1
|
Mocholi E, Corrigan E, Chalkiadakis T, Gulersonmez C, Stigter E, Vastert B, van Loosdregt J, Prekovic S, Coffer PJ. Glycolytic reprogramming shapes the histone acetylation profile of activated CD4 + T cells in juvenile idiopathic arthritis. Cell Rep 2025; 44:115287. [PMID: 40009514 DOI: 10.1016/j.celrep.2025.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 02/28/2025] Open
Abstract
Juvenile idiopathic arthritis (JIA) is an autoimmune disease characterized by accumulation of activated CD4+ T cells in the synovial fluid (SF) of affected joints. JIA CD4+ T cells exhibit a unique inflammation-associated epigenomic signature, but the underlying mechanisms remain unclear. We demonstrate that CD4+ T cells from JIA SF display heightened glycolysis upon activation and JIA-specific H3K27 acetylation, driving transcriptional reprogramming. Pharmacological inhibition of glycolysis altered the expression of genes associated with these acetylated regions. Healthy CD4+ T cells exposed to JIA SF exhibited increased glycolytic activity and transcriptomic changes marked by heightened histone 3 lysine 27 acetylation (H3K27ac) at JIA-specific genes. Elevated H3K27ac was dependent on glycolytic flux, while inhibiting glycolysis or pyruvate dehydrogenase (PDH) impaired transcription of SF-driven genes. These findings demonstrate a key role of glycolysis in JIA-specific gene expression, offering potential therapeutic targets for modulating inflammation in JIA.
Collapse
Affiliation(s)
- Enric Mocholi
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Edward Corrigan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Theo Chalkiadakis
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Can Gulersonmez
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edwin Stigter
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bas Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Chen Y, He Z, Yang S, Chen C, Xiong W, He Y, Liu S. RUNX1 knockdown induced apoptosis and impaired EMT in high-grade serous ovarian cancer cells. J Transl Med 2023; 21:886. [PMID: 38057816 PMCID: PMC10702124 DOI: 10.1186/s12967-023-04762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic illnesses worldwide. High-grade serous ovarian cancer (HGSOC) is a gynecological tumor that accounts for roughly 70% of ovarian cancer deaths in women. Runt-related transcription factor 1(RUNX1) proteins were identified with overexpression in the HGSOC. However, the roles of RUNX1 in the development of HGSOC are poorly understood. In this study, combined with whole-transcriptome analysis and multiple research methods, RUNX1 was identified as vital in developing HGSOC. RUNX1 knockdown inhibits the physiological function of ovarian cancer cells and regulates apoptosis through the FOXO1-Bcl2 axis. Down-regulated RUNX1 impairs EMT function through the EGFR-AKT-STAT3 axis signaling. In addition, RUNX1 knockdown can significantly increase the sensitivity to clinical drug therapy for ovarian cancer. It is strongly suggested that RUNX1 work as a potential diagnostic and therapeutic target for HGSOC patients with better prognoses and treatment options. It is possible to generate novel potential targeted therapy strategies and translational applications for serous ovarian carcinoma patients with better clinical outcomes.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuting Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- School of Life Science, Yunnan University, Kunming, China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
| | - YingYing He
- School of Chemical Science & Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Bhuyan ZA, Rahman MA, Maradana MR, Mehdi AM, Bergot AS, Simone D, El-Kurdi M, Garrido-Mesa J, Cai CBB, Cameron AJ, Hanson AL, Nel HJ, Kenna T, Leo P, Rehaume L, Brown MA, Ciccia F, Thomas R. Genetically encoded Runx3 and CD4 + intestinal epithelial lymphocyte deficiencies link SKG mouse and human predisposition to spondyloarthropathy. Clin Immunol 2023; 247:109220. [PMID: 36596403 DOI: 10.1016/j.clim.2022.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/02/2023]
Abstract
Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαβ+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-β and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-β/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.
Collapse
Affiliation(s)
- Zaied Ahmed Bhuyan
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - M Arifur Rahman
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Muralidhara Rao Maradana
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Ahmed M Mehdi
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Anne-Sophie Bergot
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Davide Simone
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Marya El-Kurdi
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Cheng Bang Benjamin Cai
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Amy J Cameron
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Aimee L Hanson
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Hendrik J Nel
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Tony Kenna
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Paul Leo
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Linda Rehaume
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Genomics England Ltd, Charterhouse Square, London, United Kingdom
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Ranjeny Thomas
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
4
|
Yan W, Wang L, Chen Z, Gu C, Chen C, Liu X, Ye Q. Knockdown of lncRNA HAGLR promotes Treg cell differentiation through increasing the RUNX3 level in dermatomyositis. J Mol Histol 2022; 53:413-421. [DOI: 10.1007/s10735-021-10051-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 01/14/2023]
|
5
|
Song S, Chen L, Ning Q, Zhu D, Qiu F, Li G, Zhang H, Xiao T, Ding G, Huang M. eQTL Highlights the Potential Role of Negative Control of Innate Immunity in Kawasaki Disease. Int J Gen Med 2022; 15:837-848. [PMID: 35125885 PMCID: PMC8807868 DOI: 10.2147/ijgm.s343225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Kawasaki disease (KD) is an acute systemic vasculitis mainly found in the medium-sized arteries, especially the coronary arteries. Immune system is involved in the pathogenesis of acute KD in children, but the functional differences in the immune system between healthy children and KD patients remain unclear. Patients and Methods A total of 190 KD patients and 119 healthy controls were recruited for the next-generation sequencing of 512 targeted genes from 4 immune-related pathways. Subsequently, the peripheral blood mononuclear cells (PBMCs) were isolated. RNA sequencing of the LPS treated PBMCs from additional 20 KD patients and 20 healthy controls was used to examine the differentially expressed genes (DEGs). Then, an expression quantitative trait locus (eQTL) analysis combined with previously analyzed RNA data were used to examine the DEGs. Finally, the serum levels of 13 cytokines were detected before and after LPS treatment in 40 samples to confirm the findings from eQTL analysis. Results A total of 319 significant eQTL were found, and both eQTL analysis and RNA sequencing showed some DEGs were involved in the connective tissue disorders and inflammatory diseases. DEGs that function to negatively regulate immunity were closely related to the pathogenesis of KD. In addition, the serum levels of IL-10 (an inflammatory and immunosuppressive factor) and SCD25 (an important immunosuppressant) reduced significantly in the KD patients. Conclusion Our study shows the expression of factors responsible for the negative control of innate immunity is altered, which plays an important role in the etiology of KD.
Collapse
Affiliation(s)
- Sirui Song
- Department of Cardiology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liqin Chen
- Department of Cardiology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qianqian Ning
- Shanghai Center for Bioinformation Technology, Shanghai, People’s Republic of China
| | - Danying Zhu
- Department of Cardiology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Feng Qiu
- Shanghai Center for Bioinformation Technology, Shanghai, People’s Republic of China
| | - Guang Li
- Shanghai Center for Bioinformation Technology, Shanghai, People’s Republic of China
| | - Hong Zhang
- Department of Laboratory, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guohui Ding
- International Human Phenome Institutes, Shanghai, 200235, People’s Republic of China
- Guohui Ding, International Human Phenome Institutes, Shanghai, 200235, People’s Republic of China, Email
| | - Min Huang
- Department of Cardiology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Correspondence: Min Huang, Department of Cardiology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China, Email
| |
Collapse
|
6
|
Wang M, Huan Y, Li X, Li J, Lv G. RUNX3 derived hsa_circ_0005752 accelerates the osteogenic differentiation of adipose-derived stem cells via the miR-496/MDM2-p53 pathway. Regen Ther 2021; 18:430-440. [PMID: 34754888 PMCID: PMC8546365 DOI: 10.1016/j.reth.2021.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Circular RNAs (circRNAs) are non-coding RNAs that play a pivotal role in bone diseases. RUNX3 was an essential transcriptional regulator during osteogenesis. However, it is unknown whether RUNX3 regulates hsa_circ_0005752 during osteogenic differentiation. Methods The levels of hsa_circ_0005752 and RUNX3 were measured by qRT-PCR after osteogenic differentiation of ADSCs. The osteogenic differentiation was analyzed by Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS). qRT-PCR and western blot were used to assess the expressions of osteogenic differentiation-related molecules. RNA pull-down, RIP, and luciferase reporter assays determine the interactions between miR-496 and hsa_circ_0005752 or MDM2 mRNA. CHIP-PCR analyzed the interaction between RUNX3 and LPAR1. Finally, the potential roles of RUNX3 were investigated during osteogenic differentiation with or without hsa_circ_0005752 knockdown. Results Hsa_circ_0005752 and RUNX3 were significantly increased, and miR-496 was remarkably decreased in ADSCs after osteogenic differentiation. Hsa_circ_0005752 could promote osteogenic differentiation, as shown by enhancing ALP and ARS staining intensity. Hsa_circ_0005752 enhanced the expressions of Runx2, ALP, Osx, and OCN. Furthermore, hsa_circ_0005752 directly targeted miR-496, which can directly bind to MDM2. RUNX3 bound to the LPAR1 promoter and enhanced hsa_circ_0005752 expressions. Moreover, the enhanced expression of hsa_circ_0005752 by RUNX3 could promote osteogenic differentiation, whereas knockdown of hsa_circ_0005752 partially antagonized the effects of RUNX3. Conclusion Our study demonstrated that RUNX3 promoted osteogenic differentiation via regulating the hsa_circ_0005752/miR-496/MDM2 axis and thus provided a new therapeutic strategy for osteoporosis.
Collapse
Key Words
- 3′ UTR, 3′ untranslated region
- ADSCs, adipose-derived stem cells
- ALP, alkaline phosphatase
- ARS, Alizarin Red Staining
- Adipose-derived stem cells
- BCA, bicinchoninic acid
- BM-MSCs, Bone Marrow-Mesenchymal Stem Cells
- BMP2, Bone morphogenetic protein 2
- ChIP, chromatin immunoprecipitation
- Circular RNAs
- ECL, enhanced chemiluminescence
- H&E staining, Hematoxylin and Eosin staining
- LPAR1, lysophosphatidic acid receptor 1
- MDM2
- MDM2, murine double minute 2
- OCN, osteocalcin
- OM, osteogenic (differentiation) medium
- Osteogenic differentiation
- Osx, osterix
- PMSF, phenylmethylsulfonyl fluoride
- RIP, RNA immunoprecipitation
- RUNX3
- Runx2, Runt-related transcription factor 2
- Runx3, RUNX Family Transcription Factor 3
- SDS-PAGE, polyacrylamide gel electrophoresis
- UC-MSCs, Umbilical Cord-Mesenchymal Stem Cells
- circRNAs, Circular RNAs
- miRNAs, microRNA
- microRNA
- qRT-PCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Ming Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China.,Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yifan Huan
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Xiyang Li
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| |
Collapse
|
7
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
8
|
LncRNA FENDRR Expression Correlates with Tumor Immunogenicity. Genes (Basel) 2021; 12:genes12060897. [PMID: 34200642 PMCID: PMC8226633 DOI: 10.3390/genes12060897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
FENDRR (Fetal-lethal non-coding developmental regulatory RNA, LncRNA FOXF1-AS1) is a recently identified tumor suppressor long non-coding (LncRNA) RNA, and its expression has been linked with epigenetic modulation of the target genes involved in tumor immunity. In this study, we aimed to understand the role of FENDRR in predicting immune-responsiveness and the inflammatory tumor environment. Briefly, FENDRR expression and its relationship to immune activation signals were assessed in murine cell lines. Data suggested that tumor cells (e.g., C26 colon, 4T1 breast) that typically upregulate immune activation genes and the MHC class I molecule exhibited high FENDRR expression levels. Conversely, tumor cells with a generalized downregulation of immune-related gene expression (e.g., B16F10 melanoma) demonstrated low to undetectable FENDRR levels. Mechanistically, the modulation of FENDRR expression enhanced the inflammatory and WNT signaling pathways in tumors. Our early data suggest that FENDRR can play an important role in the development of immune-relevant phenotypes in tumors, and thereby improve cancer immunotherapy.
Collapse
|
9
|
London M, Bilate AM, Castro TBR, Sujino T, Mucida D. Stepwise chromatin and transcriptional acquisition of an intraepithelial lymphocyte program. Nat Immunol 2021; 22:449-459. [PMID: 33686285 PMCID: PMC8251700 DOI: 10.1038/s41590-021-00883-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Mesenteric lymph node (mLN) T cells undergo tissue adaptation upon migrating to intestinal lamina propria and epithelium, ensuring appropriate balance between tolerance and resistance. By combining mouse genetics with single-cell and chromatin analyses, we uncovered the molecular imprinting of gut epithelium on T cells. Transcriptionally, conventional and regulatory (Treg) CD4+ T cells from mLN, lamina propria and intestinal epithelium segregate based on the gut layer they occupy; trajectory analysis suggests a stepwise loss of CD4 programming and acquisition of an intraepithelial profile. Treg cell fate mapping coupled with RNA sequencing and assay for transposase-accessible chromatin followed by sequencing revealed that the Treg cell program shuts down before an intraepithelial program becomes fully accessible at the epithelium. Ablation of CD4-lineage-defining transcription factor ThPOK results in premature acquisition of an intraepithelial lymphocyte profile by mLN Treg cells, partially recapitulating epithelium imprinting. Thus, coordinated replacement of the circulating lymphocyte program with site-specific transcriptional and chromatin changes is necessary for tissue imprinting.
Collapse
Affiliation(s)
- Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Zhou X, Han X, Lyu SC, Bunning B, Kost L, Chang I, Cao S, Sampath V, Nadeau KC. Targeted DNA methylation profiling reveals epigenetic signatures in peanut allergy. JCI Insight 2021; 6:143058. [PMID: 33571165 PMCID: PMC8026193 DOI: 10.1172/jci.insight.143058] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation (DNAm) has been shown to play a role in mediating food allergy; however, the mechanism by which it does so is poorly understood. In this study, we used targeted next-generation bisulfite sequencing to evaluate DNAm levels in 125 targeted highly informative genomic regions containing 602 CpG sites on 70 immune-related genes to understand whether DNAm can differentiate peanut allergy (PA) versus nonallergy (NA). We found PA-associated DNAm signatures associated with 12 genes (7 potentially novel to food allergy, 3 associated with Th1/Th2, and 2 associated with innate immunity), as well as DNAm signature combinations with superior diagnostic potential compared with serum peanut–specific IgE for PA versus NA. Furthermore, we found that, following peanut protein stimulation, peripheral blood mononuclear cell (PBMCs) from PA participants showed increased production of cognate cytokines compared with NA participants. The varying responses between PA and NA participants may be associated with the interaction between the modification of DNAm and the interference of environment. Using Euclidean distance analysis, we found that the distances of methylation profile comprising 12 DNAm signatures between PA and NA pairs in monozygotic (MZ) twins were smaller than those in randomly paired genetically unrelated individuals, suggesting that PA-related DNAm signatures may be associated with genetic factors.
Collapse
|
11
|
Li X, Colamatteo A, Kalafati L, Kajikawa T, Wang H, Lim JH, Bdeir K, Chung KJ, Yu X, Fusco C, Porcellini A, De Simone S, Matarese G, Chavakis T, De Rosa V, Hajishengallis G. The DEL-1/β3 integrin axis promotes regulatory T cell responses during inflammation resolution. J Clin Invest 2021; 130:6261-6277. [PMID: 32817592 DOI: 10.1172/jci137530] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
FOXP3+CD4+ regulatory T cells (Tregs) are critical for immune homeostasis and respond to local tissue cues, which control their stability and function. We explored here whether developmental endothelial locus-1 (DEL-1), which, like Tregs, increases during resolution of inflammation, promotes Treg responses. DEL-1 enhanced Treg numbers and function at barrier sites (oral and lung mucosa). The underlying mechanism was dissected using mice lacking DEL-1 or expressing a point mutant thereof, or mice with T cell-specific deletion of the transcription factor RUNX1, identified by RNA sequencing analysis of the DEL-1-induced Treg transcriptome. Specifically, through interaction with αvβ3 integrin, DEL-1 promoted induction of RUNX1-dependent FOXP3 expression and conferred stability of FOXP3 expression upon Treg restimulation in the absence of exogenous TGF-β1. Consistently, DEL-1 enhanced the demethylation of the Treg-specific demethylated region (TSDR) in the mouse Foxp3 gene and the suppressive function of sorted induced Tregs. Similarly, DEL-1 increased RUNX1 and FOXP3 expression in human conventional T cells, promoting their conversion into induced Tregs with increased TSDR demethylation, enhanced stability, and suppressive activity. We thus uncovered a DEL-1/αvβ3/RUNX1 axis that promotes Treg responses at barrier sites and offers therapeutic options for modulating inflammatory/autoimmune disorders.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Germany, and German Cancer Research Center, Heidelberg, Germany
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine and
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Xiang Yu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II," Complesso Universitario di Monte Santangelo, Naples, Italy
| | - Salvatore De Simone
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy.,Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di Neuroimmunologia, Fondazione Santa Lucia, Rome, Italy
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
13
|
Spinner CA, Lazarevic V. Transcriptional regulation of adaptive and innate lymphoid lineage specification. Immunol Rev 2020; 300:65-81. [PMID: 33615514 DOI: 10.1111/imr.12935] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Once alerted to the presence of a pathogen, activated CD4+ T cells initiate distinct gene expression programs that produce multiple functionally specialized T helper (Th) subsets. The cytokine milieu present at the time of antigen encounter instructs CD4+ T cells to differentiate into interferon-(IFN)-γ-producing Th1 cells, interleukin-(IL)-4-producing Th2 cells, IL-17-producing Th17 cells, follicular T helper (Tfh) cells, or regulatory T (Treg) cells. In each of these Th cell subsets, a single transcription factor has been identified as a critical regulator of its specialized differentiation program. In this context, the expression of the "master regulator" is necessary and sufficient to activate lineage-specific genes while restricting the gene expression program of alternative Th fates. Thus, the transcription factor T-bet controls Th1 differentiation program, while the development of Th2, Th17, Tfh, and Treg cells is dependent on transcription factors GATA3, RORγt, Bcl6, and Foxp3, respectively. Nevertheless, master regulators or, more precisely, lineage-defining transcription factors do not function in isolation. In fact, they interact with a complex network of transcription factors, orchestrating cell lineage specification programs. In this review, we discuss the concept of the combinatorial interactions of key transcription factors in determining helper T cell identity. Additionally, lineage-defining transcription factors have well-established functions beyond their role in CD4+ Th subsets. They play critically important functions at distinct stages during T cell development in the thymus and they control the development of innate lymphoid cells (ILCs) in the bone marrow. In tracking the journey of T cells traversing from the thymus to the periphery and during the immune response, we discuss in broad terms developmental stage and context-dependent functions of lineage-defining transcription factors in regulating specification programs of innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6C high to Ly6C int/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axis. Cell Discov 2020; 6:87. [PMID: 33298871 PMCID: PMC7683537 DOI: 10.1038/s41421-020-00211-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are mainly divided into two populations, which play a different role in physiological and pathological conditions. The differentiation of these cells may be regulated by transcription factors. However, it is unclear how to modulate these transcription factors to affect differentiation of these cells. Here, we found that lncLy6C, a novel ultraconserved lncRNA, promotes differentiation of Ly6Chigh inflammatory monocytes into Ly6Clow/neg resident macrophages. We demonstrate that gut microbiota metabolites butyrate upregulates the expression of lncLy6C. LncLy6C deficient mice had markedly increased Ly6Chigh pro-inflammatory monocytes and reduced Ly6Cneg resident macrophages. LncLy6C not only bound with transcription factor C/EBPβ but also bound with multiple lysine methyltransferases of H3K4me3 to specifically promote the enrichment of C/EBPβ and H3K4me3 marks on the promoter region of Nr4A1, which can promote Ly6Chigh into Ly6Cneg macrophages. As a result, lncLy6C causes the upregulation of Nr4A1 to promote Ly6Chigh inflammatory monocytes to differentiate into Ly6Cint/neg resident macrophages.
Collapse
|
15
|
Wang K, Fu W. Transcriptional regulation of Treg homeostasis and functional specification. Cell Mol Life Sci 2020; 77:4269-4287. [PMID: 32350553 PMCID: PMC7606275 DOI: 10.1007/s00018-020-03534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
CD4+Foxp3+ regulatory T (Treg) cells are key players in keeping excessive inflammation in check. Mounting evidence has shown that Treg cells exert much more diverse functions in both immunological and non-immunological processes. The development, maintenance and functional specification of Treg cells are regulated by multilayered factors, including antigens and TCR signaling, cytokines, epigenetic modifiers and transcription factors (TFs). In the review, we will focus on TFs by summarizing their unique and redundant roles in Treg cells under physiological and pathophysiological conditions. We will also discuss the recent advances of Treg trajectories between lymphoid organs and non-lymphoid tissues. This review will provide an updated view of the newly identified TFs and new functions of known TFs in Treg biology.
Collapse
Affiliation(s)
- Ke Wang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nat Immunol 2020; 21:1456-1466. [PMID: 32989329 PMCID: PMC7577958 DOI: 10.1038/s41590-020-0784-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Human regulatory T (Treg) cells are essential for immune homeostasis. The transcription factor (TF) FOXP3 maintains Treg cell identity, yet the complete set of key TFs that control Treg cell gene expression remains unknown. Here, we used pooled and arrayed Cas9 ribonucleoprotein (RNP) screens to identify TFs that regulate critical proteins in primary human Treg cells under basal and pro-inflammatory conditions. We then generated 54,424 single-cell transcriptomes from Treg cells subjected to genetic perturbations and cytokine stimulation, which revealed distinct gene networks individually regulated by FOXP3 and PRDM1, in addition to a network co-regulated by FOXO1 and IRF4. We also discovered that HIVEP2, not previously implicated in Treg cell function, co-regulates another gene network with SATB1 and is important for Treg cell-mediated immunosuppression. By integrating CRISPR screens and scRNA-seq profiling, we have uncovered novel transcriptional regulators and downstream gene networks in human Treg cells that could be targeted for immunotherapies.
Collapse
|
17
|
Hirata SI, Sawane K, Adachi J, Isoyama J, Sugiura Y, Matsunaga A, Hosomi K, Tomonaga T, Suematsu M, Nagatake T, Kunisawa J. Vitamin B1 Supports the Differentiation of T Cells through TGF-β Superfamily Production in Thymic Stromal Cells. iScience 2020; 23:101426. [PMID: 32818907 PMCID: PMC7452312 DOI: 10.1016/j.isci.2020.101426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Homeostatic generation of T cells, which occurs in the thymus, is controlled at least in part by endogenous cytokines and ligands. In addition, nutritional factors are other key regulators for the homeostasis of host immunity, but whether and how nutrition affects the homeostatic generation of thymocytes remains to be established. Here, we showed that vitamin B1 deficiency resulted in a bias toward the maturation of γδ thymocytes accompanied by decreased differentiation into double-positive thymocytes during thymic involution. These events were mediated through the increased production of TGF-β superfamily members due to the accumulation of branched-chain α-keto acids in thymic stromal cells. These findings revealed essential roles of vitamin B1 in the appropriate differentiation of T cells through the metabolism of thymic stromal cells.
Collapse
Affiliation(s)
- So-ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe-city, Hyogo 650-0017, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Midorigaoka, Atsugi-city, Kanagawa 243-0041, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, NIBIOHN, Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, NIBIOHN, Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
| | - Yuki Sugiura
- Japan Science and Technology Agency, PRESTO, Honcho, Kawaguchi-city, Saitama 332-0012, Japan
- Department of Biochemistry, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, NIBIOHN, Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki-city, Osaka 567-0085, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe-city, Hyogo 650-0017, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-city, Osaka 565-0871, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020; 116:1410-1423. [PMID: 32154891 PMCID: PMC7314639 DOI: 10.1093/cvr/cvaa034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Martin McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1BD, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
19
|
Xu M, Liu Q, Li S, Zhang W, Huang X, Han K, Li C, Zeng K. Increased expression of miR-338-3p impairs Treg-mediated immunosuppression in pemphigus vulgaris by targeting RUNX1. Exp Dermatol 2020; 29:623-629. [PMID: 32386260 DOI: 10.1111/exd.14111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/04/2020] [Accepted: 05/04/2020] [Indexed: 12/01/2022]
Abstract
Pemphigus vulgaris (PV) is a regulatory T cell (Treg)-associated autoimmune disease. Treg cells maintain immunosuppression by expressing the signature transcription factor FOXP3. MicroRNAs (miRNAs) have frequently emerged as regulators in Treg-mediated immunosuppression. We previously found that miR-338-3p was overexpressed in the peripheral blood mononuclear cells of patients with PV. Herein, we explored the role of miR-338-3p in Treg-mediated immunosuppression by quantitative real-time polymerase chain reaction, analysis of public microarray data, miRNA transfection, Western blotting, flow cytometry, and luciferase reporter assays. Increased expression of miR-338-3p was detected in CD4+ T cells of active PV patients compared with those in healthy controls. Moreover, the miR-338-3p level was positively related to disease severity. Bioinformatics prediction revealed that Runt-related transcription factor 1 (RUNX1), a gene activating FOXP3 expression, was a putative target of miR-338-3p. There was a reduction of FOXP3 and RUNX1 expression in the CD4+ T cells of patients with PV, along with significant correlations with the level of miR-338-3p. MiRNA transfection, mRNA and protein analysis, and luciferase reporter assays verified that miR-338-3p attenuated FOXP3 expression by targeting RUNX1. This study suggests that excessive expression of miR-338-3p attenuates the expression of FOXP3 by targeting RUNX1, contributing to Treg dysfunction in PV.
Collapse
Affiliation(s)
- Meinian Xu
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingxiu Liu
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songshan Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Zhang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Huang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Han
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Delacher M, Barra MM, Herzig Y, Eichelbaum K, Rafiee MR, Richards DM, Träger U, Hofer AC, Kazakov A, Braband KL, Gonzalez M, Wöhrl L, Schambeck K, Imbusch CD, Abramson J, Krijgsveld J, Feuerer M. Quantitative Proteomics Identifies TCF1 as a Negative Regulator of Foxp3 Expression in Conventional T Cells. iScience 2020; 23:101127. [PMID: 32422593 PMCID: PMC7229326 DOI: 10.1016/j.isci.2020.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood. Here, we generated double-stranded DNA probes complementary to the Foxp3 promoter sequence and performed a pull-down with nuclear protein in vitro, followed by elution of bound proteins and quantitative mass spectrometry. Of the Foxp3-promoter-binding transcription factors identified with this approach, one was T cell factor 1 (TCF1). Using viral over-expression, we identified TCF1 as a repressor of Foxp3 expression. In TCF1-deficient animals, increased levels of Foxp3intermediateCD25negative T cells were identified. CRISPR-Cas9 knockout studies in primary human and mouse conventional CD4 T (Tconv) cells revealed that TCF1 protects Tconv cells from inadvertent Foxp3 expression. Our data implicate a role of TCF1 in suppressing Foxp3 expression in activated T cells.
Collapse
Affiliation(s)
- Michael Delacher
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie M Barra
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Katrin Eichelbaum
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Mahmoud-Reza Rafiee
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - David M Richards
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Träger
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alexander Kazakov
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kathrin L Braband
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marina Gonzalez
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lukas Wöhrl
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Kathrin Schambeck
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Charles D Imbusch
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Zwiers A, van Wanrooij RL, Dieckman T, Nijeboer P, Kraal G, Bouma G. Celiac disease associated SNP rs17810546 is located in a gene silencing region. Gene 2020; 726:144165. [DOI: 10.1016/j.gene.2019.144165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
|
22
|
Xiao XY, Li YT, Jiang X, Ji X, Lu X, Yang B, Wu LJ, Wang XH, Guo JB, Zhao LD, Fei YY, Yang HX, Zhang W, Zhang FC, Tang FL, Zhang JM, He W, Chen H, Zhang X. EZH2 deficiency attenuates Treg differentiation in rheumatoid arthritis. J Autoimmun 2020; 108:102404. [PMID: 31952907 DOI: 10.1016/j.jaut.2020.102404] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 01/07/2023]
Abstract
The chromatin modifier enhancer of zeste homolog 2 (EZH2) methylates lysine 27 of histone H3 (H3K27) and regulates T cell differentiation. However, the potential role of EZH2 in the pathogenesis of rheumatoid arthritis (RA) remains elusive. We analyzed EZH2 expression in PBMC, CD4+ T cells, CD19+ B cell, and CD14+ monocytes from active treatment-naïve RA patients and healthy controls (HC). We also suppressed EZH2 expression using EZH2 inhibitor GSK126 and measured CD4+ T cell differentiation, proliferation and apoptosis. We further examined TGFβ-SMAD and RUNX1 signaling pathways in EZH2-suppressed CD4+ T cells. Finally, we explored the regulation mechanism of EZH2 by RA synovial fluid and fibroblast-like synoviocyte (FLS) by neutralizing key proinflammatory cytokines. EZH2 expression is lower in PBMC and CD4+ T cells from RA patients than those from HC. EZH2 inhibition suppressed regulatory T cells (Tregs) differentiation and FOXP3 transcription, and downregulated RUNX1 and upregulated SMAD7 expression in CD4+ T cells. RA synovial fluid and fibroblast-like synoviocytes suppressed EZH2 expression in CD4+ T cells, which was partially neutralized by anti-IL17 antibody. Taken together, EZH2 in CD4+ T cells from RA patients was attenuated, which suppressed FOXP3 transcription through downregulating RUNX1 and upregulating SMAD7 in CD4+ T cells, and ultimately suppressed Tregs differentiation. IL17 in RA synovial fluid might promote downregulation of EZH2 in CD4+ T cells. Defective EZH2 in CD4+ T cells might contribute to Treg deficiency in RA.
Collapse
Affiliation(s)
- Xin-Yue Xiao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yue-Ting Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xu Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xin Ji
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xin Lu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Yang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li-Jun Wu
- Department of Rheumatology and Clinical Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumchi, 830001, China
| | - Xiao-Han Wang
- Department of Rheumatology, AnYang District Hospital, AnYang, HeNan Province, 455000, China
| | - Jing-Bo Guo
- Department of Traditional Chinese Medicine, 256th Clinical Department of Bethune International Peace Hospital of PLA, Shijiazhuang, 050800, China
| | - Li-Dan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yun-Yun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Hua-Xia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Feng-Chun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Fu-Lin Tang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Jian-Min Zhang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Wei He
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China.
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
23
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 PMCID: PMC11448812 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Identification of putative miRNA biomarkers in early rheumatoid arthritis by genome-wide microarray profiling: A pilot study. Gene 2019; 720:144081. [DOI: 10.1016/j.gene.2019.144081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023]
|
25
|
Pandey R, Prakash V. Expression of FOXP3 and GATA3 Transcription Factors Among Bronchial Asthmatics in Northern Population. Indian J Clin Biochem 2019; 36:88-93. [PMID: 33505132 DOI: 10.1007/s12291-019-00853-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Asthma is a common chronic airways inflammatory disorder in which the expression of genes for the transcription factors FoxP3 and GATA3 plays crucial roles in activation of specific T cells population and pathogenesis of asthma. Recent data have shown that Hb, Eosinophils, total leucocytes count (TLC), absolute eosinophil count (AEC), and IgE, may be involved in adversely influencing the status of several chronic diseases including asthma. In this communication, we have carried out a case control study in order to evaluate the expression of FoxP3, GATA-3 genes in 80 bronchial asthmatic patients using real time polymerase chain reaction technique, and also to analyse and compare the values of Hb, TLC, AEC, and IgE in asthmatics with 80 control subjects. The numbers of eosinophils and total leucocytes and the level of serum IgE were higher in asthmatics compared to healthy subjects. The relative expressions of FoxP3 and GATA-3 genes in control versus asthmatics were 12.42 ± 1.413 versus 5.79 ± 0.260 (P value = < 0.0001) and 4.731 ± 0.350 versus 8.415 ± 0.359 (P value = 0.0043), respectively. The asthmatics displayed comparatively decreased level of FoxP3 expression and higher level of GATA-3 expression. There was a positive and significant correlation between the level of IgE and expression of GATA-3 in asthmatics. Relatively lower level of FoxP3 mRNA expression in bronchial asthmatics may be linked with the sustained inflammatory process and decreased immune tolerance by asthmatics. A positive correlation of GATA-3 expression with the increase in IgE level shows it to be a characteristic of asthma. However, extensive work is required to delineate the targets involved in the pathogenesis of asthma for adequate therapeutic interventions.
Collapse
Affiliation(s)
- Rashmi Pandey
- Departments of Pulmonary and Critical Care Medicine, KGMU, Lucknow, India
| | - Ved Prakash
- Departments of Pulmonary and Critical Care Medicine, KGMU, Lucknow, India
| |
Collapse
|
26
|
Chou LF, Chen TW, Yang HY, Chang MY, Hsu SH, Tsai CY, Ko YC, Huang CT, Tian YC, Hung CC, Yang CW. Murine Renal Transcriptome Profiles Upon Leptospiral Infection: Implications for Chronic Kidney Diseases. J Infect Dis 2019; 218:1411-1423. [PMID: 29868892 DOI: 10.1093/infdis/jiy339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023] Open
Abstract
Background Leptospirosis caused by pathogenic Leptospira spp leads to kidney damage that may progress to chronic kidney disease. However, how leptospiral infections induced renal damage is unclear. Methods We apply microarray and next-generation sequencing technologies to investigate the first murine transcriptome-wide, leptospires-mediated changes in renal gene expression to identify biological pathways associated with kidney damage. Results Leptospiral genes were detected in renal transcriptomes of mice infected with Leptospira interrogans at day 28 postinfection, suggesting colonization of leptospires within the kidney with propensity of chronicity. Comparative differential gene expression and pathway analysis were investigated in renal transcriptomes of mice infected with pathogens and nonpathogens. Pathways analysis showed that Toll-like receptor signaling, complements activation, T-helper 1 type immune response, and T cell-mediated immunity/chemotaxis/proliferation were strongly associated with progressive tubulointerstitial damage caused by pathogenic leptospiral infection. In addition, 26 genes related with complement system, immune function, and cell-cell interactions were found to be significantly up-regulated in the L interrogans-infected renal transcriptome. Conclusions Our results provided comprehensive knowledge regarding the host transcriptional response to leptospiral infection in murine kidneys, particularly the involvement of cell-to-cell interaction in the immune response. It would provide valuable resources to explore functional studies of chronic renal damage caused by leptospiral infection.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Chung-Ying Tsai
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | | | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
27
|
Affandi AJ, Carvalheiro T, Ottria A, Broen JC, Bossini-Castillo L, Tieland RG, Bon LV, Chouri E, Rossato M, Mertens JS, Garcia S, Pandit A, de Kroon LM, Christmann RB, Martin J, van Roon JA, Radstake TR, Marut W. Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis. Ann Rheum Dis 2019; 78:1249-1259. [PMID: 31126957 DOI: 10.1136/annrheumdis-2018-214991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology. METHODS In total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model. RESULTS Here, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis. CONCLUSIONS We show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andrea Ottria
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper Ca Broen
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lara Bossini-Castillo
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
- Department of Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ralph G Tieland
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lenny van Bon
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Eleni Chouri
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Jorre S Mertens
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samuel Garcia
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurie Mg de Kroon
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Romy B Christmann
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Joel Ag van Roon
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy Rdj Radstake
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Hu G, Shi Y, Zhao X, Gao D, Qu L, Chen L, Zhao K, Du J, Xu W. CBFβ/RUNX3-miR10b-TIAM1 molecular axis inhibits proliferation, migration, and invasion of gastric cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3185-3196. [PMID: 31934163 PMCID: PMC6949817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. A deeper understanding of the mechanism of proliferation and metastasis is needed to improve patient survival. T cell lymphoma invasion and metastasis 1 (TIAM1) has been proven to play an essential role in the proliferation and metastasis of GC. The aim of this study was to explore the relevant upstream regulatory mechanism of TIAM1. Bioinformatic analysis, RT-qPCR, and dual luciferase reporter assays were used to predict and validate microRNAs that target the TIAM1 gene. Among eleven predicted microRNAs, eight (miR-10b-5p, miR-589-3p, miR-651-3p, miR-335-3p, miR-653-5p, miR-373-3p, miR-372-3p, and miR-205-3p) affected TIAM1 expression; and only miR-10b-5p regulated TIAM1 expression by directly binding to the 3'-UTR of TIAM1 mRNA. miR-10b-5p levels were determined in both normal and cancerous tissues retrieved from GC patients. We observed that by targeting TIAM1 expression, miR-10b-5p inhibited the proliferation, migration, and invasion of GC cells. To verify our observations, we evaluated the participation of runt-related transcription factor 3 (RUNX3), a known regulator of microRNA expression and tumor suppressor. Tumor-suppressor RUNX3 combined with core-binding factor subunit beta (CBFβ) upregulated miR-10b-5p and suppressed GC. In conclusion, we identified a CBFβ/RUNX3-miR10b-TIAM1 molecular axis that inhibits GC progression and metastasis and may provide suitable treatment targets for GC.
Collapse
Affiliation(s)
- Gaofeng Hu
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship HospitalBeijing, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Dandan Gao
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Linlin Qu
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Lijun Chen
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Ke Zhao
- Institite for Virology and AIDS Research, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Juan Du
- Institite for Virology and AIDS Research, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Wei Xu
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
29
|
Sahiner UM, Durham SR. Hymenoptera Venom Allergy: How Does Venom Immunotherapy Prevent Anaphylaxis From Bee and Wasp Stings? Front Immunol 2019; 10:1959. [PMID: 31497015 PMCID: PMC6712168 DOI: 10.3389/fimmu.2019.01959] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Hymenoptera stings may cause both local and systemic allergic reactions and even life threatening anaphylaxis. Along with pharmaceutical drugs and foods, hymenoptera venom is one of the most common causes of anaphylaxis in humans. To date, no parameter has been identified that may predict which sensitized people will have a future systemic sting reaction (SSR), however some risk factors, such as mastocytosis and age >40 years are known. Venom immunotherapy (VIT) is the most effective method of treatment for people who had SSR, which is shown to be effective even after discontinuation of the therapy. Development of peripheral tolerance is the main mechanism during immunotherapy. It is mediated by the production of blocking IgG/IgG4 antibodies that may inhibit IgE dependent reactions through both high affinity (FcεRI) and low affinity (FcεRII) IgE receptors on mast cells, basophils and B cells. The generation of antigen specific regulatory T cells produces IL-10 and suppresses Th2 immunity and the immune responses shift toward a Th1-type response. B regulatory cells are also involved in the production of IL-10 and the development of long term immune tolerance. During VIT the number of effector cells in target organs also decreases, such as mast cells, basophils, innate type 2 lymphocytes and eosinophils. Several meta-analyses and randomized controlled studies have proved that VIT is effective for preventing SSR to a sting and improves the quality of life. In this review, the risk of SSR in venom allergy and how VIT changed this risk are discussed.
Collapse
Affiliation(s)
- Umit Murat Sahiner
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Pediatric Allergy Department, Hacettepe University School of Medicine, Ankara, Turkey
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
30
|
Lim JS, Jung GY, Park SY. Nkx-2.5 Regulates MDR1 Expression via Its Upstream Promoter in Breast Cancer Cells. J Korean Med Sci 2019; 34:e100. [PMID: 30940996 PMCID: PMC6439202 DOI: 10.3346/jkms.2019.34.e100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Increased expression of MDR1 gene is one of the major mechanisms responsible for multidrug resistance in cancer cells. Two alternative promoters, upstream and downstream, are responsible for transcription of MDR1 gene in the human. However, the molecular mechanism regarding the transactivation of MDR1 upstream promoter (USP) has not been determined. METHODS Dual-luciferase reporter gene assays were used to assess the effect of Nkx-2.5 on MDR1 USP activity using reporter plasmids for human MDR1 USP and its mutants. MDR1 mRNA level was examined by quantitative real-time PCR. The direct binding of Nkx-2.5 to the USP of MDR1 was evaluated by promoter enzyme immunoassays and chromatin immunoprecipitation assays. RESULTS Nkx-2.5 significantly stimulates the transactivation of MDR1 USP and increases MDR1 mRNA expression in MCF7 breast cancer cells. Reporter gene assays with deleted MDR1 USPs showed that the Nkx-2.5-binding site is located between positions -71 and +12. Mutation of the Nkx-2.5-binding site at nucleotide +4 to +10 markedly reduced the Nkx-2.5-mediated activation of MDR1 USP activity. A promoter binding immunoassay and a chromatin immunoprecipitation assay revealed that Nkx-2.5 binds directly to the region +4/+10 of human MDR1 USP. CONCLUSION The results in the present study show Nkx-2.5 is a positive regulator for the transactivation of MDR1 USP in MCF7 breast cancer cells. Our findings will help elucidate the regulatory mechanism responsible for the multidrug resistant cancer phenotype.
Collapse
Affiliation(s)
- Jung-Suk Lim
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| | - Gyu Yeon Jung
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| |
Collapse
|
31
|
Webster AP, Plant D, Ecker S, Zufferey F, Bell JT, Feber A, Paul DS, Beck S, Barton A, Williams FMK, Worthington J. Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins. Genome Med 2018; 10:64. [PMID: 30176915 PMCID: PMC6122744 DOI: 10.1186/s13073-018-0575-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is a common autoimmune disorder influenced by both genetic and environmental factors. Epigenome-wide association studies can identify environmentally mediated epigenetic changes such as altered DNA methylation, which may also be influenced by genetic factors. To investigate possible contributions of DNA methylation to the aetiology of rheumatoid arthritis with minimum confounding genetic heterogeneity, we investigated genome-wide DNA methylation in disease-discordant monozygotic twin pairs. METHODS Genome-wide DNA methylation was assessed in 79 monozygotic twin pairs discordant for rheumatoid arthritis using the HumanMethylation450 BeadChip array (Illumina). Discordant twins were tested for both differential DNA methylation and methylation variability between rheumatoid arthritis and healthy twins. The methylation variability signature was then compared with methylation variants from studies of other autoimmune diseases and with an independent healthy population. RESULTS We have identified a differentially variable DNA methylation signature that suggests multiple stress response pathways may be involved in the aetiology of the disease. This methylation variability signature also highlighted potential epigenetic disruption of multiple RUNX3 transcription factor binding sites as being associated with disease development. Comparison with previously performed epigenome-wide association studies of rheumatoid arthritis and type 1 diabetes identified shared pathways for autoimmune disorders, suggesting that epigenetics plays a role in autoimmunity and offering the possibility of identifying new targets for intervention. CONCLUSIONS Through genome-wide analysis of DNA methylation in disease-discordant monozygotic twins, we have identified a differentially variable DNA methylation signature, in the absence of differential methylation in rheumatoid arthritis. This finding supports the importance of epigenetic variability as an emerging component in autoimmune disorders.
Collapse
Affiliation(s)
- Amy P Webster
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK. .,Department of Cancer Biology, UCL Cancer Institute, University College London, London, UK.
| | - Darren Plant
- NIHR Manchester Biomedical Research Centre, Manchester Academy of Health Sciences, Manchester University Foundation Trust, Manchester, UK
| | - Simone Ecker
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, UK
| | - Flore Zufferey
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Andrew Feber
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Dirk S Paul
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stephan Beck
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, UK
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester Academy of Health Sciences, Manchester University Foundation Trust, Manchester, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK. .,NIHR Manchester Biomedical Research Centre, Manchester Academy of Health Sciences, Manchester University Foundation Trust, Manchester, UK.
| |
Collapse
|
32
|
Integration of Genome-Wide DNA Methylation and Transcription Uncovered Aberrant Methylation-Regulated Genes and Pathways in the Peripheral Blood Mononuclear Cells of Systemic Sclerosis. Int J Rheumatol 2018; 2018:7342472. [PMID: 30245726 PMCID: PMC6139224 DOI: 10.1155/2018/7342472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective. Systemic sclerosis (SSc) is a systemic connective tissue disease of unknown etiology. Aberrant gene expression and epigenetic modifications in circulating immune cells have been implicated in the pathogenesis of SSc. This study is to delineate the interaction network between gene transcription and DNA methylation in PBMC of SSc patients and to identify methylation-regulated genes which are involved in the pathogenesis of SSc. Methods. Genome-wide mRNA transcription and global DNA methylation analysis were performed on PBMC from 18 SSc patients and 19 matched normal controls (NC) using Illumina BeadChips. Differentially expressed genes (DEGs) and differentially methylated positions (DMPs) were integrative analyzed to identify methylation-regulated genes and associated molecular pathways. Results. Transcriptome analysis distinguished 453 DEGs (269 up- and 184 downregulated) in SSc from NC. Global DNA methylation analysis identified 925 DMPs located on 618 genes. Integration of the two lists revealed only 20 DEGs which harbor inversely correlated DMPs, including 12 upregulated (ELANE, CTSG, LTBR, C3AR1, CSTA, SPI1, ODF3B, SAMD4A, PLAUR, NFE2, ZYX, and CTSZ) and eight downregulated genes (RUNX3, PRF1, PRKCH, PAG1, RASSF5, FYN, CXCR6, and F2R). These potential methylation-regulated DEGs (MeDEGs) are enriched in the pathways related to immune cell migration, proliferation, activation, and inflammation activities. Using a machine learning algorism, we identified six out of the 20 MeDEGs, including F2R, CXCR6, FYN, LTBR, CTSG, and ELANE, which distinguished SSc from NC with 100% accuracy. Four genes (F2R, FYN, PAG1, and PRKCH) differentially expressed in SSc with interstitial lung disease (ILD) compared to SSc without ILD. Conclusion. The identified MeDEGs may represent novel candidate factors which lead to the abnormal activation of immune regulatory pathways in the pathogenesis of SSc. They may also be used as diagnostic biomarkers for SSc and clinical complications.
Collapse
|
33
|
Chalmin F, Humblin E, Ghiringhelli F, Végran F. Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:1-61. [PMID: 30262030 DOI: 10.1016/bs.ircmb.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the basis of cellular differentiation is a fundamental issue in developmental biology but also for the comprehension of pathological processes. In fact, the palette of developmental decisions for naive CD4 T cells is a critical aspect of the development of appropriate immune responses which could control infectious processes or cancer growth. However, the current accumulation of data on CD4 T cells biology reveals a complex world with different helper populations. Naive CD4 T cells can differentiate into different subtypes in response to cytokine stimulation. This stimulation involves a complex transcriptional network implicating the activation of Signal Transducer and Activator of Transcription but also master regulator transcription factors allowing the functions of each helper T lymphocyte subtype. In this review, we will present an overview of the transcriptional regulation which controls process of helper T cells differentiation. We will focus on the role of initiator transcriptional factors and on master regulators but also on other nonspecific transcriptional factors which refine the T helper polarization to stabilize or modulate the differentiation program.
Collapse
Affiliation(s)
- Fanny Chalmin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - Etienne Humblin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Végran
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
34
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
35
|
Liu SX, Xiao HR, Wang GB, Chen XW, Li CG, Mai HR, Yuan XL, Liu GS, Wen FQ. Preliminary investigation on the abnormal mechanism of CD4 +FOXP3 +CD25 high regulatory T cells in pediatric B-cell acute lymphoblastic leukemia. Exp Ther Med 2018; 16:1433-1441. [PMID: 30116392 DOI: 10.3892/etm.2018.6326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/13/2018] [Indexed: 12/24/2022] Open
Abstract
The current study aimed to investigate the changes and regulatory mechanism of cluster of differentiation (CD)4+CD25high forkhead box protein 3 (Foxp3+) regulatory T cells (Tregs) in childhood B-cell acute lymphocytic leukemia (B-ALL). A total of 18 children with B-ALL and 15 age-matched healthy children were included. Reverse-transcription quantitative polymerase chain reaction was used to evaluate the mRNA levels of Foxp3, cytotoxic T-lymphocyte associated protein 4 (CTLA4), glucocorticoid-induced tumor necrosis factor receptor (GITR), lymphocyte activation gene 3 (LAG3), interleukin (IL)-2 receptor (R)β/γ, IL-6Rα/β, mothers against decapentaplegic homolog (Smad)3/4 and runt-related transcription factor (RUNX)1/3 in CD4-positive cells. The concentration of cytokines in plasma were measured using a cytometric bead array. Additionally, the proportion of CD4+CD25highFoxp3+ Tregs and levels of associated proteins was analyzed using flow cytometry. The results demonstrated that the proportion of CD4+CD25highFoxp3+ and expression of Foxp3 in children with B-ALL was significantly higher compared with healthy controls (P<0.05) and that transcription levels of CTLA4, GITR and LAG3 were also significantly elevated (P<0.05). Compared with healthy controls, the expression of IL-2Rα/β and its downstream molecule phosphorylated signal transducer and activator of transcription 5 (pSTAT5) in CD4-positive cells significantly increased (P<0.05); however, no significant difference of IL-2Rγ levels was identified between the two groups. Correlation analysis demonstrated a significant positive correlation between the expression of phosphorylated (p) signal transducer and activator of transcription factor (STAT)5 and CD4+CD25highFoxp3+ Tregs in children with B-ALL (r=0.17; P<0.05). The plasma concentration of TGF-β, the expression of its receptor TGF-βRI/II and downstream molecules Smad3/4 were significantly upregulated in children with B-ALL (P<0.05), whereas the expression of RUNX1/3 was lower compared with healthy controls (P<0.05). Furthermore, the expression of Smad3 and RUNX1 was positively correlated with CD4+CD25highFoxp3+ Tregs in children with B-ALL (r=0.87 and 0.60, respectively; P<0.05). Additionally, the expression of pSTAT3 in CD4-positive cells decreased significantly in pediatric patients with B-ALL when compared with healthy controls; however, plasma concentrations of IL-6 was significantly higher (P<0.05). Furthermore, a negative correlation was identified between pSTAT3 and CD4+CD25highFoxp3+ Tregs in pediatric patients with B-ALL (r=-0.39; P<0.05). However, no significant differences in IL-6Rα/β expression were identified between the two groups. The results demonstrated that the excessive activation of IL-2/pSTAT5 and TGF-β/Smad signaling, and insufficiency of pSTAT3 may be correlated with increased CD4+CD25highFoxp3+ Tregs in pediatric B-ALL.
Collapse
Affiliation(s)
- Si-Xi Liu
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hai-Rong Xiao
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guo-Bing Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiao-Wen Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Chang-Gang Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hui-Rong Mai
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiu-Li Yuan
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guo-Sheng Liu
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Fei-Qiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
36
|
Ghadiri N, Emamnia N, Ganjalikhani-Hakemi M, Ghaedi K, Etemadifar M, Salehi M, Shirzad H, Nasr-Esfahani MH. Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene 2018; 659:109-117. [PMID: 29551498 DOI: 10.1016/j.gene.2018.03.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/13/2018] [Accepted: 03/14/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Multiple sclerosis is an immune-mediated inflammatory disease of central nervous system. MicroRNAs play important roles in autoimmune diseases such as MS. OBJECTIVES The aim was to evaluate the expression pattern of miR-34a, miR-199a, miR-30c and miR-19a in peripheral blood derived CD4+ T lymphocytes of both relapsing and remitting phases of MS. METHODS Blood samples from 40 RRMS patients (20 in relapsing and 20 in remitting phase) and 20 healthy volunteers were taken. CD4+ T cells were isolated. The expression level of miR-34a, miR-199a, miR-30c and miR-19a, and the percentage of Th17 and Treg cells were measured. Expression of master transcription factors of Th17 and Treg cells and several targets of these miRNAs were also evaluated. RESULTS Data indicated an increased expression of miR-34a, miR-30c and miR-19a in relapsing phase and decreased expression of miR-199a in remitting phase. ROC curve data add other prestigious information of miR-34a, miR-199a, miR-30c and miR-19a by defining relapsing and remitting phase and also healthy cases with high specificity and sensitivity at a proposed optimum cut-off point. CONCLUSION Collectively, we showed a correlation between the four miRNAs with different phases of MS and their possible involvement in differentiation pathways of Th17 cells, as the most important players in MS.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Immunology Department, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Negaralsadat Emamnia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-affiliation communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biology, Nour-e Danesh Institute of Higher Education, Meimeh, Iran; Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Masoud Etemadifar
- Department of Neurosciences, Al-Zahra Hospital, Isfahan University of Medical Science, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hedayatollah Shirzad
- Immunology Department, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
37
|
Chae WJ, Bothwell ALM. Therapeutic Potential of Gene-Modified Regulatory T Cells: From Bench to Bedside. Front Immunol 2018; 9:303. [PMID: 29503652 PMCID: PMC5820299 DOI: 10.3389/fimmu.2018.00303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/02/2018] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cells (Tregs) are an important subset of adaptive immune cells and control immune reactions for maintaining homeostasis. Tregs are generated upon their encounter with self or non-self-antigen and mediate tolerance or suppress aberrant immune responses. A high level of specificity of Tregs to recognize antigen(s) suggested their instrumental potential to treat various inflammatory diseases. This review will first introduce seminal basic research findings in the field of Tregs over the last two decades pertinent to therapeutic approaches in progress. We will then discuss the previous approaches to use Tregs for therapeutic purposes and the more recent development of gene-modification approaches. The suppressive function of Tregs has been studied intensively in clinical settings, including cancer, autoimmunity, and allotransplantation. In cancer, Tregs are often aberrantly increased in their number, and their suppressor function inhibits mounting of effective antitumor immune responses. We will examine potential approaches of using gene-modified Tregs to treat cancer. In autoimmunity and allotransplantation, chronic inflammation due to inherent genetic defects in the immune system or mismatch between organ donor and recipient results in dysfunction of Tregs, leading to inflammatory diseases or rejection, respectively. Since the recognition of antigen is a central part in Treg function and their therapeutic use, the modulation of T cell receptor specificity will be discussed. Finally, we will focus on future novel strategies employing the therapeutic potential of Tregs using gene modification to broaden our perspective.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Alfred L. M. Bothwell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
38
|
Mittal P, Abblett R, Ryan JM, Hagymasi AT, Agyekum-Yamoah A, Svedova J, Reiner SL, St Rose MC, Hanley MP, Vella AT, Adler AJ. An Immunotherapeutic CD137 Agonist Releases Eomesodermin from ThPOK Repression in CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:1513-1526. [PMID: 29305435 DOI: 10.4049/jimmunol.1701039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Agonists to the TNF/TNFR costimulatory receptors CD134 (OX40) and CD137 (4-1BB) elicit antitumor immunity. Dual costimulation with anti-CD134 plus anti-CD137 is particularly potent because it programs cytotoxic potential in CD8+ and CD4+ T cells. Cytotoxicity in dual-costimulated CD4 T cells depends on the T-box transcription factor eomesodermin (Eomes), which we report is induced via a mechanism that does not rely on IL-2, in contrast to CD8+ CTL, but rather depends on the CD8 T cell lineage commitment transcription factor Runx3, which supports Eomes expression in mature CD8+ CTLs. Further, Eomes and Runx3 were indispensable for dual-costimulated CD4 T cells to mediate antitumor activity in an aggressive melanoma model. Runx3 is also known to be expressed in standard CD4 Th1 cells where it fosters IFN-γ expression; however, the CD4 T cell lineage commitment factor ThPOK represses transcription of Eomes and other CD8 lineage genes, such as Cd8a Hence, CD4 T cells can differentiate into Eomes+ cytotoxic CD4+CD8+ double-positive T cells by terminating ThPOK expression. In contrast, dual-costimulated CD4 T cells express Eomes, despite the continued expression of ThPOK and the absence of CD8α, indicating that Eomes is selectively released from ThPOK repression. Finally, although Eomes was induced by CD137 agonist, but not CD134 agonist, administered individually, CD137 agonist failed to induce CD134-/- CD4 T cells to express Eomes or Runx3, indicating that both costimulatory pathways are required for cytotoxic Th1 programming, even when only CD137 is intentionally engaged with a therapeutic agonist.
Collapse
Affiliation(s)
- Payal Mittal
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Rebecca Abblett
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Joseph M Ryan
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Adam T Hagymasi
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | | | - Julia Svedova
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Steven L Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Marie-Clare St Rose
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Matthew P Hanley
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Adam J Adler
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030;
| |
Collapse
|
39
|
Fernández-Ponce C, Durán-Ruiz MC, Narbona-Sánchez I, Muñoz-Miranda JP, Arbulo-Echevarria MM, Serna-Sanz A, Baumann C, Litrán R, Aguado E, Bloch W, García-Cozar F. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells. Front Microbiol 2018; 8:2595. [PMID: 29354102 PMCID: PMC5758585 DOI: 10.3389/fmicb.2017.02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Maria C Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Juan P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | | | | | - Rocío Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Francisco García-Cozar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
40
|
Adurthi S, Kumar MM, Vinodkumar HS, Mukherjee G, Krishnamurthy H, Acharya KK, Bafna UD, Uma DK, Abhishekh B, Krishna S, Parchure A, Alka M, Jayshree RS. Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer. Sci Rep 2017; 7:17289. [PMID: 29229929 PMCID: PMC5725534 DOI: 10.1038/s41598-017-17102-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Oestrogen controls Foxp3 expression in regulatory T cells (Treg cells) via a mechanism thought to involve oestrogen receptor alpha (ERα), but the molecular basis and functional impact of ERα signalling in Treg cells remain unclear. We report that ERα ligand oestradiol (E2) is significantly increased in human cervical cancer (CxCa) tissues and tumour-infiltrating Treg cells (CD4+CD25hiCD127low), whereas blocking ERα with the antagonist ICI 182,780 abolishes FOXP3 expression and impairs the function of CxCa infiltrating Treg cells. Using a novel approach of co-immunoprecipitation with antibodies to E2 for capture, we identified binding of E2:ERα complexes to FOXP3 protein in CxCa-derived Treg cells. Chromatin immunoprecipitation analyses of male blood Treg cells revealed ERα occupancy at the FOXP3 promoter and conserved non-coding DNA elements 2 and 3. Accordingly, computational analyses of the enriched regions uncovered eight putative oestrogen response elements predicted to form a loop that can activate the FOXP3 promoter. Together, these data suggest that E2-mediated ERα signalling is critical for the sustenance of FOXP3 expression and Treg cell function in human CxCa via direct interaction of ERα with FOXP3 promoter. Overall, our work gives a molecular insight into ERα signalling and highlights a fundamental role of E2 in controlling human Treg cell physiology.
Collapse
Affiliation(s)
- Sreenivas Adurthi
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Mahesh M Kumar
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - H S Vinodkumar
- Shodhaka Life Sciences Private Limited, Bangalore, India
- Structural Biology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Geetashree Mukherjee
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - H Krishnamurthy
- National Center for Biological Sciences, TIFR, Bangalore, India
| | - K Kshitish Acharya
- Shodhaka Life Sciences Private Limited, Bangalore, India
- Institute of Bioinformatics And Applied Biotechnology, Bangalore, India
| | - U D Bafna
- Department of Gynecology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Devi K Uma
- Department of Gynecology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - B Abhishekh
- Department of Immunohematology, Kidwai Memorial Institute of Oncology, Bangalore, India
- Department of Transfusion Medicine, JIPMER, Puducherry, India
| | - Sudhir Krishna
- National Center for Biological Sciences, TIFR, Bangalore, India
| | - A Parchure
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Murali Alka
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - R S Jayshree
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India.
| |
Collapse
|
41
|
Suzuki T, Maeda S, Furuhata E, Shimizu Y, Nishimura H, Kishima M, Suzuki H. A screening system to identify transcription factors that induce binding site-directed DNA demethylation. Epigenetics Chromatin 2017; 10:60. [PMID: 29221486 PMCID: PMC5723091 DOI: 10.1186/s13072-017-0169-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023] Open
Abstract
Background DNA methylation is a fundamental epigenetic modification that is involved in many biological systems such as differentiation and disease. We and others recently showed that some transcription factors (TFs) are involved in the site-specific determination of DNA demethylation in a binding site-directed manner, although the reports of such TFs are limited. Results Here, we develop a screening system to identify TFs that induce binding site-directed DNA methylation changes. The system involves the ectopic expression of target TFs in model cells followed by DNA methylome analysis and overrepresentation analysis of the corresponding TF binding motif at differentially methylated regions. It successfully identified binding site-directed demethylation of SPI1, which is known to promote DNA demethylation in a binding site-directed manner. We extended our screening system to 15 master TFs involved in cellular differentiation and identified eight novel binding site-directed DNA demethylation-inducing TFs (RUNX3, GATA2, CEBPB, MAFB, NR4A2, MYOD1, CEBPA, and TBX5). Gene ontology and tissue enrichment analysis revealed that these TFs demethylate genomic regions associated with corresponding biological roles. We also describe the characteristics of binding site-directed DNA demethylation induced by these TFs, including the targeting of highly methylated CpGs, local DNA demethylation, and the overlap of demethylated regions between TFs of the same family. Conclusions Our results show the usefulness of the developed screening system for the identification of TFs that induce DNA demethylation in a site-directed manner. Electronic supplementary material The online version of this article (10.1186/s13072-017-0169-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Shiori Maeda
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Shimizu
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hajime Nishimura
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Mami Kishima
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
42
|
Arishima T, Sasaki S, Isobe T, Ikebata Y, Shimbara S, Ikeda S, Kawashima K, Suzuki Y, Watanabe M, Sugano S, Mizoshita K, Sugimoto Y. Maternal variant in the upstream of FOXP3 gene on the X chromosome is associated with recurrent infertility in Japanese Black cattle. BMC Genet 2017; 18:103. [PMID: 29212449 PMCID: PMC5719641 DOI: 10.1186/s12863-017-0573-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Repeat breeding, which is defined as cattle failure to conceive after three or more inseminations in the absence of clinical abnormalities, is a substantial problem in cattle breeding. To identify maternal genetic variants of repeat breeding in Japanese Black cattle, we selected 29 repeat-breeding heifers that failed to conceive following embryo transfer (ET) and conducted a genome-wide association study (GWAS) using the traits. Results We found that a single-nucleotide polymorphism (SNP; g.92,377,635A > G) in the upstream region of the FOXP3 gene on the X chromosome was highly associated with repeat breeding and failure to conceive following ET (P = 1.51 × 10−14). FOXP3 is a master gene for differentiation of regulatory T (Treg) cells that function in pregnancy maintenance. Reporter assay results revealed that the activity of the FOXP3 promoter was lower in reporter constructs with the risk-allele than in those with the non-risk-allele by approximately 0.68 fold. These findings suggest that the variant in the upstream region of FOXP3 with the risk-allele decreased FOXP3 transcription, which in turn, could reduce the number of maternal Treg cells and lead to infertility. The frequency of the risk-allele in repeat-breeding heifers is more than that in cows, suggesting that the risk-allele could be associated with infertility in repeat-breeding heifers. Conclusions This GWAS identified a maternal variant in the upstream region of FOXP3 that was associated with infertility in repeat-breeding Japanese Black cattle that failed to conceive using ET. The variant affected the level of FOXP3 mRNA expression. Thus, the results suggest that the risk-allele could serve as a useful marker to reduce and eliminate animals with inferior fertility in Japanese Black cattle. Electronic supplementary material The online version of this article (10.1186/s12863-017-0573-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taichi Arishima
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Shinji Sasaki
- National Livestock Breeding Center, Odakura, Nishigo, Fukushima, 961-8511, Japan. .,Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan.
| | - Tomohiro Isobe
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Yoshihisa Ikebata
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Shinichi Shimbara
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Shogo Ikeda
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Keisuke Kawashima
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Manabu Watanabe
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Kazunori Mizoshita
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan
| |
Collapse
|
43
|
Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells. Sci Rep 2017; 7:16604. [PMID: 29192243 PMCID: PMC5709397 DOI: 10.1038/s41598-017-16799-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.
Collapse
|
44
|
Wooldridge AL, Bischof RJ, Liu H, Heinemann GK, Hunter DS, Giles LC, Simmons RA, Lien YC, Lu W, Rabinowitz JD, Kind KL, Owens JA, Clifton VL, Gatford KL. Late-gestation maternal dietary methyl donor and cofactor supplementation in sheep partially reverses protection against allergic sensitization by IUGR. Am J Physiol Regul Integr Comp Physiol 2017; 314:R22-R33. [PMID: 28978515 DOI: 10.1152/ajpregu.00549.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Perinatal exposures are associated with altered risks of childhood allergy. Human studies and our previous work suggest that restricted growth in utero (IUGR) is protective against allergic disease. The mechanisms are not clearly defined, but reduced fetal abundance and altered metabolism of methyl donors are hypothesized as possible underlying mechanisms. Therefore, we examined whether late-gestation maternal dietary methyl donor and cofactor supplementation of the placentally restricted (PR) sheep pregnancy would reverse allergic protection in progeny. Allergic outcomes were compared between progeny from control pregnancies (CON; n = 49), from PR pregnancies without intervention (PR; n = 28), and from PR pregnancies where the dam was fed a methyl donor plus cofactor supplement from day 120 of pregnancy until delivery (PR + Methyl; n = 25). Both PR and PR + Methyl progeny were smaller than CON; supplementation did not alter birth size. PR was protective against cutaneous hypersensitivity responses to ovalbumin (OVA; P < 0.01 in singletons). Cutaneous hypersensitivity responses to OVA in PR + Methyl progeny were intermediate to and not different from the responses of CON and PR sheep. Cutaneous hypersensitivity responses to house dust mites did not differ between treatments. In singleton progeny, upper dermal mast cell density was greater in PR + Methyl than in PR or CON (each P < 0.05). The differences in the cutaneous allergic response were not explained by treatment effects on circulating immune cells or antibodies. Our results suggest that mechanisms underlying in utero programming of allergic susceptibility by IUGR and methyl donor availability may differ and imply that late-gestation methyl donor supplementation may increase allergy risk.
Collapse
Affiliation(s)
- Amy L Wooldridge
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Robert J Bischof
- The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Victoria , Australia.,Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Hong Liu
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Gary K Heinemann
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Damien S Hunter
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Lynne C Giles
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,School of Population Health, University of Adelaide , Adelaide, South Australia , Australia
| | - Rebecca A Simmons
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Yu-Chin Lien
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Princeton, New Jersey
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Princeton, New Jersey
| | - Karen L Kind
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,School of Animal and Veterinary Sciences, University of Adelaide , Adelaide, South Australia , Australia
| | - Julie A Owens
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Vicki L Clifton
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia.,Mater Research Institute-University of Queensland and Translational Research Institute, South Brisbane, Queensland, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|
45
|
Qiu YY, Zhang YW, Qian XF, Bian T. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am J Transl Res 2017; 9:3184-3199. [PMID: 28804539 PMCID: PMC5553871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Asthma is tightly related to the imbalance of Th1/Th2 cells, and Runx3 plays a pivotal role in the differentiation of T helper cells. The present study aimed to investigate dysregulated microRNAs that may target Runx3 in CD4+ T cells from asthmatic patients and reveal Runx3 function in Th1/Th2 balance regulation. We detected the levels of Th1- and Th2-related cytokines by ELISA and analyzed the differentiation marker gene of T helper cells by qRT-PCR. Results indicated that an imbalance of Th1/Th2 cells was present in our asthmatic subject. Runx3 expression was reduced in the CD4+ T cells from asthmatic patients. Overexpression of Runx3 could restore the Th1/Th2 balance. After performing microRNA microarray assay, we found a series of microRNAs that were considerably altered in the CD4+ T cells from asthmatic patients. Among these upregulated microRNAs, eight microRNAs that may target Runx3 were selected by bioinformatics prediction. Five microRNAs, namely miR-371, miR-138, miR-544, miR-145, and miR-214, were confirmed by qRT-PCR and selected as candidate microRNAs. Luciferase reporter assay showed that these five microRNAs could directly target the 3'-UTR of Runx3. However, only simultaneous inhibition of these five microRNAs could alter the expression of Runx3. Most importantly, only simultaneous inhibition could improve the Th1/Th2 balance. Thus, we suggest that miR-371, miR-138, miR-544, miR-145, and miR-214 can modulate the Th1/Th2 balance in asthma by regulating Runx3 in a combinatorial manner.
Collapse
Affiliation(s)
- Yu-Ying Qiu
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNo. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Ying-Wei Zhang
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNo. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Xiu-Fen Qian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityNo. 299 Qingyang Road, Wuxi 214023, Jiangsu, China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityNo. 299 Qingyang Road, Wuxi 214023, Jiangsu, China
| |
Collapse
|
46
|
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev 2017; 278:219-236. [DOI: 10.1111/imr.12555] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
47
|
Wang CM, Chang CB, Chan MW, Wen ZH, Wu SF. Dust mite allergen-specific immunotherapy increases IL4 DNA methylation and induces Der p-specific T cell tolerance in children with allergic asthma. Cell Mol Immunol 2017; 15:963-972. [PMID: 28603280 DOI: 10.1038/cmi.2017.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 12/23/2022] Open
Abstract
Allergen-specific immunotherapy (allergen-SIT) is a highly effective treatment for children with allergic asthma (AA), an immune-mediated chronic disease leading to bronchial muscle hypertrophy and airway obstruction in response to specific allergens. T helper cells and secreted cytokines play important roles in the pathogenesis of asthma, and epigenetic modulation controls genes important for T cell development and cytokine expression. This study evaluated T helper cell-secreted cytokines and DNA methylation patterns in children treated with Dermatophagoides pteronyssinus (Der p) allergen-SIT. Our results showed that after Der p challenge, peripheral blood mononuclear cells (PBMCs) from the SIT group, compared with the non-SIT AA group, produced lower levels of IL-4, IL-5 and IL-2. The SIT group, compared with the AA group, exhibited decreased sensitivity to the Der p allergen, concurrent with IL-4 down-modulation due to increased promoter DNA methylation, as estimated in PBMCs. Our results showed that SIT decreased IL-4 and IL-5, and inhibited T cell proliferation, by inhibiting IL-2 production after the specific allergen challenge. These results suggest that decreased IL-2 production and increased IL-4 cytokine promoter methylation is a potential mechanism of Der p-specific allergen desensitization immunotherapy.
Collapse
Affiliation(s)
- Chuang-Ming Wang
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002, Chia-Yi, Taiwan, China.,Department of Nursing, Chang Gung University of Science and Technology, 61363, Chia-Yi, Taiwan, China
| | - Chia-Bin Chang
- Department of Life Science and Institute of Molecular Biology, National Chung-Cheng University, 62102, Chia-Yi, Taiwan, China
| | - Michael Wy Chan
- Department of Life Science and Institute of Molecular Biology, National Chung-Cheng University, 62102, Chia-Yi, Taiwan, China
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-Sen University, 80424, Kaohsiung, Taiwan, China
| | - Shu-Fen Wu
- Department of Life Science and Institute of Molecular Biology, National Chung-Cheng University, 62102, Chia-Yi, Taiwan, China.
| |
Collapse
|
48
|
Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, Kashiwazaki G, Taniguchi J, Maeda R, Noura M, Hirata M, Kataoka T, Yano A, Yamada Y, Kiyose H, Tokumasu M, Matsuo H, Tanaka S, Okuno Y, Muto M, Naka K, Ito K, Kitamura T, Kaneda Y, Liu PP, Bando T, Adachi S, Sugiyama H, Kamikubo Y. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest 2017; 127:2815-2828. [PMID: 28530640 DOI: 10.1172/jci91788] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is generally considered to function as a tumor suppressor in the development of leukemia, but a growing body of evidence suggests that it has pro-oncogenic properties in acute myeloid leukemia (AML). Here we have demonstrated that the antileukemic effect mediated by RUNX1 depletion is highly dependent on a functional p53-mediated cell death pathway. Increased expression of other RUNX family members, including RUNX2 and RUNX3, compensated for the antitumor effect elicited by RUNX1 silencing, and simultaneous attenuation of all RUNX family members as a cluster led to a much stronger antitumor effect relative to suppression of individual RUNX members. Switching off the RUNX cluster using alkylating agent-conjugated pyrrole-imidazole (PI) polyamides, which were designed to specifically bind to consensus RUNX-binding sequences, was highly effective against AML cells and against several poor-prognosis solid tumors in a xenograft mouse model of AML without notable adverse events. Taken together, these results identify a crucial role for the RUNX cluster in the maintenance and progression of cancer cells and suggest that modulation of the RUNX cluster using the PI polyamide gene-switch technology is a potential strategy to control malignancies.
Collapse
Affiliation(s)
- Ken Morita
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Kensho Suzuki
- Department of Human Health Sciences, Graduate School of Medicine
| | - Shintaro Maeda
- Department of Human Health Sciences, Graduate School of Medicine
| | - Akihiko Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | | | - Chieko Tokushige
- Department of Human Health Sciences, Graduate School of Medicine
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rina Maeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mina Noura
- Department of Human Health Sciences, Graduate School of Medicine
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayaka Yano
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yoshimi Yamada
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hiroki Kiyose
- Department of Human Health Sciences, Graduate School of Medicine
| | - Mayu Tokumasu
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | - Sunao Tanaka
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yasushi Okuno
- Department of Human Health Sciences, Graduate School of Medicine
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhito Naka
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy and Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Paul P Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
49
|
Chakraborty S, Panda AK, Bose S, Roy D, Kajal K, Guha D, Sa G. Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8 + Treg cells. Sci Rep 2017; 7:1628. [PMID: 28487507 PMCID: PMC5431671 DOI: 10.1038/s41598-017-01788-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
T-regulatory cells are an upsurge in the tumor microenvironment and induce immune-evasion. CD4+ Treg cells are well characterized whereas the role of CD8+ Tregs in cancer has recently started to crease attention. Here, we report an augmentation CD8+FOXP3+ Tregs in breast tumor microenvironment. FOXP3, the lineage-specific transcription factor, is a dominant regulator of Treg cell development and function. FOXP3 is induced preferentially by divergent signaling in CD4+ Treg cells. But how FOXP3 is induced and maintained in tumor-CD8+ Tregs is the Cinderella of the investigation. We observed that RUNX3, a CD8+ lineage-specific transcription factor, binds at the FOXP3-promoter to induce its transcription. In addition to promoter activation, involvement of cis-elements CNS1 and CNS2 in the transcriptional regulation of FOXP3 was also evident in these cells. SMAD3 binds to CNS1 region and acts as transcription inducer, whereas GATA3 plays a temporal role in the FOXP3 transcription by differential chromatin modification in CNS regions. In CNS1 region, GATA3 acts as a repressor for FOXP3 in naïve CD8+ T cells. Whereas in CD8+ Tregs, GATA3 binds directly at CNS2 region and persuaded the maintenance of FOXP3. Therefore, the intervention of these concerted transcriptional machinery may have a therapeutic potential in immunotherapy of cancer.
Collapse
Affiliation(s)
- Sreeparna Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Abir K Panda
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayantan Bose
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Kirti Kajal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Deblina Guha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
50
|
Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation. Cell Rep 2017; 19:1888-1901. [DOI: 10.1016/j.celrep.2017.05.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/23/2016] [Accepted: 05/02/2017] [Indexed: 01/24/2023] Open
|