1
|
Peng F, Feng Y, Yu S, He R, Wang H, Xie Y, Qin R. Pan-cancer analysis of B3GNT5 with potential implications for cancer immunotherapy and cancer stem cell stemness. PLoS One 2024; 19:e0314609. [PMID: 39671359 PMCID: PMC11642946 DOI: 10.1371/journal.pone.0314609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024] Open
Abstract
B3GNT5, a critical member of the β-1,3-N-acetylglucosaminyl transferase gene family involved in lactose and glycosphingolipids biosynthesis, has been documented to promote tumor-infiltrating T-cell responses. Our research utilized the Pan-Cancer dataset from The Cancer Genome Atlas (TCGA) to explore the functional role of B3GNT5. Our study demonstrated that the antibody-driven inhibition of B3GNT5 diminished T cell-mediated anti-tumor responses in both in vitro and in vivo settings. By analyzing RNA-seq data from Genotype-Tissue Expression (GTEx) and TCGA databases, we observed differential expression levels of B3GNT5 across various tumor types accompanied by an unfavorable prognostic correlation. We further utilized integrated clinical survival data from TCGA and immune cell infiltration scoring patterns to identify significant associations between B3GNT5 expression and immune checkpoints, cancer stemness, chemokines, chemokine receptors, and immune-activating genes. B3GNT5's expression was highly correlated with different immunoregulatory factors, including T cell infiltration, chemokine receptors, and activation genes. Subsequent experiments discovered that suppressing B3GNT5 expression in pancreatic adenocarcinoma cells significantly reduced their tumorigenicity by limiting sphere-forming ability and self-renewal capacity, thus underscoring B3GNT5's vital role as a prognostic factor in immune regulation across pan-cancer. Our findings suggest that B3GNT5 presents a viable target for cancer immunotherapy by enabling effective communication between cancer stem cells and immune cells during tumor treatment.
Collapse
Affiliation(s)
- Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yechen Feng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Yu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hebin Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Bala N, McGurk A, Carter EM, Sidhu I, Niak S, Leddon SA, Fowell DJ. Th1 cells are critical tissue organizers of myeloid-rich perivascular activation niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625073. [PMID: 39651309 PMCID: PMC11623525 DOI: 10.1101/2024.11.24.625073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Aggregating immune cells within perivascular niches (PVN) can regulate tissue immunity in infection, autoimmunity and cancer. How cells are assembled at PVNs and the activation signals imparted within remain unclear. Here, we integrate dynamic time-resolved in vivo imaging with a novel spatially-resolved platform for microanatomical interrogation of transcriptome, immune phenotype and inflammatory mediators in skin PVNs. We uncover a complex positive-feedback loop within CXCL10 + PVNs that regulates myeloid and Th1 cell positioning for exchange of critical signals for Th1 activation. Th1 cells spend ∼24h in the PVN, receiving initial peripheral activation signals, before redeploying to the inflamed dermal parenchyma. Niche-enriched, CCR2-dependent myeloid cells were critical for Th1 IFNγ-production. In turn, PVN instructional signals enabled Th1s to orchestrate PVN assembly by CXCR2-dependent intra-tissue myeloid cell aggregation. The results reveal a critical tissue organizing role for Th1s, gained rapidly on tissue entry, that could be exploited to boost regional immunity. HIGHLIGHTS Perivascular niche (PVN): myeloid hubs in inflamed mouse and healthy human skinTh1 cells enter, get activated, and leave the PVN within first 24h of tissue entryAntigen-specific signals in the PVN promote the tissue organizing functions of Th1sTh1 cells assemble the PVN via CXCR2-dependent myeloid cell aggregation.
Collapse
|
3
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
4
|
Zhu Y, Wei L, Zwygart ACA, Gaínza P, Khac QO, Olgiati F, Kurum A, Tang L, Correia B, Tapparel C, Stellacci F. A Synthetic Multivalent Lipopeptide Derived from Pam3CSK4 with Irreversible Influenza Inhibition and Immuno-Stimulating Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307709. [PMID: 38438885 DOI: 10.1002/smll.202307709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The activation of the host adaptive immune system is crucial for eliminating viruses. However, influenza infection often suppresses the innate immune response that precedes adaptive immunity, and the adaptive immune responses are typically delayed. Dendritic cells, serving as professional antigen-presenting cells, have a vital role in initiating the adaptive immune response. In this study, an immuno-stimulating antiviral system (ISAS) is introduced, which is composed of the immuno-stimulating adjuvant lipopeptide Pam3CSK4 that acts as a scaffold onto which it is covalently bound 3 to 4 influenza-inhibiting peptides. The multivalent display of peptides on the scaffold leads to a potent inhibition against H1N1 (EC50 = 20 nM). Importantly, the resulting lipopeptide, Pam3FDA, shows an irreversible inhibition mechanism. The chemical modification of peptides on the scaffold maintains Pam3CSK4's ability to stimulate dendritic cell maturation, thereby rendering Pam3FDA a unique antiviral. This is attributed to its immune activation capability, which also acts in synergy to expedite viral elimination.
Collapse
Affiliation(s)
- Yong Zhu
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Lixia Wei
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Arnaud Charles-Antoine Zwygart
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Pablo Gaínza
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Quy Ong Khac
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Francesca Olgiati
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Armand Kurum
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Li Tang
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Bruno Correia
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
5
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 2024; 24:213-227. [PMID: 37783860 PMCID: PMC12001822 DOI: 10.1038/s41577-023-00937-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.
Collapse
Affiliation(s)
- Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Yeung J, Wang T, Shi PY. Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine. Curr Opin Virol 2023; 62:101347. [PMID: 37604085 DOI: 10.1016/j.coviro.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
8
|
Zheng MZ, Tan TK, Villalon-Letelier F, Lau H, Deng YM, Fritzlar S, Valkenburg SA, Gu H, Poon LL, Reading PC, Townsend AR, Wakim LM. Single-cycle influenza virus vaccine generates lung CD8 + Trm that cross-react against viral variants and subvert virus escape mutants. SCIENCE ADVANCES 2023; 9:eadg3469. [PMID: 37683004 PMCID: PMC10491285 DOI: 10.1126/sciadv.adg3469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, OX3 7FZ Oxford, UK
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
9
|
Lin SJ, Lin KM, Chen SYJ, Ku CC, Huang CW, Huang CH, Gale M, Tsai CH. Type I Interferon Orchestrates Demand-Adapted Monopoiesis during Influenza A Virus Infection via STAT1-Mediated Upregulation of Macrophage Colony-Stimulating Factor Receptor Expression. J Virol 2023; 97:e0010223. [PMID: 37022164 PMCID: PMC10134875 DOI: 10.1128/jvi.00102-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-β) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.
Collapse
Affiliation(s)
- Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Ku
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Huang
- Department of Family Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsiang Huang
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
11
|
Vangeti S, Falck-Jones S, Yu M, Österberg B, Liu S, Asghar M, Sondén K, Paterson C, Whitley P, Albert J, Johansson N, Färnert A, Smed-Sörensen A. Human influenza virus infection elicits distinct patterns of monocyte and dendritic cell mobilization in blood and the nasopharynx. eLife 2023; 12:77345. [PMID: 36752598 PMCID: PMC9977282 DOI: 10.7554/elife.77345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | | | | | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Clinical Microbiology, Karolinska University HospitalStockholmSweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
12
|
Harvey AG, Graves AM, Uppalapati CK, Matthews SM, Rosenberg S, Parent EG, Fagerlie MH, Guinan J, Lopez BS, Kronstad LM. Dendritic cell-natural killer cell cross-talk modulates T cell activation in response to influenza A viral infection. Front Immunol 2022; 13:1006998. [PMID: 36618376 PMCID: PMC9815106 DOI: 10.3389/fimmu.2022.1006998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses lead to substantial morbidity and mortality including ~3-5 million cases of severe illness and ~290,000-650,000 deaths annually. One of the major hurdles regarding influenza vaccine efficacy is generating a durable, robust cellular immune response. Appropriate stimulation of the innate immune system is key to generating cellular immunity. Cross-talk between innate dendritic cells (DC) and natural killer (NK) cells plays a key role in activating virus-specific T cells, yet the mechanisms used by influenza A viruses (IAV) to govern this process remain incompletely understood. Here, we used an ex vivo autologous human primary immune cell culture system to evaluate the impact of DC-NK cell cross-talk and subsequent naïve T cell activation at steady-state and after exposure to genetically distinct IAV strains-A/California/07/2009 (H1N1) and A/Victoria/361/2011 (H3N2). Using flow cytometry, we found that exposure of DCs to IAV in co-culture with NK cells led to a decreased frequency of CD83+ and CD86+ cells on DCs and an increased frequency of HLA-DR+ on both DCs and NK cells. We then assessed the outcome of DC-NK cell cross-talk on T cell activation. At steady-state, DC-NK cell cross-talk increased pan T cell CD69 and CD25 expression while exposure to either IAV strain reduced pan T cell CD25 expression and suppressed CD4+ and CD8+ T cell IFN-γ and TNF production, following chemical stimulation with PMA/Ionomycin. Moreover, exposure to A/Victoria/361/2011 elicited lower IFN-γ production by CD4+ and CD8+ T cells compared with A/California/07/2009. Overall, our results indicate a role for DC-NK cell cross-talk in T cell priming in the context of influenza infection, informing the immunological mechanisms that could be manipulated for the next generation of influenza vaccines or immunotherapeutics.
Collapse
Affiliation(s)
- Abigail G. Harvey
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Athens M. Graves
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Chandana K. Uppalapati
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Saoirse M. Matthews
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Stephanie Rosenberg
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Emma G. Parent
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Madison H. Fagerlie
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Jack Guinan
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Brina S. Lopez
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Lisa M. Kronstad
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States,*Correspondence: Lisa M. Kronstad,
| |
Collapse
|
13
|
Künzli M, O’Flanagan SD, LaRue M, Talukder P, Dileepan T, Stolley JM, Soerens AG, Quarnstrom CF, Wijeyesinghe S, Ye Y, McPartlan JS, Mitchell JS, Mandl CW, Vile R, Jenkins MK, Ahmed R, Vezys V, Chahal JS, Masopust D. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci Immunol 2022; 7:eadd3075. [PMID: 36459542 PMCID: PMC9832918 DOI: 10.1126/sciimmunol.add3075] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Respiratory tract resident memory T cells (TRM), typically generated by local vaccination or infection, can accelerate control of pulmonary infections that evade neutralizing antibody. It is unknown whether mRNA vaccination establishes respiratory TRM. We generated a self-amplifying mRNA vaccine encoding the influenza A virus nucleoprotein that is encapsulated in modified dendron-based nanoparticles. Here, we report how routes of immunization in mice, including contralateral versus ipsilateral intramuscular boosts, or intravenous and intranasal routes, influenced influenza-specific cell-mediated and humoral immunity. Parabiotic surgeries revealed that intramuscular immunization was sufficient to establish CD8 TRM in the lung and draining lymph nodes. Contralateral, compared with ipsilateral, intramuscular boosting broadened the distribution of lymph node TRM and T follicular helper cells but slightly diminished resulting levels of serum antibody. Intranasal mRNA delivery established modest circulating CD8 and CD4 T cell memory but augmented distribution to the respiratory mucosa. Combining intramuscular immunizations with an intranasal mRNA boost achieved high levels of both circulating T cell memory and lung TRM. Thus, routes of mRNA vaccination influence humoral and cell-mediated immunity, and intramuscular prime-boosting establishes lung TRM that can be further expanded by an additional intranasal immunization.
Collapse
Affiliation(s)
- Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen D. O’Flanagan
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Madeleine LaRue
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Thamotharampillai Dileepan
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - J. Michael Stolley
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew G. Soerens
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clare F. Quarnstrom
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sathi Wijeyesinghe
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yanqi Ye
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jason S. Mitchell
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marc K. Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Otero AM, Antonson AM. At the crux of maternal immune activation: Viruses, microglia, microbes, and IL-17A. Immunol Rev 2022; 311:205-223. [PMID: 35979731 PMCID: PMC9804202 DOI: 10.1111/imr.13125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.
Collapse
Affiliation(s)
- Ashley M. Otero
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Adrienne M. Antonson
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
15
|
Wang L, Cao Z, Wang Z, Guo J, Wen J. Reactive oxygen species associated immunoregulation post influenza virus infection. Front Immunol 2022; 13:927593. [PMID: 35967412 PMCID: PMC9373727 DOI: 10.3389/fimmu.2022.927593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
An appropriate level of reactive oxygen species (ROS) is necessary for cell proliferation, signaling transduction, and apoptosis due to their highly reactive character. ROS are generated through multiple metabolic pathways under a fine-tuned control between oxidant and antioxidant signaling. A growing number of evidence has proved their highly relevant role in modulating inflammation during influenza virus infection. As a network of biological process for protecting organism from invasion of pathogens, immune system can react and fight back through either innate immune system or adaptive immune system, or both. Herein, we provide a review about the mechanisms of ROS generation when encounter influenza virus infection, and how the imbalanced level of ROS influences the replication of virus. We also summarize the pathways used by both the innate and adaptive immune system to sense and attack the invaded virus and abnormal levels of ROS. We further review the limitation of current strategies and discuss the direction of future work.
Collapse
Affiliation(s)
- Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zi Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States,*Correspondence: Jing Wen,
| |
Collapse
|
16
|
Zheng MZM, Wakim LM. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol 2022; 15:379-388. [PMID: 34671115 PMCID: PMC8526531 DOI: 10.1038/s41385-021-00461-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Owing to their capacity to rapidly spread across the population, airborne pathogens represent a significant risk to global health. Indeed, several of the past major global pandemics have been instigated by respiratory pathogens. A greater understanding of the immune cells tasked with protecting the airways from infection will allow for the development of strategies that curb the spread and impact of these airborne diseases. A specific subset of memory T-cell resident in both the upper and lower respiratory tract, termed tissue-resident memory (Trm), have been shown to play an instrumental role in local immune responses against a wide breadth of both viral and bacterial infections. In this review, we discuss factors that influence respiratory tract Trm development, longevity, and immune surveillance and explore vaccination regimes that harness these cells, such approaches represent exciting new strategies that may be utilized to tackle the next global pandemic.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Linda M. Wakim
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| |
Collapse
|
17
|
Kozlovski S, Regev O, Sapoznikov A, Kizner M, Achdout H, Petrovich-Kopitman E, Elkahal J, Addadi Y, Silva Castanheira FVE, Feigelson SW, Kubes P, Erez N, Garbi N, Alon R. ICAMs are dispensable for influenza clearance and anti-viral humoral and cellular immunity. Front Immunol 2022; 13:1041552. [PMID: 36895258 PMCID: PMC9988921 DOI: 10.3389/fimmu.2022.1041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
αLβ2 (LFA-1) mediated interactions with ICAM-1 and ICAM-2 predominate leukocyte-vascular interactions, but their functions in extravascular cell-cell communications is still debated. The roles of these two ligands in leukocyte trafficking, lymphocyte differentiation, and immunity to influenza infections were dissected in the present study. Surprisingly, double ICAM-1 and ICAM-2 knock out mice (herein ICAM-1/2-/- mice) infected with a lab adapted H1N1 influenza A virus fully recovered from infection, elicited potent humoral immunity, and generated normal long lasting anti-viral CD8+ T cell memory. Furthermore, lung capillary ICAMs were dispensable for both NK and neutrophil entry to virus infected lungs. Mediastinal lymph nodes (MedLNs) of ICAM-1/2-/- mice poorly recruited naïve T cells and B lymphocytes but elicited normal humoral immunity critical for viral clearance and effective CD8+ differentiation into IFN-γ producing T cells. Furthermore, whereas reduced numbers of virus specific effector CD8+ T cells accumulated inside infected ICAM-1/2-/- lungs, normal virus-specific TRM CD8+ cells were generated inside these lungs and fully protected ICAM-1/2-/- mice from secondary heterosubtypic infections. B lymphocyte entry to the MedLNs and differentiation into extrafollicular plasmablasts, producing high affinity anti-influenza IgG2a antibodies, were also ICAM-1 and ICAM-2 independent. A potent antiviral humoral response was associated with accumulation of hyper-stimulated cDC2s in ICAM null MedLNs and higher numbers of virus-specific T follicular helper (Tfh) cells generated following lung infection. Mice selectively depleted of cDC ICAM-1 expression supported, however, normal CTL and Tfh differentiation following influenza infection, ruling out essential co-stimulatory functions of DC ICAM-1 in CD8+ and CD4+ T cell differentiation. Collectively our findings suggest that lung ICAMs are dispensable for innate leukocyte trafficking to influenza infected lungs, for the generation of peri-epithelial TRM CD8+ cells, and long term anti-viral cellular immunity. In lung draining LNs, although ICAMs promote lymphocyte homing, these key integrin ligands are not required for influenza-specific humoral immunity or generation of IFN-γ effector CD8+ T cells. In conclusion, our findings suggest unexpected compensatory mechanisms that orchestrate protective anti-influenza immunity in the absence of vascular and extravascular ICAMs.
Collapse
Affiliation(s)
- Stav Kozlovski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Marina Kizner
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Achdout
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sara W Feigelson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Kubes
- Department of Pharmacology and Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Noam Erez
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Natalio Garbi
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Lysén A, Gudjonsson A, Tesfaye DY, Bobic S, Bern M, Bogen B, Fossum E. Intranasal delivery of a cDC1 targeted influenza vaccine with poly(I:C) enhances T cell responses and protects against influenza infection. Scand J Immunol 2021; 95:e13128. [PMID: 34923667 DOI: 10.1111/sji.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
Targeting antigens to dendritic cells represent a promising method for enhancing immune responses against specific antigens. However, many studies have focused on systemic delivery (intravenous or intraperitoneally) of targeted antigen, approaches that are not easily transferable to humans. Here we evaluate the efficacy of an influenza vaccine targeting Xcr1+ cDC1 administered by intranasal immunization. Intranasal delivery of antigen fused to the chemokine Xcl1, the ligand of Xcr1, resulted in specific uptake by lung CD103+ cDC1. Interestingly, intranasal immunization with influenza A/PR/8/34 haemagglutinin (HA) fused to Xcl1, formulated with poly(I:C), resulted in enhanced induction of antigen-specific IFNγ+ CD4+ and IFNγ+ CD8+ T cell responses in lung compared non-targeted anti-NIP-HA (αNIP-HA). Induction of antibody responses was, however, similar in Xcl1-HA and αNIP-HA immunized mice, but significantly higher than in mice immunized with monomeric HA. Both Xcl1-HA and αNIP-HA vaccines induced full protection when mice were challenged with a lethal dose of influenza PR8 virus, reflecting the strong induction of HA-specific antibodies. Our results demonstrate that i.n. delivery of Xcl1-HA is a promising vaccine strategy for enhancing T cell responses in addition to inducing strong antibody responses.
Collapse
Affiliation(s)
- Anna Lysén
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Arnar Gudjonsson
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Demo Yemane Tesfaye
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sonja Bobic
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Malin Bern
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway.,Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Even Fossum
- K.G. Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
20
|
CXCL10 + peripheral activation niches couple preferred sites of Th1 entry with optimal APC encounter. Cell Rep 2021; 36:109523. [PMID: 34380032 PMCID: PMC9218982 DOI: 10.1016/j.celrep.2021.109523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/02/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Correct positioning of T cells within infected tissues is critical for T cell activation and pathogen control. Upon tissue entry, effector T cells must efficiently locate antigen-presenting cells (APC) for peripheral activation. We reveal that tissue entry and initial peripheral activation of Th1 effector T cells are tightly linked to perivascular positioning of chemokine-expressing APCs. Dermal inflammation induces tissue-wide de novo generation of discrete perivascular CXCL10+ cell clusters, enriched for CD11c+MHC-II+ monocyte-derived dendritic cells. These chemokine clusters are "hotspots" for both Th1 extravasation and activation in the inflamed skin. CXCR3-dependent Th1 localization to the cluster micro-environment prolongs T-APC interactions and boosts function. Both the frequency and range of these clusters are enhanced via a T helper 1 (Th1)-intrinsic, interferon-gamma (IFNγ)-dependent positive-feedback loop. Thus, the perivascular CXCL10+ clusters act as initial peripheral activation niches, optimizing controlled activation broadly throughout the tissue by coupling Th1 tissue entry with enhanced opportunities for Th1-APC encounter.
Collapse
|
21
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
22
|
Pritzl CJ, Daniels MA, Teixeiro E. Interplay of Inflammatory, Antigen and Tissue-Derived Signals in the Development of Resident CD8 Memory T Cells. Front Immunol 2021; 12:636240. [PMID: 34234771 PMCID: PMC8255970 DOI: 10.3389/fimmu.2021.636240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
CD8 positive, tissue resident memory T cells (TRM) are a specialized subset of CD8 memory T cells that surveil tissues and provide critical first-line protection against tumors and pathogen re-infection. Recently, much effort has been dedicated to understanding the function, phenotype and development of TRM. A myriad of signals is involved in the development and maintenance of resident memory T cells in tissue. Much of the initial research focused on the roles tissue-derived signals play in the development of TRM, including TGFß and IL-33 which are critical for the upregulation of CD69 and CD103. However, more recent data suggest further roles for antigenic and pro-inflammatory cytokines. This review will focus on the interplay of pro-inflammatory, tissue and antigenic signals in the establishment of resident memory T cells.
Collapse
Affiliation(s)
| | | | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
23
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
24
|
Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to Influenza Infection in Humans. Cold Spring Harb Perspect Med 2021; 11:a038729. [PMID: 31871226 PMCID: PMC7919402 DOI: 10.1101/cshperspect.a038729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses the human immune responses to influenza infection with some insights from studies using animal models, such as experimental infection of mice. Recent technological advances in the study of human immune responses have greatly added to our knowledge of the infection and immune responses, and therefore much of the focus is on recent studies that have moved the field forward. We consider the complexity of the adaptive response generated by many sequential encounters through infection and vaccination.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Marta L DeDiego
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnologia Agraria y Ailmentaria, 28040 Madrid, Spain
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
25
|
Takamura S. Divergence of Tissue-Memory T Cells: Distribution and Function-Based Classification. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037762. [PMID: 32816841 DOI: 10.1101/cshperspect.a037762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue-resident memory T cells (Trm) comprise the majority of memory cells in nonlymphoid tissues and play a predominant role in immunity at barrier surfaces. A better understanding of Trm cell maintenance and function is essential for the development of vaccines that confer frontline protection. However, it is currently challenging to precisely distinguish Trm cells from other T cells, and this has led to confusion in the literature. Here we highlight gaps in our understanding of tissue memory and discuss recent advances in the classification of Trm cell subsets based on their distribution and functional characteristics.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
26
|
Takamura S. Impact of multiple hits with cognate antigen on memory CD8+ T-cell fate. Int Immunol 2020; 32:571-581. [PMID: 32506114 DOI: 10.1093/intimm/dxaa039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Antigen-driven activation of CD8+ T cells results in the development of a robust anti-pathogen response and ultimately leads to the establishment of long-lived memory T cells. During the primary response, CD8+ T cells interact multiple times with cognate antigen on distinct types of antigen-presenting cells. The timing, location and context of these antigen encounters significantly impact the differentiation programs initiated in the cells. Moderate re-activation in the periphery promotes the establishment of the tissue-resident memory T cells that serve as sentinels at the portal of pathogen entry. Under some circumstances, moderate re-activation of T cells in the periphery can result in the excessive expansion and accumulation of circulatory memory T cells, a process called memory inflation. In contrast, excessive re-activation stimuli generally impede conventional T-cell differentiation programs and can result in T-cell exhaustion. However, these conditions can also elicit a small population of exhausted T cells with a memory-like signature and self-renewal capability that are capable of responding to immunotherapy, and restoration of functional activity. Although it is clear that antigen re-encounter during the primary immune response has a significant impact on memory T-cell development, we still do not understand the molecular details that drive these fate decisions. Here, we review our understanding of how antigen encounters and re-activation events impact the array of memory CD8+ T-cell subsets subsequently generated. Identification of the molecular programs that drive memory T-cell generation will advance the development of new vaccine strategies that elicit high-quality CD8+ T-cell memory.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
27
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
28
|
LRCH1 deficiency enhances LAT signalosome formation and CD8 + T cell responses against tumors and pathogens. Proc Natl Acad Sci U S A 2020; 117:19388-19398. [PMID: 32727906 DOI: 10.1073/pnas.2000970117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD8+ T cells play pivotal roles in eradicating pathogens and tumor cells. T cell receptor (TCR) signaling is vital for the optimal activation of CD8+ T cells. Upon TCR engagement, the transmembrane adapter protein LAT (linker for activation of T cells) recruits other key signaling molecules and forms the "LAT signalosome" for downstream signal transduction. However, little is known about which functional partners could restrain the formation of the LAT signalosome and inhibit CD8+ cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Here we have demonstrated that LRCH1 (leucine-rich repeats and calponin homology domain containing 1) directly binds LAT, reduces LAT phosphorylation and interaction with GRB2, and also promotes the endocytosis of LAT. Lrch1 -/- mice display better protection against influenza virus and Listeria infection, with enhanced CD8+ T cell proliferation and cytotoxicity. Adoptive transfer of Lrch1 -/- CD8+ CTLs leads to increased B16-MO5 tumor clearance in vivo. Furthermore, knockout of LRCH1 in human chimeric antigen receptor (CAR) T cells that recognize the liver tumor-associated antigen glypican-3 could improve CAR T cell migration and proliferation in vitro. These findings suggest LRCH1 as a potential translational target to improve T cell immunotherapy against infection and tumors.
Collapse
|
29
|
Leylek R, Idoyaga J. The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:177-211. [PMID: 31759431 DOI: 10.1016/bs.ircmb.2019.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their identification as the natural interferon-producing cell two decades ago, plasmacytoid dendritic cells (pDCs) have been attributed diverse functions in the immune response. Their most well characterized function is innate, i.e., their rapid and robust production of type-I interferon (IFN-I) in response to viruses. However, pDCs have also been implicated in antigen presentation, activation of adaptive immune responses and immunoregulation. The mechanisms by which pDCs enact these diverse functions are poorly understood. One central debate is whether these functions are carried out by different pDC subpopulations or by plasticity in the pDC compartment. This chapter summarizes the latest reports regarding pDC function, heterogeneity, cell conversion and environmentally influenced plasticity, as well as the role of pDCs in infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
30
|
Pizzolla A, Wakim LM. Memory T Cell Dynamics in the Lung during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:374-381. [PMID: 30617119 DOI: 10.4049/jimmunol.1800979] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/08/2018] [Indexed: 01/06/2023]
Abstract
Influenza A virus is highly contagious, infecting 5-15% of the global population every year. It causes significant morbidity and mortality, particularly among immunocompromised and at-risk individuals. Influenza virus is constantly evolving, undergoing continuous, rapid, and unpredictable mutation, giving rise to novel viruses that can escape the humoral immunity generated by current influenza virus vaccines. Growing evidence indicates that influenza-specific T cells resident along the respiratory tract are highly effective at providing potent and rapid protection against this inhaled pathogen. As these T cells recognize fragments of the virus that are highly conserved and less prone to mutation, they have the potential to provide cross-strain protection against a wide breadth of influenza viruses, including newly emerging strains. In this review, we will discuss how influenza-specific memory T cells in the lung are established and maintained and how we can harness this knowledge to design broadly protective influenza A virus vaccines.
Collapse
Affiliation(s)
- Angela Pizzolla
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
31
|
Post CM, Boule LA, Burke CG, O'Dell CT, Winans B, Lawrence BP. The Ancestral Environment Shapes Antiviral CD8 + T cell Responses across Generations. iScience 2019; 20:168-183. [PMID: 31569050 PMCID: PMC6817732 DOI: 10.1016/j.isci.2019.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Recent studies have linked health fates of children to environmental exposures of their great grandparents. However, few studies have considered whether ancestral exposures influence immune function across generations. Here, we report transgenerational inheritance of altered T cell responses resulting from maternal (F0) exposure to the aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since F0 exposure to TCDD has been linked to transgenerational transmission of reproductive problems, we asked whether maternal TCDD exposure also caused transgenerational changes in immune function. F0 exposure caused transgenerational effects on the CD8+ T cell response to influenza virus infection in females but not in males. Outcrosses showed changes were passed through both parental lineages. These data demonstrate that F0 exposure to an aryl hydrocarbon receptor (AHR) agonist causes durable changes to immune responses that can affect subsequent generations. This has broad implications for understanding how the environment of prior generations shapes susceptibility to pathogens and antiviral immunity in later generations.
Collapse
Affiliation(s)
- Christina M Post
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Lisbeth A Boule
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Catherine G Burke
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
32
|
Hladíková K, Koucký V, Bouček J, Laco J, Grega M, Hodek M, Zábrodský M, Vošmik M, Rozkošová K, Vošmiková H, Čelakovský P, Chrobok V, Ryška A, Špíšek R, Fialová A. Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8 + T cells. J Immunother Cancer 2019; 7:261. [PMID: 31623665 PMCID: PMC6796441 DOI: 10.1186/s40425-019-0726-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Standard treatment of oropharyngeal squamous cell carcinoma (OPSCC) is associated with high morbidity, whereas immunotherapeutic approaches using PD-1:PD-L1 checkpoint blockade only show moderate response rates in OPSCC patients. Therefore, a better stratification of patients and the development of novel therapeutic protocols are crucially needed. The importance of tumor-infiltrating B cells (TIL-Bs) in shaping antitumor immunity remains unclear; therefore, we analyzed frequency, phenotype, prognostic value and possible roles of TIL-Bs in OPSCC. METHODS We utilized transcriptomic analysis of immune response-related genes in 18 OPSCC samples with respect to human papillomavirus (HPV) status. The density and localization of CD20+, CD8+ and DC-LAMP+ cells were subsequently analyzed in 72 tissue sections of primary OPSCC samples in relation to patients' prognosis. The immunohistochemical approach was supplemented by flow cytometry-based analysis of phenotype and functionality of TIL-Bs in freshly resected primary OPSCC tissues. RESULTS We observed significantly higher expression of B cell-related genes and higher densities of CD20+ B cells in HPV-associated OPSCC samples. Interestingly, CD20+ TIL-Bs and CD8+ T cells formed non-organized aggregates with interacting cells within the tumor tissue. The densities of both intraepithelial CD20+ B cells and B cell/CD8+ T cell interactions showed prognostic significance, which surpassed HPV positivity and CD8+ TIL density in stratification of OPSCC patients. High density of TIL-Bs was associated with an activated B cell phenotype, high CXCL9 production and high levels of tumor-infiltrating CD8+ T cells. Importantly, the abundance of direct B cell/CD8+ T cell interactions positively correlated with the frequency of HPV16-specific CD8+ T cells, whereas the absence of B cells in tumor-derived cell cultures markedly reduced CD8+ T cell survival. CONCLUSIONS Our results indicate that high abundance of TIL-Bs and high density of direct B cell/CD8+ T cell interactions can predict patients with excellent prognosis, who would benefit from less invasive treatment. We propose that in extensively infiltrated tumors, TIL-Bs might recruit CD8+ T cells via CXCL9 and due to a highly activated phenotype contribute by secondary costimulation to the maintenance of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Kamila Hladíková
- SOTIO a.s, Jankovcova 1518/2, CZ-17000 Prague 7, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Vladimír Koucký
- SOTIO a.s, Jankovcova 1518/2, CZ-17000 Prague 7, Prague, Czech Republic
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Bouček
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Miroslav Hodek
- Department of Oncology and Radiotherapy, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Michal Zábrodský
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Milan Vošmik
- Department of Oncology and Radiotherapy, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kateřina Rozkošová
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Hana Vošmiková
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Petr Čelakovský
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Viktor Chrobok
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Radek Špíšek
- SOTIO a.s, Jankovcova 1518/2, CZ-17000 Prague 7, Prague, Czech Republic
| | - Anna Fialová
- SOTIO a.s, Jankovcova 1518/2, CZ-17000 Prague 7, Prague, Czech Republic.
| |
Collapse
|
33
|
Hemann EA, Green R, Turnbull JB, Langlois RA, Savan R, Gale M. Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nat Immunol 2019; 20:1035-1045. [PMID: 31235953 PMCID: PMC6642690 DOI: 10.1038/s41590-019-0408-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Type III interferon (IFN-λ) is important for innate immune protection at mucosal surfaces and has therapeutic benefit against influenza A virus (IAV) infection. However, the mechanisms by which IFN-λ programs adaptive immune protection against IAV are undefined. Here we found that IFN-λ signaling in dendritic cell (DC) populations was critical for the development of protective IAV-specific CD8+ T cell responses. Mice lacking the IFN-λ receptor (Ifnlr1-/-) had blunted CD8+ T cell responses relative to wild type and exhibited reduced survival after heterosubtypic IAV re-challenge. Analysis of DCs revealed IFN-λ signaling directed the migration and function of CD103+ DCs for development of optimal antiviral CD8+ T cell responses, and bioinformatic analyses identified IFN-λ regulation of a DC IL-10 immunoregulatory network. Thus, IFN-λ serves a critical role in bridging innate and adaptive immunity from lung mucosa to lymph nodes to program DCs to direct effective T cell immunity against IAV.
Collapse
Affiliation(s)
- Emily A Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - J Bryan Turnbull
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ram Savan
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
35
|
Fiege JK, Stone IA, Fay EJ, Markman MW, Wijeyesinghe S, Macchietto MG, Shen S, Masopust D, Langlois RA. The Impact of TCR Signal Strength on Resident Memory T Cell Formation during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:936-945. [PMID: 31235552 DOI: 10.4049/jimmunol.1900093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/08/2019] [Indexed: 02/01/2023]
Abstract
Resident memory T cells (TRM) in the lung are vital for heterologous protection against influenza A virus (IAV). Environmental factors are necessary to establish lung TRM; however, the role of T cell-intrinsic factors like TCR signal strength have not been elucidated. In this study, we investigated the impact of TCR signal strength on the generation and maintenance of lung TRM after IAV infection. We inserted high- and low-affinity OT-I epitopes into IAV and infected mice after transfer of OT-I T cells. We uncovered a bias in TRM formation in the lung elicited by lower affinity TCR stimulation. TCR affinity did not impact the overall phenotype or long-term maintenance of lung TRM Overall, these findings demonstrate that TRM formation is negatively correlated with increased TCR signal strength. Lower affinity cells may have an advantage in forming TRM to ensure diversity in the Ag-specific repertoire in tissues.
Collapse
Affiliation(s)
- Jessica K Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ian A Stone
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Elizabeth J Fay
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| | - Matthew W Markman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Marissa G Macchietto
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
36
|
Lu C, Zanker D, Lock P, Jiang X, Deng J, Duan M, Liu C, Faou P, Hickey MJ, Chen W. Memory regulatory T cells home to the lung and control influenza A virus infection. Immunol Cell Biol 2019; 97:774-786. [DOI: 10.1111/imcb.12271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Chunni Lu
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Damien Zanker
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Peter Lock
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Xiangrui Jiang
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Jieru Deng
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Mubing Duan
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Chuanxin Liu
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases Department of Medicine Monash Medical Centre Monash University Clayton VIC Australia
| | - Weisan Chen
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| |
Collapse
|
37
|
Hornick EE, Dagvadorj J, Zacharias ZR, Miller AM, Langlois RA, Chen P, Legge KL, Bishop GA, Sutterwala FS, Cassel SL. Dendritic cell NLRC4 regulates influenza A virus-specific CD4 T cell responses through FasL expression. J Clin Invest 2019; 129:2888-2897. [PMID: 31038471 DOI: 10.1172/jci124937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV)-specific T cell responses are important correlates of protection during primary and subsequent infections. Generation and maintenance of robust IAV-specific T cell responses relies on T cell interactions with dendritic cells (DCs). In this study, we explore the role of nucleotide-binding domain leucine-rich repeat containing receptor family member NLRC4 in modulating the DC phenotype during IAV infection. Nlrc4-/- mice had worsened survival and increased viral titers during infection, normal innate immune cell recruitment and IAV-specific CD8 T cell responses, but severely blunted IAV-specific CD4 T cell responses compared to wild-type mice. The defect in the pulmonary IAV-specific CD4 T cell response was not a result of defective priming or migration of these cells in Nlrc4-/- mice but was instead due to an increase in FasL+ DCs, resulting in IAV-specific CD4 T cell death. Together, our data support a novel role for NLRC4 in regulating the phenotype of lung DCs during a respiratory viral infection, and thereby influencing the magnitude of protective T cell responses.
Collapse
Affiliation(s)
- Emma E Hornick
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zeb R Zacharias
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ann M Miller
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ryan A Langlois
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin L Legge
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Gail A Bishop
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Fayyaz S Sutterwala
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
38
|
Takamura S, Kohlmeier JE. Establishment and Maintenance of Conventional and Circulation-Driven Lung-Resident Memory CD8 + T Cells Following Respiratory Virus Infections. Front Immunol 2019; 10:733. [PMID: 31024560 PMCID: PMC6459893 DOI: 10.3389/fimmu.2019.00733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022] Open
Abstract
Antigen-specific CD8+ tissue-resident memory T cells (TRM cells) persist in the lung following resolution of a respiratory virus infection and provide first-line defense against reinfection. In contrast to other memory T cell populations, such as central memory T cells that circulate between lymph and blood, and effector memory T cells (TEM cells) that circulate between blood and peripheral tissues, TRM cells are best defined by their permanent residency in the tissues and their independence from circulatory T cell populations. Consistent with this, we recently demonstrated that CD8+ TRM cells primarily reside within specific niches in the lung (Repair-Associated Memory Depots; RAMD) that normally exclude CD8+ TEM cells. However, it has also been reported that circulating CD8+ TEM cells continuously convert into CD8+ TRM cells in the lung interstitium, helping to sustain TRM numbers. The relative contributions of these two mechanisms of CD8+ TRM cells maintenance in the lung has been the source of vigorous debate. Here we propose a model in which the majority of CD8+ TRM cells are maintained within RAMD (conventional TRM) whereas a small fraction of TRM are derived from circulating CD8+ TEM cells and maintained in the interstitium. The numbers of both types of TRM cells wane over time due to declines in both RAMD availability and the overall number of TEM in the circulation. This model is consistent with most published reports and has important implications for the development of vaccines designed to elicit protective T cell memory in the lung.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
39
|
Chu KL, Batista NV, Wang KC, Zhou AC, Watts TH. GITRL on inflammatory antigen presenting cells in the lung parenchyma provides signal 4 for T-cell accumulation and tissue-resident memory T-cell formation. Mucosal Immunol 2019; 12:363-377. [PMID: 30487647 DOI: 10.1038/s41385-018-0105-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/02/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023]
Abstract
T-cell responses in the lung are critical for protection against respiratory pathogens. TNFR superfamily members play important roles in providing survival signals to T cells during respiratory infections. However, whether these signals take place mainly during priming in the secondary lymphoid organs and/or in the peripheral tissues remains unknown. Here we show that under conditions of competition, GITR provides a T-cell intrinsic advantage to both CD4 and CD8 effector T cells in the lung tissue, as well as for the formation of CD4 and CD8 tissue-resident memory T cells during respiratory influenza infection in mice. In contrast, under non-competitive conditions, GITR has a preferential effect on CD8 over CD4 T cells. The nucleoprotein-specific CD8 T-cell response partially compensated for GITR deficiency by expansion of higher affinity T cells; whereas, the polymerase-specific response was less flexible and more GITR dependent. Following influenza infection, GITR is expressed on lung T cells and GITRL is preferentially expressed on lung monocyte-derived inflammatory antigen presenting cells. Accordingly, we show that GITR+/+ T cells in the lung parenchyma express more phosphorylated-ribosomal protein S6 than their GITR-/- counterparts. Thus, GITR signaling within the lung tissue critically regulates effector and tissue-resident memory T-cell accumulation.
Collapse
Affiliation(s)
- Kuan-Lun Chu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Kuan Chung Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Angela C Zhou
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Ng SL, Teo YJ, Setiagani YA, Karjalainen K, Ruedl C. Type 1 Conventional CD103 + Dendritic Cells Control Effector CD8 + T Cell Migration, Survival, and Memory Responses During Influenza Infection. Front Immunol 2018; 9:3043. [PMID: 30622538 PMCID: PMC6308161 DOI: 10.3389/fimmu.2018.03043] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Type 1 conventional CD103+ dendritic cells (cDC1) contribute significantly to the cytotoxic T lymphocyte (CTL) response during influenza virus infection; however, the mechanisms by which cDC1s promote CTL recruitment and viral clearance are unclear. We demonstrate that cDC1 ablation leads to a deficient influenza-specific primary CD8+ T cell response alongside severe pulmonary inflammation, intensifying susceptibility to infection. The diminished pulmonary CTL population is not only a consequence of reduced priming in the lymph node (LN), but also of dysregulated CD8+ T cell egression from the LN and reduced CD8+ T cell viability in the lungs. cDC1s promote S1PR expression on CTLs, a key chemokine receptor facilitating CTL LN egress, and express high levels of the T cell survival cytokine, IL-15, to support CTL viability at the site of infection. Moreover, cDC1 ablation leads to severe impairment of CD8+ T cell memory recall and cross-reactive protection, suggesting that cDC1 are not only involved in primary T cell activation, but also in supporting the development of effective memory CD8+ T cell precursors. Our findings demonstrate a previously unappreciated and multifaceted role of CD103+ DCs in controlling pulmonary T cell-mediated immune responses.
Collapse
Affiliation(s)
- See Liang Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yi Juan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Klaus Karjalainen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
41
|
Hajam IA, Kim J, Lee JH. Salmonella Gallinarum delivering M2eCD40L in protein and DNA formats acts as a bivalent vaccine against fowl typhoid and H9N2 infection in chickens. Vet Res 2018; 49:99. [PMID: 30285855 PMCID: PMC6389227 DOI: 10.1186/s13567-018-0593-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
Fowl typhoid (FT), a septicemic disease caused by Salmonella Gallinarum (SG), and H9N2 influenza infection are two economically important diseases that affect poultry industry worldwide. Herein, we exploited a live attenuated SG mutant (JOL967) to deliver highly conserved extracellular domains of H9N2 M2 (M2e) to induce protective immunity against both H9N2 infection and FT. To increase the immunogenicity of M2e, we physically linked it with CD40L and cloned the fusion gene into either prokaryotic constitutive expression vector pJHL65 or mammalian expression vector pcDNA3.1+. Then pJHL65-M2eCD40L or pcDNA-M2eCD40L recombinant plasmid was electroporated into JOL967 strain and the resultant clones were designated as JOL2074 and JOL2076, respectively. We demonstrated that the chickens vaccinated once orally with a co-mix of JOL2074 and JOL2076 strains elicited significantly (p < 0.05) higher M2e-specific humoral and cell-mediated immunity compared to JOL2074 alone vaccinated group. However, SG-specific immune responses were comparable in both the vaccination groups. On challenge with the virulent H9N2 virus (105 TCID50) at 28th day post-vaccination, chickens that received a co-mix of JOL2074 plus JOL2076 strains exhibited significantly (p < 0.05) lower lung inflammation and viral load in both lungs and cloacal samples than JOL2074 alone vaccinated group. Against challenge with the lethal wild-type SG, both the vaccination groups exhibited only 12.5% mortality compared to 75% mortality observed in the control group. In conclusion, we show that SG delivering M2eCD40L can act as a bivalent vaccine against FT and H9N2 infection and further studies are warranted to develop this SG-M2eCD40L vaccine as a broadly protective vaccine against avian influenza virus subtypes.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Jehyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| |
Collapse
|
42
|
Batf3-Dependent Dendritic Cells Promote Optimal CD8 T Cell Responses against Respiratory Poxvirus Infection. J Virol 2018; 92:JVI.00495-18. [PMID: 29875235 DOI: 10.1128/jvi.00495-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Respiratory infection with vaccinia virus (VacV) elicits robust CD8+ T cell responses that play an important role in host resistance. In the lung, VacV encounters multiple tissue-resident antigen-presenting cell (APC) populations, but which cell plays a dominant role in priming of virus-specific CD8+ effector T cell responses remains poorly defined. We used Batf3-/- mice to investigate the impact of CD103+ and CD8α+ dendritic cell (DC) deficiency on anti-VacV CD8+ T cell responses. We found that Batf3-/- mice were more susceptible to VacV infection, exhibiting profound weight loss, which correlated with impaired accumulation of gamma interferon (IFN-γ)-producing CD8+ T cells in the lungs. This was largely due to defective priming since early in the response, antigen-specific CD8+ T cells in the draining lymph nodes of Batf3-/- mice expressed significantly reduced levels of Ki67, CD25, and T-bet. These results underscore a specific role for Batf3-dependent DCs in regulating priming and expansion of effector CD8+ T cells necessary for host resistance against acute respiratory VacV infection.IMPORTANCE During respiratory infection with vaccinia virus (VacV), a member of Poxviridae family, CD8+ T cells play important role in resolving the primary infection. Effector CD8+ T cells clear the virus by accumulating in the infected lungs in large numbers and secreting molecules such as IFN-γ that kill virally infected cells. However, precise cell types that regulate the generation of effector CD8+ T cells in the lungs are not well defined. Dendritic cells (DCs) are a heterogeneous population of immune cells that are recognized as key initiators and regulators of T-cell-mediated immunity. In this study, we reveal that a specific subset of DCs that are dependent on the transcription factor Batf3 for their development regulate the magnitude of CD8+ T cell effector responses in the lungs, thereby providing protection during pulmonary VacV infection.
Collapse
|
43
|
Vangeti S, Yu M, Smed-Sörensen A. Respiratory Mononuclear Phagocytes in Human Influenza A Virus Infection: Their Role in Immune Protection and As Targets of the Virus. Front Immunol 2018; 9:1521. [PMID: 30018617 PMCID: PMC6037688 DOI: 10.3389/fimmu.2018.01521] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Emerging viruses have become increasingly important with recurrent epidemics. Influenza A virus (IAV), a respiratory virus displaying continuous re-emergence, contributes significantly to global morbidity and mortality, especially in young children, immunocompromised, and elderly people. IAV infection is typically confined to the airways and the virus replicates in respiratory epithelial cells but can also infect resident immune cells. Clearance of infection requires virus-specific adaptive immune responses that depend on early and efficient innate immune responses against IAV. Mononuclear phagocytes (MNPs), comprising monocytes, dendritic cells, and macrophages, have common but also unique features. In addition to being professional antigen-presenting cells, MNPs mediate leukocyte recruitment, sense and phagocytose pathogens, regulate inflammation, and shape immune responses. The immune protection mediated by MNPs can be compromised during IAV infection when the cells are also targeted by the virus, leading to impaired cytokine responses and altered interactions with other immune cells. Furthermore, it is becoming increasingly clear that immune cells differ depending on their anatomical location and that it is important to study them where they are expected to exert their function. Defining tissue-resident MNP distribution, phenotype, and function during acute and convalescent human IAV infection can offer valuable insights into understanding how MNPs maintain the fine balance required to protect against infections that the cells are themselves susceptible to. In this review, we delineate the role of MNPs in the human respiratory tract during IAV infection both in mediating immune protection and as targets of the virus.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
44
|
Richards KA, DiPiazza AT, Rattan A, Knowlden ZAG, Yang H, Sant AJ. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection. Front Immunol 2018; 9:655. [PMID: 29681900 PMCID: PMC5897437 DOI: 10.3389/fimmu.2018.00655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anthony T. DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Viral Pathogenesis Laboratory, Vaccine Research Center NIAID, Bethesda, MD, United States
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
45
|
Ascough S, Paterson S, Chiu C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front Immunol 2018; 9:323. [PMID: 29552008 PMCID: PMC5840263 DOI: 10.3389/fimmu.2018.00323] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Collapse
Affiliation(s)
- Stephanie Ascough
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Moriyama M, Takeyama H, Hasegawa H, Ichinohe T. Induction of lung CD8 + T cell responses by consecutive inoculations of a poly(I:C) influenza vaccine. Vaccine 2017; 35:6620-6626. [PMID: 29079103 DOI: 10.1016/j.vaccine.2017.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 01/24/2023]
Abstract
The cytotoxic T lymphocyte (CTL) response plays a key role in host recovery from influenza virus infection and in subsequent immunity. Compared to natural infection with influenza virus, however, intranasal vaccination with adjuvant-combined inactivated vaccine elicits only moderate CTL responses. Here we demonstrate that 5 days of consecutive, intranasal vaccination with a combination of inactivated influenza vaccine and poly(I:C) elicits a strong CTL response in the lung. Antigen-captured respiratory DCs did efficiently migrate from the lung to the mediastinal lymph node (mLN) after the 5 day series of inoculations with vaccine and poly(I:C). Importantly, formalin-inactivated whole virus vaccine and poly(I:C) adjuvant have synergic effects on consecutive vaccinations to elicit a strong CTL response in the lung. Although the CTL response was less effective against heterologous influenza virus, we show for the first time that intranasal administration of inactivated influenza virus vaccine and poly(I:C) for 5 consecutive days can elicit high levels of influenza virus-specific CD8+ T cells in the lung.
Collapse
Affiliation(s)
- Miyu Moriyama
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
47
|
Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Sci Rep 2017; 7:10857. [PMID: 28883436 PMCID: PMC5589842 DOI: 10.1038/s41598-017-11313-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Although it is well established that Influenza A virus infection is initiated in the respiratory tract, the sequence of events and the cell types that become infected or access viral antigens remains incompletely understood. In this report, we used a novel Influenza A/California/04/09 (H1N1) reporter virus that stably expresses the Venus fluorescent protein to identify antigen-bearing cells over time in a mouse model of infection using flow cytometry. These studies revealed that many hematopoietic cells, including subsets of monocytes, macrophages, dendritic cells, neutrophils and eosinophils acquire influenza antigen in the lungs early post-infection. Surface staining of the viral HA revealed that most cell populations become infected, most prominently CD45neg cells, alveolar macrophages and neutrophils. Finally, differences in infection status, cell lineage and MHC class II expression by antigen-bearing cells correlated with differences in their ability to re-stimulate influenza-specific CD4 T cells ex vivo. Collectively, these studies have revealed the cellular heterogeneity and complexity of antigen-bearing cells within the lung and their potential as targets of antigen recognition by CD4 T cells.
Collapse
|
48
|
Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA, Merrick DT, McCarter MD, Palmer BE, Kern JA, Slansky JE. Antigen-Presenting Intratumoral B Cells Affect CD4 + TIL Phenotypes in Non-Small Cell Lung Cancer Patients. Cancer Immunol Res 2017; 5:898-907. [PMID: 28848053 DOI: 10.1158/2326-6066.cir-17-0075] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 12/25/2022]
Abstract
Effective immunotherapy options for patients with non-small cell lung cancer (NSCLC) are becoming increasingly available. The immunotherapy focus has been on tumor-infiltrating T cells (TILs); however, tumor-infiltrating B cells (TIL-Bs) have also been reported to correlate with NSCLC patient survival. The function of TIL-Bs in human cancer has been understudied, with little focus on their role as antigen-presenting cells and their influence on CD4+ TILs. Compared with other immune subsets detected in freshly isolated primary tumors from NSCLC patients, we observed increased numbers of intratumoral B cells relative to B cells from tumor-adjacent tissues. Furthermore, we demonstrated that TIL-Bs can efficiently present antigen to CD4+ TILs and alter the CD4+ TIL phenotype using an in vitro antigen-presentation assay. Specifically, we identified three CD4+ TIL responses to TIL-Bs, which we categorized as activated, antigen-associated, and nonresponsive. Within the activated and antigen-associated CD4+ TIL population, activated TIL-Bs (CD19+CD20+CD69+CD27+CD21+) were associated with an effector T-cell response (IFNγ+ CD4+ TILs). Alternatively, exhausted TIL-Bs (CD19+CD20+CD69+CD27-CD21-) were associated with a regulatory T-cell phenotype (FoxP3+ CD4+ TILs). Our results demonstrate a new role for TIL-Bs in NSCLC tumors in their interplay with CD4+ TILs in the tumor microenvironment, establishing them as a potential therapeutic target in NSCLC immunotherapy. Cancer Immunol Res; 5(10); 898-907. ©2017 AACR.
Collapse
Affiliation(s)
- Tullia C Bruno
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Peggy J Ebner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brandon L Moore
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Olivia G Squalls
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine A Waugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John D Mitchell
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel T Merrick
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Martin D McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Brent E Palmer
- Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey A Kern
- Division of Oncology, National Jewish Health, Denver, Colorado
| | - Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
49
|
Agrawal A, Agrawal S, Gupta S. Role of Dendritic Cells in Inflammation and Loss of Tolerance in the Elderly. Front Immunol 2017; 8:896. [PMID: 28798751 PMCID: PMC5526855 DOI: 10.3389/fimmu.2017.00896] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) play an important role in advancing age-associated progressive decline in adaptive immune responses, loss of tolerance, and development of chronic inflammation. In aged humans, DCs secrete increased levels of pro-inflammatory cytokines and decreased levels of anti-inflammatory and immune-regulatory cytokines. This may contribute to both chronic inflammation and loss of tolerance in aging. Aged DCs also display increased immune response against self-antigens contributing further to both inflammation and loss of tolerance. The secretion of innate protective cytokines such as type I and III interferons is decreased, and the function of DCs in airway remodeling and inflammation in aged is also compromised. Furthermore, the capacity of DCs to prime T cell responses also seems to be affected. Collectively, these changes in DC functions contribute to the immune dysfunction and inflammation in the elderly. This review only focuses on age-associated changes in DC function in humans.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
50
|
Oh DS, Oh JE, Jung HE, Lee HK. Transient Depletion of CD169 + Cells Contributes to Impaired Early Protection and Effector CD8 + T Cell Recruitment against Mucosal Respiratory Syncytial Virus Infection. Front Immunol 2017; 8:819. [PMID: 28751894 PMCID: PMC5507946 DOI: 10.3389/fimmu.2017.00819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory viral infections in infants and children. Alveolar macrophages (AMs) play a crucial role in combatting airborne pathogens, strongly express CD169, and are localized in the lung alveoli. Therefore, we used CD169-diphtheria toxin receptor (DTR) transgenic mice to explore the roles of CD169+ cells in immune responses to mucosal RSV infection. The administration of diphtheria toxin to CD169-DTR mice induced specific AM depletion and reduced the recruitment of Ly6Chi monocytes. Notably, CD169+ cell depletion reduced levels of innate cytokines, such as interferon-β, IL-6, and TNF-α, in bronchoalveolar lavage fluid during RSV infection without affecting the production of proinflammatory chemokines. Moreover, the depletion of CD169+ cells increased the recruitment of inflammatory cells to the lung during the early stage of RSV infection, although not during the later stages of RSV infection. Furthermore, the depletion of CD169+ cells reduced the recruitment of effector CD8+ T cells to the lungs after RSV mucosal infection. Our findings suggest that modulating the number of CD169+ cells to enhance immune responses to RSV infection may be useful as a new therapeutic strategy.
Collapse
Affiliation(s)
- Dong Sun Oh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea.,KAIST Institute for Health Science and Technology, KAIST, Daejeon, South Korea
| |
Collapse
|