1
|
Bartoli-Leonard F, Pennel T, Caputo M. Immunotherapy in the Context of Aortic Valve Diseases. Cardiovasc Drugs Ther 2024; 38:1173-1185. [PMID: 39017904 PMCID: PMC11680629 DOI: 10.1007/s10557-024-07608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Aortic valve disease (AVD) affects millions of people around the world, with no pharmacological intervention available. Widely considered a multi-faceted disease comprising both regurgitative pathogenesis, in which retrograde blood flows back through to the left ventricle, and aortic valve stenosis, which is characterized by the thickening, fibrosis, and subsequent mineralization of the aortic valve leaflets, limiting the anterograde flow through the valve, surgical intervention is still the main treatment, which incurs considerable risk to the patient. RESULTS Though originally thought of as a passive degeneration of the valve or a congenital malformation that has occurred before birth, the paradigm of AVD is shifting, and research into the inflammatory drivers of valve disease as a potential mechanism to modulate the pathobiology of this life-limiting pathology is taking center stage. Following limited success in mainstay therapeutics such as statins and mineralisation inhibitors, immunomodulatory strategies are being developed. Immune cell therapy has begun to be adopted in the cancer field, in which T cells (chimeric antigen receptor (CAR) T cells) are isolated from the patient, programmed to attack the cancer, and then re-administered to the patient. Within cardiac research, a novel T cell-based therapeutic approach has been developed to target lipid nanoparticles responsible for increasing cardiac fibrosis in a failing heart. With clonally expanded T-cell populations recently identified within the diseased valve, their unique epitope presentation may serve to identify novel targets for the treatment of valve disease. CONCLUSION Taken together, targeted T-cell therapy may hold promise as a therapeutic platform to target a multitude of diseases with an autoimmune aspect, and this review aims to frame this in the context of cardiovascular disease, delineating what is currently known in the field, both clinically and translationally.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK.
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK.
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa.
| | - Tim Pennel
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
2
|
Liao JB, Dai JY, Reichow JL, Lim JB, Hitchcock-Bernhardt KM, Stanton SE, Salazar LG, Gooley TA, Disis ML. Magnitude of antigen-specific T-cell immunity the month after completing vaccination series predicts the development of long-term persistence of antitumor immune response. J Immunother Cancer 2024; 12:e010251. [PMID: 39521614 PMCID: PMC11552009 DOI: 10.1136/jitc-2024-010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND For best efficacy, vaccines must provide long-lasting immunity. To measure longevity, memory from B and T cells are surrogate endpoints for vaccine efficacy. When antibodies are insufficient for protection, the immune response must rely on T cells. The magnitude and differentiation of effective, durable immune responses depend on antigen-specific precursor frequencies. However, development of vaccines that induce durable T-cell responses for cancer treatment has remained elusive. METHODS To address long-lasting immunity, patients with HER2+ (human epidermal growth factor receptor 2) advanced stage cancer received HER2/neu targeted vaccines. Interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot measuring HER2/neu IFN-γ T cells were analyzed from 86 patients from three time points: baseline, 1 month after vaccine series, and long-term follow-up at 1 year, following one in vitro stimulation. The baseline and 1-month post-vaccine series responses were correlated with immunity at long-term follow-up by logistic regression. Immunity was modeled by non-linear functions using generalized additive models. RESULTS Antigen-specific T-cell responses at baseline were associated with a 0.33-log increase in response at long-term follow-up, 95% CI (0.11, 0.54), p=0.003. 63% of patients that had HER2/neu specific T cells at baseline continued to have responses at long-term follow-up. Increased HER2/neu specific T-cell response 1 month after the vaccine series was associated with a 0.47-log increase in T-cell response at long-term follow-up, 95% CI (0.27, 0.67), p=2e-5. 74% of patients that had an increased IFN-γ HER2 response 1 month after vaccines retained immunity long-term. As the 1-month post-vaccination series precursor frequency of HER2+IFN-γ T-cell responses increased, the probability of retaining these responses long-term increased (OR=1.49 for every one natural log increase of precursor frequency, p=0.0002), reaching an OR of 20 for a precursor frequency of 1:3,000 CONCLUSIONS: Patients not destined to achieve long-term immunity can be identified immediately after completing the vaccine series. Log-fold increases in antigen-specific precursor frequencies after vaccinations correlate with increased odds of retaining long-term HER2 immune responses. Further vaccine boosting or immune checkpoint inhibitors or other immune stimulator therapy should be explored in patients that do not develop antigen-specific T-cell responses to improve overall response rates.
Collapse
Affiliation(s)
- John B Liao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - James Y Dai
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L Reichow
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Jong-Baeck Lim
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Katie M Hitchcock-Bernhardt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | | | - Lupe G Salazar
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Derré L, Crettenand F, Grilo N, Stritt K, Kiss B, Tawadros T, Domingos-Pereira S, Roth B, Cerantola Y, Lucca I. The role of preoperative immunonutrition on morbidity and immune response after cystectomy: protocol of a multicenter randomized controlled trial (INCyst Trial). Trials 2024; 25:687. [PMID: 39415282 PMCID: PMC11483975 DOI: 10.1186/s13063-024-08536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Cancer, malnutrition, and surgery negatively impact patient's immune system. Despite standardized surgical technique and the development of new perioperative care protocols, morbidity after cystectomy remains a serious challenge for urologists. Most common postoperative complications, such as infections and ileus, often lead to longer length of stay and worse survival. The immune system and its interaction with the gut microbiota play a pivotal role in cancer immunosurveillance and in patient's response to surgical stress. Malnutrition has been identified as an independent and modifiable risk factor for both mortality and morbidity. Immunonutrition (IN) may improve the nutritional status, immunological function, and clinical outcome of surgical patients. Aims of the study are (1) to evaluate the impact of IN on morbidity and mortality at 30 and 90 days after cystectomy and (2) to determine immune and microbiota signature that would predict IN effect. METHODS This is a randomized, multicentric, controlled, pragmatic, parallel-group comparative study, supported by the Swiss National Science Foundation. A total of 232 patients is planned to be enrolled between April 2023 and June 2026. Three participating centers (Lausanne, Bern, and Riviera-Chablais) have been selected. All patients undergoing elective radical and simple cystectomy will be randomly assigned to receive 7 days of preoperative IN (Oral Impact®, Nestlé, Switzerland) versus standard of care (control group) and followed for 90 days after surgery. For the exploratory outcomes, blood, serum, urine, and stool samples will be collected in patients treated at Lausanne. In order to determine the impact of IN on immune fitness, patients enrolled at Lausanne will be vaccinated against influenza and the establishment of the vaccine-specific immune response will be followed. Analysis of the microbiota and expression of argininosuccinate synthetase 1 as potential biomarker will also be performed. DISCUSSION AND CONCLUSION Strengths of the INCyst study include the randomized, multicenter, prospective design, the large number of patients studied, and the translational investigation. This study will challenge the added value of preoperative IN in patients undergoing cystectomy, assessing the clinical effect of IN on the onset of postoperative morbidity and mortality after cystectomy. Furthermore, it will provide invaluable data on the host immune response and microbiota composition. TRIAL REGISTRATION ClinicalTrials.gov NCT05726786. Registered on March 9, 2023.
Collapse
Affiliation(s)
- Laurent Derré
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - François Crettenand
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Nuno Grilo
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Kevin Stritt
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Bernhard Kiss
- Department of Urology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Thomas Tawadros
- Department of Urology, Hospital of Riviera-Chablais, Rennaz, Switzerland
| | - Sonia Domingos-Pereira
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Beat Roth
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Yannick Cerantola
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Lucca
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Chiffelle J, Barras D, Pétremand R, Orcurto A, Bobisse S, Arnaud M, Auger A, Rodrigo BN, Ghisoni E, Sauvage C, Saugy D, Michel A, Murgues B, Fahr N, Imbimbo M, Ochoa de Olza M, Latifyan S, Crespo I, Benedetti F, Genolet R, Queiroz L, Schmidt J, Homicsko K, Zimmermann S, Michielin O, Bassani-Sternberg M, Kandalaft LE, Dafni U, Corria-Osorio J, Trueb L, Dangaj Laniti D, Harari A, Coukos G. Tumor-reactive T cell clonotype dynamics underlying clinical response to TIL therapy in melanoma. Immunity 2024; 57:2466-2482.e12. [PMID: 39276771 DOI: 10.1016/j.immuni.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Adoptive cell therapy (ACT) using in vitro expanded tumor-infiltrating lymphocytes (TILs) has inconsistent clinical responses. To better understand determinants of therapeutic success, we tracked TIL clonotypes from baseline tumors to ACT products and post-ACT blood and tumor samples in melanoma patients using single-cell RNA and T cell receptor (TCR) sequencing. Patients with clinical responses had baseline tumors enriched in tumor-reactive TILs, and these were more effectively mobilized upon in vitro expansion, yielding products enriched in tumor-specific CD8+ cells that preferentially infiltrated tumors post-ACT. Conversely, lack of clinical responses was associated with tumors devoid of tumor-reactive resident clonotypes and with cell products mostly composed of blood-borne clonotypes that persisted in blood but not in tumors post-ACT. Upon expansion, tumor-specific TILs lost tumor-associated transcriptional signatures, including exhaustion, and responders exhibited an intermediate exhausted effector state after TIL engraftment in the tumor, suggesting functional reinvigoration. Our findings provide insight into the nature and dynamics of tumor-specific clonotypes associated with clinical response to TIL-ACT, with implications for treatment optimization.
Collapse
Affiliation(s)
- Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Rémy Pétremand
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Angela Orcurto
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Aymeric Auger
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christophe Sauvage
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Damien Saugy
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Baptiste Murgues
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Martina Imbimbo
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Maria Ochoa de Olza
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sofiya Latifyan
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lise Queiroz
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Krisztian Homicsko
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefan Zimmermann
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Urania Dafni
- Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lionel Trueb
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
5
|
Michels J, Venkatesh D, Liu C, Budhu S, Zhong H, George MM, Thach D, Yao ZK, Ouerfelli O, Liu H, Stockwell BR, Campesato LF, Zamarin D, Zappasodi R, Wolchok JD, Merghoub T. APR-246 increases tumor antigenicity independent of p53. Life Sci Alliance 2024; 7:e202301999. [PMID: 37891002 PMCID: PMC10610029 DOI: 10.26508/lsa.202301999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.
Collapse
Affiliation(s)
- Judith Michels
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Divya Venkatesh
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Cailian Liu
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sadna Budhu
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hong Zhong
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Mariam M George
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Thach
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Zhong-Ke Yao
- The Organic Synthesis Core Facility, MSK, New York, NY, USA
| | | | - Hengrui Liu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Luis Felipe Campesato
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dmitriy Zamarin
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jedd D Wolchok
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell, New York, NY, USA
| | - Taha Merghoub
- Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell, New York, NY, USA
| |
Collapse
|
6
|
Wu M, Xiao Y, Huang J, Wang Y, Zhang Y, Xu J, Dai H, Lv C, Hu Y, Chen B, Fu Q, Le W, Xue C. Liquid nitrogen frozen cells for chemotherapy drug delivery and vaccination of melanoma. J Cancer Res Clin Oncol 2023; 149:13705-13716. [PMID: 37522925 DOI: 10.1007/s00432-023-05117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE Cancer vaccine (CV) has thrived as a promising tool for cancer prevention and treatment. However, how to maintain the integrity and diversity of individualized vaccine antigens and activate the adaptive immune system is still challenging. METHODS Herein, a preventive and therapeutic vaccine platform for in situ effective multi-model synergistic therapy is developed. In our study, we process B16F10 cells by liquid nitrogen frozen (LNF) to obtain LNF cells, the characterization of LNF cells were conducted. Moreover, the anti-tumor effect and immune activation ability were studied, and the role as a CV were investigated. RESULTS The LNF cells preserve intact cellular structure and tumor-associated self-antigen gp100. Moreover, LNF cells have the ability of loading and releasing doxorubicin (DOX). Except for the anti-tumor effect of chemotherapy brought by DOX, the LNF cells can promote the maturation of dendritic cells (DCs) and induce immune response by activating CD4+ and CD8+ T cells, particularly with the existence of adjuvant, R848. Specifically, the CD8+ T cells of mice in LNF-DOX/R848 group are 6 times of that in PBS group in tumor microenvironment, and twice in spleen. Therefore, LNF cells can also be utilized as a CV. Vaccination with LNF/R848 cells effectively suppress the tumor growth in mice by fivefold as compared to the control group. CONCLUSION In this work, we obtain the LNF cells with a simple procedure. The LNF cells not only provides a tumor cells-based multi-modal system for cancer therapy but inspires new insights into future development of individualized CVs strategies. This study processes live B16F10 cells by liquid nitrogen frozen to obtain LNF cells, which preserve cell integrity and homologous targeting ability. The LNF cells can load and deliver drug and can serve as tumor vaccine. Results demonstrated the LNF cells have effective prophylactic ability, and ideal anti-tumor ability with the loaded drug and adjuvant.
Collapse
Affiliation(s)
- Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jianguo Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yifan Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jianguo Xu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haiying Dai
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chuan Lv
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingge Fu
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, Li Y, Hamadene L, Flamar AL, Choi H, Cortez CA, Liu C, Holland A, Schad S, Schulze I, Betof Warner A, Hollmann TJ, Arora A, Panageas KS, Rizzuto GA, Duhen R, Weinberg AD, Spencer CN, Ng D, He XY, Albrengues J, Redmond D, Egeblad M, Wolchok JD, Merghoub T. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 2023; 186:1432-1447.e17. [PMID: 37001503 PMCID: PMC10994488 DOI: 10.1016/j.cell.2023.03.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/11/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.
Collapse
Affiliation(s)
- Daniel Hirschhorn
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Lukas Kraehenbuehl
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - David Schröder
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Chow
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jacob M Ricca
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Billel Gasmi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Olivier De Henau
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Levi Mark B Mangarin
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Hamadene
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Anne-Laure Flamar
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Hyejin Choi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Czrina A Cortez
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Cailian Liu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Sara Schad
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Isabell Schulze
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Allison Betof Warner
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arshi Arora
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabrielle A Rizzuto
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Andrew D Weinberg
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Christine N Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Hong J, Guo G, Wu S, Lin S, Zhou Z, Chen S, Ye C, Li J, Lin W, Ye Y. Altered MUC1 epitope-specific CTLs: A potential target for immunotherapy of pancreatic cancer. J Leukoc Biol 2022; 112:1577-1590. [PMID: 36222123 DOI: 10.1002/jlb.5ma0922-749r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
The efficacy of conventional treatments for pancreatic cancer remains unsatisfactory, and immunotherapy is an emerging option for adjuvant treatment of this highly deadly disorder. The tumor-associated antigen (TAA) MUC1 is expressed in a variety of human cancers and is overexpressed in more than 90% of pancreatic cancer, which makes it an attractive target for cancer immunotherapy. As a self-protein, MUC1 shows a low immunogenicity because of immune tolerance, and the most effective approach to breaking immune tolerance is alteration of the antigen structure. In this study, the altered MUC11068-1076Y1 epitope (YLQRDISEM) by modification of amino acid residues in sequences presented a higher immunogenicity and elicited more CTLs relative to the wild-type (WT) MUC11068-1076 epitope (ELQRDISEM). In addition, the altered MUC11068-1076Y1 epitope was found to cross-recognize pancreatic cancer cells expressing WT MUC1 peptides in an HLA-A0201-restricted manner and trigger stronger immune responses against pancreatic cancer via the perforin/granzyme apoptosis pathway. As a potential HLA-A0201-restricted CTL epitope, the altered MUC11068-1076Y1 epitope is considered as a promising target for immunotherapy of pancreatic cancer. Alteration of epitope residues may be feasible to solve the problem of the low immunogenicity of TAA and break immune tolerance to induce immune responses against human cancers.
Collapse
Affiliation(s)
- Jingwen Hong
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China
| | - Guoxiang Guo
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China
| | - Suxin Wu
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China
| | - Shengzhe Lin
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, NO. 29, Xinquan Road, Fuzhou, Fujian 350001, China
| | - Zhifeng Zhou
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Shuping Chen
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Chunmei Ye
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China
| | - Jieyu Li
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Wansong Lin
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Yunbin Ye
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| |
Collapse
|
9
|
Xue Y, Che J, Ji X, Li Y, Xie J, Chen X. Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 2022; 51:1766-1794. [PMID: 35170589 DOI: 10.1039/d1cs00786f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adoptive immunotherapies based on the transfer of functional immune cells hold great promise in treating a wide range of malignant diseases, especially cancers, autoimmune diseases, and infectious diseases. However, manufacturing issues and biological barriers lead to the insufficient population of target-selective effector cells at diseased sites after adoptive transfer, hindering effective clinical translation. The convergence of immunology, cellular biology, and materials science lays a foundation for developing biomaterial-based engineering platforms to overcome these challenges. Biomaterials can be rationally designed to improve ex vivo immune cell expansion, expedite functional engineering, facilitate protective delivery of immune cells in situ, and navigate the infused cells in vivo. Herein, this review presents a comprehensive summary of the latest progress in biomaterial-based strategies to enhance the efficacy of adoptive cell therapy, focusing on function-specific biomaterial design, and also discusses the challenges and prospects of this field.
Collapse
Affiliation(s)
- Yonger Xue
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xuemei Ji
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yunuo Li
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan.,State Key Laboratory of Bioelectronics, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
10
|
Gilfillan CB, Hebeisen M, Rufer N, Speiser DE. Constant regulation for stable CD8 T-cell functional avidity and its possible implications for cancer immunotherapy. Eur J Immunol 2021; 51:1348-1360. [PMID: 33704770 PMCID: PMC8252569 DOI: 10.1002/eji.202049016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/30/2022]
Abstract
The functional avidity (FA) of cytotoxic CD8 T cells impacts strongly on their functional capabilities and correlates with protection from infection and cancer. FA depends on TCR affinity, downstream signaling strength, and TCR affinity-independent parameters of the immune synapse, such as costimulatory and inhibitory receptors. The functional impact of coreceptors on FA remains to be fully elucidated. Despite its importance, FA is infrequently assessed and incompletely understood. There is currently no consensus as to whether FA can be enhanced by optimized vaccine dose or boosting schedule. Recent findings suggest that FA is remarkably stable in vivo, possibly due to continued signaling modulation of critical receptors in the immune synapse. In this review, we provide an overview of the current knowledge and hypothesize that in vivo, codominant T cells constantly "equalize" their FA for similar function. We present a new model of constant FA regulation, and discuss practical implications for T-cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connie B. Gilfillan
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Michael Hebeisen
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Nathalie Rufer
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Daniel E. Speiser
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
11
|
Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials 2021; 268:120584. [PMID: 33338931 PMCID: PMC7856270 DOI: 10.1016/j.biomaterials.2020.120584] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
T cells are often referred to as the 'guided missiles' of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. However, the myriad of challenges of expanding large numbers of T cells specific to each patient's unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing "off-the-shelf", yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.
Collapse
Affiliation(s)
- Ariel Isser
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for Nanobiotechnology, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Institute for Nanobiotechnology, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Targeting Phosphatidylserine Enhances the Anti-tumor Response to Tumor-Directed Radiation Therapy in a Preclinical Model of Melanoma. Cell Rep 2021; 34:108620. [PMID: 33440157 PMCID: PMC8100747 DOI: 10.1016/j.celrep.2020.108620] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 06/23/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022] Open
Abstract
Phosphatidylserine (PS) is exposed on the surface of apoptotic cells and is known to promote immunosuppressive signals in the tumor microenvironment (TME). Antibodies that block PS interaction with its receptors have been shown to repolarize the TME into a proinflammatory state. Radiation therapy (RT) is an effective focal treatment of isolated solid tumors but is less effective at controlling metastatic cancers. We found that tumor-directed RT caused an increase in expression of PS on the surface of viable immune infiltrates in mouse B16 melanoma. We hypothesize that PS expression on immune cells may provide negative feedback to immune cells in the TME. Treatment with an antibody that targets PS (mch1N11) enhanced the anti-tumor efficacy of tumor-directed RT and improved overall survival. This combination led to an increase in proinflammatory tumor-associated macrophages. The addition of anti-PD-1 to RT and mch1N11 led to even greater anti-tumor efficacy and overall survival. We found increased PS expression on several immune subsets in the blood of patients with metastatic melanoma after receiving tumor-directed RT. These findings highlight the potential of combining PS targeting with RT and PD-1 pathway blockade to improve outcomes in patients with advanced-stage cancers. Budhu et al. show that tumor-directed irradiation of murine B16 melanoma causes an increase in PS on the surface of infiltrating immune cells. Blocking PS and RT improves the anti-tumor efficacy and overall survival, which can be further improved with the addition of anti-PD-1. Melanoma patients exhibit increased PS on their PBMCs after RT.
Collapse
|
13
|
Robust Iterative Stimulation with Self-Antigens Overcomes CD8 + T Cell Tolerance to Self- and Tumor Antigens. Cell Rep 2020; 28:3092-3104.e5. [PMID: 31533033 PMCID: PMC6874401 DOI: 10.1016/j.celrep.2019.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
The immune system adapts to constitutive antigens to preserve self-tolerance, which is a major barrier for anti-tumor immunity. Antigen-specific reversal of tolerance constitutes a major goal to spur therapeutic applications. Here, we show that robust, iterative, systemic stimulation targeting tissue-specific antigens in the context of acute infections reverses established CD8+ T cell tolerance to self, including in T cells that survive negative selection. This strategy results in large numbers of circulating and resident memory self-specific CD8+ T cells that are widely distributed and can be co-opted to control established malignancies bearing self-antigen without concomitant autoimmunity. Targeted expansion of both self- and tumor neoantigen-specific T cells acts synergistically to boost anti-tumor immunity and elicits protection against aggressive melanoma. Our findings demonstrate that T cell tolerance can be re-adapted to responsiveness through robust antigenic exposure, generating self-specific CD8+ T cells that can be used for cancer treatment.
Collapse
|
14
|
Hickey JW, Isser A, Salathe SF, Gee KM, Hsiao MH, Shaikh W, Uzoukwu NC, Bieler JG, Mao HQ, Schneck JP. Adaptive Nanoparticle Platforms for High Throughput Expansion and Detection of Antigen-Specific T cells. NANO LETTERS 2020; 20:6289-6298. [PMID: 32594746 PMCID: PMC8008984 DOI: 10.1021/acs.nanolett.0c01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T cells are critical players in disease; yet, their antigen-specificity has been difficult to identify, as current techniques are limited in terms of sensitivity, throughput, or ease of use. To address these challenges, we increased the throughput and translatability of magnetic nanoparticle-based artificial antigen presenting cells (aAPCs) to enrich and expand (E+E) murine or human antigen-specific T cells. We streamlined enrichment, expansion, and aAPC production processes by enriching CD8+ T cells directly from unpurified immune cells, increasing parallel processing capacity of aAPCs in a 96-well plate format, and designing an adaptive aAPC that enables multiplexed aAPC construction for E+E and detection. We applied these adaptive platforms to process and detect CD8+ T cells specific for rare cancer neoantigens, commensal bacterial cross-reactive epitopes, and human viral and melanoma antigens. These innovations dramatically increase the multiplexing ability and decrease the barrier to adopt for investigating antigen-specific T cell responses.
Collapse
Affiliation(s)
- John W. Hickey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ariel Isser
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastian F. Salathe
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kayla M. Gee
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meng-Hsuan Hsiao
- Department of Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wasamah Shaikh
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nkechi C. Uzoukwu
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joanie Glick Bieler
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan P. Schneck
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
16
|
Yeon A, Wang Y, Su S, Lo EM, Kim HL. Syngeneic murine model for prostate cancer using RM1 cells transfected with gp100. Prostate 2020; 80:424-431. [PMID: 32017163 DOI: 10.1002/pros.23957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Prostate cancer (PC) is the most commonly diagnosed solid tumor in men. A major challenge in PC immunotherapy is the lack of an animal model that resembles human adenocarcinoma and allows for manipulation or monitoring of the immune response. Mouse models are needed for preclinical testing of new immunotherapies, whether used alone or in combination with established drugs, and to develop companion biomarkers that can be validated in clinical trials. METHODS To develop a syngeneic prostate adenocarcinoma model with a well-defined tumor antigen, murine RM1 PC cells were transfected with the endogenous mouse melanoma protein, gp100 (RM1-gp100). Gp100 was attractive because it is a self-protein and it instantly allowed us to use the large trove of immune research tools developed for melanoma research. A dendritic cell (DC) vaccine was used as model immunotherapy to demonstrate that adoptive immunotherapy against gp100 decreases the growth of RM1-gp100 but not RM1. RESULTS Expressing gp100 did not change the growth of RM1 cell in vitro or in vivo. The DCs pulsed with RM1-gp100 could be used to stimulate Pmel-1 lymphocyte proliferation and activation. Pmel-1 lymphocytes could be adoptively transferred into C57Bl/6 mice that were treated with DCs pulsed with RM1-gp100. The resulting Pmel-1 lymphocytes were monitored to assess the primary cellular immune response and memory response. CONCLUSION We describe a murine model for prostate adenocarcinoma with a well-characterized antigen that can be used in an immunologically intact mice to monitor the temporal CD8+ lymphocyte-mediated antitumor immunity.
Collapse
Affiliation(s)
- Austin Yeon
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yanping Wang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shengchen Su
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eric M Lo
- Baylor College of Medicine, Houston, Texas
| | - Hyung L Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| |
Collapse
|
17
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
18
|
Yu H, Ye C, Li J, Pan C, Lin W, Chen H, Zhou Z, Ye Y. An altered HLA-A0201-restricted MUC1 epitope that could induce more efficient anti-tumor effects against gastric cancer. Exp Cell Res 2020; 390:111953. [PMID: 32156601 DOI: 10.1016/j.yexcr.2020.111953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
MUC1 is a tumor-associated antigen (TAA) overexpressed in many tumor types, which makes it an attractive target for cancer immunotherapy. However, this marker is a non-mutated antigen without high immunogenicity. In this study, we designed several new altered peptides by replacing amino acids in their sequences, which were derived from a low-affinity MUC1 peptide, thus bypassing immune tolerance. Compared to the wild-type (WT) peptide, the altered MUC1 peptides (MUC11081-1089L2, MUC11156-1164L2, MUC11068-1076Y1) showed higher affinity to the HLA-A0201 molecule and stronger immunogenicity. Furthermore, these altered peptides resulted in the generation of more cytotoxic T lymphocytes (CTLs) that could cross-recognize gastric cancer cells expressing WT MUC1 peptides, in an HLA-A0201-restricted manner. In addition, M1.1 (MUC1950-958), a promising antitumor peptide that has been tested in multiple tumors, was not able to induce stronger antitumor responses. Collectively, our results demonstrated that altered peptides from MUC1, as potential HLA-A0201-restricted CTL epitopes, could serve as peptide vaccines or constitute components of peptide-loaded dendritic cell vaccines for gastric cancer treatment.
Collapse
Affiliation(s)
- Huahui Yu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Chunmei Ye
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Chunli Pan
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Huijing Chen
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Zhifeng Zhou
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Yunbin Ye
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China; Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China.
| |
Collapse
|
19
|
Dafni U, Michielin O, Lluesma SM, Tsourti Z, Polydoropoulou V, Karlis D, Besser MJ, Haanen J, Svane IM, Ohashi PS, Kammula US, Orcurto A, Zimmermann S, Trueb L, Klebanoff CA, Lotze MT, Kandalaft LE, Coukos G. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 2019; 30:1902-1913. [PMID: 31566658 DOI: 10.1093/annonc/mdz398] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) has been tested in advanced melanoma patients at various centers. We conducted a systematic review and meta-analysis to assess its efficacy on previously treated advanced metastatic cutaneous melanoma. The PubMed electronic database was searched from inception to 17 December 2018 to identify studies administering TIL-ACT and recombinant interleukin-2 (IL-2) following non-myeloablative chemotherapy in previously treated metastatic melanoma patients. Objective response rate (ORR) was the primary end point. Secondary end points were complete response rate (CRR), overall survival (OS), duration of response (DOR) and toxicity. Pooled estimates were derived from fixed or random effect models, depending on the amount of heterogeneity detected. Analysis was carried out separately for high dose (HD) and low dose (LD) IL-2. Sensitivity analyses were carried out. Among 1211 records screened, 13 studies (published 1988 - 2016) were eligible for meta-analysis. Among 410 heavily pretreated patients (some with brain metastasis), 332 received HD-IL-2 and 78 LD-IL-2. The pooled overall ORR estimate was 41% [95% confidence interval (CI) 35% to 48%], and the overall CRR was 12% (95% CI 7% to 16%). For the HD-IL-2 group, the ORR was 43% (95% CI 36% to 50%), while for the LD-IL-2 it was 35% (95% CI 25% to 45%). Corresponding pooled estimates for CRR were 14% (95% CI 7% to 20%) and 7% (95% CI 1% to 12%). The majority of HD-IL-2 complete responders (27/28) remained in remission during the extent of follow-up after CR (median 40 months). Sensitivity analyses yielded similar results. Higher number of infused cells was associated with a favorable response. The ORR for HD-IL-2 compared favorably with the nivolumab/ipilimumab combination following anti-PD-1 failure. TIL-ACT therapy, especially when combined with HD-IL-2, achieves durable clinical benefit and warrants further investigation. We discuss the current position of TIL-ACT in the therapy of advanced melanoma, particularly in the era of immune checkpoint blockade therapy, and review future opportunities for improvement of this approach.
Collapse
Affiliation(s)
- U Dafni
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - O Michielin
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Martin Lluesma
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - V Polydoropoulou
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - D Karlis
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - M J Besser
- Ella Institute for the Treatment and Research of Melanoma and Skin Cancer, Sheba Medical Center, Tel Aviv; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I-M Svane
- Department of Hematology and Oncology, Center for Cancer Immune Therapy, Herlev Hospital, Herlev, Denmark
| | - P S Ohashi
- Department of Immunology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - U S Kammula
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh
| | - A Orcurto
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Zimmermann
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - L Trueb
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - C A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York; Parker Institute for Cancer Immunotherapy, New York; Weill Cornell Medical College, New York
| | - M T Lotze
- Department of Immunology, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, USA
| | - L E Kandalaft
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
20
|
Su MA, Anderson MS. Pulling RANK on Cancer: Blocking Aire-Mediated Central Tolerance to Enhance Immunotherapy. Cancer Immunol Res 2019; 7:854-859. [PMID: 31160305 PMCID: PMC6550349 DOI: 10.1158/2326-6066.cir-18-0912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A major breakthrough in cancer treatment occurred with the development of strategies that overcome T-cell tolerance toward tumor cells. These approaches enhance antitumor immunity by overcoming mechanisms that are normally in place to prevent autoimmunity but simultaneously prevent rejection of tumor cells. Although tolerance mechanisms that restrict antitumor immunity take place both in the thymus and periphery, only immunotherapies that target peripheral tolerance mechanisms occurring outside of the thymus are currently available. We review here recent gains in our understanding of how thymic tolerance mediated by the autoimmune regulator (Aire) impedes antitumor immunity. It is now clear that transient depletion of Aire-expressing cells in the thymus can be achieved with RANKL blockade. Finally, we discuss key findings that support the repurposing of anti-RANKL as a cancer immunotherapy with a unique mechanism of action.
Collapse
Affiliation(s)
- Maureen A Su
- Microbiology, Immunology, and Medical Genetics and Pediatrics, University of California, Los Angeles, Los Angeles, California.
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
21
|
Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity. Cancer Immunol Immunother 2019; 68:1095-1106. [PMID: 31104075 DOI: 10.1007/s00262-019-02346-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/11/2019] [Indexed: 01/29/2023]
Abstract
Checkpoint blockade immunotherapy is now a first-line treatment option for patients with melanoma. Despite achieving objective responses in about half of patients, the exact immune mechanisms elicited and those required for therapeutic success have not been clearly identified. Insight into these mechanisms is key for improving outcomes in a broader range of cancer patients. We used a murine melanoma model to track responses by different subsets of tumor-infiltrating lymphocytes (TIL) during checkpoint blockade immunotherapy. Tumors from treated mice had increased frequencies of both CD4+ and CD8+ T cells, which also showed evidence of functional reinvigoration and elevated effector cytokine production after immunotherapy. We predicted that increased T cell numbers and function within tumors reflected either infiltration by new T cells or clonal expansion by a few high-affinity tumor-reactive T cells. To address this, we compared TIL diversity before and after immunotherapy by sequencing the complementarity determining region 3 (CDR3) of all T cell receptor beta (TCRβ) genes. While checkpoint blockade effectively slowed tumor progression and increased T cell frequencies, the diversity of intratumoral T cells remained stable. This was true when analyzing total T cells and when focusing on smaller subsets of effector CD4+ and CD8+ TIL as well as regulatory T cells. Our study suggests that checkpoint blockade immunotherapy does not broaden the T cell repertoire within murine melanoma tumors, but rather expands existing T cell populations and enhances effector capabilities.
Collapse
|
22
|
Silva JR, Sales NS, Silva MO, Aps LRMM, Moreno ACR, Rodrigues EG, Ferreira LCS, Diniz MO. Expression of a soluble IL-10 receptor enhances the therapeutic effects of a papillomavirus-associated antitumor vaccine in a murine model. Cancer Immunol Immunother 2019; 68:753-763. [PMID: 30806747 PMCID: PMC11028134 DOI: 10.1007/s00262-018-02297-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/28/2018] [Indexed: 12/25/2022]
Abstract
The presence of IL-10, produced either by tumor cells or immunosuppressive cells, is frequently associated with a poor prognosis for cancer progression. It may also negatively impact anticancer treatments, such as immunotherapies, that otherwise would promote the activation of cytotoxic T cells capable of detecting and destroying malignant cells. In the present study, we evaluated a new adjuvant approach for anticancer immunotherapy using a plasmid vector encoding a soluble form of the IL-10 receptor (pIL-10R). pIL-10R was coadministered to mice with a DNA vaccine encoding the type 16 human papillomavirus (HPV-16) E7 oncoprotein genetically fused with glycoprotein D of herpes simplex virus (HSV) (pgDE7h). Immunization regimens based on the coadministration of pIL-10R and pgDE7h enhanced the antitumor immunity elicited in mice injected with TC-1 cells, which express HPV-16 oncoproteins. The administration of the DNA vaccines by in vivo electroporation further enhanced the anticancer effects of the vaccines, leading to the activation of tumor-infiltrating polyfunctional E7-specific cytotoxic CD8+ T cells and control of the expansion of immunosuppressive cells. In addition, the combination of immunotherapy and pIL-10R allowed the control of tumors in more advanced growth stages that otherwise would not be treatable by the pgDE7h vaccine. In conclusion, the proposed treatment involving the expression of IL-10R enhanced the antitumor protective immunity induced by pgDE7h administration and may contribute to the development of more efficient clinical interventions against HPV-induced tumors.
Collapse
Affiliation(s)
- Jamile R Silva
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Natiely S Sales
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Mariângela O Silva
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Luana R M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Ana C R Moreno
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Elaine G Rodrigues
- Tumor Immunobiology Laboratory, Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Luís C S Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil.
| | - Mariana O Diniz
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
- Division of Infection and Immunity, University College London, 5 University St, Bloomsbury, London, WC1E 6JF, UK
| |
Collapse
|
23
|
The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol Immunother 2019; 68:455-466. [PMID: 30604041 DOI: 10.1007/s00262-018-02294-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022]
Abstract
Vaccines consisting of synthetic peptides representing cytotoxic T-lymphocyte (CTL) epitopes have long been considered as a simple and cost-effective approach to treat cancer. However, the efficacy of these vaccines in the clinic in patients with measurable disease remains questionable. We believe that the poor performance of peptide vaccines is due to their inability to generate sufficiently large CTL responses that are required to have a positive impact against established tumors. Peptide vaccines to elicit CTLs in the clinic have routinely been administered in the same manner as vaccines designed to induce antibody responses: injected subcutaneously and in many instances using Freund's adjuvant. We report here that peptide vaccines and poly-ICLC adjuvant administered via the unconventional intravenous route of immunization generate substantially higher CTL responses as compared to conventional subcutaneous injections, resulting in more successful antitumor effects in mice. Furthermore, amphiphilic antigen constructs such as palmitoylated peptides were shown to be better immunogens than long peptide constructs, which now are in vogue in the clinic. The present findings if translated into the clinical setting could help dissipate the wide-spread skepticism of whether peptide vaccines will ever work to treat cancer.
Collapse
|
24
|
Hickey JW, Schneck JP. Enrich and Expand Rare Antigen-specific T Cells with Magnetic Nanoparticles. J Vis Exp 2018. [PMID: 30507913 DOI: 10.3791/58640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have developed a tool to both enrich and expand antigen-specific T cells. This can be helpful in cases such as to A) detect the existence of antigen-specific T cells, B) probe the dynamics of antigen-specific responses, C) understand how antigen-specific responses affect disease state such as autoimmunity, D) demystify heterogeneous responses for antigen-specific T cells, or E) utilize antigen-specific cells for therapy. The tool is based on a magnetic particle that we conjugate antigen-specific and T cell co-stimulatory signals, and that we term as artificial antigen presenting cells (aAPCs). Consequently, since the technology is simple to produce, it can easily be adopted by other laboratories; thus, our purpose here is to describe in detail the fabrication and subsequent use of the aAPCs. We explain how to attach antigen-specific and co-stimulatory signals to the aAPCs, how to utilize them to enrich for antigen-specific T cells, and how to expand antigen-specific T cells. Furthermore, we will highlight engineering design considerations based on experimental and biological information of our experience with characterizing antigen-specific T cells.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University; Institute for Cell Engineering, School of Medicine, Johns Hopkins University; Institute for Nanobiotechnology, Johns Hopkins University; Department of Pathology, School of Medicine, Johns Hopkins University
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University; Department of Pathology, School of Medicine, Johns Hopkins University;
| |
Collapse
|
25
|
Hickey JW, Isser AY, Vicente FP, Warner SB, Mao HQ, Schneck JP. Efficient magnetic enrichment of antigen-specific T cells by engineering particle properties. Biomaterials 2018; 187:105-116. [PMID: 30312851 DOI: 10.1016/j.biomaterials.2018.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022]
Abstract
Magnetic particles can enrich desired cell populations to aid in understanding cell-type functions and mechanisms, diagnosis, and therapy. As cells are heterogeneous in ligand type, location, expression, and density, careful consideration of magnetic particle design for positive isolation is necessary. Antigen-specific immune cells have low frequencies, which has made studying, identifying, and utilizing these cells for therapy a challenge. Here we demonstrate the importance of magnetic particle design based on the biology of T cells. We create magnetic particles which recognize rare antigen-specific T cells and quantitatively investigate important particle properties including size, concentration, ligand density, and ligand choice in enriching these rare cells. We observe competing optima among particle parameters, with 300 nm particles functionalized with a high density of antigen-specific ligand achieving the highest enrichment and recovery of target cells. In enriching and then activating an endogenous response, 300 nm aAPCs generate nearly 65% antigen-specific T cells with at least 450-fold expansion from endogenous precursors and a 5-fold increase in numbers of antigen-specific cells after only seven days. This systematic study of particle properties in magnetic enrichment provides a case study for the engineering design principles of particles for the isolation of rare cells through biological ligands.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Baltimore, MD, USA; Institute for Nanobiotechnology, Baltimore, MD, USA
| | - Ariel Y Isser
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, School of Medicine, Baltimore, MD, USA
| | - Fernando P Vicente
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, USA
| | - Samuel B Warner
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Baltimore, MD, USA; Institute for Nanobiotechnology, Baltimore, MD, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, Baltimore, MD, USA; Department of Pathology, School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Baltimore, MD, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A, Ostberg JR, Forman SJ, Brown CE. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 2018; 3:99048. [PMID: 29769444 PMCID: PMC6012522 DOI: 10.1172/jci.insight.99048] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/12/2018] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.
Collapse
Affiliation(s)
- Dongrui Wang
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
- Irell and Manella Graduate School of Biological Sciences, City of Hope (COH) Beckman Research Institute and Medical Center, Duarte, California, USA
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Darya Alizadeh
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Alfonso Brito
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Aniee Sarkissian
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Julie R. Ostberg
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Christine E. Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| |
Collapse
|
27
|
Tumor cure by radiation therapy and checkpoint inhibitors depends on pre-existing immunity. Sci Rep 2018; 8:7012. [PMID: 29725089 PMCID: PMC5934473 DOI: 10.1038/s41598-018-25482-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022] Open
Abstract
Radiation therapy is a source of tumor antigen release that has the potential to serve as an endogenous tumor vaccination event. In preclinical models radiation therapy synergizes with checkpoint inhibitors to cure tumors via CD8 T cell responses. To evaluate the immune response initiated by radiation therapy, we used a range of approaches to block the pre-existing immune response artifact initiated by tumor implantation. We demonstrate that blocking immune responses at tumor implantation blocks development of a tumor-resident antigen specific T cell population and prevents tumor cure by radiation therapy combined with checkpoint immunotherapy. These data demonstrate that this treatment combination relies on a pre-existing immune response to cure tumors, and may not be a solution for patients without pre-existing immunity.
Collapse
|
28
|
Khong H, Volmari A, Sharma M, Dai Z, Imo CS, Hailemichael Y, Singh M, Moore DT, Xiao Z, Huang XF, Horvath TD, Hawke DH, Overwijk WW. Peptide Vaccine Formulation Controls the Duration of Antigen Presentation and Magnitude of Tumor-Specific CD8 + T Cell Response. THE JOURNAL OF IMMUNOLOGY 2018; 200:3464-3474. [PMID: 29643190 DOI: 10.4049/jimmunol.1700467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
Despite remarkable progresses in vaccinology, therapeutic cancer vaccines have not achieved their full potential. We previously showed that an excessively long duration of Ag presentation critically reduced the quantity and quality of vaccination-induced T cell responses and subsequent antitumor efficacy. In this study, using a murine model and tumor cell lines, we studied l-tyrosine amino acid-based microparticles as a peptide vaccine adjuvant with a short-term Ag depot function for the induction of tumor-specific T cells. l-Tyrosine microparticles did not induce dendritic cell maturation, and their adjuvant activity was not mediated by inflammasome activation. Instead, prolonged Ag presentation in vivo translated into increased numbers and antitumor activity of vaccination-induced CD8+ T cells. Indeed, prolonging Ag presentation by repeated injection of peptide in saline resulted in an increase in T cell numbers similar to that observed after vaccination with peptide/l-tyrosine microparticles. Our results show that the duration of Ag presentation is critical for optimal induction of antitumor T cells, and can be manipulated through vaccine formulation.
Collapse
Affiliation(s)
- Hiep Khong
- Immunology Program, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030.,Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Annika Volmari
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Meenu Sharma
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Zhimin Dai
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Chinonye S Imo
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Manisha Singh
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Derek T Moore
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Zhilan Xiao
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Xue-Fei Huang
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Thomas D Horvath
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - David H Hawke
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Willem W Overwijk
- Immunology Program, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030; .,Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
30
|
Facciabene A, De Sanctis F, Pierini S, Reis ES, Balint K, Facciponte J, Rueter J, Kagabu M, Magotti P, Lanitis E, DeAngelis RA, Buckanovich RJ, Song WC, Lambris JD, Coukos G. Local endothelial complement activation reverses endothelial quiescence, enabling t-cell homing, and tumor control during t-cell immunotherapy. Oncoimmunology 2017; 6:e1326442. [PMID: 28932632 PMCID: PMC5599081 DOI: 10.1080/2162402x.2017.1326442] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy relies upon the ability of T cells to infiltrate tumors. The endothelium constitutes a barrier between the tumor and effector T cells, and the ability to manipulate local vascular permeability could be translated into effective immunotherapy. Here, we show that in the context of adoptive T cell therapy, antitumor T cells, delivered at high enough doses, can overcome the endothelial barrier and infiltrate tumors, a process that requires local production of C3, complement activation on tumor endothelium and release of C5a. C5a, in turn, acts on endothelial cells promoting the upregulation of adhesion molecules and T-cell homing. Genetic deletion of C3 or the C5a receptor 1 (C5aR1), and pharmacological blockade of C5aR1, impaired the ability of T cells to overcome the endothelial barrier, infiltrate tumors, and control tumor progression in vivo, while genetic chimera mice demonstrated that C3 and C5aR1 expression by tumor stroma, and not leukocytes, governs T cell homing, acting on the local endothelium. In vitro, endothelial C3 and C5a expressions were required for endothelial activation by type 1 cytokines. Our data indicate that effective immunotherapy is a consequence of successful homing of T cells in response to local complement activation, which disrupts the tumor endothelial barrier.
Collapse
Affiliation(s)
- Andrea Facciabene
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Francesco De Sanctis
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Stefano Pierini
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klara Balint
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - John Facciponte
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Jens Rueter
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Masahiro Kagabu
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Paola Magotti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Evripidis Lanitis
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Ludwig Institute of Cancer Research and Department of Oncology, University of Lausanne, Switzerland
| | - Robert A DeAngelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald J Buckanovich
- Internal Medicine Division of Hematology Oncology Obstetrics and Gynecology Division of Gynecologic Oncology, University of Michigan, MI, USA
| | - Wenchao C Song
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Coukos
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Ludwig Institute of Cancer Research and Department of Oncology, University of Lausanne, Switzerland
| |
Collapse
|
31
|
Campisi L, Barbet G, Ding Y, Esplugues E, Flavell RA, Blander JM. Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat Immunol 2016; 17:1084-92. [PMID: 27455420 PMCID: PMC5079524 DOI: 10.1038/ni.3512] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/09/2016] [Indexed: 12/12/2022]
Abstract
Microbial infections often precede the onset of autoimmunity. How infections trigger autoimmunity remains poorly understood. We investigated the possibility that infection might create conditions that allow the stimulatory presentation of self peptides themselves and that this might suffice to elicit autoreactive T cell responses that lead to autoimmunity. Self-reactive CD4(+) T cells are major drivers of autoimmune disease, but their activation is normally prevented through regulatory mechanisms that limit the immunostimulatory presentation of self antigens. Here we found that the apoptosis of infected host cells enabled the presentation of self antigens by major histocompatibility complex class II molecules in an inflammatory context. This was sufficient for the generation of an autoreactive TH17 subset of helper T cells, prominently associated with autoimmune disease. Once induced, the self-reactive TH17 cells promoted auto-inflammation and autoantibody generation. Our findings have implications for how infections precipitate autoimmunity.
Collapse
Affiliation(s)
- Laura Campisi
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gaetan Barbet
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yi Ding
- Department of Pathology, New York University Langone Medical Center, New York, New York, USA
| | - Enric Esplugues
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H, Mathios D, Jackson CM, Harris-Bookman S, Garzon-Muvdi T, Sheu M, Martin AM, Tyler BM, Tran PT, Ye X, Olivi A, Taube JM, Burger PC, Drake CG, Brem H, Pardoll DM, Lim M. Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas. Clin Cancer Res 2016; 23:124-136. [PMID: 27358487 DOI: 10.1158/1078-0432.ccr-15-1535] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 05/01/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Checkpoint molecules like programmed death-1 (PD-1) and T-cell immunoglobulin mucin-3 (TIM-3) are negative immune regulators that may be upregulated in the setting of glioblastoma multiforme. Combined PD-1 blockade and stereotactic radiosurgery (SRS) have been shown to improve antitumor immunity and produce long-term survivors in a murine glioma model. However, tumor-infiltrating lymphocytes (TIL) can express multiple checkpoints, and expression of ≥2 checkpoints corresponds to a more exhausted T-cell phenotype. We investigate TIM-3 expression in a glioma model and the antitumor efficacy of TIM-3 blockade alone and in combination with anti-PD-1 and SRS. EXPERIMENTAL DESIGN C57BL/6 mice were implanted with murine glioma cell line GL261-luc2 and randomized into 8 treatment arms: (i) control, (ii) SRS, (iii) anti-PD-1 antibody, (iv) anti-TIM-3 antibody, (v) anti-PD-1 + SRS, (vi) anti-TIM-3 + SRS, (vii) anti-PD-1 + anti-TIM-3, and (viii) anti-PD-1 + anti-TIM-3 + SRS. Survival and immune activation were assessed. RESULTS Dual therapy with anti-TIM-3 antibody + SRS or anti-TIM-3 + anti-PD-1 improved survival compared with anti-TIM-3 antibody alone. Triple therapy resulted in 100% overall survival (P < 0.05), a significant improvement compared with other arms. Long-term survivors demonstrated increased immune cell infiltration and activity and immune memory. Finally, positive staining for TIM-3 was detected in 7 of 8 human GBM samples. CONCLUSIONS This is the first preclinical investigation on the effects of dual PD-1 and TIM-3 blockade with radiation. We also demonstrate the presence of TIM-3 in human glioblastoma multiforme and provide preclinical evidence for a novel treatment combination that can potentially result in long-term glioma survival and constitutes a novel immunotherapeutic strategy for the treatment of glioblastoma multiforme. Clin Cancer Res; 23(1); 124-36. ©2016 AACR.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Mira A Patel
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | | | - Eileen S Kim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Debebe Theodros
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Eric W Sankey
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Ada Tam
- Flow Cytometry Core, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Haiying Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | | | | | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Mary Sheu
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland
| | - Allison M Martin
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Phuoc T Tran
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Janis M Taube
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Peter C Burger
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Charles G Drake
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
33
|
Richards DM, Kyewski B, Feuerer M. Re-examining the Nature and Function of Self-Reactive T cells. Trends Immunol 2016; 37:114-125. [PMID: 26795134 PMCID: PMC7611850 DOI: 10.1016/j.it.2015.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 01/08/2023]
Abstract
Recent studies have leveraged MHC tetramer and TCR sequencing approaches towards a more precise characterization of the peripheral T cell repertoire, providing important insight into both the contribution of self-reactive T cells to the overall repertoire and their function. The peripheral T cell repertoire of healthy individuals contains a high frequency of diverse, self-reactive T cells. Furthermore, self-reactive T cells can perform essential beneficial physiological functions. We review these recent findings here, and discuss their implications to the current understanding of peripheral tolerance and the role of self-reactive T cells in autoimmune disease. We outline gaps in understanding, and argue that an important step forward is to revise the definition of self-reactive T cells to incorporate new concepts regarding the nature and physiological functions of different populations of T cells capable of recognizing self-antigens.
Collapse
Affiliation(s)
- David M Richards
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Current address: Immunology Department, Apogenix GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Bruno Kyewski
- Developmental Immunology, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Malandro N, Budhu S, Kuhn NF, Liu C, Murphy JT, Cortez C, Zhong H, Yang X, Rizzuto G, Altan-Bonnet G, Merghoub T, Wolchok JD. Clonal Abundance of Tumor-Specific CD4(+) T Cells Potentiates Efficacy and Alters Susceptibility to Exhaustion. Immunity 2016; 44:179-193. [PMID: 26789923 PMCID: PMC4996670 DOI: 10.1016/j.immuni.2015.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023]
Abstract
Current approaches to cancer immunotherapy aim to engage the natural T cell response against tumors. One limitation is the elimination of self-antigen-specific T cells from the immune repertoire. Using a system in which precursor frequency can be manipulated in a murine melanoma model, we demonstrated that the clonal abundance of CD4(+) T cells specific for self-tumor antigen positively correlated with antitumor efficacy. At elevated precursor frequencies, intraclonal competition impaired initial activation and overall expansion of the tumor-specific CD4(+) T cell population. However, through clonally derived help, this population acquired a polyfunctional effector phenotype and antitumor immunity was enhanced. Conversely, development of effector function was attenuated at low precursor frequencies due to irreversible T cell exhaustion. Our findings assert that the differential effects of T cell clonal abundance on phenotypic outcome should be considered during the design of adoptive T cell therapies, including use of engineered T cells.
Collapse
Affiliation(s)
- Nicole Malandro
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Sadna Budhu
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicholas F Kuhn
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cailian Liu
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Judith T Murphy
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Czrina Cortez
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hong Zhong
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xia Yang
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabrielle Rizzuto
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Grégoire Altan-Bonnet
- Programs in Computational Biology & Immunology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jedd D Wolchok
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
35
|
Lythe G, Callard RE, Hoare RL, Molina-París C. How many TCR clonotypes does a body maintain? J Theor Biol 2015; 389:214-24. [PMID: 26546971 PMCID: PMC4678146 DOI: 10.1016/j.jtbi.2015.10.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
We consider the lifetime of a T cell clonotype, the set of T cells with the same T cell receptor, from its thymic origin to its extinction in a multiclonal repertoire. Using published estimates of total cell numbers and thymic production rates, we calculate the mean number of cells per TCR clonotype, and the total number of clonotypes, in mice and humans. When there is little peripheral division, as in a mouse, the number of cells per clonotype is small and governed by the number of cells with identical TCR that exit the thymus. In humans, peripheral division is important and a clonotype may survive for decades, during which it expands to comprise many cells. We therefore devise and analyse a computational model of homeostasis of a multiclonal population. Each T cell in the model competes for self pMHC stimuli, cells of any one clonotype only recognising a small fraction of the many subsets of stimuli. A constant mean total number of cells is maintained by a balance between cell division and death, and a stable number of clonotypes by a balance between thymic production of new clonotypes and extinction of existing ones. The number of distinct clonotypes in a human body may be smaller than the total number of naive T cells by only one order of magnitude. The number of T cells of one clonotype is an integer. The history of a clonotype starts with release from the thymus, and ends with extinction. Competition and cross-reactivity are included in a natural way. The average number of cells per clonotype, in a human body, is only of order 10.
Collapse
Affiliation(s)
- Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
| | - Robin E Callard
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Rollo L Hoare
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
36
|
Mairhofer DG, Ortner D, Tripp CH, Schaffenrath S, Fleming V, Heger L, Komenda K, Reider D, Dudziak D, Chen S, Becker JC, Flacher V, Stoitzner P. Impaired gp100-Specific CD8(+) T-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model. J Invest Dermatol 2015; 135:2785-2793. [PMID: 26121214 PMCID: PMC4652066 DOI: 10.1038/jid.2015.241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/01/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
Murine tumor models that closely reflect human diseases are important tools to investigate carcinogenesis and tumor immunity. The transgenic (tg) mouse strain tg(Grm1)EPv develops spontaneous melanoma due to ectopic overexpression of the metabotropic glutamate receptor 1 (Grm1) in melanocytes. In the present study, we characterized the immune status and functional properties of immune cells in tumor-bearing mice. Melanoma development was accompanied by a reduction in the percentages of CD4(+) T cells including regulatory T cells (Tregs) in CD45(+) leukocytes present in tumor tissue and draining lymph nodes (LNs). In contrast, the percentages of CD8(+) T cells were unchanged, and these cells showed an activated phenotype in tumor mice. Endogenous melanoma-associated antigen glycoprotein 100 (gp100)-specific CD8(+) T cells were not deleted during tumor development, as revealed by pentamer staining in the skin and draining LNs. They, however, were unresponsive to ex vivo gp100-peptide stimulation in late-stage tumor mice. Interestingly, immunosuppressive myeloid-derived suppressor cells (MDSCs) were recruited to tumor tissue with a preferential accumulation of granulocytic MDSC (grMDSCs) over monocytic MDSC (moMDSCs). Both subsets produced Arginase-1, inducible nitric oxide synthase (iNOS), and transforming growth factor-β and suppressed T-cell proliferation in vitro. In this work, we describe the immune status of a spontaneous melanoma mouse model that provides an interesting tool to develop future immunotherapeutical strategies.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Disease Models, Animal
- Humans
- Lymphocyte Activation
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Random Allocation
- Suppressor Factors, Immunologic/immunology
- Suppressor Factors, Immunologic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Cells, Cultured
- gp100 Melanoma Antigen/immunology
- gp100 Melanoma Antigen/metabolism
Collapse
Affiliation(s)
- David G Mairhofer
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Oncotyrol, Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Sandra Schaffenrath
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Oncotyrol, Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Viktor Fleming
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Department of Dermatology, Laboratory of DC-Biology, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Department of Dermatology, Laboratory of DC-Biology, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Erlangen, Germany
| | - Kerstin Komenda
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Reider
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Oncotyrol, Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Diana Dudziak
- Department of Dermatology, Laboratory of DC-Biology, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Erlangen, Germany
| | - Suzie Chen
- Department of Chemical Biology, Lab for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
| | - Jürgen C Becker
- Department for Translational Dermato-Oncology, Center for Medical Biotechnology, University Hospital Essen, Essen, Germany
| | - Vincent Flacher
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
37
|
Legat A, Maby-El Hajjami H, Baumgaertner P, Cagnon L, Abed Maillard S, Geldhof C, Iancu EM, Lebon L, Guillaume P, Dojcinovic D, Michielin O, Romano E, Berthod G, Rimoldi D, Triebel F, Luescher I, Rufer N, Speiser DE. Vaccination with LAG-3Ig (IMP321) and Peptides Induces Specific CD4 and CD8 T-Cell Responses in Metastatic Melanoma Patients—Report of a Phase I/IIa Clinical Trial. Clin Cancer Res 2015; 22:1330-40. [DOI: 10.1158/1078-0432.ccr-15-1212] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/01/2015] [Indexed: 11/16/2022]
|
38
|
Jacca S, Rolih V, Quaglino E, Franceschi V, Tebaldi G, Bolli E, Rosamilia A, Ottonello S, Cavallo F, Donofrio G. Bovine herpesvirus 4-based vector delivering a hybrid rat/human HER-2 oncoantigen efficiently protects mice from autochthonous Her-2 + mammary cancer. Oncoimmunology 2015; 5:e1082705. [PMID: 27141335 PMCID: PMC4839386 DOI: 10.1080/2162402x.2015.1082705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 12/22/2022] Open
Abstract
The epidermal growth factor receptor 2 (HER-2) oncogene is a major target for the immunotherapy of breast cancer. Following up to the therapeutic success achieved with Her-2-targeting monoclonal antibodies, immune-prophylactic approaches directed against Her-2 have also been investigated taking into account, and trying to overcome, Her-2 self-tolerance. Perhaps due to safety (and efficacy) concerns, the least explored anti-Her-2 active immunization strategy so far has been the one relying on viral-vectored vaccine formulations. Taking advantage of the favorable properties of bovine herpesvirus 4 (BoHV-4) in terms of safety and ease of manipulation as well as its previously documented ability to transduce and confer immunogenicity to heterologous antigens, we tested the ability of different recombinant HER-2-BoHV-4 immunogens to 8break tolerance and elicit a protective, anti-mammary tumor antibody response in HER-2 transgenic BALB-neuT mice. All the tested constructs expressed the HER-2 transgenes at high levels and elicited significant cellular immune responses in BALB/c mice upon administration via either DNA vaccination or viral infection. In BALB-neuT mice, instead, only the viral construct expressing the membrane-bound chimeric form of Her-2 protein (BoHV-4-RHuT-gD) elicited a humoral immune response that was more intense and earlier-appearing than that induced by DNA vaccination. In keeping with this observation, two administrations of BoHV-4-RHuT-gD effectively protected BALB-neuT mice from tumor formation, with 50% of vaccinated animals tumor-free after 30 weeks from immunization compared to 100% of animals exhibiting at least one palpable tumor in the case of animals vaccinated with the other BoHV-4-HER-2 constructs.
Collapse
Affiliation(s)
- Sarah Jacca
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | | | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Alfonso Rosamilia
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| | - Simone Ottonello
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma , Parma, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| |
Collapse
|
39
|
Perica K, Bieler JG, Schütz C, Varela JC, Douglass J, Skora A, Chiu YL, Oelke M, Kinzler K, Zhou S, Vogelstein B, Schneck JP. Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy. ACS NANO 2015; 9:6861-71. [PMID: 26171764 PMCID: PMC5082131 DOI: 10.1021/acsnano.5b02829] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Douglass
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Andrew Skora
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | | | | - Kenneth Kinzler
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Shibin Zhou
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Bert Vogelstein
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | |
Collapse
|
40
|
Richards DM, Ruggiero E, Hofer AC, Sefrin JP, Schmidt M, von Kalle C, Feuerer M. The Contained Self-Reactive Peripheral T Cell Repertoire: Size, Diversity, and Cellular Composition. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26195815 DOI: 10.4049/jimmunol.1500880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Individual self-reactive T cells have been discovered in both humans and mice. It is difficult to assess the entire contained self-reactive peripheral T cell repertoire in healthy individuals because regulatory T cells (Tregs) can render these cells anergic and, therefore, functionally indistinguishable. We addressed this issue by removing regulatory T cells, thereby allowing us to characterize the exposed self-reactive T cells. This resulted in activation of approximately 4% of both CD4(+) and CD8(+) T cells. Activation and division of these cells was not a bystander product of Ag-independent signals but required TCR stimulation. Analysis of TCR sequences showed that these responding cells were polyclonal and encompassed a broad range of structural TCR diversity. Adoptive transfer of naive and effector/memory T cell populations showed that even the naive T cell pool contained self-reactive T cell precursors. In addition, transfer of mature thymocytes showed that this response was an intrinsic T cell property rather than a peripheral adaptation. Finally, we found that the unexpectedly strong contribution of the naive CD5(low) T cell pool showed that the overall self-reactive response has not only a diverse polyclonal TCR repertoire, but also comprises a broad range of affinities for self.
Collapse
Affiliation(s)
- David M Richards
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Eliana Ruggiero
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, 69120 Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Julian P Sefrin
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Manfred Schmidt
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| |
Collapse
|
41
|
Boyd A, Almeida JR, Darrah PA, Sauce D, Seder RA, Appay V, Gorochov G, Larsen M. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection. PLoS One 2015; 10:e0128714. [PMID: 26046523 PMCID: PMC4457486 DOI: 10.1371/journal.pone.0128714] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality is a superior correlate of T cell efficacy both in vitro and in vivo as compared with response size. Therefore, future immunotherapies should aim to increase T cell polyfunctionality.
Collapse
Affiliation(s)
- Anders Boyd
- Inserm UMR-S1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Jorge R. Almeida
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Patricia A. Darrah
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Delphine Sauce
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Robert A. Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Victor Appay
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Guy Gorochov
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d’Immunologie, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI-Paris, Paris, France
| | - Martin Larsen
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d’Immunologie, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Abstract
Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.
Collapse
|
43
|
Microenvironment of tumor-draining lymph nodes: opportunities for liposome-based targeted therapy. Int J Mol Sci 2014; 15:20209-39. [PMID: 25380524 PMCID: PMC4264163 DOI: 10.3390/ijms151120209] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023] Open
Abstract
The World Health Organization (WHO) recently reported that the total number of global cancer cases in 2013 reached 14 million, a 10% rise since 2008, while the total number of cancer deaths reached 8.2 million, a 5.2% increase since 2008. Metastasis is the major cause of death from cancer, accounting for 90% of all cancer related deaths. Tumor-draining lymph nodes (TDLN), the sentinel nodes, are the first organs of metastasis in several types of cancers. The extent of metastasis in the TDLN is often used in disease staging and prognosis evaluation in cancer patients. Here, we describe the microenvironment of the TDLN and review the recent literature on liposome-based therapies directed to immune cells within the TDLN with the intent to target cancer cells.
Collapse
|
44
|
Guo L, Qiu Y, Chen J, Zhang S, Xu B, Gao Y. Effective transcutaneous immunization against hepatitis B virus by a combined approach of hydrogel patch formulation and microneedle arrays. Biomed Microdevices 2014; 15:1077-85. [PMID: 23893014 DOI: 10.1007/s10544-013-9799-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcutaneous immunization (TCI) has many advantages compared with needle-based administrations. But the conventional TCI shows poor permeation of antigens across the skin barrier. In this study, Functional MicroArray (FMA) system was used to poke the skin and increase the permeability, and the hydrogel patch formulation was used as the carrier for transdermal delivery of hepatitis B surface antigen (HBsAg) and cholera toxin B (CTB) as an adjuvant. In vitro permeation of antigen was studied using porcine ear skin and rat abdominal skin. The results showed that FMA system could significantly increase the permeation of HBsAg across skin compared with conventional TCI. HBsAg loaded hydrogel formulation exhibited better antigenic thermostability than the liquid formulation. In vivo immunization studies were performed in mice, and the serum IgG titer, IgG2a/IgG1 ratio were measured. The results showed that TCI with FMA induced more potent immune responses than the groups without FMA pretreatment. CTB adjuvanted TCI group could induce higher IgG titers compared with the group without CTB. Furthermore, TCI group can maintain a longer duration of stable IgG titers compared with the intramuscular injection (IM) group. In conclusion, the FMA/hydrogel system was proved to be a potential vaccination strategy against hepatitis B virus.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | | | | | | | | |
Collapse
|
45
|
Identification of the genomic insertion site of Pmel-1 TCR α and β transgenes by next-generation sequencing. PLoS One 2014; 9:e96650. [PMID: 24827921 PMCID: PMC4020793 DOI: 10.1371/journal.pone.0096650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
The pmel-1 T cell receptor transgenic mouse has been extensively employed as an ideal model system to study the mechanisms of tumor immunology, CD8+ T cell differentiation, autoimmunity and adoptive immunotherapy. The ‘zygosity’ of the transgene affects the transgene expression levels and may compromise optimal breeding scheme design. However, the integration sites for the pmel-1 mouse have remained uncharacterized. This is also true for many other commonly used transgenic mice created before the modern era of rapid and inexpensive next-generation sequencing. Here, we show that whole genome sequencing can be used to determine the exact pmel-1 genomic integration site, even with relatively ‘shallow’ (8X) coverage. The results were used to develop a validated polymerase chain reaction-based genotyping assay. For the first time, we provide a quick and convenient polymerase chain reaction method to determine the dosage of pmel-1 transgene for this freely and publically available mouse resource. We also demonstrate that next-generation sequencing provides a feasible approach for mapping foreign DNA integration sites, even when information of the original vector sequences is only partially known.
Collapse
|
46
|
Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev 2014; 259:245-58. [PMID: 24712470 PMCID: PMC4122093 DOI: 10.1111/imr.12166] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many tumors express antigens that can be specifically or selectively recognized by T lymphocytes, suggesting that T-cell-mediated immunity may be harnessed for the immunotherapy of cancer. However, since tumors originate from normal cells and evolve within the context of self-tissues, the immune mechanisms that prevent the autoimmune attack of normal tissues function in parallel to restrict anti-tumor immunity. In particular, the purging of autoreactive T cells and the development of immune-suppressive regulatory T cells (Tregs) are thought to be major barriers impeding anti-tumor immune responses. Here, we discuss current understanding regarding the antigens recognized by tumor-infiltrating T-cell populations, the mechanisms that shape the repertoire of these cells, and the role of the transcription factor autoimmune regulator (Aire) in these processes. Further elucidation of these principles is likely to be critical for optimizing emerging cancer immunotherapies, and for the rational design of novel therapies exhibiting robust anti-tumor activity with limited toxicity.
Collapse
Affiliation(s)
- Peter A. Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | | | - Sven Malchow
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
47
|
Soong RS, Song L, Trieu J, Lee SY, He L, Tsai YC, Wu TC, Hung CF. Direct T cell activation via CD40 ligand generates high avidity CD8+ T cells capable of breaking immunological tolerance for the control of tumors. PLoS One 2014; 9:e93162. [PMID: 24664420 PMCID: PMC3963987 DOI: 10.1371/journal.pone.0093162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022] Open
Abstract
CD40 and CD40 ligand (CD40L) are costimulatory molecules that play a pivotal role in the proinflammatory immune response. Primarily expressed by activated CD4+ T cells, CD40L binds to CD40 on antigen presenting cells (APCs), thereby inducing APC activation. APCs, in turn, prime cytotoxic T lymphocytes (CTLs). Here, two tumor-associated antigen (TAA) animal models, p53-based and GP100-based, were utilized to examine the ability of CD40-CD40L to improve antigen-specific CTL-mediated antitumor immune responses. Although p53 and GP100 are self-antigens that generate low affinity antigen-specific CD8+ T cells, studies have shown that their functional avidity can be improved with CD40L-expressing APCs. Therefore, in the current study, we immunized mice with a DNA construct encoding a TAA in conjunction with another construct encoding CD40L via intramuscular injection followed by electroporation. We observed a significant increase in the antigen-specific CTL-mediated immune responses as well as the potent antitumor effects in both models. Antibody depletion experiments demonstrated that CD8+ T cells play a crucial role in eliciting antitumor effects in vaccinated mice. Furthermore, we showed that in vitro stimulation with irradiated tumor cells expressing both TAA and CD40L improved the functional avidity of antigen-specific CD8+ T cells. Thus, our data show that vaccination with TAA/CD40L DNA can induce potent antitumor effects against TAA-expressing tumors through the generation of better functioning antigen-specific CD8+ T cells. Our study serves as an important foundation for future clinical translation.
Collapse
Affiliation(s)
- Ruey-Shyang Soong
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of General Surgery, Chang Gung Memorial Hospital at Keelung, Keelung City, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Liwen Song
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Pharmacy School of Fudan University, Shanghai, China
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Janson Trieu
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sung Yong Lee
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Internal Medicine, Korea University Medical Center, Seoul, South Korea
| | - Liangmei He
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * E-mail: (C-FH); (T-CW)
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * E-mail: (C-FH); (T-CW)
| |
Collapse
|
48
|
Speiser DE. Hit parade for adoptive cell transfer therapy: the best T cells for superior clinical responses. Cancer Discov 2013; 3:379-81. [PMID: 23580281 DOI: 10.1158/2159-8290.cd-13-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive cell transfer (ACT) of T cells has great clinical potential, but the numerous variables of this therapy make choices difficult. A new study takes advantage of a novel technology for characterizing the T-cell responses of patients. If applied systematically, this approach may identify biomedical correlates of protection, thereby supporting treatment optimization.
Collapse
Affiliation(s)
- Daniel E Speiser
- Department of Oncology and Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
49
|
Perret R, Sierro SR, Botelho NK, Corgnac S, Donda A, Romero P. Adjuvants that improve the ratio of antigen-specific effector to regulatory T cells enhance tumor immunity. Cancer Res 2013; 73:6597-608. [PMID: 24048821 DOI: 10.1158/0008-5472.can-13-0875] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antitumor immunity is strongly influenced by the balance of tumor antigen-specific effector T cells (Teff) and regulatory T cells (Treg). However, the impact that vaccine adjuvants have in regulating the balance of antigen-specific T-cell populations is not well understood. We found that antigen-specific Tregs were induced following subcutaneous vaccination with either OVA or melanoma-derived peptides, with a restricted expansion of Teffs. Addition of the adjuvants CpG-ODN or Poly(I:C) preferentially amplified Teffs over Tregs, dramatically increasing the antigen-specific Teff:Treg ratios and inducing polyfunctional effector cells. In contrast, two other adjuvants, imiquimod and Quil A saponin, favored an expansion of antigen-specific Tregs and failed to increase Teff:Treg ratios. Following therapeutic vaccination of tumor-bearing mice, high ratios of tumor-specific Teffs:Tregs in draining lymph nodes were associated with enhanced CD8(+) T-cell infiltration at the tumor site and a durable rejection of tumors. Vaccine formulations of peptide+CpG-ODN or Poly(I:C) induced selective production of proinflammatory type I cytokines early after vaccination. This environment promoted CD8(+) and CD4(+) Teff expansion over that of antigen-specific Tregs, tipping the Teff to Treg balance to favor effector cells. Our findings advance understanding of the influence of different adjuvants on T-cell populations, facilitating the rational design of more effective cancer vaccines.
Collapse
Affiliation(s)
- Rachel Perret
- Authors' Affiliation: Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Dougan SK, Dougan M, Kim J, Turner JA, Ogata S, Cho HI, Jaenisch R, Celis E, Ploegh HL. Transnuclear TRP1-specific CD8 T cells with high or low affinity TCRs show equivalent antitumor activity. Cancer Immunol Res 2013; 1:99-111. [PMID: 24459675 PMCID: PMC3895912 DOI: 10.1158/2326-6066.cir-13-0047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have generated, via somatic cell nuclear transfer, two independent lines of transnuclear (TN) mice, using as nuclear donors CD8 T cells, sorted by tetramer staining, that recognize the endogenous melanoma antigen TRP1. These two lines of nominally identical specificity differ greatly in their affinity for antigen (TRP1(high) or TRP1(low)) as inferred from tetramer dissociation and peptide responsiveness. Ex vivo-activated CD8 T cells from either TRP1(high) or TRP1(low) mice show cytolytic activity in 3D tissue culture and in vivo, and slow the progression of subcutaneous B16 melanoma. Although naïve TRP1(low) CD8 T cells do not affect tumor growth, upon activation these cells function indistinguishably from TRP1(high) cells in vivo, limiting tumor cell growth and increasing mouse survival. The anti-tumor effect of both TRP1(high) and TRP1(low) CD8 T cells is enhanced in RAG-deficient hosts. However, tumor outgrowth eventually occurs, likely due to T cell exhaustion. The TRP1 TN mice are an excellent model for examining the functional attributes of T cells conferred by TCR affinity, and they may serve as a platform for screening immunomodulatory cancer therapies.
Collapse
Affiliation(s)
- Stephanie K. Dougan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Michael Dougan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Jun Kim
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Massachusetts Institute of Technology, Cambridge, MA
| | - Jacob A. Turner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221
| | - Souichi Ogata
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Janssen Research and Development, division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B2340, Belgium
| | - Hyun-Il Cho
- Dept. of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Esteban Celis
- Dept. of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| |
Collapse
|