7025417 (T) in IL-33, rs11685424 (G) in IL1RL1, rs950880 (A) in sST2, and rs4624606 (A) in IL1RAcP were related to increased CAD risk. Overall, polymorphisms in IL-33/ST2 axis components were associated with increased CAD risk. These results may help identify key features of IL-33/ST2 immunobiology in CAD along with potential treatment strategies to lower disease burden.
Collapse
|
50
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|