1
|
Conarty JP, Wieland A. The Tumor-Specific Immune Landscape in HPV+ Head and Neck Cancer. Viruses 2023; 15:1296. [PMID: 37376596 DOI: 10.3390/v15061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Human papillomaviruses (HPVs) are the causative agent of several anogenital cancers as well as head and neck cancers, with HPV+ head and neck squamous cell carcinoma (HNSCC) becoming a rapidly growing public health issue in the Western world. Due its viral etiology and potentially its subanatomical location, HPV+ HNSCC exhibits an immune microenvironment which is more inflamed and thus distinct from HPV-negative HNSCC. Notably, the antigenic landscape in most HPV+ HNSCC tumors extends beyond the classical HPV oncoproteins E6/7 and is extensively targeted by both the humoral and cellular arms of the adaptive immune system. Here, we provide a comprehensive overview of HPV-specific immune responses in patients with HPV+ HNSCC. We highlight the localization, antigen specificity, and differentiation states of humoral and cellular immune responses, and discuss their similarities and differences. Finally, we review currently pursued immunotherapeutic treatment modalities that attempt to harness HPV-specific immune responses for improving clinical outcomes in patients with HPV+ HNSCC.
Collapse
Affiliation(s)
- Jacob P Conarty
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Yoo S, Jeong YH, Choi HH, Chae S, Hwang D, Shin SJ, Ha SJ. Chronic LCMV infection regulates the effector T cell response by inducing the generation of less immunogenic dendritic cells. Exp Mol Med 2023:10.1038/s12276-023-00991-5. [PMID: 37121977 DOI: 10.1038/s12276-023-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic viral infection impairs systemic immunity in the host; however, the mechanism underlying the dysfunction of immune cells in chronic viral infection is incompletely understood. In this study, we studied the lineage differentiation of hematopoietic stem cells (HSCs) during chronic viral infection to elucidate the changes in dendritic cell (DC) differentiation and subsequent impact on T cell functionality using a chronic lymphocytic choriomeningitis virus (LCMV) infection model. We first investigated the lineage differentiation of HSCs in the bone marrow (BM) to elucidate the modulation of immune cell differentiation and found that the populations highly restrained in their differentiation were common myeloid progenitors (CMPs) and common dendritic cell progenitors (CDPs). Of interest, the main immune cells infected with LCMV Clone 13 (CL13) in the BM were CD11b/c+ myeloid DCs. We next characterized CD11b+ DCs that differentiated during chronic LCMV infection. These DCs displayed a less immunogenic phenotype than DCs in naive or acutely infected mice, showing low expression of CD80 but high expression of PD-L1, B7-H4, IDO, TGF-β, and IL-10. Consequently, these CD11b+ DCs induced less effective CD8+ T cells and more Foxp3+ regulatory T (Treg) cells. Furthermore, CD11b+ DCs generated during CL13 infection could not induce effective CD8+ T cells specific to the antigens of newly invading pathogens. Our findings demonstrate that DCs generated from the BM during chronic viral infection cannot activate fully functional effector CD8+ T cells specific to newly incoming antigens as well as persistent antigens themselves, suggesting a potential cause of the functional alterations in the T cell immune response during chronic viral infection.
Collapse
Affiliation(s)
- Seungbo Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yun Hee Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Enhancement of Vaccine-Induced T-Cell Responses by PD-L1 Blockade in Calves. Vaccines (Basel) 2023; 11:vaccines11030559. [PMID: 36992143 DOI: 10.3390/vaccines11030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions between programmed death 1 (PD-1) and PD-ligand 1 (PD-L1) cause functional exhaustion of T cells by inducing inhibitory signals, thereby attenuating effector functions of T cells. We have developed an anti-bovine PD-L1 blocking antibody (Ab) and have demonstrated that blockade of the interaction between PD-1 and PD-L1 reactivates T-cell responses in cattle. In the present study, we examined the potential utility of PD-1/PD-L1-targeted immunotherapy in enhancing T-cell responses to vaccination. Calves were inoculated with a hexavalent live-attenuated viral vaccine against bovine respiratory infections in combination with treatment with an anti-PD-L1 Ab. The expression kinetics of PD-1 in T cells and T-cell responses to viral antigens were measured before and after vaccination to evaluate the adjuvant effect of anti-PD-L1 Ab. PD-1 expression was upregulated in vaccinated calves after the administration of a booster vaccination. The activation status of CD4+, CD8+, and γδTCR+ T cells was enhanced by the combination of vaccination and PD-L1 blockade. In addition, IFN-γ responses to viral antigens were increased following combinatorial vaccination with PD-L1 blockade. In conclusion, the blockade of the PD-1/PD-L1 interaction enhances T-cell responses induced by vaccination in cattle, indicating the potential utility of anti-PD-L1 Ab in improving the efficacy of current vaccination programs.
Collapse
|
4
|
Domenjo-Vila E, Casella V, Iwabuchi R, Fossum E, Pedragosa M, Castellví Q, Cebollada Rica P, Kaisho T, Terahara K, Bocharov G, Argilaguet J, Meyerhans A. XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections. Cell Rep 2023; 42:112123. [PMID: 36795562 DOI: 10.1016/j.celrep.2023.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/11/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
Collapse
Affiliation(s)
- Eva Domenjo-Vila
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Even Fossum
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Quim Castellví
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain; IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Labrosse R, Boufaied I, Bourdin B, Gona S, Randolph HE, Logan BR, Bourbonnais S, Berthe C, Chan W, Buckley RH, Parrott RE, Cuvelier GDE, Kapoor N, Chandra S, Dávila Saldaña BJ, Eissa H, Goldman FD, Heimall J, O'Reilly R, Chaudhury S, Kolb EA, Shenoy S, Griffith LM, Pulsipher M, Kohn DB, Notarangelo LD, Pai SY, Cowan MJ, Dvorak CC, Haddad É, Puck JM, Barreiro LB, Decaluwe H. Aberrant T-cell exhaustion in severe combined immunodeficiency survivors with poor T-cell reconstitution after transplantation. J Allergy Clin Immunol 2023; 151:260-271. [PMID: 35987350 PMCID: PMC9924130 DOI: 10.1016/j.jaci.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) comprises rare inherited disorders of immunity that require definitive treatment through hematopoietic cell transplantation (HCT) or gene therapy for survival. Despite successes of allogeneic HCT, many SCID patients experience incomplete immune reconstitution, persistent T-cell lymphopenia, and poor long-term outcomes. OBJECTIVE We hypothesized that CD4+ T-cell lymphopenia could be associated with a state of T-cell exhaustion in previously transplanted SCID patients. METHODS We analyzed markers of exhaustion in blood samples from 61 SCID patients at a median of 10.4 years after HCT. RESULTS Compared to post-HCT SCID patients with normal CD4+ T-cell counts, those with poor T-cell reconstitution showed lower frequency of naive CD45RA+/CCR7+ T cells, recent thymic emigrants, and TCR excision circles. They also had a restricted TCR repertoire, increased expression of inhibitory receptors (PD-1, 2B4, CD160, BTLA, CTLA-4), and increased activation markers (HLA-DR, perforin) on their total and naive CD8+ T cells, suggesting T-cell exhaustion and aberrant activation, respectively. The exhaustion score of CD8+ T cells was inversely correlated with CD4+ T-cell count, recent thymic emigrants, TCR excision circles, and TCR diversity. Exhaustion scores were higher among recipients of unconditioned HCT, especially when further in time from HCT. Patients with fewer CD4+ T cells showed a transcriptional signature of exhaustion. CONCLUSIONS Recipients of unconditioned HCT for SCID may develop late post-HCT T-cell exhaustion as a result of diminished production of T-lineage cells. Elevated expression of inhibitory receptors on their T cells may be a biomarker of poor long-term T-cell reconstitution.
Collapse
Affiliation(s)
- Roxane Labrosse
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Ines Boufaied
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Saideep Gona
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Haley E Randolph
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Chloé Berthe
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Wendy Chan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | | | | | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neena Kapoor
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hesham Eissa
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, Colo
| | - Fred D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Ala
| | - Jennifer Heimall
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Richard O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sonali Chaudhury
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Edward A Kolb
- Nemours Children's Health, Center for Cancer and Blood Disorders, Wilmington, Del
| | - Shalini Shenoy
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institutes of Health, Bethesda, Md
| | - Michael Pulsipher
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Donald B Kohn
- Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Calif
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Md
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Morton J Cowan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Élie Haddad
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Luis B Barreiro
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Hélène Decaluwe
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada; Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Li S, Li N, Yang S, Deng H, Li Y, Wang Y, Yang J, Lv J, Dong L, Yu G, Hou X, Wang G. The study of immune checkpoint inhibitors in chronic hepatitis B virus infection. Int Immunopharmacol 2022; 109:108842. [DOI: 10.1016/j.intimp.2022.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
|
7
|
Serrán MG, Vernengo FF, Almada L, Beccaria CG, Gazzoni Y, Canete PF, Roco JA, Boari JT, Ramello MC, Wehrens E, Cai Y, Zuniga EI, Montes CL, Cockburn IA, Rodriguez EVA, Vinuesa CG, Gruppi A. Extrafollicular Plasmablasts Present in the Acute Phase of Infections Express High Levels of PD-L1 and Are Able to Limit T Cell Response. Front Immunol 2022; 13:828734. [PMID: 35651611 PMCID: PMC9149371 DOI: 10.3389/fimmu.2022.828734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
During infections with protozoan parasites or some viruses, T cell immunosuppression is generated simultaneously with a high B cell activation. It has been described that, as well as producing antibodies, plasmablasts, the differentiation product of activated B cells, can condition the development of protective immunity in infections. Here, we show that, in T. cruzi infection, all the plasmablasts detected during the acute phase of the infection had higher surface expression of PD-L1 than other mononuclear cells. PD-L1hi plasmablasts were induced in vivo in a BCR-specific manner and required help from Bcl-6+CD4+T cells. PD-L1hi expression was not a characteristic of all antibody-secreting cells since plasma cells found during the chronic phase of infection expressed PD-L1 but at lower levels. PD-L1hi plasmablasts were also present in mice infected with Plasmodium or with lymphocytic choriomeningitis virus, but not in mice with autoimmune disorders or immunized with T cell-dependent antigens. In vitro experiments showed that PD-L1hi plasmablasts suppressed the T cell response, partially via PD-L1. Thus, this study reveals that extrafollicular PD-L1hi plasmablasts, whose peaks of response precede the peak of germinal center response, may have a modulatory function in infections, thus influencing T cell response.
Collapse
Affiliation(s)
- Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Almada
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian G Beccaria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yamila Gazzoni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo F Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jonathan A Roco
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jimena Tosello Boari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Cecilia Ramello
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ellen Wehrens
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Yeping Cai
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Elina I Zuniga
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,China-Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
8
|
Affiliation(s)
- Paul Munson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Clubb JHA, Kudling TV, Heiniö C, Basnet S, Pakola S, Cervera Carrascón V, Santos JM, Quixabeira DCA, Havunen R, Sorsa S, Zheng V, Salo T, Bäck L, Aro K, Tulokas S, Loimu V, Hemminki A. Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer. Front Immunol 2022; 13:794251. [PMID: 35355980 PMCID: PMC8959099 DOI: 10.3389/fimmu.2022.794251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have provided significant improvement in clinical outcomes for some patients with solid tumors. However, for patients with head and neck cancer, the response rate to ICI monotherapy remains low, leading to the exploration of combinatorial treatment strategies. In this preclinical study, we use an oncolytic adenovirus (Ad5/3) encoding hTNFα and hIL-2 and non-replicate adenoviruses (Ad5) encoding mTNFα and mIL-2 with ICI to achieve superior tumor growth control and improved survival outcomes. The in vitro effect of Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 was characterized through analyses of virus replication, transgene expression and lytic activity using head and neck cancer patient derived cell lines. Mouse models of ICI naïve and refractory oral cavity squamous cell carcinoma were established to evaluate the local and systemic anti-tumor immune response upon ICI treatment with or without the non-replicative adenovirus encoding mTNFα and mIL-2. We delineated the mechanism of action by measuring the metabolic activity and effector function of CD3+ tumor infiltrating lymphocytes (TIL) and transcriptomic profile of the CD45+ tumor immune compartment. Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 demonstrated robust replicative capability in vitro across all head and neck cell lines screened through potent lytic activity, E1a and transgene expression. In vivo, in both ICI naïve and refractory models, we observed improvement to tumor growth control and long-term survival when combining anti-PD-1 or anti-PD-L1 with the non-replicative adenovirus encoding mTNFα and mIL-2 compared to monotherapies. This observation was verified by striking CD3+ TIL derived mGranzyme b and interferon gamma production complemented by increased T cell bioenergetics. Notably, interrogation of the tumor immune transcriptome revealed the upregulation of a gene signature distinctive of tertiary lymphoid structure formation upon treatment of murine anti-PD-L1 refractory tumors with non-replicative adenovirus encoding mTNFα and mIL-2. In addition, we detected an increase in anti-tumor antibody production and expansion of the memory T cell compartment in the secondary lymphoid organs. In summary, a non-replicative adenovirus encoding mTNFα and mIL-2 potentiates ICI therapy, demonstrated by improved tumor growth control and survival in head and neck tumor-bearing mice. Moreover, the data reveals a potential approach for inducing tertiary lymphoid structure formation. Altogether our results support the clinical potential of combining this adenovirotherapy with anti-PD-1 or anti-PD-L1.
Collapse
Affiliation(s)
- James H. A. Clubb
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Tatiana V. Kudling
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Víctor Cervera Carrascón
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - João Manuel Santos
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Dafne C. A. Quixabeira
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Vincent Zheng
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
- Oulu University Central Hospital, Oulu, Finland
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leif Bäck
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katri Aro
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sanni Tulokas
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Venla Loimu
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Khan IW, Dad Ullah MU, Choudhry M, Ali MJ, Ali MA, Lam SLK, Shah PA, Kaur SP, Lau DTY. Novel Therapies of Hepatitis B and D. Microorganisms 2021; 9:2607. [PMID: 34946209 PMCID: PMC8707465 DOI: 10.3390/microorganisms9122607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue and is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis D virus (HDV) requires the hepatitis B surface antigen (HBsAg) to replicate. The eradication of HBV, therefore, can also cure HDV. The current therapies for chronic hepatitis B and D are suboptimal and cannot definitely cure the viruses. In order to achieve functional or complete cure of these infections, novel therapeutic agents that target the various sites of the viral replicative cycle are necessary. Furthermore, novel immunomodulatory agents are also essential to achieve viral clearance. Many of these new promising compounds such as entry inhibitors, covalently closed circular DNA (cccDNA) inhibitors, small interfering RNAs (siRNAs), capsid assembly modulators and nucleic acid polymers are in various stages of clinical developments. In this review article, we provided a comprehensive overview of the structure and lifecycle of HBV, the limitations of the current therapies and a summary of the novel therapeutic agents for both HDV and HBV infection.
Collapse
Affiliation(s)
- Iman Waheed Khan
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mati Ullah Dad Ullah
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mina Choudhry
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mukarram Jamat Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Muhammad Ashar Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Sam L. K. Lam
- Liver Center, Department of Medicine, Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas, San Antonio, TX 78229, USA;
| | - Satinder Pal Kaur
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Daryl T. Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| |
Collapse
|
11
|
Rahman SA, Yagnik B, Bally AP, Morrow KN, Wang S, Vanderford TH, Freeman GJ, Ahmed R, Amara RR. PD-1 blockade and vaccination provide therapeutic benefit against SIV by inducing broad and functional CD8 + T cells in lymphoid tissue. Sci Immunol 2021; 6:eabh3034. [PMID: 34516743 PMCID: PMC8500359 DOI: 10.1126/sciimmunol.abh3034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During antiretroviral therapy (ART), most of the human immunodeficiency virus (HIV) reservoirs persist in the B cell follicles (BCFs) of lymphoid tissue. Thus, for HIV cure strategies, it is critical to generate cytolytic CD8+ T cells that home to BCF, reduce the reservoir burden, and maintain strong antiviral responses in the absence of ART. Here, using a chronic simian immunodeficiency virus (SIV)/rhesus macaque model, we showed that therapeutic vaccination under ART using a CD40L plus TLR7 agonist–adjuvanted DNA/modified vaccinia Ankara vaccine regimen induced robust and highly functional, SIV-specific CD4+ and CD8+ T cell responses. In addition, the vaccination induced SIV-specific CD8+ T cells in the lymph nodes (LNs) that could home to BCF. Administration of PD-1 blockade before initiation of ART and during vaccination markedly increased the frequency of granzyme B+ perforin+ CD8+ T cells in the blood and LN, enhanced their localization in germinal centers of BCF, and reduced the viral reservoir. After ART interruption, the vaccine + anti–PD-1 antibody–treated animals, compared with the vaccine alone and ART alone control animals, displayed preservation of the granzyme B+ CD8+ T cells in the T cell zone and BCF of LN, maintained high SIV antigen-recognition breadth, showed control of reemerging viremia, and improved survival. Our findings revealed that PD-1 blockade enhanced the therapeutic benefits of SIV vaccination by improving and sustaining the function and localization of vaccine-induced CD8+ T cells to BCF and decreasing viral reservoirs in lymphoid tissue. This work has potential implications for the development of curative HIV strategies.
Collapse
Affiliation(s)
- Sheikh Abdul Rahman
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Bhrugu Yagnik
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Alexander P. Bally
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Kristen N. Morrow
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shelly Wang
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
| | - Thomas H. Vanderford
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
| | - Gordon J. Freeman
- Department of Medical Oncology and Cancer Vaccine Centre, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rafi Ahmed
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Eberhardt CS, Kissick HT, Patel MR, Cardenas MA, Prokhnevska N, Obeng RC, Nasti TH, Griffith CC, Im SJ, Wang X, Shin DM, Carrington M, Chen ZG, Sidney J, Sette A, Saba NF, Wieland A, Ahmed R. Functional HPV-specific PD-1 + stem-like CD8 T cells in head and neck cancer. Nature 2021; 597:279-284. [PMID: 34471285 PMCID: PMC10201342 DOI: 10.1038/s41586-021-03862-z] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/28/2021] [Indexed: 01/06/2023]
Abstract
T cells are important in tumour immunity but a better understanding is needed of the differentiation of antigen-specific T cells in human cancer1,2. Here we studied CD8 T cells in patients with human papillomavirus (HPV)-positive head and neck cancer and identified several epitopes derived from HPV E2, E5 and E6 proteins that allowed us to analyse virus-specific CD8 T cells using major histocompatibility complex (MHC) class I tetramers. HPV-specific CD8 T cells expressed PD-1 and were detectable in the tumour at levels that ranged from 0.1% to 10% of tumour-infiltrating CD8 T lymphocytes (TILs) for a given epitope. Single-cell RNA-sequencing analyses of tetramer-sorted HPV-specific PD-1+ CD8 TILs revealed three transcriptionally distinct subsets. One subset expressed TCF7 and other genes associated with PD-1+ stem-like CD8 T cells that are critical for maintaining T cell responses in conditions of antigen persistence. The second subset expressed more effector molecules, representing a transitory cell population, and the third subset was characterized by a terminally differentiated gene signature. T cell receptor clonotypes were shared between the three subsets and pseudotime analysis suggested a hypothetical differentiation trajectory from stem-like to transitory to terminally differentiated cells. More notably, HPV-specific PD-1+TCF-1+ stem-like TILs proliferated and differentiated into more effector-like cells after in vitro stimulation with the cognate HPV peptide, whereas the more terminally differentiated cells did not proliferate. The presence of functional HPV-specific PD-1+TCF-1+CD45RO+ stem-like CD8 T cells with proliferative capacity shows that the cellular machinery to respond to PD-1 blockade exists in HPV-positive head and neck cancer, supporting the further investigation of PD-1 targeted therapies in this malignancy. Furthermore, HPV therapeutic vaccination efforts have focused on E6 and E7 proteins; our results suggest that E2 and E5 should also be considered for inclusion as vaccine antigens to elicit tumour-reactive CD8 T cell responses of maximal breadth.
Collapse
Affiliation(s)
- Christiane S Eberhardt
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Centre for Vaccinology, University Hospitals Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Pediatrics, Gynecology & Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Haydn T Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mihir R Patel
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rebecca C Obeng
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tahseen H Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Griffith
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Se Jin Im
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Xu Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong M Shin
- Division of General Pediatrics, Department of Pediatrics, Gynecology & Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Zhuo G Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nabil F Saba
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer. Curr Opin HIV AIDS 2021; 15:157-164. [PMID: 32167944 DOI: 10.1097/coh.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. RECENT FINDINGS Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. SUMMARY For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure.
Collapse
|
14
|
Switzer B, Haanen J, Lorigan PC, Puzanov I, Turajlic S. Clinical and immunologic implications of COVID-19 in patients with melanoma and renal cell carcinoma receiving immune checkpoint inhibitors. J Immunother Cancer 2021; 9:e002835. [PMID: 34272309 PMCID: PMC8288220 DOI: 10.1136/jitc-2021-002835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
The clinical and immunologic implications of the SARS-CoV-2 pandemic for patients with cancer receiving systemic anticancer therapy have introduced a multitude of clinical challenges and academic controversies. This review summarizes the current evidence, discussion points, and recommendations regarding the use of immune checkpoint inhibitors (ICIs) in patients with cancer during the SARS-CoV-2 pandemic, with a focus on patients with melanoma and renal cell carcinoma (RCC). More specifically, we summarize the theoretical concepts and available objective data regarding the relationships between ICIs and the antiviral immune response, along with recommended clinical approaches to the management of melanoma and RCC patient cohorts receiving ICIs throughout the course of the COVID-19 pandemic. Additional insights regarding the use of ICIs in the setting of current and upcoming COVID-19 vaccines and broader implications toward future pandemics are also discussed.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - John Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul C Lorigan
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Division of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Samra Turajlic
- Renal and Skin Units, Royal Marsden NHS Foundation Trust, London, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
15
|
A Combination of Anti-PD-L1 Treatment and Therapeutic Vaccination Facilitates Improved Retroviral Clearance via Reactivation of Highly Exhausted T Cells. mBio 2021; 12:mBio.02121-20. [PMID: 33531395 PMCID: PMC7858051 DOI: 10.1128/mbio.02121-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite significant efforts, vaccines are not yet available for every infectious pathogen, and the search for a protective approach to prevent the establishment of chronic infections, i.e., with HIV, continues. Immune checkpoint therapies targeting inhibitory receptors, such as PD-1, have shown impressive results against solid tumors. PD-1-targeted therapies have shown modest antiviral effects in preclinical models of chronic viral infection. Thus, novel therapy protocols are necessary to enhance T cell immunity and viral control to overcome T cell dysfunction and immunosuppression. Here, we demonstrate that nanoparticle-based therapeutic vaccination improved PD-1-targeted therapy during chronic infection with Friend retrovirus (FV). Prevention of inhibitory signals by blocking PD-L1 in combination with therapeutic vaccination with nanoparticles containing the microbial compound CpG and a CD8+ T cell Gag epitope peptide synergistically enhanced functional virus-specific CD8+ T cell responses and improved viral clearance. We characterized the CD8+ T cell populations that were affected by this combination therapy, demonstrating that new effector cells were generated and that exhausted CD8+ T cells were reactivated at the same time. While CD8+ T cells with high PD-1 (PD-1hi) expression turned into a large population of granzyme B-expressing CD8+ T cells after combination therapy, CXCR5-expressing follicular cytotoxic CD8+ T cells also expanded to a high degree. Thus, our study describes a very efficient approach to enhance virus control and may help us to understand the mechanisms of combination immunotherapy reactivating CD8+ T cell immunity. A better understanding of CD8+ T cell immunity during combination therapy will be important for developing efficient checkpoint therapies against chronic viral infections and cancer.
Collapse
|
16
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
17
|
Norton TD, Tada T, Leibowitz R, van der Heide V, Homann D, Landau NR. Lentiviral-Vector-Based Dendritic Cell Vaccine Synergizes with Checkpoint Blockade to Clear Chronic Viral Infection. Mol Ther 2020; 28:1795-1805. [PMID: 32497512 DOI: 10.1016/j.ymthe.2020.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic cell vaccines are a promising strategy for the treatment of cancer and infectious diseases but have met with mixed success. We report on a lentiviral vector-based dendritic cell vaccine strategy that generates a cluster of differentiation 8 (CD8) T cell response that is much stronger than that achieved by standard peptide-pulsing approaches. The strategy was tested in the mouse lymphocytic choriomeningitis virus (LCMV) model. Bone marrow-derived dendritic cells from SAMHD1 knockout mice were transduced with a lentiviral vector expressing the GP33 major-histocompatibility-complex (MHC)-class-I-restricted peptide epitope and CD40 ligand (CD40L) and injected into wild-type mice. The mice were highly protected against acute and chronic variant CL-13 LCMVs, resulting in a 100-fold greater decrease than that achieved with peptide epitope-pulsed dendritic cells. Inclusion of an MHC-class-II-restricted epitope in the lentiviral vector further increased the CD8 T cell response and resulted in antigen-specific CD8 T cells that exhibited a phenotype associated with functional cytotoxic T cells. The vaccination synergized with checkpoint blockade to reduce the viral load of mice chronically infected with CL-13 to an undetectable level. The strategy improves upon current dendritic cell vaccine strategies; is applicable to the treatment of disease, including AIDS and cancer; and supports the utility of Vpx-containing vectors.
Collapse
Affiliation(s)
- Thomas D Norton
- Department of Medicine, Division of Infectious Diseases, New York University Langone Medical Center, New York, NY 10016, USA; Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Tada
- Department of Medicine, Division of Infectious Diseases, New York University Langone Medical Center, New York, NY 10016, USA
| | - Rebecca Leibowitz
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute & Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dirk Homann
- Diabetes, Obesity and Metabolism Institute & Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathaniel R Landau
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
18
|
Krueger J, Rudd CE, Taylor A. Glycogen synthase 3 (GSK-3) regulation of PD-1 expression and and its therapeutic implications. Semin Immunol 2020; 42:101295. [PMID: 31604533 DOI: 10.1016/j.smim.2019.101295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
The past few years have witnessed exciting progress in the application of immune check-point blockade (ICB) for the treatment of various human cancers. ICB was first used against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to demonstrate durable anti-tumor responses followed by ICB against programmed cell death-1 (PD-1) or its ligand, PD-L1. Present approaches involve the use of combinations of blocking antibodies against CTLA-4, PD-1 and other inhibitory receptors (IRs) such as TIM3, TIGIT and LAG3. Despite this success, most patients are not cured by ICB therapy and there are limitations to the use of antibodies including cost, tumor penetration, the accessibility of receptors, and clearance from the cell surface as well as inflammatory and autoimmune complications. Recently, we demonstrated that the down-regulation or inhibition of glycogen synthase kinase 3 (GSK-3) down-regulates PD-1 expression in infectious diseases and cancer (Taylor et al., 2016 Immunity 44, 274-86; 2018 Cancer Research 78, 706-717; Krueger and Rudd 2018 Immunity 46, 529-531). In this Review, we outline the use of small molecule inhibitors (SMIs) that target intracellular pathways for co-receptor blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Janna Krueger
- Division of Immunology-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Christopher E Rudd
- Division of Immunology-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| | - Alison Taylor
- Leeds Institute of Medical Research, University of Leeds, School of Medicine, Wellcome Trust Brenner Building, St James's University Hospital, LEEDS LS9 7TF, United Kingdom.
| |
Collapse
|
19
|
Nakajima M, Hazama S, Tamada K, Udaka K, Kouki Y, Uematsu T, Arima H, Saito A, Doi S, Matsui H, Shindo Y, Matsukuma S, Kanekiyo S, Tokumitsu Y, Tomochika S, Iida M, Yoshida S, Nakagami Y, Suzuki N, Takeda S, Yamamoto S, Yoshino S, Ueno T, Nagano H. A phase I study of multi-HLA-binding peptides derived from heat shock protein 70/glypican-3 and a novel combination adjuvant of hLAG-3Ig and Poly-ICLC for patients with metastatic gastrointestinal cancers: YNP01 trial. Cancer Immunol Immunother 2020; 69:1651-1662. [PMID: 32219501 PMCID: PMC7347520 DOI: 10.1007/s00262-020-02518-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Background This phase I study aimed to evaluate the safety, peptide-specific immune responses, and anti-tumor effects of a novel vaccination therapy comprising multi-HLA-binding heat shock protein (HSP) 70/glypican-3 (GPC3) peptides and a novel adjuvant combination of hLAG-3Ig and Poly-ICLC against metastatic gastrointestinal cancers. Methods HSP70/GPC3 peptides with high binding affinities for three HLA types (A*24:02, A*02:01, and A*02:06) were identified with our peptide prediction system. The peptides were intradermally administered with combined adjuvants on a weekly basis. This study was a phase I dose escalation clinical trial, which was carried out in a three patients’ cohort; in total, 11 patients were enrolled for the recommended dose. Results Seventeen patients received this vaccination therapy without dose-limiting toxicity. All treatment-related adverse events were of grades 1 to 2. Peptide-specific CTL induction by HSP70 and GPC3 proteins was observed in 11 (64.7%) and 13 (76.5%) cases, respectively, regardless of the HLA type. Serum tumor marker levels were decreased in 10 cases (58.8%). Immunological analysis using PBMCs indicated that patients receiving dose level 3 presented with significantly reduced T cell immunoglobulin and mucin-domain containing-3 (TIM3)-expressing CD4 + T cells after one course of treatment. PD-1 or TIM3-expressing CD4 + T cells and T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT)-expressing CD8 + T cells in PBMCs before vaccination were negative predictive factors for survival. Conclusions This novel peptide vaccination therapy was safe for patients with metastatic gastrointestinal cancers. Electronic supplementary material The online version of this article (10.1007/s00262-020-02518-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keiko Udaka
- Department of Immunology, Kochi Medical School, Nankoku, Kochi, 783-8505, Japan
| | - Yasunobu Kouki
- Department of Pharmacy, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshinari Uematsu
- Department of Pharmacy, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hideki Arima
- Department of Pharmacy, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Akira Saito
- Department of AI Applied Quantitative Clinical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan
| | - Shun Doi
- CYTLIMIC Inc, Shinagawa, Tokyo, 141-0021, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinsuke Kanekiyo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Yamamoto
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigefumi Yoshino
- Oncology Center, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki University School of Medicine, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
20
|
Hoogeveen RC, Boonstra A. Checkpoint Inhibitors and Therapeutic Vaccines for the Treatment of Chronic HBV Infection. Front Immunol 2020; 11:401. [PMID: 32194573 PMCID: PMC7064714 DOI: 10.3389/fimmu.2020.00401] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of chronic hepatitis B virus (HBV) infection is highly effective in suppressing viral replication, but complete cure is rarely achieved. In recent years, substantial progress has been made in the development of immunotherapy to treat cancer. Applying these therapies to improve the management of chronic HBV infection is now being attempted, and has become an area of active research. Immunotherapy with vaccines and checkpoint inhibitors can boost T cell functions in vitro, and therefore may be used to reinvigorate the impaired HBV-specific T cell response. However, whether these approaches will suffice and restore antiviral T cell immunity to induce long-term HBV control remains an open question. Recent efforts have begun to describe the phenotype and function of HBV-specific T cells on the single epitope level. An improved understanding of differing T cell specificities and their contribution to HBV control will be instrumental for advancement of the field. In this review, we outline correlates of successful versus inadequate T cell responses to HBV, and discuss the rationale behind therapeutic vaccines and checkpoint inhibitors for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - André Boonstra
- Division of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
21
|
Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Netw 2020; 20:e2. [PMID: 32158590 PMCID: PMC7049579 DOI: 10.4110/in.2020.20.e2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
Acute viral infection or vaccination generates highly functional memory CD8 T cells following the Ag resolution. In contrast, persistent antigenic stimulation in chronic viral infection and cancer leads to a state of T-cell dysfunction termed T-cell exhaustion. We and other have recently identified a novel subset of exhausted CD8 T cells that act as stem cells for maintaining virus-specific CD8 T cells in a mouse model of chronic lymphocytic choriomeningitis virus infection. This stem cell-like CD8 T-cell subset has been also observed in both mouse and human tumor models. Most importantly, in both chronic viral infection and tumor models, the proliferative burst of Ag-specific CD8 T cells driven by PD-1-directed immunotherapy comes exclusively from this stem cell-like CD8 T-cell subset. Therefore, a better understanding of the mechanisms how CD8 T-cell subsets are regulated during chronic viral infection and cancer is required to improve the current immunotherapies that restore the function of exhausted CD8 T cells. In this review, we discuss the differentiation of virus-specific CD8 T cells during chronic viral infection, the characteristics and function of CD8 T-cell subsets, and the therapeutic intervention of PD-1-directed immunotherapy in cancer.
Collapse
Affiliation(s)
- Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA.,Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
22
|
Hakim MS, Rahmadika N, Jariah ROA. Expressions of inhibitory checkpoint molecules in acute and chronic HBV and HCV infections: Implications for therapeutic monitoring and personalized therapy. Rev Med Virol 2019; 30:e2094. [DOI: 10.1002/rmv.2094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah Mada Yogyakarta Indonesia
| | - Nofri Rahmadika
- Infectious Disease Research Center, Faculty of MedicineUniversitas Padjadjaran Bandung Indonesia
| | - Rizka O. A. Jariah
- Department of Health Science, Faculty of Vocational StudiesUniversitas Airlangga Surabaya Indonesia
| |
Collapse
|
23
|
Maini MK, Burton AR. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol 2019; 16:662-675. [PMID: 31548710 DOI: 10.1038/s41575-019-0196-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
Multiple new therapeutic approaches are currently being developed to achieve sustained, off-treatment suppression of HBV, a persistent hepatotropic infection that kills ~2,000 people a day. A fundamental therapeutic goal is the restoration of robust HBV-specific adaptive immune responses that are able to maintain prolonged immunosurveillance of residual infection. Here, we provide insight into key components of successful T cell and B cell responses to HBV, discussing the importance of different specificities and effector functions, local intrahepatic immunity and pathogenic potential. We focus on the parallels and interactions between T cell and B cell responses, highlighting emerging areas for future investigation. We review the potential for different immunotherapies in development to restore or release endogenous adaptive immunity by direct or indirect approaches, including limitations and risks. Finally, we consider an alternative HBV treatment strategy of replacing failed endogenous immunity with infusions of highly targeted T cells or antibodies.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
24
|
Dhodapkar MV, Dhodapkar KM. Moving Immunoprevention Beyond Virally Mediated Malignancies: Do We Need to Link It to Early Detection? Front Immunol 2019; 10:2385. [PMID: 31649683 PMCID: PMC6795703 DOI: 10.3389/fimmu.2019.02385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Vaccines can successfully prevent viral infections and have emerged as an effective strategy for preventing some virally mediated malignancies. They also represent our major hope for cost-effective reduction of the cancer burden. The concept that the immune system mediates surveillance and editing roles against tumors is now well-established in murine models. However, harnessing the immune system to prevent human cancers that do not have a known viral etiology has not yet been realized. Most human cancers originate in a premalignant phase that is more common than the cancer itself. Many of the genetic changes that underlie carcinogenesis originate at this stage when the malignant phenotype is not manifest. Studies evaluating host response in human premalignancy have documented that these lesions are immunogenic, setting the stage for immune-based approaches for targeted prevention of human cancer. However, recent studies suggest that the hierarchy of T cell exhaustion and immune-suppressive factors have already begun to emerge in many preneoplastic states. These considerations underscore the need to link immune prevention to earlier detection of such lesions and to personalize such approaches based on the status of the pre-existing immune response.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kavita M. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Gazouli M, Dovrolis N, Franke A, Spyrou GM, Sechi LA, Kolios G. Differential genetic and functional background in inflammatory bowel disease phenotypes of a Greek population: a systems bioinformatics approach. Gut Pathog 2019; 11:31. [PMID: 31249629 PMCID: PMC6570833 DOI: 10.1186/s13099-019-0312-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) and Ulcerative colitis (UC) are the two main entities of inflammatory bowel disease (IBD). Previous works have identified more than 200 risk factors (including loci and signaling pathways) in populations of predominantly European ancestry. Our study was conducted on an extended population-specific cohort of 573 Greek IBD patients (364 CD and 209 UC) and 445 controls. AIMS To highlight the different genetic and functional background of IBD and its phenotypes, utilizing contemporary systems bioinformatics methodologies. METHODS Disease-associated SNPs, obtained via our own 89 loci IBD risk GWAS panel, were detected with the whole genome association analysis toolset PLINK. These SNPs were used as input for 2 novel and different pathway analysis methods to detect functional interactions. Specifically, PathwayConnector was used to create complementary networks of interacting pathways whereas; the online database of protein interactions STRING provided protein-protein association networks and their derived pathways. Network analyses metrics were employed to identify proteins with high significance and subsequently to rank the signaling pathways those participate in. RESULTS The reported complementary pathway and enriched protein-protein association networks reveal several novel and well-known key players, in the functional background of IBD like Toll-like receptor, TNF, Jak-STAT, PI3K-Akt, T cell receptor, Apoptosis, MAPK and B cell receptor signaling pathways. IBD subphenotypes are found to have distinct genetic and functional profiles which can contribute to their accurate identification and classification. As a secondary result we identify an extended network of diseases with common molecular background to IBD. CONCLUSIONS IBD's burden on the quality of life of patients and intricate functional background presents us constantly with new challenges. Our data and methodology provide researchers with new insights to a specific population, but also, to possible differentiation markers of disease classification and progression. This work, not only provides new insights into the interplay among IBD risk variants and their related signaling pathways, elucidates the mechanisms underlying IBD and its clinical sequelae, but also, introduces a generalized bioinformatics-based methodology which can be applied to studies of different disorders.
Collapse
Affiliation(s)
- Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - George M. Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
26
|
Taylor A, Rudd CE. Commentary: Small Molecule Inhibition of PD-1 Transcription is an Effective Alternative to Antibody Blockade in Cancer Therapy. ACTA ACUST UNITED AC 2019; 3:9-12. [PMID: 31111120 PMCID: PMC6525092 DOI: 10.29245/2578-3009/2019/1.1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alison Taylor
- Leeds Institute of Medical Research, University of Leeds, School of Medicine, Wellcome Trust Brenner Building, St James's University Hospital, LEEDS LS9 7TF, UK
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
27
|
Abstract
CD8+ T cells are important for the protective immunity against intracellular pathogens and tumor. In the case of chronic infection or cancer, CD8+ T cells are exposed to persistent antigen and/or inflammatory signals. This excessive amount of signals often leads CD8+ T cells to gradual deterioration of T cell function, a state called "exhaustion." Exhausted T cells are characterized by progressive loss of effector functions (cytokine production and killing function), expression of multiple inhibitory receptors (such as PD-1 and LAG3), dysregulated metabolism, poor memory recall response, and homeostatic proliferation. These altered functions are closely related with altered transcriptional program and epigenetic landscape that clearly distinguish exhausted T cells from normal effector and memory T cells. T cell exhaustion is often associated with inefficient control of persisting infections and cancers, but re-invigoration of exhausted T cells with inhibitory receptor blockade can promote improved immunity and disease outcome. Accumulating evidences support the therapeutic potential of targeting exhausted T cells. However, exhausted T cells comprise heterogenous cell population with distinct responsiveness to intervention. Understanding molecular mechanism of T cell exhaustion is essential to establish rational immunotherapeutic interventions.
Collapse
|
28
|
Lagousi T, Basdeki P, Routsias J, Spoulou V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines (Basel) 2019; 7:vaccines7010009. [PMID: 30669439 PMCID: PMC6466302 DOI: 10.3390/vaccines7010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Non-serotype-specific protein-based pneumococcal vaccines have received extensive research focus due to the limitations of polysaccharide-based vaccines. Pneumococcal proteins (PnPs), universally expressed among serotypes, may induce broader immune responses, stimulating humoral and cellular immunity, while being easier to manufacture and less expensive. Such an approach has raised issues mainly associated with sequence/level of expression variability, chemical instability, as well as possible undesirable reactogenicity and autoimmune properties. A step forward employs the identification of highly-conserved antigenic regions within PnPs with the potential to retain the benefits of protein antigens. Besides, their low-cost and stable construction facilitates the combination of several antigenic regions or peptides that may impair different stages of pneumococcal disease offering even wider serotype coverage and more efficient protection. This review discusses the up-to-date progress on PnPs that are currently under clinical evaluation and the challenges for their licensure. Focus is given on the progress on the identification of antigenic regions/peptides within PnPs and their evaluation as vaccine candidates, accessing their potential to overcome the issues associated with full-length protein antigens. Particular mention is given of the use of newer delivery system technologies including conjugation to Toll-like receptors (TLRs) and reformulation into nanoparticles to enhance the poor immunogenicity of such antigens.
Collapse
Affiliation(s)
- Theano Lagousi
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| | - Paraskevi Basdeki
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| | - John Routsias
- Department of Microbiology, Athens Medical School, 11527 Athens, Greece.
| | - Vana Spoulou
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
29
|
Prognosis, Prevention and Research Prospects of Progression to Severe Hepatitis B (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498886 DOI: 10.1007/978-94-024-1603-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the factors involved in the disease prognosis, parameters of outcome evaluations, principles and techniques for progression prevention. In last section, the future perspectives in both basic and clinical investigations towards unmet medical needs in AECHB and HBV ACLF are discussed.Factors affecting the prognosis of patients with severe hepatitis B include those related to the virus (including viral load, HBeAg expression, and gene mutation), patient age, co-morbidity, TBil, INR, serum Cr, and the host genetic background. Indicators associated with patient prognosis include TBil, total cholesterol, albumin and prealbumin, hepatic encephalopathy, kidney damage, alpha-fetoprotein and vitamin D binding protein, blood sodium level, virus HBeAg expression and genotype, and blood glucose. In addition to TBil, INR, hepatic encephalopathy, Cr level and AFP as indicators for prognosis of severe hepatitis, some other parameters such as clinical signs, symptoms, serum levels of total cholesterol and albumin and natrium, and coagulation factors are all valuable in assessment. The roles of cell apoptosis, liver regeneration and immunological parameters in assessing patient prognosis are under study. Prognostic evaluating systems include MELD score, MELD-Na score, iMELD score, KCI and CTP score. Prevention of severe hepatitis B should be started in asymptomatic patients. Close observation, sufficient rest, adequate nutrition, meticulous nursing and psychological care, preventing and removing exacerbating factors, treating concomitant diseases, reasonable antiviral and comprehensive therapies are helpful to prevent CHB patients from developing to severe hepatitis. For patients who already have severe hepatitis B, the prevention and management of complications is important for lowering mortality rate. New research directions in acute-on-chronic liver failure include: (1) Additional well controlled studies using present or new liver systems are warranted. Other approaches include the use of granulocyte colony stimulating factor to treat infections as well as the potential of use of stem cells to restore immune integrity and enhance liver regeneration. (2) Using new cell lines and animal models to understand the molecular biology of HBV, the immune response and to develop novel therapies. (3) Development of new anti-HBV strategies, e.g. silencing or remove cccDNA, enhancing immunologic clearance of HBV infection, inhibiting virus entry or HBc expression and using CRISP to disrupt cccDNA.
Collapse
|
30
|
Kissick HT. Is It Possible to Develop Cancer Vaccines to Neoantigens, What Are the Major Challenges, and How Can These Be Overcome? Neoantigens as Vaccine Targets for Cancer. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a033704. [PMID: 29254981 DOI: 10.1101/cshperspect.a033704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent work by several groups has undoubtedly shown that we can produce cancer vaccines targeting neoantigens. However, each vaccine is essentially a single-use, patient-specific product, making this approach resource-intensive. For this reason, it is important to ask whether this approach will be any more successful than what has been attempted during the last 30 years using vaccines targeting self-epitopes. Here, we discuss what might be expected from neoantigen vaccines based on our experience in chronic viral infections, and how this new approach may be applied to cancer immunotherapy.
Collapse
Affiliation(s)
- Haydn T Kissick
- Departments of Urology and Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
31
|
PD-L1, TIM-3, and CTLA-4 Blockade Fails To Promote Resistance to Secondary Infection with Virulent Strains of Toxoplasma gondii. Infect Immun 2018; 86:IAI.00459-18. [PMID: 29967089 DOI: 10.1128/iai.00459-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
T cell exhaustion is a state of hyporesponsiveness that develops during many chronic infections and cancer. Neutralization of inhibitory receptors, or "checkpoint blockade," can reverse T cell exhaustion and lead to beneficial prognoses in experimental and clinical settings. Whether checkpoint blockade can resolve lethal acute infections is less understood but may be beneficial in vaccination protocols that fail to elicit sterilizing immunity. Since a fully protective vaccine for any human parasite has yet to be developed, we explored the efficacy of checkpoint inhibitors in a mouse model of Toxoplasma gondii reinfection. Mice chronically infected with an avirulent type III strain survive reinfection with the type I RH strain but not the MAS, GUY-DOS, and GT1 parasite strains. We report here that mouse susceptibility to secondary infection correlates with the initial parasite burden and that protection against the RH strain is dependent on CD8 but not CD4 T cells in this model. When given a lethal secondary infection, CD8 and CD4 T cells upregulate several coinhibitory receptors, including PD-1, TIM-3, 4-1bb, and CTLA-4. Moreover, the gamma interferon (IFN-γ) response of CD8 but not CD4 T cells is significantly reduced during secondary infection with virulent strains, suggesting that checkpoint blockade may reduce disease severity. However, single and combination therapies targeting TIM-3, CTLA-4, and/or PD-L1 failed to reverse susceptibility to secondary infection. These results suggest that additional host responses, which are refractory to checkpoint blockade, are likely required for immunity to this pathogen.
Collapse
|
32
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
33
|
Läubli H, Balmelli C, Kaufmann L, Stanczak M, Syedbasha M, Vogt D, Hertig A, Müller B, Gautschi O, Stenner F, Zippelius A, Egli A, Rothschild SI. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. J Immunother Cancer 2018; 6:40. [PMID: 29789020 PMCID: PMC5964701 DOI: 10.1186/s40425-018-0353-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background Immune checkpoint inhibiting antibodies were introduced into routine clinical practice for cancer patients. Checkpoint blockade has led to durable remissions in some patients, but may also induce immune-related adverse events (irAEs). Lung cancer patients show an increased risk for complications, when infected with influenza viruses. Therefore, vaccination is recommended. However, the efficacy and safety of influenza vaccination during checkpoint blockade and its influence on irAEs is unclear. Similarly, the influence of vaccinations on T cell-mediated immune reactions in patients during PD-1 blockade remains poorly defined. Methods We vaccinated 23 lung cancer patients and 11 age-matched healthy controls using a trivalent inactivated influenza vaccine to investigate vaccine-induced immunity and safety during checkpoint blockade. Results We did not observe significant differences between patients and healthy controls in vaccine-induced antibody titers against all three viral antigens. Influenza vaccination resulted in protective titers in more than 60% of patients/participants. In cancer patients, the post-vaccine frequency of irAEs was 52.2% with a median time to occurrence of 3.2 months after vaccination. Six of 23 patients (26.1%) showed severe grade 3/4 irAEs. This frequency of irAEs might be higher than the rate previously published in the literature and the rate observed in a non-study population at our institution (all grades 25.5%, grade 3/4 9.8%). Conclusions Although this is a non-randomized trial with a limited number of patients, the increased rate of immunological toxicity is concerning. This finding should be studied in a larger patient population.
Collapse
Affiliation(s)
- Heinz Läubli
- Department of Internal Medicine, Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.,Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Catharina Balmelli
- Department of Internal Medicine, Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Lukas Kaufmann
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michal Stanczak
- Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mohammedyaseen Syedbasha
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dominik Vogt
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Astrid Hertig
- Department of Internal Medicine, Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Beat Müller
- Oncology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | | | - Frank Stenner
- Department of Internal Medicine, Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.,Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Internal Medicine, Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.,Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| | - Sacha I Rothschild
- Department of Internal Medicine, Division of Medical Oncology, University Hospital Basel, Basel, Switzerland. .,Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Ahn E, Araki K, Hashimoto M, Li W, Riley JL, Cheung J, Sharpe AH, Freeman GJ, Irving BA, Ahmed R. Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A 2018; 115:4749-4754. [PMID: 29654146 PMCID: PMC5939075 DOI: 10.1073/pnas.1718217115] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti-PD-L1 or anti-PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.
Collapse
Affiliation(s)
- Eunseon Ahn
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Koichi Araki
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Masao Hashimoto
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Weiyan Li
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - James L Riley
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeanne Cheung
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215
| | - Bryan A Irving
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
35
|
Bhattacharyya M, Penaloza-MacMaster P. Dynamics of Lymphocyte Reconstitution After Hematopoietic Transplantation During Chronic Lymphocytic Choriomeningitis Virus Infection. AIDS Res Hum Retroviruses 2018; 34:430-438. [PMID: 29620933 DOI: 10.1089/aid.2017.0251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone marrow transplantation is a treatment for various cancers and genetic diseases, and the only case of a cured HIV infection involved the use of this clinical procedure, highlighting the potential use of this therapy for curing many chronic diseases. However, little is known about how chronic viral infection influences lymphocyte reconstitution after bone marrow transplantation. To address this, we infected mice with chronic lymphocytic choriomeningitis virus, and performed bone marrow transplantation to assess lymphocyte reconstitution. Interestingly, we observed that adoptively transferred marrow cells exhibited preferential B cell differentiation in chronically infected mice. Moreover, donor marrow cells that were adoptively transferred into chronically infected mice differentiated into virus-specific CD8 T cells that were able to expand after PD-L1 blockade. Taken together, our data show that chronic viral infection induces a biased differentiation of bone marrow stem cells into B cells, and that exhausted virus-specific CD8 T cells generated de novo in this setting are rescuable by PD-1 blockade. These data contribute to the understanding of how chronic viral infection impacts lymphocyte reconstitution, and may provide valuable information to improve current hematopoietic transplantation regimens in chronically infected hosts.
Collapse
Affiliation(s)
- Mitra Bhattacharyya
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
36
|
Maini MK, Pallett LJ. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol Hepatol 2018; 3:192-202. [PMID: 29870733 DOI: 10.1016/s2468-1253(18)30007-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) remains a major cause of morbidity and mortality worldwide. Treatments that can induce functional cure in patients chronically infected with this hepatotropic, non-cytopathic virus are desperately needed. Attempts to use therapeutic vaccines to expand the weak antiviral T-cell response and induce sustained immunity have been unsuccessful. However, exciting progress has been made in defining the molecular defects that must be overcome to harness T-cell immunity. A large arsenal of immunotherapeutic agents and direct-acting antivirals targeting multiple steps of the viral lifecycle is emerging. In this Review, we discuss how to translate the new insights into T-cell manipulation, combined with better understanding of patient heterogeneity, into optimisation of therapeutic vaccines against HBV. We review the opportunities and risks involved in boosting endogenous T-cell responses using combinations of next generation therapeutic vaccines and immunotherapy agents.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK.
| | - Laura J Pallett
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
37
|
Attanasio J, Wherry EJ. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2017; 44:1052-68. [PMID: 27192569 DOI: 10.1016/j.immuni.2016.04.022] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 12/16/2022]
Abstract
Costimulatory and inhibitory receptors play a key role in regulating immune responses to infections. Recent translation of knowledge about inhibitory receptors such as CTLA-4 and PD-1 into the cancer clinic highlights the opportunities to manipulate these pathways to treat human disease. Studies in infectious disease have provided key insights into the specific roles of these pathways and the effects of their manipulation. Here, recent studies are discussed that have addressed how major inhibitory and costimulatory pathways play a role in regulating immune responses during acute and chronic infections. Mechanistic insights from studies of infectious disease provide opportunities to further expand our toolkit to treat cancer and chronic infections in the clinic.
Collapse
Affiliation(s)
- John Attanasio
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Programmed Cell Death 1 (PD-1) and Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) in Viral Hepatitis. Int J Mol Sci 2017; 18:ijms18071517. [PMID: 28703774 PMCID: PMC5536007 DOI: 10.3390/ijms18071517] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
Virus-specific cluster of differentiation 8 (CD8+) cytotoxic T cells (CTL) recognize viral antigens presented on major histocompatibility complex (MHC) class I chains on infected hepatocytes, with help from CD4+ T cells. However, this CTL response is frequently weak or undetectable in patients with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. Programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are receptors in the CD28 family of costimulatory molecules, providing inhibitory signals to T cells. The overexpressions of PD-1 and CTLA-4 in patients with viral infection have been shown to associate with functional impairment of virus-specific T cells. In acute viral hepatitis, PD-1 and CTLA-4 are up-regulated during the symptomatic phase, and then down-regulated after recovery. These findings suggest that PD-1 and CTLA-4 have protective effects as inhibitory molecules to suppress cytotoxic T cells which induce harmful destruction of viral infected hepatocytes in self-limited viral hepatitis. In chronic viral hepatitis, the extended upregulations of PD-1 and CTLA-4 are associated with T cell exhaustion and persistent viral infection, suggesting positive correlations between expression of immune inhibitory factors and the chronicity of viral disease. In this review, we summarize recent literature relating to PD-1, CTLA-4, and other inhibitory receptors in antigen-specific T cell exhaustion in viral hepatitis, including hepatitis A, B, C, and others.
Collapse
|
39
|
Patel R, Kim K, Shutinoski B, Wachholz K, Krishnan L, Sad S. Culling of APCs by inflammatory cell death pathways restricts TIM3 and PD-1 expression and promotes the survival of primed CD8 T cells. Cell Death Differ 2017; 24:1900-1911. [PMID: 28686578 DOI: 10.1038/cdd.2017.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/17/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022] Open
Abstract
We evaluated the impact of premature cell death of antigen-presenting cells (APCs) by Caspase-1- and RipK3-signaling pathways on CD8+ T-cell priming during infection of mice with Salmonella typhimurium (ST). Our results indicate that Caspase1 and RipK3 synergize to rapidly eliminate infected APCs, which does not influence the initial activation of CD8+ T cells. However, the maintenance of primed CD8+ T cells was greatly compromised when both these pathways were disabled. Caspase-1- and RipK3-signaling did not influence NF-κB signaling in APCs, but synergized to promote processing of IL-1 and IL-18. Combined deficiency of Caspase1 and RipK3 resulted in compromised innate immunity and accelerated host fatality due to poor processing of IL-18. In contrast, synergism in cell death by Caspase-1- and RipK3 resulted in restriction of PD-1 and TIM3 expression on primed CD8+ T cells, which promoted the survival of activated CD8+ T cells.
Collapse
Affiliation(s)
- Rajen Patel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kwangsin Kim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bojan Shutinoski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristina Wachholz
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,National Research Council of Canada, Ottawa, Ontario, Canada
| | - Lakshmi Krishnan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,National Research Council of Canada, Ottawa, Ontario, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG, Youngblood B. De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. Cell 2017. [PMID: 28648661 DOI: 10.1016/j.cell.2017.06.007] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune-checkpoint-blockade (ICB)-mediated rejuvenation of exhausted T cells has emerged as a promising approach for treating various cancers and chronic infections. However, T cells that become fully exhausted during prolonged antigen exposure remain refractory to ICB-mediated rejuvenation. We report that blocking de novo DNA methylation in activated CD8 T cells allows them to retain their effector functions despite chronic stimulation during a persistent viral infection. Whole-genome bisulfite sequencing of antigen-specific murine CD8 T cells at the effector and exhaustion stages of an immune response identified progressively acquired heritable de novo methylation programs that restrict T cell expansion and clonal diversity during PD-1 blockade treatment. Moreover, these exhaustion-associated DNA-methylation programs were acquired in tumor-infiltrating PD-1hi CD8 T cells, and approaches to reverse these programs improved T cell responses and tumor control during ICB. These data establish de novo DNA-methylation programming as a regulator of T cell exhaustion and barrier of ICB-mediated T cell rejuvenation.
Collapse
Affiliation(s)
- Hazem E Ghoneim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ardiana Moustaki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pranay Dogra
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert Carter
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoff Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
41
|
Okagawa T, Konnai S, Nishimori A, Maekawa N, Ikebuchi R, Goto S, Nakajima C, Kohara J, Ogasawara S, Kato Y, Suzuki Y, Murata S, Ohashi K. Anti-Bovine Programmed Death-1 Rat-Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle. Front Immunol 2017. [PMID: 28638381 PMCID: PMC5461298 DOI: 10.3389/fimmu.2017.00650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.
Collapse
Affiliation(s)
- Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Goto
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Junko Kohara
- Animal Research Center, Agriculture Research Department, Hokkaido Research Organization, Shintoku, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein. Viruses 2017; 9:v9050112. [PMID: 28509875 PMCID: PMC5454424 DOI: 10.3390/v9050112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes’ immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response.
Collapse
|
43
|
Thomsen AR. A new vaccination strategy to trigger specific CD4 T-cell response in chronic viral infection. Cell Mol Immunol 2017; 15:868-869. [PMID: 28479602 DOI: 10.1038/cmi.2017.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Panum Institute, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
44
|
Stephen-Victor E, Bosschem I, Haesebrouck F, Bayry J. The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12746] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre de Recherche des Cordeliers; Equipe-Immunopathologie et Immunointervention Thérapeutique; Paris France
- Sorbonne Universités; Université Pierre et Marie Curie; Paris France
| | - Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre de Recherche des Cordeliers; Equipe-Immunopathologie et Immunointervention Thérapeutique; Paris France
- Sorbonne Universités; Université Pierre et Marie Curie; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| |
Collapse
|
45
|
Penaloza-MacMaster P. CD8 T-cell regulation by T regulatory cells and the programmed cell death protein 1 pathway. Immunology 2017; 151:146-153. [PMID: 28375543 DOI: 10.1111/imm.12739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
The primary function of the immune system is to protect the host from infectious microorganisms and cancers. However, a major component of the immune response involves the direct elimination of cells in the body and the induction of systemic inflammation, which may result in life-threatening immunopathology. Therefore, the immune system has developed complex mechanisms to regulate itself with a specialized subset of CD4 T lymphocytes (referred to as regulatory T cells) and immune checkpoint pathways, such as the programmed cell death protein 1 pathway. These immune regulatory mechanisms can be exploited by pathogens and tumours to establish persistence in the host, warranting a deeper understanding of how to fine-tune immune responses during these chronic diseases. Here, I discuss various features of immune regulatory pathways and what important aspects must be considered in the next generation of therapies to reverse immune exhaustion, understanding that this process is a natural mechanism to prevent the host from destroying itself.
Collapse
Affiliation(s)
- Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
46
|
Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 2017; 47:765-779. [PMID: 28393361 DOI: 10.1002/eji.201646875] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/01/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
The development of chronic infections and cancer is facilitated by a variety of immune subversion mechanisms, such as the production of anti-inflammatory cytokines, induction of regulatory T (Treg) cells, and expression of immune checkpoint molecules, including CTLA-4 and PD-1. CTLA-4, expressed on T cells, interacts with CD80/CD86, thereby limiting T-cell activation and leading to anergy. PD-1 is predominantly expressed on T cells and its interaction with PD-L1 and PD-L2 expressed on antigen-presenting cells (APCs) and tumors sends a negative signal to T cells, which can lead to T-cell exhaustion. Given their role in suppressing effector T-cell responses, immune checkpoints are being targeted for the treatment of cancer. Indeed, antibodies binding to CTLA-4, PD-1, or PD-L1 have shown remarkable efficacy, especially in combination therapies, for a number of cancers and have been licensed for the treatment of melanoma, nonsmall cell lung cancer, and renal and bladder cancers. Moreover, immune checkpoint inhibitors have been shown to enhance ex vivo effector T-cell responses from patients with chronic viral, bacterial, or parasitic infection, including HIV, tuberculosis, and malaria. Although the data from clinical trials in infectious diseases are still sparse, these inhibitors have great potential for treating chronic infections, especially when combined with therapeutic vaccines.
Collapse
Affiliation(s)
- Lydia Dyck
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
He R, Yang X, Liu C, Chen X, Wang L, Xiao M, Ye J, Wu Y, Ye L. Efficient control of chronic LCMV infection by a CD4 T cell epitope-based heterologous prime-boost vaccination in a murine model. Cell Mol Immunol 2017; 15:815-826. [PMID: 28287115 DOI: 10.1038/cmi.2017.3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
CD4+ T cells are essential for sustaining CD8+ T cell responses during a chronic infection. The adoptive transfer of virus-specific CD4+ T cells has been shown to efficiently rescue exhausted CD8+ T cells. However, the question of whether endogenous virus-specific CD4+ T cell responses can be enhanced by certain vaccination strategies and subsequently reinvigorate exhausted CD8+ T cells remains unexplored. In this study, we developed a CD4+ T cell epitope-based heterologous prime-boost immunization strategy and examined the efficacy of this strategy using a mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We primed chronically LCMV-infected mice with a Listeria monocytogenes vector that expressed the LCMV glycoprotein-specific I-Ab-restricted CD4+ T cell epitope GP61-80 (LM-GP61) and subsequently boosted the primed mice with an influenza virus A (PR8 strain) vector that expressed the same CD4+ T cell epitope (IAV-GP61). This heterologous prime-boost vaccination strategy elicited strong anti-viral CD4+ T cell responses, which further improved both the quantity and quality of the virus-specific CD8+ T cells and led to better control of the viral loads. The combination of this strategy and the blockade of the programmed cell death-1 (PD-1) inhibitory pathway further enhanced the anti-viral CD8+ T cell responses and viral clearance. Thus, a heterologous prime-boost immunization that selectively induces virus-specific CD4+ T cell responses in conjunction with blockade of the inhibitory pathway may represent a promising therapeutic approach to treating patients with chronic viral infections.
Collapse
Affiliation(s)
- Ran He
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, 510515, Guangzhou, China.,Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Xinxin Yang
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Cheng Liu
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Lin Wang
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Minglu Xiao
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China, Jiangsu.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225009, Yangzhou, China, Jiangsu
| | - Yuzhang Wu
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, 510515, Guangzhou, China.,Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
48
|
Krueger J, Jules F, Rieder SA, Rudd CE. CD28 family of receptors inter-connect in the regulation of T-cells. RECEPTORS & CLINICAL INVESTIGATION 2017; 4:e1581. [PMID: 31544130 PMCID: PMC6753945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
T-cell activation is mediated by a combination of signals from the antigen receptor (TCR) and co-receptors such as CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed cell death antigen 1 (PD-1), CD28H and others. Each is a member of the CD28 receptor gene family. CD28 sends positive signals that promote T-cell responses, while CTLA-4 and PD-1 limit responses. It is the balance between these positive and negative signals that determines the amplitude and level of T-cell responses. The regulatory role of other family members is also becoming the focus of increasing interest. The function of certain CD28 family members such as CTLA-4 and PD-1 is dependent the expression of CD28. Together, these findings have important implications in generation of immune responses and the application of anti-receptor blocking reagents in immunotherapy.
Collapse
Affiliation(s)
- Janna Krueger
- Division of Immunology-Oncology, Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec H1T 2M4, Canada,Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Felix Jules
- Division of Immunology-Oncology, Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec H1T 2M4, Canada,Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | | - Christopher E. Rudd
- Division of Immunology-Oncology, Hospital Maisonneuve-Rosemont Research Center, Montreal, Quebec H1T 2M4, Canada,Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
49
|
Bozeman EN, He S, Shafizadeh Y, Selvaraj P. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12. Hum Vaccin Immunother 2016; 12:421-30. [PMID: 26308597 DOI: 10.1080/21645515.2015.1076953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.
Collapse
Affiliation(s)
- Erica N Bozeman
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| | - Sara He
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| | - Yalda Shafizadeh
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| | - Periasamy Selvaraj
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| |
Collapse
|
50
|
PD-1/PD-L pathway inhibits M.tb-specific CD4 + T-cell functions and phagocytosis of macrophages in active tuberculosis. Sci Rep 2016; 6:38362. [PMID: 27924827 PMCID: PMC5141449 DOI: 10.1038/srep38362] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
The role of the PD-1/PD-L pathway in a murine model of tuberculosis remains controversial regarding viral infections and clinical tuberculosis. We conducted a case-control study to investigate the modulating role and mechanism of the PD-1/PD-L pathway in patients with active tuberculosis. Fifty-nine participants, including 43 active tuberculosis (ATB) patients and 16 healthy controls (HC), were enrolled. Cell surface staining and flow cytometry were used to detect the expressions of PD-1 and its ligands on T cells and monocytes. Intracellular cytokine staining was used to determine the PPD-specific IFN-γ-secreting T-cell proportion. CD4+ T-cell proliferation and macrophage functions were investigated in the presence or absence of PD-1/PD-L pathway blockade. Proportions of both PD-1+CD4+ and PD-L1+CD4+ T cells in ATB patients were more significantly increased than in the HC group (P = 0.0112 and P = 0.0141, respectively). The expressions of PD-1, PD-L1, and PD-L2 on CD14+ monocytes in ATB patients were much higher than those in the HC group (P = 0.0016, P = 0.0001, and P = 0.0088, respectively). Blockade of PD-1 could significantly enhance CD4+ T-cell proliferation (P = 0.0433). Phagocytosis and intracellular killing activity of macrophages increased significantly with PD-1/PD-L pathway blockade. In conclusion, the PD-1/PD-L pathway inhibits not only M.tb-specific CD4+ T-cell-mediated immunity but also innate immunity.
Collapse
|