1
|
Lella RK, Malarkannan S. IQGAP1 promotes early B cell development, is essential for the development of marginal zone (MZ) B cells, and is critical for both T-dependent and T-independent antibody responses. Cell Mol Life Sci 2024; 81:462. [PMID: 39585462 PMCID: PMC11589066 DOI: 10.1007/s00018-024-05509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
IQGAP1 is a multi-functional scaffold protein. However, its role in B cell development and function is unknown. Here, we show IQGAP1 as an essential scaffold that regulates early B cell development and function. Iqgap1-/- mice contained significantly increased numbers of B220+ B, B220+IgM- pro/pre-B, and B220LowIgM+ immature-B cells in the bone marrow. In the spleens of the Iqgap1-/- mice, newly formed and follicular B cell numbers were increased, while the marginal zone B cell numbers were significantly reduced. Lack of IQGAP1 reduced T-dependent and T-independent humoral responses. Mechanistically, the lack of IQGAP1 considerably decreased the phosphorylation of Mek1/2, Erk1/2, and Jnk1/2. B cells from Iqgap1-/- mice failed to suppress IL-7R-mediated activation of Stat5a/b, an essential step for cell-cycle exit and initiate light-chain recombination, reducing RS rearrangement frequency. Our study provides the first evidence that IQGAP1-based signalosome is necessary for the development and functions of B cells.
Collapse
Affiliation(s)
- Ravi K Lella
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Abdi Bio, Abdi Ibrahim Pharmaceuticals, Orhan Gazi Mahallesi Tunc Caddesi No. 3, Esenyurt, Istanbul, Turkey
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Wang J, Chai Q, Lei Z, Wang Y, He J, Ge P, Lu Z, Qiang L, Zhao D, Yu S, Qiu C, Zhong Y, Li BX, Zhang L, Pang Y, Gao GF, Liu CH. LILRB1-HLA-G axis defines a checkpoint driving natural killer cell exhaustion in tuberculosis. EMBO Mol Med 2024; 16:1755-1790. [PMID: 39030302 PMCID: PMC11319715 DOI: 10.1038/s44321-024-00106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Chronic infections, including Mycobacterium tuberculosis (Mtb)-caused tuberculosis (TB), can induce host immune exhaustion. However, the key checkpoint molecules involved in this process and the underlying regulatory mechanisms remain largely undefined, which impede the application of checkpoint-based immunotherapy in infectious diseases. Here, through adopting time-of-flight mass cytometry and transcriptional profiling to systematically analyze natural killer (NK) cell surface receptors, we identify leukocyte immunoglobulin like receptor B1 (LILRB1) as a critical checkpoint receptor that defines a TB-associated cell subset (LILRB1+ NK cells) and drives NK cell exhaustion in TB. Mechanistically, Mtb-infected macrophages display high expression of human leukocyte antigen-G (HLA-G), which upregulates and activates LILRB1 on NK cells to impair their functions by inhibiting mitogen-activated protein kinase (MAPK) signaling via tyrosine phosphatases SHP1/2. Furthermore, LILRB1 blockade restores NK cell-dependent anti-Mtb immunity in immuno-humanized mice. Thus, LILRB1-HLA-G axis constitutes a NK cell immune checkpoint in TB and serves as a promising immunotherapy target.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yiru Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiehua He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yu
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Changgen Qiu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhao Zhong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Xi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yu Pang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Dai YC, Yeh SY, Cheng YY, Huang WH, Liou GG, Yang TY, Chang CY, Fang TF, Chang CW, Su MT, Lee CP, Chen MR. BGLF4 kinase regulates the formation of the EBV cytoplasmic assembly compartment and the recruitment of cellular IQGAP1 for virion release. J Virol 2024; 98:e0189923. [PMID: 38294245 PMCID: PMC10878254 DOI: 10.1128/jvi.01899-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.
Collapse
Affiliation(s)
- Yu-Ching Dai
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Yun Yeh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Han Huang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Yang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chou-Wei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Kumar P, Rajasekaran K, Malarkannan S. Novel PI(3)K-p85α/p110δ-ITK-LAT-PLC-γ2 and Fyn-ADAP-Carma1-TAK1 Pathways Define Reverse Signaling via FasL. Crit Rev Immunol 2024; 44:55-77. [PMID: 37947072 DOI: 10.1615/critrevimmunol.2023049638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The role of FasL in initiating death signals through Fas is well characterized. However, the reverse signaling pathway downstream of FasL in effector lymphocytes is poorly understood. Here, we identify that FasL functions as an independent activation receptor in NK cells. Activation via FasL results in the production of LFN-γ, GM-CSF, RANTES, MIP-1α, and MIP1-β. Proximal signaling of FasL requires Lck and Fyn. Upon activation, FasL facilitates the phosphorylation of PI(3)K-p85α/p55α subunits. A catalytically inactive PI(3)K-p110δD910A mutation significantly impairs the cytokine and chemokine production by FasL. Activation of ITK and LAT downstream of FasL plays a central role in recruiting and phosphorylating PLC-γ2. Importantly, Fyn-mediated recruitment of ADAP links FasL to the Carmal/ Bcl10/Tak1 signalosome. Lack of Carma1, CARD domain of Carma1, or Tak1 significantly reduces FasL-mediated cytokine and chemokine production. These findings, for the first time, provide a detailed molecular blueprint that defines FasL-mediated reverse signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226; Departments of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
5
|
Bi W, Kraft A, Engelskircher S, Mischke J, Witte M, Klawonn F, van Ham M, Cornberg M, Wedemeyer H, Hengst J, Jänsch L. Proteomics reveals a global phenotypic shift of NK cells in HCV patients treated with direct-acting antivirals. Eur J Immunol 2023; 53:e2250291. [PMID: 37515498 DOI: 10.1002/eji.202250291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Chronic hepatitis C virus (HCV) infections compromise natural killer (NK)-cell immunity. Direct-acting antivirals (DAA) effectively eliminate HCV, but the long-term effects on NK cells in cured patients are debated. We conducted a proteomic study on CD56+ NK cells of chronic HCV-infected patients before and 1 year after DAA therapy. Donor-variation was observed in NK-cell proteomes of HCV-infected patients, with 46 dysregulated proteins restored after DAA therapy. However, 30% of the CD56+ NK-cell proteome remained altered 1 year post-therapy, indicating a phenotypic shift with low donor-variation. NK cells from virus-negative cured patients exhibited global regulation of RNA-processing and pathways related to "stimuli response", "chemokine signaling", and "cytotoxicity regulation". Proteomics identified downregulation of vesicle transport components (CD107a, COPI/II complexes) and altered receptor expression profiles, indicating an inhibited NK-cell phenotype. Yet, activated NK cells from HCV patients before and after therapy effectively upregulated IFN-γ and recruited CD107a. Conversely, reduced surface expression levels of Tim-3 and 2B4 were observed before and after therapy. In conclusion, this study reveals long-term effects on the CD56+ NK-cell compartment in convalescent HCV patients 1 year after therapy, with limited abundance of vesicle transport complexes and surface receptors, associated with a responsive NK-cell phenotype.
Collapse
Affiliation(s)
- Wenjie Bi
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anke Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Sophie Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Moana Witte
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Frank Klawonn
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Heiner Wedemeyer
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Guo M, Zhao L, Jiang C, Jia CC, Liu H, Zhou W, Songyang Z, Xiong Y. Multiomics analyses reveal pathological mechanisms of HBV infection and integration in liver cancer. J Med Virol 2023; 95:e28980. [PMID: 37522289 DOI: 10.1002/jmv.28980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Hepatitis B virus (HBV) infection and integration are important for hepatocellular carcinoma (HCC) initiation and progression, while disease mechanisms are still largely elusive. Here, we combined bulk and single-cell sequencing technologies to tackle the disease mechanisms of HBV-related HCC. We observed high HBV mutation rate and diversity only in tumors without HBV integration. We identified human somatic risk loci for HBV integration (VIMs). Transcription factors (TFs) enriched in VIMs were involved in DNA repair and androgen receptor (AR) signaling. Aberration of AR signaling was further observed by single-cell regulon analysis in HBV-infected hepatocytes, which showed remarkable interactions between AR and the complement system that, together with the X-linked ZXDB regulon that contains albumin (ALB), probably contribute to HCC male predominance. Complement system dysregulation caused by HBV infection was further confirmed by analyses of single-cell copy numbers and cell-cell communications. Finally, HBV infection-associated immune cells presented critical defects, including TXNIP in T cells, TYROBP in NK cells, and the X-linked TIMP1 in monocytes. We further experimentally validated our findings in multiple independent patient cohorts. Collectively, our work shed light on the pathogenesis of HBV-related HCC and other liver diseases that affect billions of people worldwide.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Linghao Zhao
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Chang-Chang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Schmied L, Luu TT, Søndergaard JN, Hald SH, Meinke S, Mohammad DK, Singh SB, Mayer C, Perinetti Casoni G, Chrobok M, Schlums H, Rota G, Truong HM, Westerberg LS, Guarda G, Alici E, Wagner AK, Kadri N, Bryceson YT, Saeed MB, Höglund P. SHP-1 localization to the activating immune synapse promotes NK cell tolerance in MHC class I deficiency. Sci Signal 2023; 16:eabq0752. [PMID: 37040441 DOI: 10.1126/scisignal.abq0752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.
Collapse
Affiliation(s)
- Laurent Schmied
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Thuy T Luu
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Jonas N Søndergaard
- Center for Infectious Disease Education and Research (CIDER), Osaka University, Suita 565-0871, Japan
| | - Sophia H Hald
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Stephan Meinke
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil KRG-Kurdistan Region, Iraq
| | - Sunitha B Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Corinna Mayer
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Michael Chrobok
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Hieu M Truong
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Greta Guarda
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Evren Alici
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Arnika K Wagner
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Nadir Kadri
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge C2:66, S-141 86 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Jonas Lies vei 87, Laboratory Building 5th floor, N-5021 Bergen, Norway
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge C2:66, S-141 86 Stockholm, Sweden
| |
Collapse
|
8
|
Huang J, Zheng T, Liang Y, Qin Y, Wu X, Fan X. Transcriptome Analysis of Natural Killer Cells in Response to Newcastle Disease Virus Infected Hepatocellular Carcinoma Cells. Genes (Basel) 2023; 14:genes14040888. [PMID: 37107646 PMCID: PMC10138298 DOI: 10.3390/genes14040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
When tumor cells are infected by the Newcastle disease virus (NDV), the lysis of tumor cells by natural killer (NK) cells is enhanced, which may be related to the enhanced NK cell activation effect. To better understand the intracellular molecular mechanisms involved in NK cell activation, the transcriptome profiles of NK cells stimulated by NDV-infected hepatocellular carcinoma (HCC) cells (NDV group) and control (NC group, NK cells stimulated by HCC cells) were analyzed. In total, we identified 1568 differentially expressed genes (DEGs) in the NK cells of the NDV group compared to the control, including 1389 upregulated and 179 downregulated genes. Functional analysis showed that DEGs were enriched in the immune system, signal transmission, cell growth, cell death, and cancer pathways. Notably, 9 genes from the IFN family were specifically increased in NK cells upon NDV infection and identified as potential prognosis markers for patients with HCC. A qRT-PCR experiment was used to confirm the differential expression of IFNG and the other 8 important genes. The results of this study will improve our understanding of the molecular mechanisms of NK cell activation.
Collapse
Affiliation(s)
- Juanjuan Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Tingting Zheng
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Ying Liang
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Basic Research on Regional Disease, Education Department of Guangxi, Guangxi Medical University, Nanning 530021, China
| | - Ying Qin
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xing Wu
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xiaohui Fan
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Basic Research on Regional Disease, Education Department of Guangxi, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
9
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
10
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
11
|
Cui G, Wang C, Lin Z, Feng X, Wei M, Miao Z, Sun Z, Wei F. Prognostic and immunological role of Ras-related protein Rap1b in pan-cancer. Bioengineered 2021; 12:4828-4840. [PMID: 34346294 PMCID: PMC8806554 DOI: 10.1080/21655979.2021.1955559] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ras-related Protein Rap1b, a GTP-binding protein belonging to the proximal RAS, which affects tumor progression through regulating tumor cell proliferation, invasion and participates in the functions of various immune cells. However, the potential roles and mechanisms of Rap1b in tumor progression and immunology remains unclear. In this study, we systematically analyzed the pan-cancer expression and prognostic correlation of Rap1b based on GTEX, CCLE, Oncomine, PrognoScan, Kaplan–Meier plotters and TCGA databases. The potential correlations of Rap1b with immune infiltration were revealed via TIMER and TCGA database. SangerBox database was used to analyzed the correlations between Rap1b expression and immune checkpoint (ICP), tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repairs (MMRs) and DNA methylation. The results indicated that the expression level of Rap1b varies in different tumors. Meanwhile, the expression level of Rap1b strongly correlated with prognosis in patients with tumors, higher expression of Rap1b usually was linked to poor prognosis in different datasets. Rap1b was correlated closely with tumor immunity and interacted with various immune cells in different types of cancers. In addition, there were significant positive correlations between Rap1b expression and ICP, TMB, MSI, MMRs and DNA methylation. In conclusion, the results of pan-cancer analysis showed that the abnormal Rap1b expression was related to poor prognosis and tumor immune infiltration in different cancers. Furthermore, Rap1b gene may be used as a potential biomarker of clinical tumor prognosis.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Can Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyan Lin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Muxin Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiguang Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Wei
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
13
|
Ramshekar A, Wang H, Kunz E, Pappas C, Hageman GS, Chaqour B, Sacks DB, Hartnett ME. Active Rap1-mediated inhibition of choroidal neovascularization requires interactions with IQGAP1 in choroidal endothelial cells. FASEB J 2021; 35:e21642. [PMID: 34166557 PMCID: PMC8238370 DOI: 10.1096/fj.202100112r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness. The pathophysiology involves activation of choroidal endothelial cells (CECs) to transmigrate the retinal pigment epithelial (RPE) monolayer and form choroidal neovascularization (CNV) in the neural retina. The multidomain GTPase binding protein, IQGAP1, binds active Rac1 and sustains activation of CECs, thereby enabling migration associated with vision-threatening CNV. IQGAP1 also binds the GTPase, Rap1, which when activated reduces Rac1 activation in CECs and CNV. In this study, we tested the hypothesis that active Rap1 binding to IQGAP1 is necessary and sufficient to reduce Rac1 activation in CECs, and CNV. We found that pharmacologic activation of Rap1 or adenoviral transduction of constitutively active Rap1a reduced VEGF-mediated Rac1 activation, migration, and tube formation in CECs. Following pharmacologic activation of Rap1, VEGF-mediated Rac1 activation was reduced in CECs transfected with an IQGAP1 construct that increased active Rap1-IQGAP1 binding but not in CECs transfected with an IQGAP1 construct lacking the Rap1 binding domain. Specific knockout of IQGAP1 in endothelial cells reduced laser-induced CNV and Rac1 activation in CNV lesions, but pharmacologic activation of Rap1 did not further reduce CNV compared to littermate controls. Taken together, our findings provide evidence that active Rap1 binding to the IQ domain of IQGAP1 is sufficient to interfere with active Rac1-mediated CEC activation and CNV formation.
Collapse
Affiliation(s)
- Aniket Ramshekar
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Haibo Wang
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Eric Kunz
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Christian Pappas
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Gregory S. Hageman
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Brahim Chaqour
- Department of Ophthalmology, Downstate Medical Center,
Brooklyn, NY, USA
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of
Health, Bethesda, MD, USA
| | - M. Elizabeth Hartnett
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Correspondence to: M. Elizabeth Hartnett,
MD, Address: 65 Mario Capecchi Drive, Salt Lake City, UT 84132. Tel:
801-213-4110; Fax: 801-581-3357,
| |
Collapse
|
14
|
Crinier A, Dumas PY, Escalière B, Piperoglou C, Gil L, Villacreces A, Vély F, Ivanovic Z, Milpied P, Narni-Mancinelli É, Vivier É. Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cell Mol Immunol 2021; 18:1290-1304. [PMID: 33239726 PMCID: PMC8093261 DOI: 10.1038/s41423-020-00574-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing (scRNAseq), of three NK cell subpopulations in human bone marrow. Pseudotime analysis identified a subset of resident CD56bright NK cells, NK0 cells, as the precursor of both circulating CD56dim NK1-like NK cells and CD56bright NK2-like NK cells in human bone marrow and spleen under physiological conditions. Transcriptomic profiles of bone marrow NK cells from patients with acute myeloid leukemia (AML) exhibited stress-induced repression of NK cell effector functions, highlighting the profound impact of this disease on NK cell heterogeneity. Bone marrow NK cells from AML patients exhibited reduced levels of CD160, but the CD160high group had a significantly higher survival rate.
Collapse
Affiliation(s)
- Adeline Crinier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Pierre-Yves Dumas
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie Cellulaire, Bordeaux, France
- Bordeaux University, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
| | - Bertrand Escalière
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Laurine Gil
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Arnaud Villacreces
- Bordeaux University, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
| | - Frédéric Vély
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Zoran Ivanovic
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
- Établissement Français du Sang Nouvelle Aquitaine, Bordeaux, France
| | - Pierre Milpied
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Émilie Narni-Mancinelli
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Éric Vivier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
| |
Collapse
|
15
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
16
|
Lu T, Yang X, Shi Y, Zhao M, Bi G, Liang J, Chen Z, Huang Y, Jiang W, Lin Z, Xi J, Wang S, Yang Y, Zhan C, Wang Q, Tan L. Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules. Cell Discov 2020; 6:69. [PMID: 33083004 PMCID: PMC7536439 DOI: 10.1038/s41421-020-00200-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
As an early type of lung adenocarcinoma, ground glass nodule (GGN) has been detected increasingly and now accounts for most lung cancer outpatients. GGN has a satisfactory prognosis and its characteristics are quite different from solid adenocarcinoma (SADC). We compared the GGN adenocarcinoma (GGN-ADC) with SADC using the single-cell RNA sequencing (scRNA-seq) to fully understand GGNs. The tumor samples of five patients with lung GGN-ADCs and five with SADCs underwent surgery were digested to a single-cell suspension and analyzed using 10× Genomic scRNA-seq techniques. We obtained 60,459 cells and then classified them as eight cell types, including cancer cells, endothelial cells, fibroblasts, T cells, B cells, Nature killer cells, mast cells, and myeloid cells. We provided a comprehensive description of the cancer cells and stromal cells. We found that the signaling pathways related to cell proliferation were downregulated in GGN-ADC cancer cells, and stromal cells had different effects in GGN-ADC and SADC based on the analyses of scRNA-seq results. In GGN-ADC, the signaling pathways of angiogenesis were downregulated, fibroblasts expressed low levels of some collagens, and immune cells were more activated. Furthermore, we used flow cytometry to isolate the cancer cells and T cells in 12 GGN-ADC samples and in an equal number of SADC samples, including CD4+ T and CD8+ T cells, and validated the expression of key molecules by quantitative real-time polymerase chain reaction analyses. Through comprehensive analyses of cell phenotypes in GGNs, we provide deep insights into lung carcinogenesis that will be beneficial in lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yong Yang
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
- Department of Thoracic Surgery, Suzhou Hospital affiliated to Nanjing Medical University, Suzhou, Jiangsu 215001 China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
17
|
Malarkannan S. Molecular mechanisms of FasL-mediated 'reverse-signaling'. Mol Immunol 2020; 127:31-37. [PMID: 32905906 DOI: 10.1016/j.molimm.2020.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Effector lymphocytes, including NK and T cells, express FasL. Expression of Fas, the receptor for FasL in tumor cells, renders them susceptible to NK and T cell-mediated killing. The functional relevance of FasL in initiating death signals in tumor cells is well-characterized. However, the cytoplasmic interacting partners and the potential signaling pathways downstream of FasL are far from fully defined. FasL possesses an 81 amino acid long cytoplasmic tail with multiple unique recruitment motifs. We predict multiple interdependent signaling complexes form the core of the 'reverse signaling' downstream of FasL. A direct interaction between the proline-rich domain of FasL and the SH3 domain of PI(3)K-p85α initiates the first pathway. This cascade helps FasL to link to PLC-γ2 via PIP3 or the Akt-dependent activation of mTOR complexes. Independently, a GRB2/GADs-binding PXXP cytoplasmic motif of FasL can initiate a Ras-GTP-dependent PAK1→C-Raf→MEK1/2→ERK1/2 activation. FasL can recruit Fyn via the proline-rich domain leading to the recruitment of ADAP. Through its ability to directly interact with Carma1 and TAK1, ADAP initiates the formation of the Carma1/Bcl10/Malt1-based CBM signalosome that is primarily responsible for inflammatory cytokine production. Here, we explore the conserved cytoplasmic domains of FasL, the potential signaling molecules that interact, and the functional downstream consequences within the effector lymphocytes to define the FasL-mediated 'reverse signaling'.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
18
|
Rho SS, Kobayashi I, Oguri-Nakamura E, Ando K, Fujiwara M, Kamimura N, Hirata H, Iida A, Iwai Y, Mochizuki N, Fukuhara S. Rap1b Promotes Notch-Signal-Mediated Hematopoietic Stem Cell Development by Enhancing Integrin-Mediated Cell Adhesion. Dev Cell 2019; 49:681-696.e6. [DOI: 10.1016/j.devcel.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/16/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023]
|
19
|
Nanbakhsh A, Best B, Riese M, Rao S, Wang L, Medin J, Thakar MS, Malarkannan S. Dextran Enhances the Lentiviral Transduction Efficiency of Murine and Human Primary NK Cells. J Vis Exp 2018. [PMID: 29364266 DOI: 10.3791/55063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The efficient transduction of specific genes into natural killer (NK) cells has been a major challenge. Successful transductions are critical to defining the role of the gene of interest in the development, differentiation, and function of NK cells. Recent advances related to chimeric antigen receptors (CARs) in cancer immunotherapy accentuate the need for an efficient method to deliver exogenous genes to effector lymphocytes. The efficiencies of lentiviral-mediated gene transductions into primary human or mouse NK cells remain significantly low, which is a major limiting factor. Recent advances using cationic polymers, such as polybrene, show an improved gene transduction efficiency in T cells. However, these products failed to improve the transduction efficiencies of NK cells. This work shows that dextran, a branched glucan polysaccharide, significantly improves the transduction efficiency of human and mouse primary NK cells. This highly reproducible transduction methodology provides a competent tool for transducing human primary NK cells, which can vastly improve clinical gene delivery applications and thus NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, The Blood Center of Wisconsin
| | - Brad Best
- Vector Core Lab, Blood Research Institute, The Blood Center of Wisconsin
| | - Matthew Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, The Blood Center of Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, The Blood Center of Wisconsin
| | - Li Wang
- Department of Microbiology and Immunology, The Medical College of Wisconsin
| | - Jeffrey Medin
- Department of Pediatrics, The Medical College of Wisconsin
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, The Blood Center of Wisconsin; Department of Microbiology and Immunology, The Medical College of Wisconsin; Department of Pediatrics, The Medical College of Wisconsin; Department of Medicine, The Medical College of Wisconsin;
| |
Collapse
|
20
|
Wang H, Han X, Kunz E, Hartnett ME. Thy-1 Regulates VEGF-Mediated Choroidal Endothelial Cell Activation and Migration: Implications in Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2017; 57:5525-5534. [PMID: 27768790 PMCID: PMC5080948 DOI: 10.1167/iovs.16-19691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose This study addresses the hypothesis that age-related stresses upregulate Thy-1 in choroidal endothelial cells (CECs) and contribute to CEC activation and migration, processes important in choroidal neovascularization (CNV). Methods Measurements were made of Thy-1 protein (Western blot) in CECs and Thy-1 mRNA (real time quantitative PCR) in CECs treated with VEGF, CCL11, or PBS or in RPE/choroids from young or old donors or lasered or nonlasered mice. Immunolabeled Thy-1 in ocular sections was compared from young versus old human donor eyes or those with or without neovascular AMD or from lasered versus nonlasered mice. Choroidal endothelial cells transfected with Thy-1 or control siRNA or pretreated with Thy-1 blocking peptide or control were stimulated with VEGF or 7-ketocholesterol (7-KC). Choroidal endothelial cell migration, proliferation, cytoskeletal stress fibers, Rac1 activation, and phosphorylated VEGF receptor 2 (VEGFR2), integrin β3, and Src were measured. Statistics were performed using ANOVA. Results Thy-1 was expressed in retinal ganglion cells and in vascular endothelial-cadherin–labeled choroid and localized to human or mouse laser-induced CNV lesions. Thy-1 protein and mRNA were significantly increased in CECs treated with VEGF or CCL11 and in RPE/choroids from aged versus young donor eyes or from lasered mice versus nonlasered controls. Knockdown or inhibition of Thy-1 in CECs significantly reduced VEGF-induced CEC migration and proliferation, stress fiber formation and VEGFR2, Src, integrin β3 and Rac1 activation, and 7-KC–induced Rac1 and Src activation. Conclusions Thy-1 in CECs regulates VEGF-induced CEC activation and migration and links extracellular 7-KC to intracellular signaling. Future studies elucidating Thy-1 mechanisms in neovascular AMD are warranted.
Collapse
Affiliation(s)
- Haibo Wang
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Xiaokun Han
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States 2Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Eric Kunz
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - M Elizabeth Hartnett
- The John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
21
|
Wang JC, Lee JYJ, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, Gold MR. The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse. J Cell Sci 2017; 130:1094-1109. [PMID: 28167682 DOI: 10.1242/jcs.191858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse, a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves polarization of the microtubule-organizing center (MTOC) towards the APC. We now show that BCR-induced MTOC polarization requires the Rap1 GTPase (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. We also show that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170 (also known as CLIP1). Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. Thus the Rap1-cofilin-1 pathway coordinates actin and microtubule organization at the immune synapse.
Collapse
Affiliation(s)
- Jia C Wang
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jeff Y-J Lee
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sonja Christian
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - May Dang-Lawson
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Caitlin Pritchard
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Spencer A Freeman
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
22
|
Ou Y, Chan G, Zuo J, Rattner JB, van der Hoorn FA. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration. J Biol Chem 2016; 291:15388-403. [PMID: 27226580 DOI: 10.1074/jbc.m116.721241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process.
Collapse
Affiliation(s)
- Young Ou
- From the Departments of Biochemistry and Molecular Biology and
| | - Gordon Chan
- the Department of Oncology and Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Jeremy Zuo
- From the Departments of Biochemistry and Molecular Biology and
| | - Jerome B Rattner
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| | | |
Collapse
|
23
|
Keshari PK, Harbo HF, Myhr KM, Aarseth JH, Bos SD, Berge T. Allelic imbalance of multiple sclerosis susceptibility genes IKZF3 and IQGAP1 in human peripheral blood. BMC Genet 2016; 17:59. [PMID: 27080863 PMCID: PMC4832550 DOI: 10.1186/s12863-016-0367-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/07/2016] [Indexed: 01/09/2023] Open
Abstract
Background Multiple sclerosis is a chronic inflammatory, demyelinating disease of the central nervous system. Recent genome-wide studies have revealed more than 110 single nucleotide polymorphisms as associated with susceptibility to multiple sclerosis, but their functional contribution to disease development is mostly unknown. Results Consistent allelic imbalance was observed for rs907091 in IKZF3 and rs11609 in IQGAP1, which are in strong linkage disequilibrium with the multiple sclerosis associated single nucleotide polymorphisms rs12946510 and rs8042861, respectively. Using multiple sclerosis patients and healthy controls heterozygous for rs907091 and rs11609, we showed that the multiple sclerosis risk alleles at IKZF3 and IQGAP1 are expressed at higher levels as compared to the protective allele. Furthermore, individuals homozygous for the multiple sclerosis risk allele at IQGAP1 had a significantly higher total expression of IQGAP1 compared to individuals homozygous for the protective allele. Conclusions Our data indicate a possible regulatory role for the multiple sclerosis-associated IKZF3 and IQGAP1 variants. We suggest that such cis-acting mechanisms may contribute to the multiple sclerosis association of single nucleotide polymorphisms at IKZF3 and IQGAP1. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0367-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pankaj K Keshari
- Department of Neurology, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hanne F Harbo
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjell-Morten Myhr
- Norwegian Multiple Sclerosis Registry and Biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,KG Jebsen Centre for MS-research, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jan H Aarseth
- Norwegian Multiple Sclerosis Registry and Biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,KG Jebsen Centre for MS-research, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Steffan D Bos
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tone Berge
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Chrzanowska-Wodnicka M, White GC, Quilliam LA, Whitehead KJ. Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature. PLoS One 2015; 10:e0145689. [PMID: 26714318 PMCID: PMC4694701 DOI: 10.1371/journal.pone.0145689] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Background Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. Rationale How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. Results and Conclusions The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium–for the life-supporting function of the vasculature.
Collapse
Affiliation(s)
| | - Gilbert C. White
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53201, United States of America
| | - Lawrence A. Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Kevin J. Whitehead
- Division of Cardiovascular Medicine, Pediatric Cardiology, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, United States of America
| |
Collapse
|
25
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
26
|
Stekhoven FMAHS, van der Velde G, Lee TH, Bottrill AR. Proteomic study of the brackish water mussel Mytilopsis leucophaeata. Zool Stud 2015; 54:e22. [PMID: 31966109 PMCID: PMC6661436 DOI: 10.1186/s40555-014-0081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND We encountered the opportunity to study proteochemically a brackish water invertebrate animal, Mytilopsis leucophaeata, belonging to the bivalves which stem from the second half of the Cambrian Period (about 510 million years ago). This way, we were able to compare it with the vertebrate animal, the frilled shark (Chlamydoselachus anguineus) that stems from a much later period of geologic time (Permian: 245-286 MYA). RESULTS The mussel contains a well-adapted system of protein synthesis on the ER, protein folding on the ER, protein trafficking via COPI or clathrin-coated vesicles from endoplasmic reticulum (ER) to Golgi and plasmalemma, an equally well-developed system of actin filaments that with myosin forms the transport system for vesicular proteins and tubulin, which is also involved in ATP-driven vesicular protein transport via microtubules or transport of chromosomes in mitosis and meiosis. A few of the systems that we could not detect in M. leucophaeata in comparison with C. anguineus are the synaptic vesicle cycle components as synaptobrevin, cellubrevin (v-snare) and synaptosomal associated protein 25-A (t-snare), although one component: Ras-related protein (O-Rab1) could be involved in synaptic vesicle traffic. Another component that we did not find in M. leucophaeata was Rab11 that is involved in the tubulovesicular recycling process of H+/K+-ATPase in C. anguineus. We have not been able to trace the H+/K+-ATPase of M. leucophaeata, but Na+/K+-ATPase was present. Furthermore, we have studied the increase of percent protein expression between 1,070 MYA (the generation of the Amoeba Dictyostelium discoideum) and present (the generation of the mammal Sus scrofa = wild boar). In this time span, three proteomic uprises did occur: 600 to 500 MYA, 47.5 to 4.75 MYA, and 1.4 to 0 MYA. The first uprise covers the generation of bivalves, the second covers gold fish, chicken, brine shrimp, house mouse, rabbit, Japanese medaka and Rattus norvegicus, and the third covers cow, chimpanzee, Homo sapiens, dog, goat, Puccinia graminis and wild boar. We hypothesise that the latter two uprises are related to geological and climate changes and their compensation in protein function expression. CONCLUSIONS The proteomic and evolutionary data demonstrate that M. leucophaeata is a highly educatioanal animal to study.
Collapse
Affiliation(s)
- Feico MAH Schuurmans Stekhoven
- Department of Animal Ecology and Ecophysiology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gerard van der Velde
- Department of Animal Ecology and Ecophysiology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Naturalis Biodiversity Center, P.O. Box 9517,2300RA Leiden, The Netherlands
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, Proteomics Facility, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
27
|
Wittchen ES, Aghajanian A, Burridge K. Isoform-specific differences between Rap1A and Rap1B GTPases in the formation of endothelial cell junctions. Small GTPases 2014; 2:65-76. [PMID: 21776404 DOI: 10.4161/sgtp.2.2.15735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 03/21/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022] Open
Abstract
Rap1 is a Ras-like GTPase that has been studied with respect to its role in cadherin-based cell adhesion. Rap1 exists as two separate isoforms, Rap1A and Rap1B, which are 95% identical and yet the phenotype of the isoform-specific knockout mice is different. We and others have previously identified a role for Rap1 in regulating endothelial adhesion, junctional integrity and barrier function; however, these early studies did not distinguish a relative role for each isoform. To dissect the individual contribution of each isoform in regulating the endothelial barrier, we utilized an engineered microRNA-based approach to silence Rap1A, Rap1B or both, then analyzed barrier properties of the endothelium. Electrical impedance sensing experiments show that Rap1A is the predominant isoform involved in endothelial cell junction formation. Quantification of monolayer integrity by VE-cadherin staining revealed that knockdown of Rap1A, but not Rap1B, increased the number of gaps in the confluent monolayer. This loss of monolayer integrity could be rescued by re-expression of exogenous Rap1A protein. Expression of GFP-tagged Rap1A or 1B revealed quantifiable differences in localization of each isoform, with the junctional pool of Rap1A being greater. The junctional protein AF-6 also co-immunoprecipitates more strongly with expressed GFP-Rap1A. Our results show that Rap1A is the more critical isoform in the context of endothelial barrier function, indicating that some cellular processes differentially utilize Rap1A and 1B isoforms. Studying how Rap1 isoforms differentially regulate EC junctions may thus reveal new targets for developing therapeutic strategies during pathological situations where endothelial barrier disruption leads to disease.
Collapse
Affiliation(s)
- Erika S Wittchen
- Department of Cell and Developmental Biology; Chapel Hill, NC USA
| | | | | |
Collapse
|
28
|
Kumar S, Xu J, Kumar RS, Lakshmikanthan S, Kapur R, Kofron M, Chrzanowska-Wodnicka M, Filippi MD. The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation. ACTA ACUST UNITED AC 2014; 211:1741-58. [PMID: 25092872 PMCID: PMC4144729 DOI: 10.1084/jem.20131706] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mice lacking the small GTPase Rap1b exhibit enhanced neutrophil recruitment to inflamed lungs and susceptibility to endotoxin shock via enhance PI3K-Akt activation. Neutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Juying Xu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Rupali Sani Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | | | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Cancer Research Institute, Indianapolis, IN 46202
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229
| | | | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| |
Collapse
|
29
|
Ciaglia E, Pisanti S, Picardi P, Laezza C, Malfitano AM, DˈAlessandro A, Gazzerro P, Vitale M, Carbone E, Bifulco M. N6-isopentenyladenosine, an endogenous isoprenoid end product, directly affects cytotoxic and regulatory functions of human NK cells through FDPS modulation. J Leukoc Biol 2013; 94:1207-19. [DOI: 10.1189/jlb.0413190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Jacquemet G, Morgan MR, Byron A, Humphries JD, Choi CK, Chen CS, Caswell PT, Humphries MJ. Rac1 is deactivated at integrin activation sites through an IQGAP1-filamin-A-RacGAP1 pathway. J Cell Sci 2013; 126:4121-35. [PMID: 23843620 DOI: 10.1242/jcs.121988] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell migration makes a fundamental contribution to both normal physiology and disease pathogenesis. Integrin engagement with extracellular ligands spatially controls, via the cyclical activation and deactivation of the small GTPase Rac1, the dynamic membrane protrusion and cytoskeletal reorganization events that are required for directional migration. Although the pathways that control integrin-mediated Rac1 activation are reasonably well defined, the mechanisms that are responsible for switching off activity are poorly understood. Here, proteomic analysis of activated integrin-associated complexes suggests filamin-A and IQ-motif-containing GTPase-activating protein 1 (IQGAP1) as candidates that link β1 integrin to Rac1. siRNA-mediated knockdown of either filamin-A or IQGAP1 induced high, dysregulated Rac1 activity during cell spreading on fibronectin. Using immunoprecipitation and immunocytochemistry, filamin-A and IQGAP1 were shown to be part of a complex that is recruited to active β1 integrin. Mass spectrometric analysis of individual filamin-A, IQGAP1 and Rac1 pull-downs and biochemical analysis, identified RacGAP1 as a novel IQGAP1 binding partner. Further immunoprecipitation and immunocytochemistry analyses demonstrated that RacGAP1 is recruited to IQGAP1 and active β1 integrin, and that suppression of RacGAP1 expression triggered elevated Rac1 activity during spreading on fibronectin. Consistent with these findings, reduced expression of filamin-A, IQGAP1 or RacGAP1 triggered unconstrained membrane protrusion and disrupted directional cell migration on fibrillar extracellular matrices. These findings suggest a model whereby integrin engagement, followed by filamin-A, IQGAP1 and RacGAP1 recruitment, deactivates Rac1 to constrain its activity spatially and thereby coordinate directional cell migration.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Osman MA, Bloom GS, Tagoe EA. Helicobacter pylori-induced alteration of epithelial cell signaling and polarity: a possible mechanism of gastric carcinoma etiology and disparity. Cytoskeleton (Hoboken) 2013; 70:349-59. [PMID: 23629919 DOI: 10.1002/cm.21114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/04/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
Gastric cancer, a disease of disparity associated with Helicobacter pylori (H. pylori) infection, is the world's second leading cause of cancer deaths. The pathogen H. pylori target the epithelial adhesion receptors, E-cadherin, and β1-integrin, to modulate the host cytoskeleton via disruption of the epithelial cell polarity necessary for maintaining the infection, but how this leads to the development of the carcinoma is widely unclear. While Rho family GTPases' signaling to the cytoskeleton and these receptors is required for initiating and maintaining the infection, the responsible effectors, and how they might influence the etiology of the carcinomas are currently unknown. Here we discuss the potential role of the Cdc42-IQGAP1 axis, a negative regulator of the tumor suppressors E-cadherin and β1-integrin, as a potential driver of H. pylori-induced gastric carcinoma and propose avenues for addressing its disparity. Chronic dysfunction of the IQGAP1-signaling pathway, resulting from H. pylori-induced disruption of cell polarity, can explain the pathogenesis of the carcinoma, at least, in subsets of infected population, and thus could provide a potential means for personalized medicine.
Collapse
Affiliation(s)
- Mahasin A Osman
- Department of Molecular Pharmacology, Physiology and Biotechnology, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
32
|
Kaur J, Dutta S, Chang KP, Singh N. A member of the Ras oncogene family, RAP1A, mediates antileishmanial activity of monastrol. J Antimicrob Chemother 2013; 68:1071-80. [PMID: 23292345 PMCID: PMC3625431 DOI: 10.1093/jac/dks507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the mode of action of monastrol in intracellular Leishmania. Methods Microarray experiments were conducted on an Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array, to determine the genes that encode proteins related to pathological alterations of cell signalling pathways in intracellular Leishmania amastigotes in response to monastrol treatment. Results Monastrol induced unprenylated Rap1A in intracellular Leishmania when exposed to this anticancer drug at the IC50 (10 μM). Monastrol, known to cause mitotic arrest in cancer cells, inhibited Rap1A prenylation (geranylgeranylation) in intracellular Leishmania, which resulted in blockade at the G1 phase of the cell cycle. Growth inhibition, rather than apoptosis, was found to be the mechanism by which monastrol displays antileishmanial activity. Conclusions Prenylation inhibitors (unprenylation) of cell signalling pathways can be exploited in Leishmania parasites as novel therapeutic tools.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute (CSIR), Chattar Manzil Palace, Lucknow, India
| | | | | | | |
Collapse
|
33
|
Kumar P, Thakar MS, Ouyang W, Malarkannan S. IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol 2013; 6:69-82. [PMID: 22739232 PMCID: PMC3835350 DOI: 10.1038/mi.2012.49] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Influenza infection primarily targets the upper respiratory system, leading to a severe destruction of the epithelial cell layer. The role of immune cells in the regeneration of tracheal and bronchial epithelial cells is not well defined. Here, we investigated the production of pro-constructive cytokine, Interleukin-22 (IL-22), in the bronchoalveolar lavage (BAL), trachea, lung tissue, and spleen during influenza infection. We found that conventional natural killer (NK) cells (NCR1(+)NK1.1(+)CD127(-)RORγt(-)) were the predominant IL-22-producers in the BAL, trachea, and lung tissues. Tracheal epithelial cells constitutively expressed high levels of IL-22R and underwent active proliferation in response to IL-22 in the wild-type mice. Infection of IL-22(-/-) mice with influenza virus resulted in a severe impairment in the regeneration of tracheal epithelial cells. In addition, IL-22(-/-) mice continued to lose body weight even after 10 days post infection without any recovery. Tracheal epithelial cell proliferation was significantly reduced in IL-22(-/-) mice during influenza infection. Adoptive transfer of IL-22-sufficient but not IL-22-deficient NK cells into IL-22(-/-) mice restored the tracheal/bronchial epithelial cell regeneration and conferred protection against inflammation. Our findings strongly suggest that conventional NK cells have evolved to both kill virus-infected cells and also to provide vital cytokines for tissue regeneration.
Collapse
Affiliation(s)
- Pawan Kumar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
34
|
Menon J, Doebele RC, Gomes S, Bevilacqua E, Reindl KM, Rosner MR. A novel interplay between Rap1 and PKA regulates induction of angiogenesis in prostate cancer. PLoS One 2012; 7:e49893. [PMID: 23166790 PMCID: PMC3499522 DOI: 10.1371/journal.pone.0049893] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis inhibition is an important therapeutic strategy for advanced stage prostate cancer. Previous work from our laboratory showed that sustained stimulation of Rap1 by 8-pCPT-2'-O-Me-cAMP (8CPT) via activation of Epac, a Rap1 GEF, or by expression of a constitutively active Rap1 mutant (cRap1) suppresses endothelial cell chemotaxis and subsequent angiogenesis. When we tested this model in the context of a prostate tumor xenograft, we found that 8CPT had no significant effect on prostate tumor growth alone. However, in cells harboring cRap1, 8CPT dramatically inhibited not only prostate tumor growth but also VEGF expression and angiogenesis within the tumor microenvironment. Subsequent analysis of the mechanism revealed that, in prostate tumor epithelial cells, 8CPT acted via stimulation of PKA rather than Epac/Rap1. PKA antagonizes Rap1 and hypoxic induction of 1α protein expression, VEGF production and, ultimately, angiogenesis. Together these findings provide evidence for a novel interplay between Rap1, Epac, and PKA that regulates tumor-stromal induction of angiogenesis.
Collapse
Affiliation(s)
- Jyotsana Menon
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Robert C. Doebele
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Suzana Gomes
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Elena Bevilacqua
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Katie M. Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Malarkannan S, Awasthi A, Rajasekaran K, Kumar P, Schuldt KM, Bartoszek A, Manoharan N, Goldner NK, Umhoefer CM, Thakar MS. IQGAP1: a regulator of intracellular spacetime relativity. THE JOURNAL OF IMMUNOLOGY 2012; 188:2057-63. [PMID: 22345702 DOI: 10.4049/jimmunol.1102439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Johnson DS, Chen YH. Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 2012; 12:458-63. [PMID: 22401931 DOI: 10.1016/j.coph.2012.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/29/2022]
Abstract
The Ras superfamily of small GTPases is a group of more than 150 small G proteins, all of which share some degree of homology to the founding member Ras. These small GTPases function as molecular switches within cells, impacting nearly all cellular processes. The Ras superfamily can be further divided into several smaller subfamilies, with those proteins that most closely resemble Ras belonging to the Ras subfamily. While heavily studied within the field of cancer biology, the Ras family of proteins also plays cardinal roles in immunity and inflammation. Here we review the roles of these molecular switches in regulating immune cell homeostasis and functions.
Collapse
Affiliation(s)
- Derek S Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
37
|
Sbroggiò M, Bertero A, Velasco S, Fusella F, De Blasio E, Bahou WF, Silengo L, Turco E, Brancaccio M, Tarone G. ERK1/2 activation in heart is controlled by melusin, focal adhesion kinase and the scaffold protein IQGAP1. J Cell Sci 2012; 124:3515-24. [PMID: 22010199 DOI: 10.1242/jcs.091140] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) signalling is a key pathway in cardiomyocyte hypertrophy and survival in response to many different stress stimuli. We have previously characterized melusin as a muscle-specific chaperone protein capable of ERK1/2 signalling activation in the heart. Here, we show that in the heart, melusin forms a supramolecular complex with the proto-oncogene c-Raf, MEK1/2 (also known as MAPKK1/2) and ERK1/2 and that melusin-bound mitogen-activated protein kinases (MAPKs) are activated by pressure overload. Moreover, we demonstrate that both focal adhesion kinase (FAK) and IQ motif-containing GTPase activating protein 1 (IQGAP1), a scaffold protein for the ERK1/2 signalling cascade, are part of the melusin complex and are required for ERK1/2 activation in response to pressure overload. Finally, analysis of isolated neonatal cardiomyocytes indicates that both FAK and IQGAP1 regulate melusin-dependent cardiomyocyte hypertrophy and survival through ERK1/2 activation.
Collapse
Affiliation(s)
- Mauro Sbroggiò
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Molecular Biotechnology Center, via Nizza, 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
IQGAP Family Members in Yeast, Dictyostelium, and Mammalian Cells. Int J Cell Biol 2012; 2012:894817. [PMID: 22505937 PMCID: PMC3296274 DOI: 10.1155/2012/894817] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/06/2011] [Accepted: 10/23/2011] [Indexed: 01/04/2023] Open
Abstract
IQGAPs are a family of scaffolding proteins with multiple domains, named for the IQ motifs and GTPase activating protein (GAP) related domains. Despite their GAP homology, IQGAP proteins act as effectors for GTP-bound GTPases of the Ras superfamily and do not stimulate GTP hydrolysis. IQGAPs are found in eukaryotic cells from yeast to human, and localize to actin-containing structures such as lamellipodia, membrane ruffles, cell-cell adhesions, phagocytic cups, and the actomyosin ring formed during cytokinesis. Mammalian IQGAPs also act as scaffolds for signaling pathways. IQGAPs perform their myriad functions through association with a large number of proteins including filamentous actin (F-actin), GTPases, calcium-binding proteins, microtubule binding proteins, kinases, and receptors. The focus of this paper is on recent studies describing new binding partners, mechanisms of regulation, and biochemical and physiological functions of IQGAPs in yeast, amoeba, and mammalian cells.
Collapse
|
39
|
White CD, Erdemir HH, Sacks DB. IQGAP1 and its binding proteins control diverse biological functions. Cell Signal 2011; 24:826-34. [PMID: 22182509 DOI: 10.1016/j.cellsig.2011.12.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/04/2011] [Indexed: 12/26/2022]
Abstract
IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.
Collapse
Affiliation(s)
- Colin D White
- Department of Pathology, Beth Israel Deaconess Medical Centre and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
40
|
Abstract
Increased evidence of cross-talk between NK cells and other immune cells has enhanced the possibilities of exploiting the interplay between the activation and inhibition of NK cells for immunotherapeutic purposes. The battery of receptors possessed by NK cells help them to efficiently detect aberrant and infected cells and embark on the signaling pathways necessary to eliminate them. Endogenous expansion of NK cells and their effector mechanisms are under exploration for enhancing adoptive immunotherapy prospects in combination with immunostimulatory and cell-death-sensitizing treatments against cancer, viral infections and other pathophysiological autoimmune conditions. Various modes of NK cell manipulation are being undertaken to overcome issues such as relapse and graft rejections associated with adoptive immunotherapy. While tracing the remarkable properties of NK cells and the major developments in this field, we highlight the role of immune cooperativity in the betterment of current immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anshu Malhotra
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
| | - Anil Shanker
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
41
|
Kanwar N, Wilkins JA. IQGAP1 involvement in MTOC and granule polarization in NK-cell cytotoxicity. Eur J Immunol 2011; 41:2763-73. [PMID: 21681737 DOI: 10.1002/eji.201040444] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/30/2011] [Accepted: 06/10/2011] [Indexed: 11/06/2022]
Abstract
Natural killer (NK) cells form a region of tight contact called the NK immunological synapse (NKIS) with their target cells. This is a dynamic region serving as a platform for targeted signaling and exocytotic events. We previously identified IQGAP1 as a cytoskeletal component of the NK-like cell line YTS. The present study was undertaken to determine the role of IQGAP1 in the function of NK cells. Silencing of IQGAP1 expression resulted in almost complete loss of the cytotoxic activity of YTS cells. Loss of IQGAP1 did not prevent conjugate formation with target cells but it did result in a failure to reorient the microtubule organizing centre to the immune synapse. Significantly, IQGAP1 expression was required for the perigranular accumulation of an F-actin network. IQGAP1 was shown to undergo marked rearrangements during synapse maturation in effector target conjugates of YTS or primary NK cells. These results suggest previously undescribed role(s) for IQGAP1 in regulating multiple aspects of cytoskeletal organization and granule polarization in NK cells.
Collapse
Affiliation(s)
- Namita Kanwar
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
42
|
Bryceson YT, Chiang SCC, Darmanin S, Fauriat C, Schlums H, Theorell J, Wood SM. Molecular mechanisms of natural killer cell activation. J Innate Immun 2011; 3:216-26. [PMID: 21454962 DOI: 10.1159/000325265] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 12/21/2022] Open
Abstract
With an array of activating and inhibitory receptors, natural killer (NK) cells can specifically eradicate infected and transformed cells. Target cell killing is achieved through directed release of lytic granules. Recognition of target cells also induces production of chemokines and cytokines that can coordinate immune responses. Upon contact with susceptible cells, a multiplicity of activating receptors can induce signals for adhesion. Engagement of the integrin leukocyte functional antigen-1 mediates firm adhesion, provides signals for granule polarization and orchestrates the structure of an immunological synapse that facilitates efficient target cell killing. Other activating receptors apart from leukocyte functional antigen-1 signal for lytic granule exocytosis, a process that requires overcoming a threshold for activation of phospholipase C-γ, which in turn induces STIM1- and ORAI1-dependent store-operated Ca²+ entry as well as exocytosis mediated by the SNARE-containing protein syntaxin-11 and regulators thereof. Cytokine and chemokine release follows a different secretory pathway which also requires phospholipase C-γ activation and store-operated Ca²+ entry. Recent studies of human NK cells have provided insights into a hierarchy of effector functions that result in graded responses by NK cell populations. Responses display cellular heterogeneity and are influenced by environmental cues. This review highlights recent knowledge gained on the molecular pathways for and regulation of NK cell activation.
Collapse
Affiliation(s)
- Yenan T Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
43
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|