1
|
Orlich MM, Norrén A, Desai M, Holm A, Kozakewich H, Schoofs H, Mäkinen T, Bischoff J, Gaengel K. Intravital Imaging of Disease Mechanisms in a Mouse Model of CCM Skin Lesions-Brief Report. Arterioscler Thromb Vasc Biol 2025; 45:113-118. [PMID: 39569520 DOI: 10.1161/atvbaha.124.321056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Cerebral cavernous malformation (CCM) is a disease characterized by vascular malformations that primarily develop in the brain. These malformations are prone to leak, and their rupture or thrombotic closure can cause life-threatening hemorrhages and strokes. Mouse models have been instrumental to study the disease, but most cause premature lethality, precluding the investigation of disease mechanisms through intravital microscopy. Current mouse models also do not recapitulate human CCM skin lesions. METHODS Endothelial-specific deletion of Ccm3 via systemic tamoxifen application at postnatal day 4 or 5 prolongs survival and induces vascular malformations in the mouse brain and ear skin. CCM skin lesions can also be induced by topical tamoxifen administration directly to the ear. The thin, flat morphology of the ear skin is ideal for intravital microscopy. Dextran dyes and platelet markers allow to study blood flow and blood clot formation in living animals, in real time. RESULTS We report that human CCM skin lesions can be recapitulated in a mouse model and that skin lesions share hallmarks of CCM brain lesions. Intravital imaging reveals that CCM skin lesions are slow-flow malformations prone to thrombus formation. CONCLUSIONS Intravital imaging of CCM skin lesions expands the toolkit of CCM research and allows longitudinal studies of lesion growth.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hemangioma, Cavernous, Central Nervous System/diagnostic imaging
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Intravital Microscopy
- Humans
- Skin/blood supply
- Skin/pathology
- Mice, Knockout
- Mice
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/deficiency
- Mice, Inbred C57BL
- Tamoxifen/pharmacology
- Thrombosis/pathology
- Thrombosis/etiology
- Thrombomodulin
- Apoptosis Regulatory Proteins
Collapse
Affiliation(s)
- Michael M Orlich
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., A.N., M.D., H.S., T.M., K.G.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (M.M.O.)
| | - Amanda Norrén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., A.N., M.D., H.S., T.M., K.G.)
| | - Malavika Desai
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., A.N., M.D., H.S., T.M., K.G.)
| | - Annegret Holm
- Vascular Biology Program, Department of Surgery (A.H., J.B.), Boston Children's Hospital, Harvard Medical School, MA
| | - Harry Kozakewich
- Department of Pathology (H.K.), Boston Children's Hospital, Harvard Medical School, MA
| | - Hans Schoofs
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., A.N., M.D., H.S., T.M., K.G.)
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., A.N., M.D., H.S., T.M., K.G.)
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery (A.H., J.B.), Boston Children's Hospital, Harvard Medical School, MA
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., A.N., M.D., H.S., T.M., K.G.)
| |
Collapse
|
2
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
3
|
Pham VC, Rödel CJ, Valentino M, Malinverno M, Paolini A, Münch J, Pasquier C, Onyeogaziri FC, Lazovic B, Girard R, Koskimäki J, Hußmann M, Keith B, Jachimowicz D, Kohl F, Hagelkruys A, Penninger JM, Schulte-Merker S, Awad IA, Hicks R, Magnusson PU, Faurobert E, Pagani M, Abdelilah-Seyfried S. Epigenetic regulation by polycomb repressive complex 1 promotes cerebral cavernous malformations. EMBO Mol Med 2024; 16:2827-2855. [PMID: 39402138 PMCID: PMC11555420 DOI: 10.1038/s44321-024-00152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown. Here we show that Chromobox Protein Homolog 7 (CBX7), component of the Polycomb Repressive Complex 1, contributes to pathophysiological KLF2 signaling during zebrafish cardiovascular development. CBX7/cbx7a mRNA is strongly upregulated in lesions of CCM patients, and in human, mouse, and zebrafish CCM-deficient endothelial cells. The silencing or pharmacological inhibition of CBX7/Cbx7a suppresses pathological CCM phenotypes in ccm2 zebrafish, CCM2-deficient HUVECs, and in a pre-clinical murine CCM3 disease model. Whole-transcriptome datasets from zebrafish cardiovascular tissues and human endothelial cells reveal a role of CBX7/Cbx7a in the activation of KLF2 target genes including TEK, ANGPT1, WNT9, and endoMT-associated genes. Our findings uncover an intricate interplay in the regulation of Klf2-dependent biomechanical signaling by CBX7 in CCM. This work also provides insights for therapeutic strategies in the pathogenesis of CCM.
Collapse
Affiliation(s)
- Van-Cuong Pham
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | | | - Matteo Malinverno
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Juliane Münch
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Candice Pasquier
- University Grenoble Alpes UGA, CNRS 5309 INSERM 1209, Grenoble, France
| | - Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Bojana Lazovic
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Romuald Girard
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Melina Hußmann
- Institute for Cardiovascular Organogenesis and Regeneration, Medical Faculty, WU Münster, D-48149, Münster, Germany
| | - Benjamin Keith
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Daniel Jachimowicz
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
- Helmholtz-Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Medical Faculty, WU Münster, D-48149, Münster, Germany
| | - Issam A Awad
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Ryan Hicks
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, WC2R 2LS, London, United Kingdom
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Eva Faurobert
- University Grenoble Alpes UGA, CNRS 5309 INSERM 1209, Grenoble, France
| | - Massimiliano Pagani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, 20139, Italy.
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133, Milan, Italy.
| | | |
Collapse
|
4
|
Shapeti A, Barrasa-Fano J, Abdel Fattah AR, de Jong J, Sanz-Herrera JA, Pezet M, Assou S, de Vet E, Elahi SA, Ranga A, Faurobert E, Van Oosterwyck H. Force-mediated recruitment and reprogramming of healthy endothelial cells drive vascular lesion growth. Nat Commun 2024; 15:8660. [PMID: 39370485 PMCID: PMC11456588 DOI: 10.1038/s41467-024-52866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Force-driven cellular interactions are crucial for cancer cell invasion but remain underexplored in vascular abnormalities. Cerebral cavernous malformations (CCM), a vascular abnormality characterized by leaky vessels, involves CCM mutant cells recruiting wild-type endothelial cells to form and expand mosaic lesions. The mechanisms behind this recruitment remain poorly understood. Here, we use an in-vitro model of angiogenic invasion with traction force microscopy to reveal that hyper-angiogenic Ccm2-silenced endothelial cells enhance angiogenic invasion of neighboring wild-type cells through force and extracellular matrix-guided mechanisms. We demonstrate that mechanically hyperactive CCM2-silenced tips guide wild-type cells by transmitting pulling forces and by creating paths in the matrix, in a ROCKs-dependent manner. This is associated with reinforcement of β1 integrin and actin cytoskeleton in wild-type cells. Further, wild-type cells are reprogrammed into stalk cells and activate matrisome and DNA replication programs, thereby initiating proliferation. Our findings reveal how CCM2 mutants hijack wild-type cell functions to fuel lesion growth, providing insight into the etiology of vascular malformations. By integrating biophysical and molecular techniques, we offer tools for studying cell mechanics in tissue heterogeneity and disease progression.
Collapse
Affiliation(s)
- Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Abdel Rahman Abdel Fattah
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- CeMM The Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Janne de Jong
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Mylène Pezet
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie de Vet
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Seyed Ali Elahi
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Adrian Ranga
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Eva Faurobert
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France.
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, Leuven, Belgium.
| |
Collapse
|
5
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
6
|
Glading A. KRIT1 in vascular biology and beyond. Biosci Rep 2024; 44:BSR20231675. [PMID: 38980708 PMCID: PMC11263069 DOI: 10.1042/bsr20231675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024] Open
Abstract
KRIT1 is a 75 kDa scaffolding protein which regulates endothelial cell phenotype by limiting the response to inflammatory stimuli and maintaining a quiescent and stable endothelial barrier. Loss-of-function mutations in KRIT1 lead to the development of cerebral cavernous malformations (CCM), a disease marked by the formation of abnormal blood vessels which exhibit a loss of barrier function, increased endothelial proliferation, and altered gene expression. While many advances have been made in our understanding of how KRIT1, and the functionally related proteins CCM2 and PDCD10, contribute to the regulation of blood vessels and the vascular barrier, some important open questions remain. In addition, KRIT1 is widely expressed and KRIT1 and the other CCM proteins have been shown to play important roles in non-endothelial cell types and tissues, which may or may not be related to their role as pathogenic originators of CCM. In this review, we discuss some of the unsettled questions regarding the role of KRIT1 in vascular physiology and discuss recent advances that suggest this ubiquitously expressed protein may have a role beyond the endothelial cell.
Collapse
Affiliation(s)
- Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, U.S.A
| |
Collapse
|
7
|
Offenberger J, Chen B, Rossitto LA, Jin I, Conaboy L, Gallego-Gutierrez H, Nelsen B, Frias-Anaya E, Gonzalez DJ, Anagnostaras S, Lopez-Ramirez MA. Behavioral impairments are linked to neuroinflammation in mice with Cerebral Cavernous Malformation disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596485. [PMID: 38853989 PMCID: PMC11160801 DOI: 10.1101/2024.05.29.596485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cerebral Cavernous Malformations (CCMs) are neurovascular abnormalities in the central nervous system (CNS) caused by loss of function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3) genes. One of the most common symptoms in CCM patients is associated with motor disability, weakness, seizures, stress, and anxiety, and the extent of the symptom or symptoms may be due to the location of the lesion within the CNS or whether multiple lesions are present. Previous studies have primarily focused on understanding the pathology of CCM using animal models. However, more research has yet to explore the potential impact of CCM lesions on behavioral deficits in animal models, including effects on short-term and long-term memory, motor coordination, and function. Methods We used the accelerating RotaRod test to assess motor and coordination deficits. We also used the open field test to assess locomotor activity and pathology-related behavior and Pavlovian fear conditioning to assess short-and long-term memory deficits. Our behavioral studies were complemented by proteomics, histology, immunofluorescence, and imaging techniques. We found that neuroinflammation is crucial in behavioral deficits in male and female mice with neurovascular CCM lesions (Slco1c1-iCreERT2; Pdcd10 fl/fl ; Pdcd10 BECKO ). Results Functional behavior tests in male and female Pdcd10 BECKO mice revealed that CCM lesions cause sudden motor coordination deficits associated with the manifestation of profound neuroinflammatory lesions. Our findings indicate that maturation of CCM lesions in Pdcd10 BECKO mice also experienced a significant change in short- and long-term memory compared to their littermate controls, Pdcd10 fl/fl mice. Proteomic experiments reveal that as CCM lesions mature, there is an increase in pathways associated with inflammation, coagulation, and angiogenesis, and a decrease in pathways associated with learning and plasticity. Therefore, our study shows that Pdcd10 BECKO mice display a wide range of behavioral deficits due to significant lesion formation in their central nervous system and that signaling pathways associated with neuroinflammation and learning impact behavioral outcomes. Conclusions Our study found that CCM animal models exhibited behavioral impairments such as decreased motor coordination and amnesia. These impairments were associated with the maturation of CCM lesions that displayed a neuroinflammatory pattern.
Collapse
Affiliation(s)
- Joseph Offenberger
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bianca Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Irisa Jin
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Liam Conaboy
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
| | | | - Bliss Nelsen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Stephan Anagnostaras
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Ressler AK, Snellings DA, Girard R, Gallione CJ, Lightle R, Allen AS, Awad IA, Marchuk DA. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in Cerebral Cavernous Malformations. Nat Commun 2023; 14:7009. [PMID: 37919320 PMCID: PMC10622526 DOI: 10.1038/s41467-023-42908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.
Collapse
Affiliation(s)
- Andrew K Ressler
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Huo R, Yang Y, Sun Y, Zhou Q, Zhao S, Mo Z, Xu H, Wang J, Weng J, Jiao Y, Zhang J, He Q, Wang S, Zhao J, Wang J, Cao Y. Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation. Angiogenesis 2023; 26:295-312. [PMID: 36719480 DOI: 10.1007/s10456-023-09866-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Cerebral cavernous malformations (CCMs) refer to a common vascular abnormality that affects up to 0.5% of the population. A somatic gain-of-function mutation in MAP3K3 (p.I441M) was recently reported in sporadic CCMs, frequently accompanied by somatic activating PIK3CA mutations in diseased endothelium. However, the molecular mechanisms of these driver genes remain elusive. In this study, we performed whole-exome sequencing and droplet digital polymerase chain reaction to analyze CCM lesions and the matched blood from sporadic patients. 44 of 94 cases harbored mutations in KRIT1/CCM2 or MAP3K3, of which 75% were accompanied by PIK3CA mutations (P = 0.006). AAV-BR1-mediated brain endothelial-specific MAP3K3I441M overexpression induced CCM-like lesions throughout the brain and spinal cord in adolescent mice. Interestingly, over half of lesions disappeared at adulthood. Single-cell RNA sequencing found significant enrichment of the apoptosis pathway in a subset of brain endothelial cells in MAP3K3I441M mice compared to controls. We then demonstrated that MAP3K3I441M overexpression activated p38 signaling that is associated with the apoptosis of endothelial cells in vitro and in vivo. In contrast, the mice simultaneously overexpressing PIK3CA and MAP3K3 mutations had an increased number of CCM-like lesions and maintained these lesions for a longer time compared to those with only MAP3K3I441M. Further in vitro and in vivo experiments showed that activating PI3K signaling increased proliferation and alleviated apoptosis of endothelial cells. By using AAV-BR1, we found that MAP3K3I441M mutation can provoke CCM-like lesions in mice and the activation of PI3K signaling significantly enhances and maintains these lesions, providing a preclinical model for the further mechanistic and therapeutic study of CCMs.
Collapse
Affiliation(s)
- Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yingfan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiuxia Zhou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shaozhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zongchao Mo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China.
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Grdseloff N, Boulday G, Rödel CJ, Otten C, Vannier DR, Cardoso C, Faurobert E, Dogra D, Tournier-Lasserve E, Abdelilah-Seyfried S. Impaired retinoic acid signaling in cerebral cavernous malformations. Sci Rep 2023; 13:5572. [PMID: 37019926 PMCID: PMC10076292 DOI: 10.1038/s41598-023-31905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.
Collapse
Affiliation(s)
- Nastasja Grdseloff
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Gwenola Boulday
- InsermNeuroDiderot, Université Paris Cité, 75019, Paris, France
| | - Claudia J Rödel
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Cécile Otten
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Daphné Raphaelle Vannier
- Institute for Advanced Biosciences, INSERM 1209 CNRS, University Grenoble Alpes, 5309, Grenoble, France
| | - Cécile Cardoso
- InsermNeuroDiderot, Université Paris Cité, 75019, Paris, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, INSERM 1209 CNRS, University Grenoble Alpes, 5309, Grenoble, France
| | - Deepika Dogra
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Elisabeth Tournier-Lasserve
- InsermNeuroDiderot, Université Paris Cité, 75019, Paris, France
- Service de Génétique Neurovasculaire, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Department of Zoophysiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany.
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
12
|
Petkova M, Kraft M, Stritt S, Martinez-Corral I, Ortsäter H, Vanlandewijck M, Jakic B, Baselga E, Castillo SD, Graupera M, Betsholtz C, Mäkinen T. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation. J Exp Med 2023; 220:e20220741. [PMID: 36688917 PMCID: PMC9884640 DOI: 10.1084/jem.20220741] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marle Kraft
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Bojana Jakic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eulàlia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sandra D. Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Yang X, Wu ST, Gao R, Wang R, Wang Y, Dong Z, Wang L, Qi C, Wang X, Schmitz ML, Liu R, Han Z, Wang L, Zheng X. Release of STK24/25 suppression on MEKK3 signaling in endothelial cells confers cerebral cavernous malformation. JCI Insight 2023; 8:160372. [PMID: 36692953 PMCID: PMC10077477 DOI: 10.1172/jci.insight.160372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function mutations in cerebral cavernous malformation (CCM) genes and gain-of-function mutation in the MAP3K3 gene encoding MEKK3 cause CCM. Deficiency of CCM proteins leads to the activation of MEKK3-KLF2/4 signaling, but it is not clear how this occurs. Here, we demonstrate that deletion of the CCM3 interacting kinases STK24/25 in endothelial cells causes defects in vascular patterning during development as well as CCM lesion formation during postnatal life. While permanent deletion of STK24/25 in endothelial cells caused developmental defects of the vascular system, inducible postnatal deletion of STK24/25 impaired angiogenesis in the retina and brain. More importantly, deletion of STK24/25 in neonatal mice led to the development of severe CCM lesions. At the molecular level, a hybrid protein consisting of the STK kinase domain and the MEKK3 interacting domain of CCM2 rescued the vascular phenotype caused by the loss of ccm gene function in zebrafish. Our study suggests that CCM2/3 proteins act as adapters to allow recruitment of STK24/25 to limit the constitutive MEKK3 activity, thus contributing to vessel stability. Loss of STK24/25 causes MEKK3 activation, leading to CCM lesion formation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Gao
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Zhenkun Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, and St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, and.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| |
Collapse
|
14
|
Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet 2023; 68:157-167. [PMID: 35831630 DOI: 10.1038/s10038-022-01063-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Cerebrovascular malformations comprise abnormal development of cerebral vasculature. They can result in hemorrhagic stroke due to rupture of lesions as well as seizures and neurological defects. The most common forms of cerebrovascular malformations are brain arteriovenous malformations (bAVMs) and cerebral cavernous malformations (CCMs). They occur in both sporadic and inherited forms. Rapidly evolving molecular genetic methodologies have helped to identify causative or associated genes involved in genesis of bAVMs and CCMs. In this review, we highlight the current knowledge regarding the genetic basis of these malformations.
Collapse
|
15
|
Min W, Zhou JH. Endothelial Cell-Pericyte Interactions in the Pathogenesis of Cerebral Cavernous Malformations (CCMs). Cold Spring Harb Perspect Med 2023; 13:a041188. [PMID: 35667709 PMCID: PMC9760308 DOI: 10.1101/cshperspect.a041188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cerebral cavernous malformations (CCMs), consisting of multiple, dilated capillary channels formed by a single layer of endothelium and lacking parenchymal cells, are exclusively to the brain. Patients with inherited autosomal-dominant CCMs carry loss-of-function mutations in one of three genes: CCM1, CCM2, and CCM3. It is not known why CCM lesions are confined to brain vasculature despite the ubiquitous expression of CCM proteins in all tissues, and whether cell types other than endothelial cells (ECs) contribute to CCM lesion formation. The prevailing view is that the primary defects in CCMs in humans are EC-intrinsic, such that EC-specific deletion of any one of the three genes in mice results in similar CCM lesions. An unexpected finding is that Ccm3 deletion in pericytes (PCs) also induces CCM lesions. CCM3 deletion in ECs or PCs destabilizes PC-EC associations, highlighting the importance of these interactions in CCM formation.
Collapse
Affiliation(s)
- Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jenny Huanjiao Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
16
|
Pilz RA, Skowronek D, Mellinger L, Bekeschus S, Felbor U, Rath M. Endothelial Differentiation of CCM1 Knockout iPSCs Triggers the Establishment of a Specific Gene Expression Signature. Int J Mol Sci 2023; 24:ijms24043993. [PMID: 36835400 PMCID: PMC9963194 DOI: 10.3390/ijms24043993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease that can lead to seizures and stroke-like symptoms. The familial form is caused by a heterozygous germline mutation in either the CCM1, CCM2, or CCM3 gene. While the importance of a second-hit mechanism in CCM development is well established, it is still unclear whether it immediately triggers CCM development or whether additional external factors are required. We here used RNA sequencing to study differential gene expression in CCM1 knockout induced pluripotent stem cells (CCM1-/- iPSCs), early mesoderm progenitor cells (eMPCs), and endothelial-like cells (ECs). Notably, CRISPR/Cas9-mediated inactivation of CCM1 led to hardly any gene expression differences in iPSCs and eMPCs. However, after differentiation into ECs, we found the significant deregulation of signaling pathways well known to be involved in CCM pathogenesis. These data suggest that a microenvironment of proangiogenic cytokines and growth factors can trigger the establishment of a characteristic gene expression signature upon CCM1 inactivation. Consequently, CCM1-/- precursor cells may exist that remain silent until entering the endothelial lineage. Collectively, not only downstream consequences of CCM1 ablation but also supporting factors must be addressed in CCM therapy development.
Collapse
Affiliation(s)
- Robin A. Pilz
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Dariush Skowronek
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Lara Mellinger
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence: ; Tel.: +49-3834-865396
| |
Collapse
|
17
|
Hess M, Chronopoulos A, Schutz J, Hattenbach LO. Retinal and Cerebral Cavernous Haemangioma in a Female Patient - Multimodal Imaging. Klin Monbl Augenheilkd 2023; 240:73-76. [PMID: 35488177 DOI: 10.1055/a-1839-8644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Monya Hess
- Eye Clinic, Klinikum der Stadt Ludwigshafen am Rhein gGmbH, Ludwigshafen, Germany
| | | | - James Schutz
- Eye Clinic, Klinikum der Stadt Ludwigshafen am Rhein gGmbH, Ludwigshafen, Germany
| | - Lars-Olof Hattenbach
- Eye Clinic, Klinikum der Stadt Ludwigshafen am Rhein gGmbH, Ludwigshafen, Germany
| |
Collapse
|
18
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
19
|
Yang X, Dai Z, Gao C, Yin Y, Shi C, Liu R, Zhuge Q, Huang Y, Zhou B, Han Z, Zheng X. Cerebral cavernous malformation development in chronic mouse models driven by dual recombinases induced gene deletion in brain endothelial cells. J Cereb Blood Flow Metab 2022; 42:2230-2244. [PMID: 35686705 PMCID: PMC9669998 DOI: 10.1177/0271678x221105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral cavernous malformation (CCM) is a brain vascular disease which can cause stroke, cerebral hemorrhage and neurological deficits in affected individuals. Loss-of-function mutations in three genes (CCM1, CCM2 and CCM3) cause CCM disease. Multiple mouse models for CCM disease have been developed although each of them are associated with various limitations. Here, we employed the Dre-Cre dual recombinase system to specifically delete Ccm genes in brain endothelial cells. In this new series of CCM mouse models, robust CCM lesions now develop in the cerebrum. The survival curve and lesion burden analysis revealed that Ccm2 deletion causes modest CCM lesions with a median life expectance of ∼10 months and Ccm3 gene deletion leads to the most severe CCM lesions with median life expectance of ∼2 months. The extended lifespan of these mutant mice enables their utility in behavioral analyses of neurologic deficits in adult mice, and allow the development of methods to quantify lesion burden in mice over time and also permit longitudinal drug testing in live animals.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zifeng Dai
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caixia Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Yin
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Lai CC, Nelsen B, Frias-Anaya E, Gallego-Gutierrez H, Orecchioni M, Herrera V, Ortiz E, Sun H, Mesarwi OA, Ley K, Gongol B, Lopez-Ramirez MA. Neuroinflammation Plays a Critical Role in Cerebral Cavernous Malformation Disease. Circ Res 2022; 131:909-925. [PMID: 36285625 PMCID: PMC9669201 DOI: 10.1161/circresaha.122.321129] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/11/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by loss of function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). CCMs affect ≈1 out of 200 children and adults, and no pharmacologic therapy is available. CCM lesion count, size, and aggressiveness vary widely among patients of similar ages with the same mutation or even within members of the same family. However, what determines the transition from quiescent lesions into mature and active (aggressive) CCM lesions is unknown. METHODS We use genetic, RNA-sequencing, histology, flow cytometry, and imaging techniques to report the interaction between CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils (CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils interaction) during the pathogenesis of CCMs in the brain tissue. RESULTS Expression profile of astrocytes in adult mouse brains using translated mRNAs obtained from the purification of EGFP (enhanced green fluorescent protein)-tagged ribosomes (Aldh1l1-EGFP/Rpl10a) in the presence or absence of CCM lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) identifies a novel gene signature for neuroinflammatory astrocytes. CCM-induced reactive astrocytes have a neuroinflammatory capacity by expressing genes involved in angiogenesis, chemotaxis, hypoxia signaling, and inflammation. RNA-sequencing analysis on RNA isolated from brain endothelial cells in chronic Pdcd10BECKO mice (CCM endothelium), identified crucial genes involved in recruiting inflammatory cells and thrombus formation through chemotaxis and coagulation pathways. In addition, CCM endothelium was associated with increased expression of Nlrp3 and Il1b. Pharmacological inhibition of NLRP3 (NOD [nucleotide-binding oligomerization domain]-' LRR [leucine-rich repeat]- and pyrin domain-containing protein 3) significantly decreased inflammasome activity as assessed by quantification of a fluorescent indicator of caspase-1 activity (FAM-FLICA [carboxyfluorescein-fluorochrome-labeled inhibitors of caspases] caspase-1) in brain endothelial cells from Pdcd10BECKO in chronic stage. Importantly, our results support the hypothesis of the crosstalk between astrocytes and CCM endothelium that can trigger recruitment of inflammatory cells arising from brain parenchyma (microglia) and the peripheral immune system (leukocytes) into mature active CCM lesions that propagate lesion growth, immunothrombosis, and bleedings. Unexpectedly, partial or total loss of brain endothelial NF-κB (nuclear factor κB) activity (using Ikkbfl/fl mice) in chronic Pdcd10BECKO mice does not prevent lesion genesis or neuroinflammation. Instead, this resulted in a trend increase in the number of lesions and immunothrombosis, suggesting that therapeutic approaches designed to target inflammation through endothelial NF-κB inhibition may contribute to detrimental side effects. CONCLUSIONS Our study reveals previously unknown links between neuroinflammatory astrocytes and inflamed CCM endothelium as contributors that trigger leukocyte recruitment and precipitate immunothrombosis in CCM lesions. However, therapeutic approaches targeting brain endothelial NF-κB activity may contribute to detrimental side effects.
Collapse
Affiliation(s)
| | - Bliss Nelsen
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | | | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for
Immunology, La Jolla, California, USA
| | - Victoria Herrera
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Elan Ortiz
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Hao Sun
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Omar A. Mesarwi
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for
Immunology, La Jolla, California, USA
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College,
Victorville, California, USA
- Institute for Integrative Genome Biology, 1207F Genomics
Building, University of California, Riverside, CA 92521, USA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San
Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Tu T, Peng Z, Ren J, Zhang H. Cerebral Cavernous Malformation: Immune and Inflammatory Perspectives. Front Immunol 2022; 13:922281. [PMID: 35844490 PMCID: PMC9280619 DOI: 10.3389/fimmu.2022.922281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a type of vascular anomaly that arises due to the dyshomeostasis of brain capillary networks. In the past two decades, many advances have been made in this research field. Notably, as a more reasonable current view, the CCM lesions should be attributed to the results of a great number of additional events related to the homeostasis disorder of the endothelial cell. Indeed, one of the most fascinating concerns in the research field is the inflammatory perturbation in the immune microenvironment, which would affect the disease progression as well as the patients’ outcomes. In this work, we focused on this topic, and underlined the immune-related factors’ contribution to the CCM pathologic progression.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenghong Peng
- Health Management Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongqi Zhang,
| |
Collapse
|
22
|
Fang Z, Sun X, Wang X, Ma J, Palaia T, Rana U, Miao B, Ragolia L, Hu W, Miao QR. NOGOB receptor deficiency increases cerebrovascular permeability and hemorrhage via impairing histone acetylation-mediated CCM1/2 expression. J Clin Invest 2022; 132:e151382. [PMID: 35316220 PMCID: PMC9057619 DOI: 10.1172/jci151382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
The loss function of cerebral cavernous malformation (CCM) genes leads to most CCM lesions characterized by enlarged leaking vascular lesions in the brain. Although we previously showed that NOGOB receptor (NGBR) knockout in endothelial cells (ECs) results in cerebrovascular lesions in the mouse embryo, the molecular mechanism by which NGBR regulates CCM1/2 expression has not been elucidated. Here, we show that genetic depletion of Ngbr in ECs at both postnatal and adult stages results in CCM1/2 expression deficiency and cerebrovascular lesions such as enlarged vessels, blood-brain-barrier hyperpermeability, and cerebral hemorrhage. To reveal the molecular mechanism, we used RNA-sequencing analysis to examine changes in the transcriptome. Surprisingly, we found that the acetyltransferase HBO1 and histone acetylation were downregulated in NGBR-deficient ECs. The mechanistic studies elucidated that NGBR is required for maintaining the expression of CCM1/2 in ECs via HBO1-mediated histone acetylation. ChIP-qPCR data further demonstrated that loss of NGBR impairs the binding of HBO1 and acetylated histone H4K5 and H4K12 on the promotor of the CCM1 and CCM2 genes. Our findings on epigenetic regulation of CCM1 and CCM2 that is modulated by NGBR and HBO1-mediated histone H4 acetylation provide a perspective on the pathogenesis of sporadic CCMs.
Collapse
Affiliation(s)
- Zhi Fang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaoran Sun
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Xiang Wang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ji Ma
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Ujala Rana
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Wenquan Hu
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qing Robert Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Cerebral Cavernous Malformation Pathogenesis: Investigating Lesion Formation and Progression with Animal Models. Int J Mol Sci 2022; 23:5000. [PMID: 35563390 PMCID: PMC9105545 DOI: 10.3390/ijms23095000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a cerebromicrovascular disease that affects up to 0.5% of the population. Vessel dilation, decreased endothelial cell-cell contact, and loss of junctional complexes lead to loss of brain endothelial barrier integrity and hemorrhagic lesion formation. Leakage of hemorrhagic lesions results in patient symptoms and complications, including seizures, epilepsy, focal headaches, and hemorrhagic stroke. CCMs are classified as sporadic (sCCM) or familial (fCCM), associated with loss-of-function mutations in KRIT1/CCM1, CCM2, and PDCD10/CCM3. Identifying the CCM proteins has thrust the field forward by (1) revealing cellular processes and signaling pathways underlying fCCM pathogenesis, and (2) facilitating the development of animal models to study CCM protein function. CCM animal models range from various murine models to zebrafish models, with each model providing unique insights into CCM lesion development and progression. Additionally, these animal models serve as preclinical models to study therapeutic options for CCM treatment. This review briefly summarizes CCM disease pathology and the molecular functions of the CCM proteins, followed by an in-depth discussion of animal models used to study CCM pathogenesis and developing therapeutics.
Collapse
Affiliation(s)
- Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
24
|
Rossi A, Kontarakis Z. Beyond Mendelian Inheritance: Genetic Buffering and Phenotype Variability. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:79-87. [PMID: 36939776 PMCID: PMC9590499 DOI: 10.1007/s43657-021-00030-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/18/2023]
Abstract
Understanding the way genes work amongst individuals and across generations to shape form and function is a common theme for many genetic studies. The recent advances in genetics, genome engineering and DNA sequencing reinforced the notion that genes are not the only players that determine a phenotype. Due to physiological or pathological fluctuations in gene expression, even genetically identical cells can behave and manifest different phenotypes under the same conditions. Here, we discuss mechanisms that can influence or even disrupt the axis between genotype and phenotype; the role of modifier genes, the general concept of genetic redundancy, genetic compensation, the recently described transcriptional adaptation, environmental stressors, and phenotypic plasticity. We furthermore highlight the usage of induced pluripotent stem cells (iPSCs), the generation of isogenic lines through genome engineering, and sequencing technologies can help extract new genetic and epigenetic mechanisms from what is hitherto considered 'noise'.
Collapse
Affiliation(s)
- Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich of ETH Zurich, University of Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Yau ACY, Globisch MA, Onyeogaziri FC, Conze LL, Smith R, Jauhiainen S, Corada M, Orsenigo F, Huang H, Herre M, Olsson AK, Malinverno M, Sundell V, Rezai Jahromi B, Niemelä M, Laakso A, Garlanda C, Mantovani A, Lampugnani MG, Dejana E, Magnusson PU. Inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cell Mol Life Sci 2022; 79:206. [PMID: 35333979 PMCID: PMC8949649 DOI: 10.1007/s00018-022-04224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas of patients with CCM confirms the clinical relevance of NETs in CCM.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Maria Ascencion Globisch
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Favour Chinyere Onyeogaziri
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Lei L Conze
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Monica Corada
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Melanie Herre
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maria Grazia Lampugnani
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy.,Mario Negri Institute for Pharmacological Research, 20157, Milan, Italy
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden.,Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
26
|
Maderna C, Pisati F, Tripodo C, Dejana E, Malinverno M. A murine model of cerebral cavernous malformations with acute hemorrhage. iScience 2022; 25:103943. [PMID: 35265815 PMCID: PMC8898922 DOI: 10.1016/j.isci.2022.103943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cavernomas are multi-lumen and blood-filled vascular malformations which form in the brain and the spinal cord. They lead to hemorrhage, epileptic seizures, neurological deficits, and paresthesia. An effective medical treatment is still lacking, and the available murine models for cavernomas have several limitations for preclinical studies. These include disease phenotypes that differ from human diseases, such as restriction of the lesions to the cerebellum, and absence of acute hemorrhage. Additional limitations of current murine models include rapid development of lesions, which are lethal before the first month of age. Here, we have characterized a murine model that recapitulates features of the human disease: lesions develop after weaning throughout the entire CNS, including the spinal cord, and undergo acute hemorrhage. This provides a preclinical model to develop new drugs for treatment of acute hemorrhage in the brain and spinal cord, as an unmet medical emergency for patients with cavernomas. Ccm3 deletion in endothelial progenitors drives cavernoma formation in a mouse model Mice develop acute hemorrhage and inflammation in brain and spinal cord The spleen has increased vascular density and altered hemopoiesis This model represents a useful tool for mechanistic studies and drug screening
Collapse
Affiliation(s)
- Claudio Maderna
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Federica Pisati
- Tumour and Microenvironment Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Claudio Tripodo
- Tumour and Microenvironment Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.,Tumour Immunology Unit, University of Palermo, Palermo, Italy
| | - Elisabetta Dejana
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 752 37, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| |
Collapse
|
27
|
Tawfik HA, Dutton JJ. Orbital Vascular Anomalies: A Nomenclatorial, Etiological, and Nosologic Conundrum. Ophthalmic Plast Reconstr Surg 2022; 38:108-121. [PMID: 34238823 DOI: 10.1097/iop.0000000000002029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Vascular anomalies are a heterogeneous group of disorders that frequently present in the periorbital region. They encompass 2 broad entities: vascular tumors, which possess a proliferative endothelium, and vascular malformations, which are basically localized defects of vascular morphogenesis. The primary goal of this review was to address inaccurate or controversial terminology in the oculoplastic literature concerning orbital and periorbital vascular anomalies and to categorize these lesions in an abridged and simplified hierarchical list that adheres as much as possible to the most recent (2018) iteration for the classification of vascular lesions proposed by the International Society for the Study of Vascular Anomalies (ISSVA). The secondary goal of this review was to review and update information regarding the genetic underpinnings of vascular anomalies and the downstream signaling pathways that are subsequently affected as a result of these genetic errors. METHODS A literature review was conducted in PubMed, MEDLINE, PubMed Central, National Center for Biotechnology Information Bookshelf, and Embase for several related keywords including "vascular anomalies, vascular malformations, vascular tumors, and cavernous venous malformation," both with and without adding the keywords "eyelid," "orbital," and "periorbital." In addition, a detailed search was conducted for controversial or obsolete keywords like "cavernous hemangioma," "lymphangioma," and "varices," again in their systemic and orbital/periorbital context. RESULTS Crucial issues in the 2018 ISSVA classification regarding the proper categorization of orbital vascular anomalies, particularly venous lesions, were critically evaluated and revised, and a regional, simplified, and abridged modification of the ISSVA 2018 classification was proposed. CONCLUSIONS Interdisciplinary and intradisciplinary dialogue concerning orbital vascular anomalies is seriously compromised due to the lack of a unanimous agreement on terminology and the absence of a unified classification concept system. The authors recommend that oculoplastic surgeons adopt ISSVA terminology whenever technically possible and scientifically sound. However, they also propose modifying the ISSVA 2018 classification specifically to adapt to the peculiarities of vascular anomalies in the periorbital region. At present, the simplified classification proposed here is a preliminary first step towards managing patients with orbital vascular anomalies with greater diagnostic and therapeutic precision, until such time in the future when the entire genetic makeup of orbital vascular anomalies is more completely elucidated. Optimistically, this could pave the way for a more robust classification and the ultimate therapeutic cure.
Collapse
Affiliation(s)
- Hatem A Tawfik
- Department of Ophthalmology, Ain Shams University, Cairo, Egypt
| | - Jonathan J Dutton
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, U.S.A
| |
Collapse
|
28
|
A novel insight into differential expression profiles of sporadic cerebral cavernous malformation patients with different symptoms. Sci Rep 2021; 11:19351. [PMID: 34588521 PMCID: PMC8481309 DOI: 10.1038/s41598-021-98647-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a vascular lesion of the central nervous system that may lead to distinct symptoms among patients including cerebral hemorrhages, epileptic seizures, focal neurologic deficits, and/or headaches. Disease-related mutations were identified previously in one of the three CCM genes: CCM1, CCM2, and CCM3. However, the rate of these mutations in sporadic cases is relatively low, and new studies report that mutations in CCM genes may not be sufficient to initiate the lesions. Despite the growing body of research on CCM, the underlying molecular mechanism has remained largely elusive. In order to provide a novel insight considering the specific manifested symptoms, CCM patients were classified into two groups (as Epilepsy and Hemorrhage). Since the studied patients experience various symptoms, we hypothesized that the underlying cause for the disease may also differ between those groups. To this end, the respective transcriptomes were compared to the transcriptomes of the control brain tissues and among each other. This resulted into the identification of the differentially expressed coding genes and the delineation of the corresponding differential expression profile for each comparison. Notably, some of those differentially expressed genes were previously implicated in epilepsy, cell structure formation, and cell metabolism. However, no CCM1-3 gene deregulation was detected. Interestingly, we observed that when compared to the normal controls, the expression of some identified genes was only significantly altered either in Epilepsy (EGLN1, ELAVL4, and NFE2l2) or Hemorrhage (USP22, EYA1, SIX1, OAS3, SRMS) groups. To the best of our knowledge, this is the first such effort focusing on CCM patients with epileptic and hemorrhagic symptoms with the purpose of uncovering the potential CCM-related genes. It is also the first report that presents a gene expression dataset on Turkish CCM patients. The results suggest that the new candidate genes should be explored to further elucidate the CCM pathology. Overall, this work constitutes a step towards the identification of novel potential genetic targets for the development of possible future therapies.
Collapse
|
29
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
30
|
Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, Venot Q, Lerond J, Marijon P, Abi-Jaoude S, Le Van T, Labreche K, Houlston R, Faisant M, Clémenceau S, Boch AL, Nouet A, Carpentier A, Boetto J, Louvi A, Kalamarides M. Somatic PIK3CA Mutations in Sporadic Cerebral Cavernous Malformations. N Engl J Med 2021; 385:996-1004. [PMID: 34496175 PMCID: PMC8606022 DOI: 10.1056/nejmoa2100440] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are common sporadic and inherited vascular malformations of the central nervous system. Although familial CCMs are linked to loss-of-function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3), the genetic cause of sporadic CCMs, representing 80% of cases, remains incompletely understood. METHODS We developed two mouse models harboring mutations identified in human meningiomas with the use of the prostaglandin D2 synthase (PGDS) promoter. We performed targeted DNA sequencing of surgically resected CCMs from patients and confirmed our findings by droplet digital polymerase-chain-reaction analysis. RESULTS We found that in mice expressing one of two common genetic drivers of meningioma - Pik3ca H1047R or AKT1 E17K - in PGDS-positive cells, a spectrum of typical CCMs develops (in 22% and 11% of the mice, respectively) instead of meningiomas, which prompted us to analyze tissue samples from sporadic CCMs from 88 patients. We detected somatic activating PIK3CA and AKT1 mutations in 39% and 1%, respectively, of lesion tissue from the patients. Only 10% of lesions harbored mutations in the CCM genes. We analyzed lesions induced by the activating mutations Pik3ca H1074R and AKT1 E17K in mice and identified the PGDS-expressing pericyte as the probable cell of origin. CONCLUSIONS In tissue samples from sporadic CCMs, mutations in PIK3CA were represented to a greater extent than mutations in any other gene. The contribution of somatic mutations in the genes that cause familial CCMs was comparatively small. (Funded by the Fondation ARC pour la Recherche contre le Cancer and others.).
Collapse
Affiliation(s)
- Matthieu Peyre
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Danielle Miyagishima
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Franck Bielle
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Françoise Chapon
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Michael Sierant
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Quitterie Venot
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Julie Lerond
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Pauline Marijon
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Samiya Abi-Jaoude
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Tuan Le Van
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Karim Labreche
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Richard Houlston
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Maxime Faisant
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Stéphane Clémenceau
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Anne-Laure Boch
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Aurelien Nouet
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Alexandre Carpentier
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Julien Boetto
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Angeliki Louvi
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Michel Kalamarides
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| |
Collapse
|
31
|
Lopez-Ramirez MA, Lai CC, Soliman SI, Hale P, Pham A, Estrada EJ, McCurdy S, Girard R, Verma R, Moore T, Lightle R, Hobson N, Shenkar R, Poulsen O, Haddad GG, Daneman R, Gongol B, Sun H, Lagarrigue F, Awad IA, Ginsberg MH. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest 2021; 131:139570. [PMID: 34043589 PMCID: PMC8245174 DOI: 10.1172/jci139570] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common neurovascular lesions caused by loss-of-function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3), and generally regarded as an endothelial cell-autonomous disease. Here we reported that proliferative astrocytes played a critical role in CCM pathogenesis by serving as a major source of VEGF during CCM lesion formation. An increase in astrocyte VEGF synthesis is driven by endothelial nitric oxide (NO) generated as a consequence of KLF2- and KLF4-dependent elevation of eNOS in CCM endothelium. The increased brain endothelial production of NO stabilized HIF-1α in astrocytes, resulting in increased VEGF production and expression of a "hypoxic" program under normoxic conditions. We showed that the upregulation of cyclooxygenase-2 (COX-2), a direct HIF-1α target gene and a known component of the hypoxic program, contributed to the development of CCM lesions because the administration of a COX-2 inhibitor significantly prevented the progression of CCM lesions. Thus, non-cell-autonomous crosstalk between CCM endothelium and astrocytes propels vascular lesion development, and components of the hypoxic program represent potential therapeutic targets for CCMs.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/genetics
- Astrocytes/pathology
- Astrocytes/physiology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Disease Progression
- Endothelial Cells/metabolism
- Hemangioma, Cavernous, Central Nervous System/etiology
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hemangioma, Cavernous, Central Nervous System/physiopathology
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice
- Mice, Knockout
- Models, Neurological
- Mutation
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | - Gabriel G. Haddad
- Department of Pediatrics, and
- Department of Neuroscience, Division of Respiratory Medicine, University of California, San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Richard Daneman
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | |
Collapse
|
32
|
Snellings DA, Hong CC, Ren AA, Lopez-Ramirez MA, Girard R, Srinath A, Marchuk DA, Ginsberg MH, Awad IA, Kahn ML. Cerebral Cavernous Malformation: From Mechanism to Therapy. Circ Res 2021; 129:195-215. [PMID: 34166073 PMCID: PMC8922476 DOI: 10.1161/circresaha.121.318174] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.
Collapse
Affiliation(s)
- Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Miguel A Lopez-Ramirez
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
- Department of Pharmacology (M.A.L.-R.), University of California, San Diego, La Jolla
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Mark H Ginsberg
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| |
Collapse
|
33
|
Wang R, Wu ST, Yang X, Qian Y, Choi JP, Gao R, Song S, Wang Y, Zhuang T, Wong JJ, Zhang Y, Han Z, Lu HA, Alexander SI, Liu R, Xia Y, Zheng X. Pdcd10-Stk24/25 complex controls kidney water reabsorption by regulating Aqp2 membrane targeting. JCI Insight 2021; 6:e142838. [PMID: 34156031 PMCID: PMC8262504 DOI: 10.1172/jci.insight.142838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
PDCD10, also known as CCM3, is a gene found to be associated with the human disease cerebral cavernous malformations (CCMs). PDCD10 forms a complex with GCKIII kinases including STK24, STK25, and MST4. Studies in C. elegans and Drosophila have shown a pivotal role of the PDCD10-GCKIII complex in maintaining epithelial integrity. Here, we found that mice deficient of Pdcd10 or Stk24/25 in the kidney tubules developed polyuria and displayed increased water consumption. Although the expression levels of aquaporin genes were not decreased, the levels of total and phosphorylated aquaporin 2 (Aqp2) protein in the apical membrane of tubular epithelial cells were decreased in Pdcd10- and Stk24/25-deficient mice. This loss of Aqp2 was associated with increased expression and membrane targeting of Ezrin and phosphorylated Ezrin, Radixin, Moesin (p-ERM) proteins and impaired intracellular vesicle trafficking. Treatment with Erlotinib, a tyrosine kinase inhibitor promoting exocytosis and inhibiting endocytosis, normalized the expression level and membrane abundance of Aqp2 protein, and partially rescued the water reabsorption defect observed in the Pdcd10-deficient mice. Our current study identified the PDCD10-STK-ERM signaling pathway as a potentially novel pathway required for water balance control by regulating vesicle trafficking and protein abundance of AQP2 in the kidneys.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yude Qian
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Siliang Song
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Justin Jl Wong
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hua A Lu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen I Alexander
- Department of Pediatric Nephrology, The Children's Hospital at Westmead and Centre for Kidney Research, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiangjian Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China.,Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT, Detter MR, Hobson N, Girard R, Romanos S, Lightle R, Moore T, Shenkar R, Benavides C, Beaman MM, Müller-Fielitz H, Chen M, Mericko P, Yang J, Sung DC, Lawton MT, Ruppert JM, Schwaninger M, Körbelin J, Potente M, Awad IA, Marchuk DA, Kahn ML. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 2021; 594:271-276. [PMID: 33910229 PMCID: PMC8626098 DOI: 10.1038/s41586-021-03562-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023]
Abstract
Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gain of Function Mutation
- Hemangioma, Cavernous, Central Nervous System/blood supply
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/metabolism
- Loss of Function Mutation
- MAP Kinase Kinase Kinase 3/metabolism
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice
- Mutation
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/pathology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Yourong S Su
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Castro
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - M Makenzie Beaman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Mericko
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek C Sung
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael T Lawton
- Department of Neurosurgery, The Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation, Hamburg, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
- Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Li W, Tran V, Shaked I, Xue B, Moore T, Lightle R, Kleinfeld D, Awad IA, Ginsberg MH. Abortive intussusceptive angiogenesis causes multi-cavernous vascular malformations. eLife 2021; 10:e62155. [PMID: 34013885 PMCID: PMC8175082 DOI: 10.7554/elife.62155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Mosaic inactivation of CCM2 in humans causes cerebral cavernous malformations (CCMs) containing adjacent dilated blood-filled multi-cavernous lesions. We used CRISPR-Cas9 mutagenesis to induce mosaic inactivation of zebrafish ccm2 resulting in a novel lethal multi-cavernous lesion in the embryonic caudal venous plexus (CVP) caused by obstruction of blood flow by intraluminal pillars. These pillars mimic those that mediate intussusceptive angiogenesis; however, in contrast to the normal process, the pillars failed to fuse to split the pre-existing vessel in two. Abortive intussusceptive angiogenesis stemmed from mosaic inactivation of ccm2 leading to patchy klf2a overexpression and resultant aberrant flow signaling. Surviving adult fish manifested histologically typical hemorrhagic CCM. Formation of mammalian CCM requires the flow-regulated transcription factor KLF2; fish CCM and the embryonic CVP lesion failed to form in klf2a null fish indicating a common pathogenesis with the mammalian lesion. These studies describe a zebrafish CCM model and establish a mechanism that can explain the formation of characteristic multi-cavernous lesions.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Brain/blood supply
- Cerebrovascular Circulation
- Disease Models, Animal
- Gene Expression Regulation, Developmental
- Gene Silencing
- Genetic Predisposition to Disease
- Hemangioma, Cavernous, Central Nervous System/embryology
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/physiopathology
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mosaicism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Phenotype
- Signal Transduction
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Wenqing Li
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| | - Virginia Tran
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| | - Iftach Shaked
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Belinda Xue
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological SciencesChicagoUnited States
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological SciencesChicagoUnited States
| | - David Kleinfeld
- Department of Physics, University of California, San DiegoLa JollaUnited States
- Section of Neurobiology, University of California San DiegoLa JollaUnited States
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, University of Chicago School of Medicine and Biological SciencesChicagoUnited States
| | - Mark H Ginsberg
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
36
|
Schweizer Burguete AB, Ghabrial AS. Dissection of the Role of CCM Genes in Tubulogenesis Using the Drosophila Tracheal System as a Model. Methods Mol Biol 2021; 2152:179-189. [PMID: 32524553 DOI: 10.1007/978-1-0716-0640-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Embryos deficient for an essential gene may show complex phenotypes that reflect pleiotropic functions and non-cell-autonomous requirements for the encoded protein. The generation of mosaic animals, where most cells are wild type, but a few cells are mutant, is a powerful tool permitting the detailed analysis of the cell autonomous function of a gene, in a particular cell type, at cellular and subcellular resolutions. Here we apply this method to the analysis of the Cerebral Cavernous Malformations 3 (CCM3) pathway in Drosophila.The conserved CCM3 protein functions together with its binding partner, Germinal Center Kinase III (Wheezy/GckIII in Drosophila, MST3, STK24, and STK25 in human) in the regulation of tube morphogenesis (Bergametti et al. Am J Hum Genet. 76:42-51, 2005; Fidalgo et al. J Cell Sci. 123:1274-1284, 2010; Guclu et al. Neurosurgery. 57:1008-1013, 2005; Lant et al. Nat Commun. 6:6449, 2015; Song et al. Dev Cell. 25:507-519, 2013; Ceccarelli et al. J Biol Chem. 286:25056-25064, 2011; Rehain-Bell et al. Curr Biol. 27:860-867, 2017; Xu et al. Structure. 21:1059-1066, 2013; Zhang et al. Front Biosci. 17:2295-2305, 2012; Zhang et al. Dev Cell. 27:215-226, 2013; Zheng et al. J Clin Invest. 120:2795-2804, 2010). The Drosophila proteins play a role in the regulation of tube shape in the tracheal (respiratory) system, analogous to the role of the human proteins in the vascular system. To understand the cellular basis for tube dilation defects caused by loss of pathway function, we describe techniques for the generation and analysis of positively marked homozygous mutant GckIII tracheal cells, coupled with an "open book" preparation that can be subjected to immunofluorescent analysis. Dozens of mutant tracheal cells are generated per mosaic animal, and neighboring heterozygous cells in the same animal serve as ideal internal controls.
Collapse
Affiliation(s)
| | - Amin S Ghabrial
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
37
|
Retta SF, Perrelli A, Trabalzini L, Finetti F. From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease. Methods Mol Biol 2021; 2152:3-25. [PMID: 32524540 DOI: 10.1007/978-1-0716-0640-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy. .,CCM Italia Research Network, Torino, Italy.
| | - Andrea Perrelli
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Lorenza Trabalzini
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federica Finetti
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
38
|
Hong CC, Tang AT, Detter MR, Choi JP, Wang R, Yang X, Guerrero AA, Wittig CF, Hobson N, Girard R, Lightle R, Moore T, Shenkar R, Polster SP, Goddard LM, Ren AA, Leu NA, Sterling S, Yang J, Li L, Chen M, Mericko-Ishizuka P, Dow LE, Watanabe H, Schwaninger M, Min W, Marchuk DA, Zheng X, Awad IA, Kahn ML. Cerebral cavernous malformations are driven by ADAMTS5 proteolysis of versican. J Exp Med 2021; 217:151938. [PMID: 32648916 PMCID: PMC7537394 DOI: 10.1084/jem.20200140] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.
Collapse
Affiliation(s)
- Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Jaesung P Choi
- Centenary Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Andrea A Guerrero
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Carl F Wittig
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Lauren M Goddard
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Li Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | | | - Lukas E Dow
- Department of Medicine, Weill-Cornell Medicine, New York, NY
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lubeck, Lubeck, Germany
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Xiangjian Zheng
- Centenary Institute, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Oldenburg J, Malinverno M, Globisch MA, Maderna C, Corada M, Orsenigo F, Conze LL, Rorsman C, Sundell V, Arce M, Smith RO, Yau ACY, Billström GH, Mägi CÖ, Beznoussenko GV, Mironov AA, Fernando D, Daniel G, Olivari D, Fumagalli F, Lampugnani MG, Dejana E, Magnusson PU. Propranolol Reduces the Development of Lesions and Rescues Barrier Function in Cerebral Cavernous Malformations: A Preclinical Study. Stroke 2021; 52:1418-1427. [PMID: 33618555 DOI: 10.1161/strokeaha.120.029676] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joppe Oldenburg
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit (M.M., C.M., M.C., F.O., G.V.B., M.G.L., E.D.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Maria Ascencion Globisch
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | - Claudio Maderna
- Vascular Biology Unit (M.M., C.M., M.C., F.O., G.V.B., M.G.L., E.D.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Monica Corada
- Vascular Biology Unit (M.M., C.M., M.C., F.O., G.V.B., M.G.L., E.D.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit (M.M., C.M., M.C., F.O., G.V.B., M.G.L., E.D.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Lei Liu Conze
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | - Ross O Smith
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | - Anthony C Y Yau
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| | | | - Caroline Öhman Mägi
- Department of Materials and Science and Engineering, Applied Materials Science (C.O.M.), Uppsala University, Sweden
| | - Galina V Beznoussenko
- Vascular Biology Unit (M.M., C.M., M.C., F.O., G.V.B., M.G.L., E.D.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy.,Electron Microscopic Laboratory (G.V.B., A.A.M.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Alexander A Mironov
- Electron Microscopic Laboratory (G.V.B., A.A.M.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Dinesh Fernando
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala (D.F., G.D.)
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala (D.F., G.D.)
| | - Davide Olivari
- Cardiopulmonary Physiopathology Laboratory, Cardiovascular Medicine Department, Instituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy (D.O., F.F.)
| | - Francesca Fumagalli
- Cardiopulmonary Physiopathology Laboratory, Cardiovascular Medicine Department, Instituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy (D.O., F.F.)
| | - Maria Grazia Lampugnani
- Vascular Biology Unit (M.M., C.M., M.C., F.O., G.V.B., M.G.L., E.D.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy.,Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden.,Vascular Biology Unit (M.M., C.M., M.C., F.O., G.V.B., M.G.L., E.D.), The FIRC Institute of Molecular Oncology Foundation, Milan, Italy.,Department of Oncology and Haemato-Oncology, School of Medicine, University of Milan, Italy (E.D.)
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology (J.O., M.A.G., L.L.C., C.R., V.S., M.A., R.O.S., A.C.Y.Y., E.D., P.U.M.), Uppsala University, Sweden
| |
Collapse
|
40
|
Zhou HJ, Qin L, Jiang Q, Murray KN, Zhang H, Li B, Lin Q, Graham M, Liu X, Grutzendler J, Min W. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun 2021; 12:504. [PMID: 33495460 PMCID: PMC7835246 DOI: 10.1038/s41467-020-20774-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular abnormalities that primarily occur in adulthood and cause cerebral hemorrhage, stroke, and seizures. CCMs are thought to be initiated by endothelial cell (EC) loss of any one of the three Ccm genes: CCM1 (KRIT1), CCM2 (OSM), or CCM3 (PDCD10). Here we report that mice with a brain EC-specific deletion of Pdcd10 (Pdcd10BECKO) survive up to 6-12 months and develop bona fide CCM lesions in all regions of brain, allowing us to visualize the vascular dynamics of CCM lesions using transcranial two-photon microscopy. This approach reveals that CCMs initiate from protrusion at the level of capillary and post-capillary venules with gradual dissociation of pericytes. Microvascular beds in lesions are hyper-permeable, and these disorganized structures present endomucin-positive ECs and α-smooth muscle actin-positive pericytes. Caveolae in the endothelium of Pdcd10BECKO lesions are drastically increased, enhancing Tie2 signaling in Ccm3-deficient ECs. Moreover, genetic deletion of caveolin-1 or pharmacological blockade of Tie2 signaling effectively normalizes microvascular structure and barrier function with attenuated EC-pericyte disassociation and CCM lesion formation in Pdcd10BECKO mice. Our study establishes a chronic CCM model and uncovers a mechanism by which CCM3 mutation-induced caveolae-Tie2 signaling contributes to CCM pathogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/genetics
- Brain/metabolism
- Brain/pathology
- Brain/ultrastructure
- Caveolae/metabolism
- Caveolae/ultrastructure
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Humans
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Pericytes/metabolism
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Signal Transduction
- Survival Analysis
- Mice
Collapse
Affiliation(s)
- Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lingfeng Qin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Quan Jiang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Katie N Murray
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Busu Li
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qun Lin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
41
|
Abstract
Cerebral cavernous malformations (CCMs) are neurovascular abnormalities characterized by thin, leaky blood vessels resulting in lesions that predispose to haemorrhages, stroke, epilepsy and focal neurological deficits. CCMs arise due to loss-of-function mutations in genes encoding one of three CCM complex proteins, KRIT1, CCM2 or CCM3. These widely expressed, multi-functional adaptor proteins can assemble into a CCM protein complex and (either alone or in complex) modulate signalling pathways that influence cell adhesion, cell contractility, cytoskeletal reorganization and gene expression. Recent advances, including analysis of the structures and interactions of CCM proteins, have allowed substantial progress towards understanding the molecular bases for CCM protein function and how their disruption leads to disease. Here, we review current knowledge of CCM protein signalling with a focus on three pathways which have generated the most interest—the RhoA–ROCK, MEKK3–MEK5–ERK5–KLF2/4 and cell junctional signalling pathways—but also consider ICAP1-β1 integrin and cdc42 signalling. We discuss emerging links between these pathways and the processes that drive disease pathology and highlight important open questions—key among them is the role of subcellular localization in the control of CCM protein activity.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Cell Biology, Yale University School of Medicine, PO Box 208066, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Orsenigo F, Conze LL, Jauhiainen S, Corada M, Lazzaroni F, Malinverno M, Sundell V, Cunha SI, Brännström J, Globisch MA, Maderna C, Lampugnani MG, Magnusson PU, Dejana E. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. eLife 2020; 9:e61413. [PMID: 33138917 PMCID: PMC7609066 DOI: 10.7554/elife.61413] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a rare neurovascular disease that is characterized by enlarged and irregular blood vessels that often lead to cerebral hemorrhage. Loss-of-function mutations to any of three genes results in CCM lesion formation; namely, KRIT1, CCM2, and PDCD10 (CCM3). Here, we report for the first time in-depth single-cell RNA sequencing, combined with spatial transcriptomics and immunohistochemistry, to comprehensively characterize subclasses of brain endothelial cells (ECs) under both normal conditions and after deletion of Pdcd10 (Ccm3) in a mouse model of CCM. Integrated single-cell analysis identifies arterial ECs as refractory to CCM transformation. Conversely, a subset of angiogenic venous capillary ECs and respective resident endothelial progenitors appear to be at the origin of CCM lesions. These data are relevant for the understanding of the plasticity of the brain vascular system and provide novel insights into the molecular basis of CCM disease at the single cell level.
Collapse
Affiliation(s)
- Fabrizio Orsenigo
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Lei Liu Conze
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Monica Corada
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Francesca Lazzaroni
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Matteo Malinverno
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Sara Isabel Cunha
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Johan Brännström
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | | | - Claudio Maderna
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Maria Grazia Lampugnani
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
- Mario Negri Institute for Pharmacological ResearchMilanItaly
| | | | - Elisabetta Dejana
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
43
|
Muller WA. Beyond genes and transcription factors: A potential mechanism for the pathogenesis of cerebral cavernous malformations. J Exp Med 2020; 217:e20200858. [PMID: 32941595 PMCID: PMC7537395 DOI: 10.1084/jem.20200858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this issue of JEM, Hong et al. (https://doi.org/10.1084/jem.20200140) identify a major step in the pathogenesis of cerebral cavernous malformations (CCMs), which at the same time offers insight into potential therapy for this disease.
Collapse
|
44
|
Detter MR, Shenkar R, Benavides CR, Neilson CA, Moore T, Lightle R, Hobson N, Shen L, Cao Y, Girard R, Zhang D, Griffin E, Gallione CJ, Awad IA, Marchuk DA. Novel Murine Models of Cerebral Cavernous Malformations. Angiogenesis 2020; 23:651-666. [PMID: 32710309 DOI: 10.1007/s10456-020-09736-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.
Collapse
Affiliation(s)
- Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Christian R Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Catherine A Neilson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Le Shen
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Ying Cao
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Erin Griffin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA. .,James B Duke Professor, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Box 3175, Durham, NC, 27710, USA.
| |
Collapse
|
45
|
Schwefel K, Spiegler S, Kirchmaier BC, Dellweg PKE, Much CD, Pané-Farré J, Strom TM, Riedel K, Felbor U, Rath M. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34:9018-9033. [PMID: 32515053 DOI: 10.1096/fj.201902888r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Patricia K E Dellweg
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
46
|
Martinez-Corral I, Zhang Y, Petkova M, Ortsäter H, Sjöberg S, Castillo SD, Brouillard P, Libbrecht L, Saur D, Graupera M, Alitalo K, Boon L, Vikkula M, Mäkinen T. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun 2020; 11:2869. [PMID: 32513927 PMCID: PMC7280302 DOI: 10.1038/s41467-020-16496-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways. Lymphatic malformation (LM) is a debilitating often incurable vascular disease. Using a mouse model of LM driven by a disease-causative PIK3CA mutation, the authors show that vascular growth is dependent on the upstream lymphangiogenic VEGF-C signalling, permitting effective therapeutic intervention.
Collapse
Affiliation(s)
- Ines Martinez-Corral
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Yan Zhang
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Milena Petkova
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Henrik Ortsäter
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Sjöberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sandra D Castillo
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Louis Libbrecht
- Center for Vascular Anomalies, Division of Pathology, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Dieter Saur
- Department of Internal Medicine 2, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | - Mariona Graupera
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laurence Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
47
|
Li J, Zhao Y, Choi J, Ting KK, Coleman P, Chen J, Cogger VC, Wan L, Shi Z, Moller T, Zheng X, Vadas MA, Gamble JR. Targeting miR-27a/VE-cadherin interactions rescues cerebral cavernous malformations in mice. PLoS Biol 2020; 18:e3000734. [PMID: 32502201 PMCID: PMC7299406 DOI: 10.1371/journal.pbio.3000734] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM. Cerebral cavernous malformation (CCM) is a disease for which, hitherto, surgery has been the only option. This study shows that a potential therapeutic, CD5-2, inhibits lesion development and vascular leak in the brains of CCM neonatal mice by targeting the endothelial cell–specific adhesion molecule VE-cadherin and restoring the vascular integrity of CCM lesions.
Collapse
Affiliation(s)
- Jia Li
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Yang Zhao
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jaesung Choi
- Laboratory of Cardiovascular Signaling, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Ka Ka Ting
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Paul Coleman
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Victoria C. Cogger
- Aging and Alzheimers Institute and ANZAC Research Institute and Concord Hospital, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Li Wan
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Zhongsong Shi
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Mathew A. Vadas
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jennifer R. Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
48
|
Abdelilah-Seyfried S, Tournier-Lasserve E, Derry WB. Blocking Signalopathic Events to Treat Cerebral Cavernous Malformations. Trends Mol Med 2020; 26:874-887. [PMID: 32692314 DOI: 10.1016/j.molmed.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Cerebral cavernous malformations (CCMs) are pathologies of the brain vasculature characterized by capillary-venous angiomas that result in recurrent cerebral hemorrhages. Familial forms are caused by a clonal loss of any of three CCM genes in endothelial cells, which causes the activation of a novel pathophysiological pathway involving mitogen-activated protein kinase and Krüppel-like transcription factor KLF2/4 signaling. Recent work has shown that cavernomas can undergo strong growth when CCM-deficient endothelial cells recruit wild-type neighbors through the secretion of cytokines. This suggests a treatment strategy based on targeting signalopathic events between CCM-deficient endothelial cells and their environment. Such approaches will have to consider recent evidence implicating 'third hits' from hypoxia-induced angiogenesis signaling or the microbiome in modulating the development of cerebral hemorrhages.
Collapse
Affiliation(s)
- Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany.
| | - Elisabeth Tournier-Lasserve
- INSERM UMR-1141, NeuroDiderot, Université de Paris, Paris, France; AP-HP, Groupe hospitalier Saint-Louis, Lariboisière, Fernand-Widal, Service de génétique moléculaire neuro-vasculaire, Paris, France
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Developmental and Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| |
Collapse
|
49
|
Cardoso C, Arnould M, De Luca C, Otten C, Abdelilah-Seyfried S, Heredia A, Leutenegger AL, Schwaninger M, Tournier-Lasserve E, Boulday G. Novel Chronic Mouse Model of Cerebral Cavernous Malformations. Stroke 2020; 51:1272-1278. [PMID: 31992178 DOI: 10.1161/strokeaha.119.027207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background and Purpose- Cerebral cavernous malformations (CCMs) are vascular malformations of the brain that lead to cerebral hemorrhages. A pharmacological treatment is needed especially for patients with nonoperable deep-seated lesions. We and others obtained CCM mouse models that were useful for mechanistic studies and rapid trials testing the preventive effects of candidate drugs. The shortened lifespan of acute mouse models hampered evaluation of compounds that would not only prevent lesion appearance but also cure preexisting lesions. Indirubin-3'-monoxime previously demonstrated its efficacy to reverse the cardiac phenotype of ccm2m201 zebrafish mutants and to prevent lesion development in an acute CCM2 mouse model. In the present article, we developed and characterized a novel chronic CCM2 mouse model and evaluated the curative therapeutic effect of indirubin-3'-monoxime after CCM lesion development. Methods- The chronic mouse model was obtained by a postnatal induction of brain-endothelial-cell-specific ablation of the Ccm2 gene using the inducible Slco1c1-CreERT2 mouse line. Results- We obtained a fully penetrant novel CCM chronic mouse model without any obvious off-target phenotypes and compatible with long-term survival. By 3 months of age, CCM lesions ranging in size from small isolated lesions to multiple caverns developed throughout the brain. Lesion burden was quantified in animals from 1 week to 5 months of age. Clear signs of intracerebral hemorrhages were noticed in brain-endothelial-cell-specific ablation of the Ccm2 gene. In contrast with its preventive effect in the acute CCM2 mouse model, a 20 mg/kg indirubin-3'-monoxime treatment for 3 weeks in 3-month old animals neither had any beneficial effect on the lesion burden nor alleviated cerebral hemorrhages. Conclusions- The brain-endothelial-cell-specific ablation of the Ccm2 gene chronic model is a strongly improved disease model for the CCM community whose challenge today is to decipher which candidate drugs might have a curative effect on patients' preexisting lesions. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Cécile Cardoso
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Minh Arnould
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Coralie De Luca
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Cécile Otten
- Institute of Biochemistry and Biology, Potsdam University, Germany (C.O., S.A.-S.)
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Germany (C.O., S.A.-S.).,Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Germany (S.A.-S.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore (A.H.)
| | - Anne-Louise Leutenegger
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany (M.S.)
| | - Elisabeth Tournier-Lasserve
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.).,Service de Génétique, AP-HP, Hopital Lariboisière, Paris, France (E.T.-L.)
| | - Gwénola Boulday
- From the Université de Paris, NeuroDiderot, Inserm, Paris, France (C.C., M.A., C.D.L., A.-L.L., E.T.-L., G.B.)
| |
Collapse
|
50
|
Castro M, Laviña B, Ando K, Álvarez-Aznar A, Abu Taha A, Brakebusch C, Dejana E, Betsholtz C, Gaengel K. CDC42 Deletion Elicits Cerebral Vascular Malformations via Increased MEKK3-Dependent KLF4 Expression. Circ Res 2020; 124:1240-1252. [PMID: 30732528 DOI: 10.1161/circresaha.118.314300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Aberrant formation of blood vessels precedes a broad spectrum of vascular complications; however, the cellular and molecular events governing vascular malformations are not yet fully understood. OBJECTIVE Here, we investigated the role of CDC42 (cell division cycle 42) during vascular morphogenesis and its relative importance for the development of cerebrovascular malformations. METHODS AND RESULTS To avoid secondary systemic effects often associated with embryonic gene deletion, we generated an endothelial-specific and inducible knockout approach to study postnatal vascularization of the mouse brain. Postnatal endothelial-specific deletion of Cdc42 elicits cerebrovascular malformations reminiscent of cerebral cavernous malformations (CCMs). At the cellular level, loss of CDC42 function in brain endothelial cells (ECs) impairs their sprouting, branching morphogenesis, axial polarity, and normal dispersion within the brain tissue. Disruption of CDC42 does not alter EC proliferation, but malformations occur where EC proliferation is the most pronounced during brain development-the postnatal cerebellum-indicating that a high, naturally occurring EC proliferation provides a permissive state for the appearance of these malformations. Mechanistically, CDC42 depletion in ECs elicited increased MEKK3 (mitogen-activated protein kinase kinase kinase 3)-MEK5 (mitogen-activated protein kinase kinase 5)-ERK5 (extracellular signal-regulated kinase 5) signaling and consequent detrimental overexpression of KLF (Kruppel-like factor) 2 and KLF4, recapitulating the hallmark mechanism for CCM pathogenesis. Through genetic approaches, we demonstrate that the coinactivation of Klf4 reduces the severity of vascular malformations in Cdc42 mutant mice. Moreover, we show that CDC42 interacts with CCMs and that CCM3 promotes CDC42 activity in ECs. CONCLUSIONS We show that endothelial-specific deletion of Cdc42 elicits CCM-like cerebrovascular malformations and that CDC42 is engaged in the CCM signaling network to restrain the MEKK3-MEK5-ERK5-KLF2/4 pathway.
Collapse
Affiliation(s)
- Marco Castro
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Bàrbara Laviña
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Koji Ando
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Alberto Álvarez-Aznar
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Abdallah Abu Taha
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Cord Brakebusch
- Biotech Research and Innovation Center, University of Copenhagen, Denmark (C. Brakebusch).,ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet/AstraZeneca/Integrated Cardio Metabolic Centre, Huddinge, Stockholm, Sweden (C. Betsholtz)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.).,FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology Foundation, Milan, Italy (E.D.)
| | - Christer Betsholtz
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Konstantin Gaengel
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| |
Collapse
|