1
|
Xu J, Tang Y, Shen C, Li K, Zhao M, Zhou F, Tian S, Yu J, Ding Z, Chen Y. Melastoma dodecandrum polysaccharide alleviates allergic rhinitis in mice through modulating NLRP3 and IL-17 axis. Int Immunopharmacol 2025; 161:115054. [PMID: 40489908 DOI: 10.1016/j.intimp.2025.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/26/2025] [Accepted: 06/04/2025] [Indexed: 06/11/2025]
Abstract
Allergic rhinitis (AR) is a prevalent nasal disorder characterized by chronic inflammation and hypersensitivity, with limited effective treatments. Melastoma dodecandrum polysaccharide (MDP), derived from a medicinal herb, exhibits anti-inflammatory and immunomodulatory properties, making it a potential therapeutic candidate for AR. This study evaluated the therapeutic efficacy of MDP in AR mice and explored its underlying mechanisms. An ovalbumin (OVA)-induced AR mouse model was established, with MDP administered via gavage or inhalation. MDP reduced sneezing and nasal scratching in AR mice. Treatment alleviated nasal mucosa thickness, goblet cell hyperplasia, and cellular disarray, as assessed by H&E and Alcian blue staining. MDP decreased serum IgE, IL-17, and IL-1β levels, as measured by ELISA, and reduced the proportion of Th17 cells, analyzed by flow cytometry. In nasal mucosa, MDP downregulated the expression of NLRP3, GSDMD, and IL-17A proteins, and reduced the mRNA levels of NLRP3, IL-17, IL-1β, and IL-18, as determined by immunohistochemistry and qRT-PCR. MDP also mitigated tissue cell death, as shown by TUNEL staining. In vitro, MDP suppressed NLRP3 inflammasome activation and pyroptosis in bone marrow-derived macrophages (BMDMs) treated with LPS and nigericin. These effects were confirmed by western blot, qRT-PCR, and immunofluorescence, along with pyroptosis assessment and scanning electron microscopy, which revealed reduced pyroptosis and membrane damage. In conclusion, MDP effectively alleviates AR symptoms in mice, with its therapeutic effects involving the modulation of the NLRP3 inflammasome and the IL-17 signaling pathway, highlighting its clinical potential for AR management.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Youying Tang
- Yuyao Municipal Center for Disease Prevention and Control, Yuyao, 315400, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kewei Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengjia Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shasha Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Yu
- Puer Kunhong Biotechnology Company, Group C of Chamagu Town A, Simao District, Puer, Yunnan, 665000, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Zhang T, Chan K, Ece A, Daly R, Cannon A, Scalabrino GA, Frankish N, O'Sullivan J, Fallon P, Sheridan H. Bioactive Indanes: Design, synthesis and bioactivity investigation of 2,2-substituted Indane derivatives, a new bioactive Indane scaffold. Bioorg Chem 2025; 159:108352. [PMID: 40090151 DOI: 10.1016/j.bioorg.2025.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
The indane scaffold, prevalent in bioactive natural products, underpins numerous therapeutics. Our group developed a series of 1,2-indane dimers, including PH46A (9), for inflammatory and autoimmune diseases. This study details the design, synthesis and characterisation of 21 compounds, including 2,2-disubstituted indanones (16a-16h), indanols (17a-17h), and indanes (18a-18h). These compounds were tested in vitro and in vivo using the murine dextran sulphate sodium (DSS) model of inflammatory bowel disease (IBD). Cytotoxicity screening in THP-1 macrophages and SW480 cells revealed increased cytotoxicity with indene ring substitution at C2, with 18d emerging as potent. In lipoxygenase (LOX) assays, 18a, 18d, and 18c exhibited significant 5-LOX inhibition, with 18d comparable to zileuton. Selective 5-LOX inhibition over 15-LOX indicated distinct ligand-isozyme interactions, potentially informing novel inhibitor development. Cytokine profiling identified compounds with optimal C1 and C2 substituents, particularly 18d, which inhibited IL-6, IL-1β, TNF-α, and IFN-γ in THP-1 macrophages and IL-8 in SW480 cells. In vivo DSS colitis model testing showed significant disease activity index reduction (p < 0.01) with 18d. Subsequent to molecular docking, molecular docking simulations predicted stable binding of 18c and 18d to 5-LOX under mimicked physiological conditions. These findings offer insights into indane-based therapeutic drug development for IBD, highlighting cost reductions by minimising stereochemistry complexity.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, Ireland; Trino Therapeutics Ltd, The Tower, Trinity Technology and Enterprise Campus, Dublin 2, Ireland.; Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Kit Chan
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Abdulilah Ece
- Department of Medical Biochemistry, Faculty of Medicine, Biruni University, İstanbul TR-34015, Türkiye.
| | - Robin Daly
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Aoife Cannon
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Dublin 8, Ireland.
| | - Gaia A Scalabrino
- Trino Therapeutics Ltd, The Tower, Trinity Technology and Enterprise Campus, Dublin 2, Ireland.; The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Neil Frankish
- Trino Therapeutics Ltd, The Tower, Trinity Technology and Enterprise Campus, Dublin 2, Ireland.; Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Jacintha O'Sullivan
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Dublin 8, Ireland.
| | - Padraig Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Helen Sheridan
- Trino Therapeutics Ltd, The Tower, Trinity Technology and Enterprise Campus, Dublin 2, Ireland.; Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Medical Biochemistry, Faculty of Medicine, Biruni University, İstanbul TR-34015, Türkiye; The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
3
|
Li MJ, Lan MN, Du YX, Liu Y, Zhang HY, Guo M, Liu SW, Xia HY, Wu ZJ, Zheng HJ. EPRCN exerts neuroprotective function by regulating gut microbiota and restoring gut immune homeostasis in Alzheimer's disease model mice. J Alzheimers Dis 2025:13872877251339762. [PMID: 40325871 DOI: 10.1177/13872877251339762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BackgroundNo effective drug treatment is currently available for Alzheimer's disease (AD), highlighting the urgent need to develop efficient therapeutic options. We have developed a formula based on medicine and food homology (MFH) consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN), and demonstrated that it can treat AD by alleviating neuroinflammation and oxidative stress. However, whether EPRCN can improve AD by regulating gut microbiota remains unknown.ObjectiveThe current study aimed to evaluate the effect of EPRCN on regulating gut microbiota and neuroprotection.Methods16S rRNA sequencing was used to assess the structure of gut microbiota. Hematoxylin-eosin (HE) staining, qRT-PCR, and ELISA were used to evaluate gut inflammation. Detected indexes associated with cholinergic dysfunction and neuronal damage to investigate the neuroprotective effects of EPRCN.Results16S rRNA gene analysis revealed that EPRCN remodeled the gut microbiota, inhibited gut metabolic disorders, and promoted CoA biosynthesis in scopolamine-induced mice. EPRCN can ameliorates gut inflammation by activating the cholinergic anti-inflammatory pathway. The results further indicated that EPRCN improved cholinergic dysfunction by inhibiting the activity of acetylcholinesterase and restoring cholinergic receptors. Additionally, EPRCN administration suppressed the neuronal loss and elevated brain derived neurotrophic factor expression in hippocampus. Correlation analysis found that alteration of several gut microbes was associated with indexes improved by EPRCN.ConclusionsThese findings suggest that EPRCN may serve as a promising dietary intervention for treating AD by regulating the microbiota-gut-brain axis and exerting neuroprotective function.
Collapse
Affiliation(s)
- Ming-Jie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yao-Xuan Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shi-Wei Liu
- Shanghai Xizuo Biotechnology Co., Ltd, Shanghai, China
| | - Hai-Yang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zheng-Jun Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| |
Collapse
|
4
|
Park C, Kim M, Park JW, Kim J, Bu Y, Ko SJ. Effect of Bojanggunbi-tang and its primary constituent herbs on the gastrointestinal tract: a scoping review. Front Pharmacol 2025; 16:1543194. [PMID: 40144663 PMCID: PMC11938064 DOI: 10.3389/fphar.2025.1543194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background Bojanggunbi-tang (BGT), a herbal prescription used in traditional Korean medicine, has been used to treat various gastrointestinal (GI) diseases. Methods Studies on BGT published until May 2024 were retrieved from the electronic databases of Medline, CENTRAL, Embase, AMED, CNKI, CiNii, Kmbase, KISS, NDSL, and OASIS using GI-related terms. All study types, regardless of the research method or language, were eligible for inclusion. Additional articles on Lonicera japonica, Atractylodes macrocephala, and Alisma canaliculatum, which are key components of BGT, were retrieved from the databases of Medline, CENTRAL, Embase, and Web of Science using GI-specific terms. The basic information, research models, administration methods, evaluation methods, and treatment outcomes of the selected studies were examined subsequently. Results Fourteen studies, comprising nine animal studies, one cell-based study, and four human studies, were included in the final analysis. BGT was found to exhibit anti-inflammatory effects, promote restoration of the gastrointestinal mucosa, and regulate GI motility. Analysis of the key herbal components L. japonica, A. macrocephala, and A. canaliculatum revealed that they inhibit inflammatory cytokines and oxidative substances, regulate serotonin and cholinergic pathways, and modulate intestinal microbiota. Conclusion This scoping review confirmed the therapeutic potential and mechanisms of action of BGT and its main components, L. japonica, A. macrocephala, and A. canaliculatum, thereby indicating its ability to enhance GI health. Further studies, including randomized clinical trials, must be conducted in the future to confirm these findings. Scoping review registration The study was registered in OSF, an international scoping review database: https://doi.org/10.17605/OSF.IO/ATU4S.
Collapse
Affiliation(s)
- Chaehyun Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Minjeong Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsung Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Division of Digestive Diseases, Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Jae Ko
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Garfias Noguez C, Ramírez Damián M, Ortiz Moreno A, Márquez Flores YK, Alamilla Beltrán L, Márquez Lemus M, Bermúdez Humarán LG, Sánchez Pardo ME. Microencapsulation and Probiotic Characterization of Lactiplantibacillus plantarum LM-20: Therapeutic Application in a Murine Model of Ulcerative Colitis. Nutrients 2025; 17:749. [PMID: 40077619 PMCID: PMC11901509 DOI: 10.3390/nu17050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Microencapsulation improves the storage, handling, and administration of probiotics by protecting them from environmental factors and adverse conditions in the gastrointestinal tract. This process facilitates their controlled delivery in the body, which can simplify their use in therapies without compromising their therapeutic efficacy. OBJECTIVES This study investigates the microencapsulation of Lactiplantibacillus plantarum LM-20, its probiotic properties, and its effects in a murine model of ulcerative colitis. METHODS/RESULTS Synbiotic microencapsulation was carried out using spray drying with maltodextrin, gum Arabic, and inulin, achieving an encapsulation efficiency of 90.76%. The resulting microcapsules exhibited remarkable resistance to simulated gastrointestinal conditions in vitro, maintaining a survival rate of 90%. The drying process did not compromise the probiotic characteristics of the bacteria, as they demonstrated enhanced auto-aggregation, hydrophobicity, and phenol tolerance. The therapeutic potential of the microencapsulated synbiotic was evaluated in a murine model of dextran sodium sulfate-induced ulcerative colitis. The results revealed that mice treated with microencapsulated Lactiplantibacillus plantarum LM-20 showed an 83.3% reduction in the disease activity index (DAI) compared to the ulcerative colitis control group. Moreover, a significant decrease was observed in pro-inflammatory cytokine levels (IL-1β and TNF-α) and myeloperoxidase activity, with values comparable to those of the healthy control group. CONCLUSIONS These findings suggest that microencapsulated Lactiplantibacillus plantarum LM-20 could be a promising candidate for therapeutic applications in the prevention and management of ulcerative colitis.
Collapse
Affiliation(s)
- Cynthia Garfias Noguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Morayma Ramírez Damián
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Alicia Ortiz Moreno
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Yazmín Karina Márquez Flores
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Liliana Alamilla Beltrán
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Mario Márquez Lemus
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Luis G. Bermúdez Humarán
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domain de Vilvert, 78350 Jouy-en-Josas, France;
| | - María Elena Sánchez Pardo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| |
Collapse
|
6
|
Xing Y, Wang MM, Zhang F, Xin T, Wang X, Chen R, Sui Z, Dong Y, Xu D, Qian X, Lu Q, Li Q, Cai W, Hu M, Wang Y, Cao JL, Cui D, Qi J, Wang W. Lysosomes finely control macrophage inflammatory function via regulating the release of lysosomal Fe 2+ through TRPML1 channel. Nat Commun 2025; 16:985. [PMID: 39856099 PMCID: PMC11760952 DOI: 10.1038/s41467-025-56403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Lysosomes are best known for their roles in inflammatory responses by engaging in autophagy to remove inflammasomes. Here, we describe an unrecognized role for the lysosome, showing that it finely controls macrophage inflammatory function by manipulating the lysosomal Fe2+-prolyl hydroxylase domain enzymes (PHDs)-NF-κB-interleukin 1 beta (IL1B) transcription pathway that directly links lysosomes with inflammatory responses. TRPML1, a lysosomal cationic channel, is activated secondarily to ROS elevation upon inflammatory stimuli, which in turn suppresses IL1B transcription, thus limiting the excessive production of IL-1β in macrophages. Mechanistically, the suppression of IL1B transcription caused by TRPML1 activation results from its modulation on the release of lysosomal Fe2+, which subsequently activates PHDs. The activated PHDs then represses transcriptional activity of NF-κB, ultimately resulting in suppressed IL1B transcription. More importantly, in vivo stimulation of TRPML1 ameliorates multiple clinical signs of Dextran sulfate sodium-induced colitis in mice, suggesting TRPML1 has potential in treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feifei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rong Chen
- The First People's Hospital of Yancheng, Yancheng, China
| | - Zhongheng Sui
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Yawei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongxue Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingyu Qian
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijie Cai
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Kyushu, Japan
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Derong Cui
- Department of Anesthesiology, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiansong Qi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Dotlacil V, Coufal S, Lerchova T, Zarubova K, Kucerova B, Tlaskalova-Hogenova H, Kverka M, Skaba R, Bronsky J, Hradsky O, Rygl M. Intestinal tissue levels of anti-TNF alpha, antibodies, and cytokines in paediatric Crohn disease. Sci Rep 2025; 15:1138. [PMID: 39775097 PMCID: PMC11707019 DOI: 10.1038/s41598-024-83858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The aim was to explore factors associated with intestinal tissue levels of anti-TNF alpha (anti-TNF), anti-TNF antibodies, and cytokines in pediatric patients with Crohn Disease (CD). In a prospective exploratory study of CD patients undergoing ileocecal resection or colonoscopy between 6/2020 and 1/2023, we analysed tissue levels of anti-TNF, anti-TNF antibodies, and cytokines (TNF-α, IL-17, IL-1β, IFN-γ) from intestinal biopsies. Mixed-effects regression models, adjusted for potential confounders, were used. Data from 27 CD patients (18 females, 66.7%) were analysed. Fourteen (52%) received adalimumab (ADA) and thirteen received infliximab (IFX), with a median therapy duration of 17 (IQR 4.5-41.5) months. Higher levels of free anti-TNF were found in macroscopically inflamed tissue compared to non-inflamed tissue (β = 3.42, 95% CI 1.05-6.10). No significant association was found between serum and tissue anti-TNF levels (β= -0.06, 95% CI - 0.70-0.58). Patients treated longer with anti-TNF had increased IL-17 levels (β = 0.19, 95% CI 0.05-0.33), independent of disease duration and age. IFN-γ levels were linked with both follow-up duration and anti-TNF length. Our study shows significantly higher free drug levels in inflamed tissue. Long-term anti-TNF treatment has been linked to increased IL-17 levels, suggesting a possible impact on the cytokine response pathway. We did not observe a relationship between serum and tissue anti-TNF levels.
Collapse
Affiliation(s)
- Vojtech Dotlacil
- Department of Paediatric Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Lerchova
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kristyna Zarubova
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Barbora Kucerova
- Department of Paediatric Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Richard Skaba
- Department of Paediatric Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jiri Bronsky
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ondrej Hradsky
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Michal Rygl
- Department of Paediatric Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
8
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Van Doren VE, Ackerley CG, Arthur RA, Murray PM, Smith SA, Hu YJ, Kelley CF. Rectal mucosal inflammation, microbiome, and wound healing in men who have sex with men who engage in receptive anal intercourse. Sci Rep 2024; 14:31598. [PMID: 39738273 PMCID: PMC11685717 DOI: 10.1038/s41598-024-80074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025] Open
Abstract
Mucosal injury is common during consensual intercourse and induces an inflammatory response that could contribute to pathogen transmission including HIV. Here, we compared mucosal immune and microbiome responses to experimentally induced mucosal injury between men who have sex with men engaging in receptive anal intercourse (MSM-RAI) and men who do not engage in RAI (controls), all without HIV. Rectal mucosal secretions were collected from adult MSM-RAI (n = 19) and controls (n = 6) via anoscopy before and up to eight days after experimentally induced injury. Mucosal healing was evaluated by repeated injury surface area measurements with digital imaging. MSM-RAI demonstrated overall significantly higher concentrations of pro-inflammatory cytokines and a distinct rectal microbiome compared with controls. Wound healing was numerically faster in MSM-RAI but did not meet statistical significance (p = 0.09). Different cytokine injury response patterns were observed between MSM-RAI and controls; however, IL-6 and IP-10 were important mediators in both groups. Microbial guilds, particularly from the Lachnospiraceae and Prevotellaceae families, were associated with rectal mucosal inflammation. This work is the first experimental study of rectal mucosal injury and the immune environment in healthy humans and provides a more nuanced understanding of rectal mucosal inflammation after injury, which can inform our understanding of HIV transmission.
Collapse
Affiliation(s)
- Vanessa E Van Doren
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States.
| | - Cassie G Ackerley
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, Woodruff Memorial Research Building, Suite 7110, 101 Woodruff Circle, 30322, Atlanta, Georgia, United States
| | - Phillip M Murray
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
| | - S Abigail Smith
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road, 30322, Atlanta, Georgia, United States
| | - Colleen F Kelley
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
- Grady Health System, 80 Jesse Hill Jr Drive, 30303, Atlanta, Georgia, United States
| |
Collapse
|
10
|
Xu L, Liu W, Huang X, Sun T, Mei L, Liu M, Ren Z, Wang M, Zheng H, Wang Q, Li D, Wang Q, Ke X. Sinomenine hydrochloride improves DSS-induced colitis in mice through inhibition of the Notch signaling pathway. BMC Gastroenterol 2024; 24:451. [PMID: 39695403 DOI: 10.1186/s12876-024-03546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE To study the therapeutic effect of sinomenine hydrochloride (SH) on dextran sodium sulfate (DSS)-induced colitis in mice as an animal model and the changes of Notch signaling pathway in colon tissue of mice after treatment. METHODS Twenty-four mice were randomly divided into control group, model group, SH low-dose group (20 mg/kg) and SH high-dose group (60 mg/kg), with 6 mice in each group. Disease activity index (DAI), colonic mucosal injury index and colonic histopathological score were calculated. The expression levels of related genes, proteins in Notch signaling pathway and inflammatory factors were quantified. RESULTS SH can significantly reduce the symptoms of colitis mice, and can significantly reduce the DAI score (Model: 3.44 ± 0.27; SH-20: 2.50 ± 0.18; SH-60: 1.89 ± 0.17; P < 0.001) and histopathological injury degree (Model: 7.67 ± 0.52; SH-20: 5.17 ± 0.75, P < 0.01; SH-60: 3.33 ± 0.52, P < 0.001). SH can down-regulate the expression levels of Notch1, NICD1, Jagged1 and Hes1 proteins in colon tissue of colitis mice (Model: 1.92 ± 0.16, 1.83 ± 0.21, 2.23 ± 0.22, 1.91 ± 0.17; SH-20: 1.56 ± 0.12, 1.39 ± 0.13, 1.58 ± 0.12, 1.38 ± 0.11; SH-60: 1.24 ± 0.09, 1.23 ± 0.10, 1.23 ± 0.11, 1.22 ± 0.09; P < 0.01), and reduce the contents of serum pro-inflammatory cytokines TNF-α, IL-1β and IL-6 (Model: 718.53 ± 81.81, 51.62 ± 2.80, 444.07 ± 67.77; SH-20: 544.72 ± 90.03, 34.10 ± 2.90, 345.43 ± 43.40; SH-60: 434.11 ± 71.75, 29.44 ± 3.70, 236.11 ± 29.35; P < 0.001). CONCLUSION The therapeutic effect of SH on DSS-induced colitis in mice may be related to inhibiting the overactivation of Notch signaling pathway.
Collapse
Affiliation(s)
- Linxia Xu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Wei Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Xixiang Huang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Tong Sun
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Letian Mei
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Man Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Zhi Ren
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Meng Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Hailun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Qiangwu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Dapeng Li
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Qizhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Xiquan Ke
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China.
| |
Collapse
|
11
|
Tian S, Goand UK, Paudel D, Le GV, Tiwari AK, Prabhu KS, Singh V. Processed Dietary Fiber Partially Hydrolyzed Guar Gum Increases Susceptibility to Colitis and Colon Tumorigenesis in Mice. RESEARCH SQUARE 2024:rs.3.rs-5522559. [PMID: 39711544 PMCID: PMC11661293 DOI: 10.21203/rs.3.rs-5522559/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The vital role of naturally occurring dietary fibers (DFs) in maintaining intestinal health has fueled the incorporation of isolated DFs into processed foods. A select group of soluble DFs, such as partially hydrolyzed guar gum (Phgg), are being promoted as dietary supplements to meet recommended DF intake. However, the potential effects of regular consumption of these processed DFs on gastrointestinal health remain largely unknown. The present study assessed the impact of Phgg on the development of intestinal inflammation and colitis-associated colon carcinogenesis (CAC). Wild-type C57BL/6 mice were fed isocaloric diets containing either 7.5% Phgg and 2.5% cellulose (Phgg group) or 10% cellulose (control) for four weeks. To induce colitis, a subgroup of mice from each group was switched to 1.4% dextran sulfate sodium (DSS) in drinking water for seven days. CAC was induced in another subgroup through a single dose of azoxymethane (AOM, 7.5 mg/kg i.p.) followed by three DSS/water cycles. To our surprise, Phgg feeding exacerbated DSS-induced colitis, as evidenced by body weight loss, disrupted colonic crypt architecture, and increased pro-inflammatory markers accompanied by a decrease in anti-inflammatory markers. Additionally, Phgg feeding led to increased colonic expression of genes promoting cell proliferation. Accordingly, extensive colon tumorigenesis was observed in Phgg-fed mice in the AOM/DSS model, whereas the control group exhibited no visible tumors. To investigate whether reducing Phgg has a distinct effect on colitis and CAC development, mice were fed a low-Phgg diet (2.5% Phgg). The low-Phgg group also exhibited increased colitis and tumorigenesis compared to the control, although the severity was markedly lower than in the regular Phgg (7.5%) group, suggesting a dose-dependent effect of Phgg in colitis and CAC development. Our study reveals that Phgg supplementation exacerbates colitis and promotes colon tumorigenesis, warranting further investigation into the potential gastrointestinal health risks associated with processed Phgg consumption.
Collapse
|
12
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
13
|
Feng Y, Chen C, Shao A, Wu L, Hu H, Zhang T. Emerging interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors or degraders as therapeutic agents for autoimmune diseases and cancer. Acta Pharm Sin B 2024; 14:5091-5105. [PMID: 39807338 PMCID: PMC11725142 DOI: 10.1016/j.apsb.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer. Consequently, targeting IRAK4-mediated signaling pathways has emerged as a promising therapeutic strategy. Small molecule inhibitors and degraders designed to modulate IRAK4 have shown efficacy in mitigating related diseases. In this paper, we will provide a detailed description of the structure and function of IRAK4, the role of IRAK4 in related diseases, as well as the currently reported small molecule inhibitors and degraders of IRAK4. It is expected to provide new directions for enriching the clinical treatment of inflammation and related diseases.
Collapse
Affiliation(s)
- Yifan Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Anqi Shao
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haiyu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Weber-Stiehl S, Taubenheim J, Järke L, Röcken C, Schreiber S, Aden K, Kaleta C, Rosenstiel P, Sommer F. Hexokinase 2 expression in apical enterocytes correlates with inflammation severity in patients with inflammatory bowel disease. BMC Med 2024; 22:490. [PMID: 39444028 PMCID: PMC11515617 DOI: 10.1186/s12916-024-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Inflammation is characterized by a metabolic switch promoting glycolysis and lactate production. Hexokinases (HK) catalyze the first reaction of glycolysis and inhibition of epithelial HK2 protected from colitis in mice. HK2 expression has been described as elevated in patients with intestinal inflammation; however, there is conflicting data from few cohorts especially with severely inflamed individuals; thus, systematic studies linking disease activity with HK2 levels are needed. METHODS We examined the relationship between HK2 expression and inflammation severity using bulk transcriptome data derived from the mucosa of thoroughly phenotyped inflammatory bowel disease (IBD) patients of two independent cohorts including both subtypes Crohn's disease (CD) and ulcerative colitis (UC). Publicly available single-cell RNA sequencing data were analyzed, and immunofluorescence staining on colonic biopsies of unrelated patients with intestinal inflammation was performed to confirm the RNA-based findings on cellular and protein level. RESULTS HK2 expression gradually increased from mild to intermediate inflammation, yet strongly declined at high inflammation scores. Expression of epithelial marker genes also declined at high inflammation scores, whereas that of candidate immune marker genes increased, indicating a cellular remodeling of the mucosa during inflammation with an infiltration of HK2-negative immune cells and a loss of terminal differentiated epithelial cells in the apical epithelium-the main site of HK2 expression. Normalizing for the enterocyte loss clearly identified epithelial HK2 expression as gradually increasing with disease activity and remaining elevated at high inflammation scores. HK2 protein expression was mostly restricted to brush border enterocytes, and these cells along with HK2 levels vanished with increasing disease severity. CONCLUSIONS Our findings clearly define dysregulated epithelial HK2 expression as an indicator of disease activity in intestinal inflammation and suggest targeted HK2-inhibition as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Saskia Weber-Stiehl
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Jan Taubenheim
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Lea Järke
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3/House U33, Kiel, 24105, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany.
| |
Collapse
|
15
|
Gobert AP, Latour YL, McNamara KM, Hawkins CV, Williams KJ, Asim M, Barry DP, Allaman MM, Delgado AG, Milne GL, Zhao S, Piazuelo MB, Washington MK, Coburn LA, Wilson KT. The reverse transsulfuration pathway affects the colonic microbiota and contributes to colitis in mice. Amino Acids 2024; 56:63. [PMID: 39427081 PMCID: PMC11490428 DOI: 10.1007/s00726-024-03423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen Helicobacter pylori. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of Cth-/- mice. We observed that clinical and histological parameters are ameliorated in Cth-deficient mice compared to wild-type animals. However, Cth deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene Slc7a11 encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in Cth-/- mice compared to both WT and Slc7a11-/- mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kamery J Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ginger L Milne
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Kay Washington
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
17
|
Matos MS, Ávila-Gálvez MÁ, González-Sarrías A, Silva NV, Crespo CL, Jacinto A, Serra AT, Matias AA, Nunes Dos Santos C. Unveiling the anti-inflammatory potential of 11β,13-dihydrolactucin for application in inflammatory bowel disease management. Food Funct 2024; 15:9254-9271. [PMID: 39162124 DOI: 10.1039/d4fo01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Management of inflammatory bowel disease (IBD) poses significant challenges, and there is a need for innovative therapeutic approaches. This study investigates the anti-inflammatory properties of the dietary sesquiterpene lactone (SL) 11β,13-dihydrolactucin, which can be found in chicory, in three distinct complementary models of intestinal inflammation (two cell models and a zebrafish model), offering comprehensive insights into its potential application for IBD treatment alternatives. In a triple cell co-culture composed of Caco-2, HT29-MTX-E12, and Raji B, 11β,13-dihydrolactucin demonstrated remarkable anti-inflammatory activity at several levels of the cellular inflammatory response. Notably, 11β,13-dihydrolactucin prevented the activation of critical signalling pathways associated with inflammation, namely NF-κB and MAPK p38. This SL also decreased the release of the neutrophil-recruiting chemokine IL-8. Additionally, the compound reduced the gene expression of IL-6 and TNF-α, as well as the gene and protein expression of the inflammatory inducible enzymes iNOS and COX-2. In a myofibroblast-like human cell model, 11β,13-dihydrolactucin decreased the release of the cytokine TNF-α and the COX-2-derived inflammation mediator PGE2. Finally, in a zebrafish model of gut inflammation, 11β,13-dihydrolactucin effectively reduced neutrophil infiltration, further supporting its anti-inflammatory efficacy in a physiological context. Collectively, our findings highlight the promising anti-inflammatory potential of 11β,13-dihydrolactucin across various facets of intestinal inflammation, providing a foundation for the consideration of chicory as a promising candidate for incorporation in food or nutraceutical products for the potential prevention of IBD.
Collapse
Affiliation(s)
- Melanie S Matos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
| | - María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - Nuno-Valério Silva
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Carolina Lage Crespo
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - António Jacinto
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Institute for Medical Systems Biology, NIMSB, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Ana Teresa Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
| | - Ana A Matias
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Institute for Medical Systems Biology, NIMSB, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| |
Collapse
|
18
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
19
|
Malicevic U, Rai V, Skrbic R, Agrawal DK. NLRP3 Inflammasome and Gut Dysbiosis Linking Diabetes Mellitus and Inflammatory Bowel Disease. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:200-218. [PMID: 39328924 PMCID: PMC11426418 DOI: 10.26502/aimr.0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Diabetes mellitus and inflammatory bowel disease are chronic conditions with significant overlap in their pathophysiology, primarily driven by chronic inflammation. Both diseases are characterized by an aberrant immune response and disrupted homeostasis in various tissues. However, it remains unclear which disease develops first, and which one contributes to the other. Diabetes mellitus increases the risk of inflammatory bowel disease and inflammatory bowel disease may increase the risk of developing diabetes. This review focuses on comprehensively discussing the factors commonly contributing to the pathogenesis of diabetes mellitus and inflammatory bowel disease to draw a relationship between them and the possibility of targeting common factors to attenuate the incidence of one if the other is present. A key player in the intersection of diabetes mellitus and inflammatory bowel disease is the NLRP3 inflammasome, which regulates the production of pro-inflammatory cytokines leading to prolonged inflammation and tissue damage. Additionally, toll-like receptors via sensing microbial components contribute to diabetes mellitus and inflammatory bowel disease by initiating inflammatory responses. Gut dysbiosis, a common link in both diseases, further intensifies inflammation and metabolic dysfunction. Alterations in gut microbiota composition affect intestinal permeability and immune modulation, perpetuating a vicious cycle of inflammation and disease progression by changing protein expression. The overlap in the underlying inflammatory mechanisms has led to the potential of targeting mediators of chronic inflammation using anti-inflammatory drugs and biologics that benefit both conditions or attenuate the incidence of one in the presence of the other.
Collapse
Affiliation(s)
- Ugljesa Malicevic
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
- Departments of Pathophysiology, Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Ranko Skrbic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
- Departments of Pathophysiology, Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
20
|
Hong SM, Moon W. [Old and New Biologics and Small Molecules in Inflammatory Bowel Disease: Anti-interleukins]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:65-81. [PMID: 39176462 DOI: 10.4166/kjg.2024.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disease of the gastrointestinal tract. The introduction of biologics, particularly anti-interleukin (IL) agents, has revolutionized IBD treatment. This review summarizes the role of ILs in IBD pathophysiology and describes the efficacy and positioning of anti-IL therapies. We discuss the functions of key ILs in IBD and their potential as therapeutic targets. The review then discusses anti-IL therapies, focusing primarily on ustekinumab (anti-IL-12/23), risankizumab (anti-IL-23), and mirikizumab (anti-IL-23). Clinical trial data demonstrate their efficacy in inducing and maintaining remission in Crohn's disease and ulcerative colitis. The safety profiles of these agents are generally favorable. However, long-term safety data for newer agents are still limited. The review also briefly discusses emerging therapies such as guselkumab and brazikumab. Network meta-analyses suggest that anti-IL therapies perform well compared to other biological agents. These agents may be considered first- or second-line therapies for many patients, especially those with comorbidities or safety concerns. Anti-IL therapies represent a significant advancement in IBD treatment, offering effective and relatively safe options for patients with moderate to severe disease.
Collapse
Affiliation(s)
- Seung Min Hong
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
21
|
Ryu HM, Islam SMS, Riaz B, Sayeed HM, Choi B, Sohn S. Immunomodulatory Effects of a Probiotic Mixture: Alleviating Colitis in a Mouse Model through Modulation of Cell Activation Markers and the Gut Microbiota. Int J Mol Sci 2024; 25:8571. [PMID: 39201260 PMCID: PMC11354276 DOI: 10.3390/ijms25168571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ulcerative colitis (UC) is a persistent inflammatory intestinal disease that consistently affects the colon and rectum. Its exact cause remains unknown. UC causes a considerable challenge in healthcare, prompting research for novel therapeutic strategies. Although probiotics have gained popularity as possible candidates for managing UC, studies are still ongoing to identify the best probiotics or probiotic mixtures for clinical applications. This study aimed to determine the efficacy of a multi-strain probiotic mixture in mitigating intestinal inflammation in a colitis mouse model induced by dextran sulfate sodium. Specifically, a multi-strain probiotic mixture consisting of Tetragenococcus halophilus and Eubacterium rectale was used to study its impact on colitis symptoms. Anti-inflammatory effects were evaluated using ELISA and flow cytometry. The configuration of gut microbial communities was determined using 16S rRNA metagenomic analysis. According to this study, colitis mice treated with the probiotic mixture experienced reduced weight loss and significantly less colonic shortening compared to untreated mice. Additionally, the treated mice exhibited increased levels of forkhead box P3 (Foxp3) and interleukin 10, along with decreased expression of dendritic cell activation markers, such as CD40+, CD80+, and CD83+, in peripheral blood leukocytes and intraepithelial lymphocytes. Furthermore, there was a significant decrease in the frequencies of CD8+N.K1.1+ cells and CD11b+Ly6G+ cells. In terms of the gut microbiota, probiotic-mixture treatment of colitis mice significantly increased the abundance of the phyla Actinobacteria and Verrucomicrobia (p < 0.05). These results provide valuable insights into the therapeutic promise of multi-strain probiotics, shedding light on their potential to alleviate colitis symptoms. This research contributes to the ongoing exploration of effective probiotic interventions for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - S. M. Shamsul Islam
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bushra Riaz
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Hasan M. Sayeed
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bunsoon Choi
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| |
Collapse
|
22
|
Zhao Y, Wan Q, He X. Construction of IRAK4 inhibitor activity prediction model based on machine learning. Mol Divers 2024; 28:2289-2300. [PMID: 38970641 DOI: 10.1007/s11030-024-10926-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a crucial serine/threonine protein kinase that belongs to the IRAK family and plays a pivotal role in Toll-like receptor (TLR) and Interleukin-1 receptor (IL-1R) signaling pathways. Due to IRAK4's significant role in immunity, inflammation, and malignancies, it has become an intriguing target for discovering and developing potent small-molecule inhibitors. Consequently, there is a pressing need for rapid and accurate prediction of IRAK4 inhibitor activity. Leveraging a comprehensive dataset encompassing activity data for 1628 IRAK4 inhibitors, we constructed a prediction model using the LightGBM algorithm and molecular fingerprints. This model achieved an R2 of 0.829, an MAE of 0.317, and an RMSE of 0.460 in independent testing. To further validate the model's generalization ability, we tested it on 90 IRAK4 inhibitors collected in 2023. Subsequently, we applied the model to predict the activity of 13,268 compounds with docking scores less than - 9.503 kcal/mol. These compounds were initially screened from a pool of 1.6 million molecules in the chemdiv database through high-throughput molecular docking. Among these, 259 compounds with predicted pIC50 values greater than or equal to 8.00 were identified. We then performed ADMET predictions on these selected compounds. Finally, through a rigorous screening process, we identified 34 compounds that adhere to the four complementary drug-likeness rules, making them promising candidates for further investigation. Additionally, molecular dynamics simulations confirmed the stable binding of the screened compounds to the IRAK4 protein. Overall, this work presents a machine learning model for accurate prediction of IRAK4 inhibitor activity and offers new insights for subsequent structure-guided design of novel IRAK4 inhibitors.
Collapse
Affiliation(s)
- Yihuan Zhao
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, 563006, People's Republic of China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China.
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, 563006, China.
| | - Qianwen Wan
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, 563006, People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaoyu He
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, 563006, People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, 563006, China
| |
Collapse
|
23
|
Zhang S, Li C. A curcumin-loaded biopolymeric nanocomposite alleviates dextran sulfate sodium induced ulcerative colitis via suppression of inflammation and oxidative stress. Int J Biol Macromol 2024; 275:133665. [PMID: 38971294 DOI: 10.1016/j.ijbiomac.2024.133665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Functional drugs nano delivery systems manufactured from natural active products are promising for the field of biomedicines. In this study, an anti-ulcerative colitis (UC) curcumin loaded biopolymeric nanocomposite (CZNH) was fabricated and investigated. CZNH nanocomposite was obtained using the anti-solvent precipitation method, wherein curcumin-loaded zein colloidal particles served as the core, while sodium casein (NaCas) and hyaluronic acid (HA) formed the outermost layer of CZNH nanocomposite. Fourier transform infrared (FT-IR) spectrum and transmission electron microscopy (TEM) findings demonstrated that CZNH nanocomposite was a double-layer spherical micelle (250 nm) resulting from the hydrogen bond interactions and electrostatic adsorptions between zein, NaCas, and HA. Furthermore, CZNH nanocomposite exhibited prominent resuspension and storage stability in aqueous solution, which can be stored at 4 °C for approximately 30 days. In vivo anti-UC studies showed that CZNH nanocomposite could effectively alleviate UC symptoms via mediating inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6], myeloperoxidase (MPO), and oxidative stress factor [malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)]. This study suggested that the CZNH nanocomposite showed great promise as an efficient curcumin nanocarrier for UC therapy.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
24
|
Israni DK, Patel ML, Dodiya RK. Exploring the versatility of miRNA-128: a comprehensive review on its role as a biomarker and therapeutic target in clinical pathways. Mol Biol Rep 2024; 51:860. [PMID: 39068606 DOI: 10.1007/s11033-024-09822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
MicroRNAs (miRNAs/ miRs) are short, noncoding RNAs, usually consisting of 18 to 24 nucleotides, that control gene expression after the process of transcription and have crucial roles in several clinical processes. This article seeks to provide an in-depth review and evaluation of the many activities of miR-128, accentuating its potential as a versatile biomarker and target for therapy; The circulating miR-128 has garnered interest because of its substantial influence on gene regulation and its simplicity in extraction. Several miRNAs, such as miR-128, have been extracted from circulating blood cells, cerebrospinal fluid, and plasma/serum. The miR-128 molecule can specifically target a diverse range of genes, enabling it to have intricate physiological impacts by concurrently regulating many interrelated pathways. It has a vital function in several biological processes, such as modulating the immune system, regulating brain plasticity, organizing the cytoskeleton, and inducing neuronal death. In addition, miR-128 modulates genes associated with cell proliferation, the cell cycle, apoptosis, plasma LDL levels, and gene expression regulation in cardiac development. The dysregulation of miR-128 expression and activity is associated with the development of immunological responses, changes in neural plasticity, programmed cell death, cholesterol metabolism, and heightened vulnerability to autoimmune illnesses, neuroimmune disorders, cancer, and cardiac problems; The paper highlights the importance of studying the consequences of miR-128 dysregulation in these specific locations. By examining the implications of miRNA-128 dysregulation in these areas, the article underscores its significance in diagnosis and treatment, providing a foundation for research and clinical applications.
Collapse
Affiliation(s)
- Dipa K Israni
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India.
| | - Manish L Patel
- LJ Institute of Pharmacy, LJ University, Ahmedabad, Gujarat, India
| | - Rohinee K Dodiya
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India
| |
Collapse
|
25
|
Yang Y, Zhang Z, Wang Y, Rao J, Sun J, Wu Z, He J, Tan X, Liang L, Yu Q, Wu Z, Zou H, Zhang H, Dong M, Zheng J, Feng S, Cheng W, Wei H. Colonization of microbiota derived from Macaca fascicularis, Bama miniature pigs, beagle dogs, and C57BL/6J mice alleviates DSS-induced colitis in germ-free mice. Microbiol Spectr 2024; 12:e0038824. [PMID: 38990027 PMCID: PMC11302040 DOI: 10.1128/spectrum.00388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is an innovative and promising treatment for inflammatory bowel disease (IBD), which is related to the capability of FMT to supply functional microorganisms to improve recipient gut health. Numerous studies have highlighted considerable variability in the efficacy of FMT interventions for IBD. Several factors, including the composition of the donor microorganisms, significantly affect the efficacy of FMT in the treatment of IBD. Consequently, identifying the functional microorganisms in the donor is crucial for enhancing the efficacy of FMT. To explore potential common anti-inflammatory bacteria with therapeutic implications for IBD, germ-free (GF) BALB/c mice were pre-colonized with fecal microbiota obtained from diverse donors, including Macaca fascicularis (MCC_FMT), Bama miniature pigs (BP_FMT), beagle dogs (BD_FMT), and C57BL/6 J mice (Mice_FMT). Subsequently, mice were treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by MCC_FMT, BP_FMT, BD_FMT, and Mice_FMT, as demonstrated by the prevention of an elevated disease activity index in mice. Additionally, the utilization of distinct donors protected the intestinal barrier and contributed to the regulation of cytokine homeostasis. Metagenomic sequencing data showed that the microbial community structure and dominant species were significantly different among the four groups, which may be linked to variations in the anti-inflammatory efficacy observed in the respective groups. Notably, Lactobacillus reuteri and Flavonifractor plautii were consistently present in all four groups. L. reuteri exhibited a significant negative correlation with IL-1β, and animal studies further confirmed its efficacy in alleviating IBD, suggesting the presence of common functional bacteria across different donors that exert anti-inflammatory effects. This study provides essential foundational data for the potential clinical applications of FMT.IMPORTANCEDespite variations in efficacy observed among donors, numerous studies have underscored the potential of fecal microbiota transplantation (FMT) for managing inflammatory bowel disease (IBD), indicating the presence of shared anti-IBD bacterial species. In the present study, the collective anti-inflammatory efficacy observed across all four donor groups prompted the identification of two common bacterial species using metagenomics. A significant negative correlation between Lactobacillus reuteri and IL-1β was revealed. Furthermore, mice gavaged with L. reuteri successfully managed the colitis challenge induced by dextran sodium sulfate (DSS), suggesting that L. reuteri may act as an efficacious bacterium mediating shared anti-inflammatory effects among variable donors. This finding highlights the utilization of variable donors to screen FMT core bacteria, which may be a novel strategy for developing FMT applications.
Collapse
Affiliation(s)
- Yapeng Yang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zeyue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yuqing Wang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiang Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Yu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhifeng Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Huicong Zou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shuaifei Feng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wei Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Yu‐Yue Pathology Scientific Research Center, Chongqing, China
| |
Collapse
|
26
|
Dharmawansa KVS, Stadnyk AW, Rupasinghe HPV. Dietary Supplementation of Haskap Berry ( Lonicera caerulea L.) Anthocyanins and Probiotics Attenuate Dextran Sulfate Sodium-Induced Colitis: Evidence from an Experimental Animal Model. Foods 2024; 13:1987. [PMID: 38998493 PMCID: PMC11241346 DOI: 10.3390/foods13131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Haskap berry (Lonicera caerulea L.) is a rich dietary source of anthocyanins with potent anti-inflammatory properties. In this study, isolated haskap berry anthocyanins were encapsulated in maltodextrin and inulin (3:1) by freeze-drying to improve stability and bioavailability. The structural properties of microcapsules, encapsulation yield, efficiency, recovery, and powder retention were evaluated. The microcapsules that exhibited the highest encapsulation efficiency (60%) and anthocyanin recovery (89%) were used in the dextran sulfate sodium (DSS)-induced acute colitis in mice. Thirty-five BALB/c male mice of seven weeks old were divided into seven dietary supplementation groups (n = 5) to receive either free anthocyanins, encapsulated anthocyanins (6.2 mg/day), or probiotics (1 × 109 CFU/day) alone or as combinations of anthocyanin and probiotics. As observed by clinical data, free anthocyanin and probiotic supplementation significantly reduced the severity of colitis. The supplementary diets suppressed the DSS-induced elevation of serum inflammatory (interleukin (IL)-6 and tumor necrosis factor) and apoptosis markers (B-cell lymphoma 2 and Bcl-2-associated X protein) in mice colon tissues. The free anthocyanins and probiotics significantly reduced the serum IL-6 levels. In conclusion, the dietary supplementation of haskap berry anthocyanins and probiotics protects against DSS-induced colitis possibly by attenuating mucosal inflammation, and this combination has the potential as a health-promoting dietary supplement and nutraceutical.
Collapse
Affiliation(s)
- K V Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Andrew W Stadnyk
- Departments of Microbiology & Immunology and Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
27
|
Hong D, Kim HK, Yang W, Yoon C, Kim M, Yang CS, Yoon S. Integrative analysis of single-cell RNA-seq and gut microbiome metabarcoding data elucidates macrophage dysfunction in mice with DSS-induced ulcerative colitis. Commun Biol 2024; 7:731. [PMID: 38879692 PMCID: PMC11180211 DOI: 10.1038/s42003-024-06409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Ulcerative colitis (UC) is a significant inflammatory bowel disease caused by an abnormal immune response to gut microbes. However, there are still gaps in our understanding of how immune and metabolic changes specifically contribute to this disease. Our research aims to address this gap by examining mouse colons after inducing ulcerative colitis-like symptoms. Employing single-cell RNA-seq and 16 s rRNA amplicon sequencing to analyze distinct cell clusters and microbiomes in the mouse colon at different time points after induction with dextran sodium sulfate. We observe a significant reduction in epithelial populations during acute colitis, indicating tissue damage, with a partial recovery observed in chronic inflammation. Analyses of cell-cell interactions demonstrate shifts in networking patterns among different cell types during disease progression. Notably, macrophage phenotypes exhibit diversity, with a pronounced polarization towards the pro-inflammatory M1 phenotype in chronic conditions, suggesting the role of macrophage heterogeneity in disease severity. Increased expression of Nampt and NOX2 complex subunits in chronic UC macrophages contributes to the inflammatory processes. The chronic UC microbiome exhibits reduced taxonomic diversity compared to healthy conditions and acute UC. The study also highlights the role of T cell differentiation in the context of dysbiosis and its implications in colitis progression, emphasizing the need for targeted interventions to modulate the inflammatory response and immune balance in colitis.
Collapse
Affiliation(s)
- Dawon Hong
- RNA Cell Biology Laboratory, Graduate Department of Bioconvergence Engineering, Dankook University, Yongin, Republic of Korea
| | - Hyo Keun Kim
- Dept of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan-si, Korea
| | - Wonhee Yang
- Department of AI-based Convergence, Dankook University, Yongin, Republic of Korea
| | - Chanjin Yoon
- Dept of Molecular and Life Science and Institute of Natural Science and Technology, Hanyang University, Ansan-si, Korea
| | - Minsoo Kim
- Department of Computer Science, College of SW Convergence, Dankook University, Yongin, Republic of Korea
| | - Chul-Su Yang
- Dept of Medicinal and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan-si, Korea.
| | - Seokhyun Yoon
- Department of Electronics & Electrical Engineering, College of Engineering, Dankook University, Yongin, Republic of Korea.
| |
Collapse
|
28
|
Horn V, Sonnenberg GF. Group 3 innate lymphoid cells in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:428-443. [PMID: 38467885 PMCID: PMC11144103 DOI: 10.1038/s41575-024-00906-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The gastrointestinal tract is an immunologically rich organ, containing complex cell networks and dense lymphoid structures that safeguard this large absorptive barrier from pathogens, contribute to tissue physiology and support mucosal healing. Simultaneously, the immune system must remain tolerant to innocuous dietary antigens and trillions of normally beneficial microorganisms colonizing the intestine. Indeed, a dysfunctional immune response in the intestine underlies the pathogenesis of numerous local and systemic diseases, including inflammatory bowel disease, food allergy, chronic enteric infections or cancers. Here, we discuss group 3 innate lymphoid cells (ILC3s), which have emerged as orchestrators of tissue physiology, immunity, inflammation, tolerance and malignancy in the gastrointestinal tract. ILC3s are abundant in the developing and healthy intestine but their numbers or function are altered during chronic disease and cancer. The latest studies provide new insights into the mechanisms by which ILC3s fundamentally shape intestinal homeostasis or disease pathophysiology, and often this functional dichotomy depends on context and complex interactions with other cell types or microorganisms. Finally, we consider how this knowledge could be harnessed to improve current treatments or provoke new opportunities for therapeutic intervention to promote gut health.
Collapse
Affiliation(s)
- Veronika Horn
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
29
|
Jiang K, Xu Y, Wang Y, Yin N, Huang F, Chen M. Unveiling the role of IL-17: Therapeutic insights and cardiovascular implications. Cytokine Growth Factor Rev 2024; 77:91-103. [PMID: 38735805 DOI: 10.1016/j.cytogfr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Interleukin-17 (IL-17), a pivotal cytokine in immune regulation, has attracted significant attention in recent years due to its roles in various physiological and pathological processes. This review explores IL-17 in immunological context, emphasizing its structure, production, and signaling pathways. Specifically, we explore its involvement in inflammatory diseases and autoimmune diseases, with a notable focus on its emerging implications in cardiovascular system. Through an array of research insights, IL-17 displays multifaceted functions yet awaiting comprehensive discovery. Highlighting therapeutic avenues, we scrutinize the efficacy and clinical application of four marketed IL-17 mAbs along other targeted therapies, emphasizing their potential in immune-mediated disease management. Additionally, we discussed the novel IL-17D-CD93 axis, elucidating recent breakthroughs in their biological function and clinical implications, inviting prospects for transformative advancements in immunology and beyond.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiani Xu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Yao Y, Shang W, Bao L, Peng Z, Wu C. Epithelial-immune cell crosstalk for intestinal barrier homeostasis. Eur J Immunol 2024; 54:e2350631. [PMID: 38556632 DOI: 10.1002/eji.202350631] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The intestinal barrier is mainly formed by a monolayer of epithelial cells, which forms a physical barrier to protect the gut tissues from external insults and provides a microenvironment for commensal bacteria to colonize while ensuring immune tolerance. Moreover, various immune cells are known to significantly contribute to intestinal barrier function by either directly interacting with epithelial cells or by producing immune mediators. Fulfilling this function of the gut barrier for mucosal homeostasis requires not only the intrinsic regulation of intestinal epithelial cells (IECs) but also constant communication with immune cells and gut microbes. The reciprocal interactions between IECs and immune cells modulate mucosal barrier integrity. Dysregulation of barrier function could lead to dysbiosis, inflammation, and tumorigenesis. In this overview, we provide an update on the characteristics and functions of IECs, and how they integrate their functions with tissue immune cells and gut microbiota to establish gut homeostasis.
Collapse
Affiliation(s)
- Yikun Yao
- Shanghai Institute of Nutrition & Health, Chinese Academy of Science, Shanghai, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Cheong KL, Xie XT, Zhou T, Malairaj S, Veeraperumal S, Zhong S, Tan K. Exploring the therapeutic potential of porphyran extracted from Porphyra haitanensis in the attenuation of DSS-induced intestinal inflammation. Int J Biol Macromol 2024; 271:132578. [PMID: 38788872 DOI: 10.1016/j.ijbiomac.2024.132578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ulcerative colitis is a chronic, spontaneous inflammatory bowel disease that primarily affects the colon. This study aimed to explore how Porphyra haitanensis porphyran (PHP) modulates the immune response and the associated mechanisms that alleviate dextran sulphate sodium-induced colitis in mice. Histological assessments via H&E staining and AB-PAS staining revealed that PHP intervention partially restored the number of goblet cells and improved intestinal mucosal function. Immunohistochemical and Western blot analyses of claudin-1, occludin, and MUC-2 demonstrated that PHP could repair the intestinal barrier and reduce colon damage by upregulating the expression of these proteins. PHP intervention was associated with a decrease in pro-inflammatory cytokine expression and an increase in anti-inflammatory cytokine expression. Moreover, the expression of proteins involved in intestinal immune homing, such as CCR-9, CCL-25, MAdCAM-1, and α4β7, was significantly suppressed in response to PHP treatment. Conversely, PHP upregulates the expression of CD40 and TGF-β1, both of these can promote healing and reduce inflammation in the gut lining. This study demonstrates that PHP can ameliorate ulcerative colitis by enhancing the intestinal barrier and modulating immune responses. These findings offer valuable insights into the potential utility of P. haitanensis as a promising natural product for managing ulcerative colitis.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Xu-Ting Xie
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Tao Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Sathuvan Malairaj
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| |
Collapse
|
32
|
Liu Q, Tabrez S, Niekamp P, Kim CH. Circadian-clock-controlled endocrine and cytokine signals regulate multipotential innate lymphoid cell progenitors in the bone marrow. Cell Rep 2024; 43:114200. [PMID: 38717905 PMCID: PMC11264331 DOI: 10.1016/j.celrep.2024.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Innate lymphoid cells (ILCs), strategically positioned throughout the body, undergo population declines over time. A solution to counteract this problem is timely mobilization of multipotential progenitors from the bone marrow. It remains unknown what triggers the mobilization of bone marrow ILC progenitors (ILCPs). We report that ILCPs are regulated by the circadian clock to emigrate and generate mature ILCs in the periphery. We found that circadian-clock-defective ILCPs fail to normally emigrate and generate ILCs. We identified circadian-clock-controlled endocrine and cytokine cues that, respectively, regulate the retention and emigration of ILCPs at distinct times of each day. Activation of the stress-hormone-sensing glucocorticoid receptor upregulates CXCR4 on ILCPs for their retention in the bone marrow, while the interleukin-18 (IL-18) and RORα signals upregulate S1PR1 on ILCPs for their mobilization to the periphery. Our findings establish important roles of circadian signals for the homeostatic efflux of bone marrow ILCPs.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shams Tabrez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Patrick Niekamp
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Liu G, Liu X, Wang F, Jia G, Zhao H, Chen X, Wang J. Effects of Dietary Glutamine Supplementation on the Modulation of Microbiota and Th17/Treg Immune Response Signaling Pathway in Piglets after Lipopolysaccharide Challenge. J Nutr 2024; 154:1711-1721. [PMID: 38367809 DOI: 10.1016/j.tjnut.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Glutamine (Gln) has an important effect on the growth performance and immune function of piglets. However, the effect of Gln on intestinal immunity in piglets through modulating the signaling pathways of the helper T cells 17 (Th17)/regulatory T cells (Treg) immune response has not been reported. OBJECTIVE This study aimed to determine the effect of Gln on piglet growth performance and immune stress response and its mechanism in piglets. METHODS Twenty-four weaned piglets were randomly assigned to 4 treatments with 6 replicates each, using a 2 × 2 factorial arrangement: diet (basal diet or 1% Gln diet) and immunological challenge [saline or lipopolysaccharide (LPS)]. After 21 d, half of the piglets on the basal diet and 1% Gln diet received the intraperitoneal injection of LPS and the other half received the same volume of normal saline. RESULTS The results showed that Gln increased average daily feed intake and average daily weight gain in comparison with the control group (P < 0.05). Dietary Gln increased the villus height, villus height-to-crypt depth ratio, and the abundance of Bacteroidetes, Lactobacillus sp., and Ruminococcus sp. while reducing the abundance of Firmicutes, Clostridium sensu stricto 1 sp., and Terrisporobacter sp. (P < 0.05). Furthermore, Gln increased the concentration of short-chain fatty acids in the colon and the expression of genes of interleukin (IL)-10, transforming growth factor-beta-1, forkhead box P3 while downregulating the expression of genes of IL-6, IL-8, IL-1β, tumor necrosis factor-α, IL-17A, IL-21, signal transducer and activator of transcription 3, and rar-related orphan receptor c in ileum (P < 0.05). Correlation analysis demonstrated a strong association between colonic microbiota, short-chain fatty acids, and ileal inflammatory cytokines. CONCLUSIONS These results suggest that dietary Gln could improve growth performance and attenuate LPS-challenged intestinal inflammation by modulating microbiota and the Th17/Treg immune response signaling pathway in piglets.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Xinlian Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Fang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Qi M, Chu S, Wang W, Fu X, Jiang C, Zhang L, Ali MH, Lu Y, Jia M, Ubul D, Tang H, Li J, Liu M. Safflower polysaccharide ameliorates acute ulcerative colitis by regulating STAT3/NF-κB signaling pathways and repairing intestinal barrier function. Biomed Pharmacother 2024; 174:116553. [PMID: 38593703 DOI: 10.1016/j.biopha.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
This study is to investigate the effect of SPS on the UC model. An animal model of UC induced by DSS was developed using C57BL/6 mice. The body weight was recorded every day, and the symptoms related to UC were detected. H&E staining, AB-PAS staining and PSR staining were used to evaluate the histopathological changes of the colon. Inflammation and mucosal barrier indicators were detected by qRT-PCR, and the 16 S rRNA sequence was used to detect the intestinal flora. SPS can significantly prevent and treat DSS-induced ulcerative colitis in animals. SPS significantly improved clinical symptoms, alleviated pathological damage, inhibited the infiltration of intestinal inflammatory cells. SPS treatment can protect goblet cells, enhance the expression of tight junction proteins and mucins, inhibit the expression of antimicrobial peptides, thereby improving intestinal barrier integrity. The prevention and treatment mechanism of SPS may be related to the inhibition of STAT3/NF-κB signaling pathway to regulate intestinal barrier function. In particular, SPS also significantly adjusted the structure of intestinal flora, significantly increasing the abundance of Akkermansia and Limosilactobacillus and inhibiting the abundance of Bacteroides. Overall, SPS has a significant therapeutic effect on ulcerative colitis mice, and is expected to play its value effectively in clinical treatment.
Collapse
Affiliation(s)
- Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Chao Jiang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Liang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Md Hasan Ali
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Yating Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Mengwei Jia
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Dilraba Ubul
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Jian Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China; State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| |
Collapse
|
35
|
Kurumi H, Yokoyama Y, Hirano T, Akita K, Hayashi Y, Kazama T, Isomoto H, Nakase H. Cytokine Profile in Predicting the Effectiveness of Advanced Therapy for Ulcerative Colitis: A Narrative Review. Biomedicines 2024; 12:952. [PMID: 38790914 PMCID: PMC11117845 DOI: 10.3390/biomedicines12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokine-targeted therapies have shown efficacy in treating patients with ulcerative colitis (UC), but responses to these advanced therapies can vary. This variability may be due to differences in cytokine profiles among patients with UC. While the etiology of UC is not fully understood, abnormalities of the cytokine profiles are deeply involved in its pathophysiology. Therefore, an approach focused on the cytokine profile of individual patients with UC is ideal. Recent studies have demonstrated that molecular analysis of cytokine profiles in UC can predict response to each advanced therapy. This narrative review summarizes the molecules involved in the efficacy of various advanced therapies for UC. Understanding these associations may be helpful in selecting optimal therapeutic agents.
Collapse
Affiliation(s)
- Hiroki Kurumi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Kotaro Akita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Tomoe Kazama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| |
Collapse
|
36
|
Lee Y, Yoon B, Son S, Cho E, Kim KB, Choi EY, Kim DE. Inhibition of Immunoproteasome Attenuates NLRP3 Inflammasome Response by Regulating E3 Ubiquitin Ligase TRIM31. Cells 2024; 13:675. [PMID: 38667290 PMCID: PMC11048918 DOI: 10.3390/cells13080675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Excessive secretion of pro-inflammatory cytokines leads to the disruption of intestinal barrier in inflammatory bowel disease (IBD). The inflammatory cytokine tumor necrosis factor alpha (TNFα) induces the assembly of the NLRP3 inflammasome, resulting in the augmented secretion of inflammatory cytokines implicated in the pathogenesis of inflammatory bowel disease (IBD). TNFα has also been known to induce the formation of immunoproteasome (IP), which incorporates immunosubunits LMP2, LMP7, and MECL-1. Inhibition of IP activity using the IP subunit LMP2-specific inhibitor YU102, a peptide epoxyketone, decreased the protein levels of NLRP3 and increased the K48-linked polyubiquitination levels of NLRP3 in TNFα-stimulated intestinal epithelial cells. We observed that inhibition of IP activity caused an increase in the protein level of the ubiquitin E3 ligase, tripartite motif-containing protein 31 (TRIM31). TRIM31 facilitated K48-linked polyubiquitination and proteasomal degradation of NLRP3 with an enhanced interaction between NLRP3 and TRIM31 in intestinal epithelial cells. In addition, IP inhibition using YU102 ameliorated the symptoms of colitis in the model mice inflicted with dextran sodium sulfate (DSS). Administration of YU102 in the DSS-treated colitis model mice caused suppression of the NLRP3 protein levels and accompanied inflammatory cytokine release in the intestinal epithelium. Taken together, we demonstrated that inhibiting IP under inflammatory conditions induces E3 ligase TRIM31-mediated NLRP3 degradation, leading to attenuation of the NLRP3 inflammatory response that triggers disruption of intestinal barrier.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Boran Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Sumin Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Eunbin Cho
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Kyung Bo Kim
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Center for Translational Science at Port St. Lucie, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA;
| | - Eun Young Choi
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Center for Translational Science at Port St. Lucie, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA;
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| |
Collapse
|
37
|
Li H, Li H, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Exopolysaccharides Produced by Bifidobacterium longum subsp. longum YS108R Ameliorates DSS-Induced Ulcerative Colitis in Mice by Improving the Gut Barrier and Regulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7055-7073. [PMID: 38520351 DOI: 10.1021/acs.jafc.3c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Ulcerative colitis (UC) is a major disease that has endangered human health. Our previous study demonstrated that Bifidobacterium longum subsp. longum YS108R, a ropy exopolysaccharide (EPS)-producing bacterium, could alleviate UC in mice, but it is unclear whether EPS is the key substance responsible for its action. In this study, we proposed to investigate the remitting effect of EPS from B. longum subsp. longum YS108R on UC in a DSS-induced UC mouse model. Water extraction and alcohol precipitation were applied to extract EPS from the supernatant of B. longum subsp. longum YS108R culture. Then the animal trial was performed, and the results indicated that YS108R EPS ameliorated colonic pathological damage and the intestinal barrier. YS108R EPS suppressed inflammation via NF-κB signaling pathway inhibition and attenuated oxidative stress via the Nrf2 signaling pathway activation. Remarkably, YS108R EPS regulated gut microbiota, as evidenced by an increase in short-chain fatty acid (SCFA)-producing bacteria and a decline in Gram-negative bacteria, resulting in an increase of propionate and butyrate and a reduction of lipopolysaccharide (LPS). Collectively, YS108R EPS manipulated the intestinal microbiota and its metabolites, which further improved the intestinal barrier and inhibited inflammation and oxidative stress, thereby alleviating UC.
Collapse
Affiliation(s)
- Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
38
|
Wu Z, Li Y, Jiang M, Sang L, Chang B. Selenium Yeast Alleviates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Reducing Proinflammatory Cytokines and Regulating the Gut Microbiota and Their Metabolites. J Inflamm Res 2024; 17:2023-2037. [PMID: 38577691 PMCID: PMC10992675 DOI: 10.2147/jir.s449335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal inflammatory disease. Selenium has been reported to have therapeutic potential in IBD. Selenium yeast is a common selenium supplement that is convenient to access. This study explored the effect of selenium yeast on dextran sulfate sodium- (DSS-)induced chronic colitis in mice. Methods Mice were randomly divided into four groups: the control group, selenium yeast group, chronic colitis group, and chronic colitis+selenium yeast group (n=6). Mice were killed on the 26th day. The disease activity index (DAI) score and histological damage score were calculated. Cytokines, serum selenium, colonic tissue selenium, gut microbiota and their metabolites short-chain fatty acids (SCFAs) were evaluated. Results Selenium yeast lowered IL-1β, IL-6, TNF-α, IL-17A, IL-22 and IFN-γ (P<0.05). In addition, selenium yeast significantly elevated Turicibacter, Bifidobacterium, Allobaculum, Prevotella, Halomonas, Adlercreutzia (P<0.05), and butyric acid (P<0.05). Conclusion Selenium yeast could improve DSS-induced chronic colitis in mice by regulating cytokines, gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
39
|
Reygaerts T, Laohamonthonkul P, Hrovat-Schaale K, Moghaddas F, Baker PJ, Gray PE, Masters SL. Pyrin variant E148Q potentiates inflammasome activation and the effect of pathogenic mutations in cis. Rheumatology (Oxford) 2024; 63:882-890. [PMID: 37481715 PMCID: PMC10907813 DOI: 10.1093/rheumatology/kead376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023] Open
Abstract
OBJECTIVE The p.E148Q variant in pyrin is present in different populations at a frequency of up to 29%, and has been associated with diseases, including vasculitis and FMF. The pathogenicity of p.E148Q in FMF is unclear, even when observed in cis or in trans to a single, typically recessive, pathogenic mutation. We performed functional validation to determine whether p.E148Q increases the ability of pyrin to form an active inflammasome complex in cell lines. METHODS We interrogated the Australian Autoinflammatory Disease RegistrY (AADRY) to find candidate inheritance patterns for the p.E148Q variant in pyrin. Different pyrin variant combinations were tested in HEK293T cells stably expressing the adaptor protein apoptosis-associated speck-like (ASC), which were analysed by flow cytometry to visualize inflammasome formation, with and without stimulation by Clostridioides difficile toxin B (TcdB). Inflammasome-dependent cytokine secretion was also quantified by ELISA of supernatants from THP-1 cells transduced with lentiviral expression vectors. RESULTS In AADRY, we observed the p.E148Q allele in individuals with autoinflammatory diseases alone or in conjunction with other pyrin variants. Two FMF families harboured the allele p.E148Q-M694I in cis with dominant heritability. In vitro, p.E148Q pyrin could spontaneously potentiate inflammasome formation, with increased IL-1β and IL-18 secretion. p.E148Q in cis to classical FMF mutations provided significant potentiation of inflammasome formation. CONCLUSION The p.E148Q variant in pyrin potentiates inflammasome activation in vitro. In cis, this effect is additive to known pathogenic FMF mutations. In some families, this increased effect could explain why FMF segregates as an apparently dominant disease.
Collapse
Affiliation(s)
- Thomas Reygaerts
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Fiona Moghaddas
- Immunology and Allergy Centre, North Bristol NHS Trust, Bristol, UK
| | - Paul J Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Paul E Gray
- Department of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
40
|
Nguyen OTP, Misun PM, Hierlemann A, Lohasz C. A Versatile Intestine-on-Chip System for Deciphering the Immunopathogenesis of Inflammatory Bowel Disease. Adv Healthc Mater 2024; 13:e2302454. [PMID: 38253407 PMCID: PMC11468350 DOI: 10.1002/adhm.202302454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Indexed: 01/24/2024]
Abstract
The multifactorial nature of inflammatory bowel disease (IBD) necessitates reliable and practical experimental models to elucidate its etiology and pathogenesis. To model the intestinal microenvironment at the onset of IBD in vitro, it is important to incorporate relevant cellular and noncellular components before inducing stepwise pathogenic developments. A novel intestine-on-chip system for investigating multiple aspects of IBD's immunopathogenesis is presented. The system includes an array of tight and polarized barrier models formed from intestinal epithelial cells on an in-vivo-like subepithelial matrix within one week. The dynamic remodeling of the subepithelial matrix by cells or their secretome demonstrates the physiological relevance of the on-chip barrier models. The system design enables introduction of various immune cell types and inflammatory stimuli at specific locations in the same barrier model, which facilitates investigations of the distinct roles of each cell type in intestinal inflammation development. It is showed that inflammatory behavior manifests in an upregulated expression of inflammatory markers and cytokines (TNF-α). The neutralizing effect of the anti-inflammatory antibody Infliximab on levels of TNF-α and its inducible cytokines could be explicitly shown. Overall, an innovative approach to systematically developing a microphysiological system to comprehend immune-system-mediated disorders of IBD and to identify new therapeutic strategies is presented.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Patrick M. Misun
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Andreas Hierlemann
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Christian Lohasz
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
41
|
Rajesh KM, Kinra M, Ranadive N, Pawaskar GM, Mudgal J, Raval R. Effect of chronic low-dose treatment with chitooligosaccharides on microbial dysbiosis and inflammation associated chronic ulcerative colitis in Balb/c mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1611-1622. [PMID: 37695333 PMCID: PMC10858833 DOI: 10.1007/s00210-023-02710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The study aimed to investigate the potential of low dose chitooligosaccharide (COS) in ameliorating dextran sodium sulfate (DSS) induced chronic colitis by regulating microbial dysbiosis and pro-inflammatory responses. Chronic colitis was induced in BALB/c mice by DSS (4% w/v, 3 cycles of 5 days) administration. The mice were divided into four groups: vehicle, DSS, DSS + mesalamine and DSS+COS. COS and mesalamine were administered orally, daily once, from day 1 to day 30 at a dose of 20 mg/kg and 50 mg/kg respectively. The disease activity index (DAI), colon length, histopathological score, microbial composition, and pro-inflammatory cytokine expression were evaluated. COS (20 mg/kg, COSLow) administration reduced the disease activity index, and colon shortening, caused by DSS significantly. Furthermore, COSLow restored the altered microbiome in the gut and inhibited the elevated pro-inflammatory cytokines (IL-1 and IL-6) in the colon against DSS-induced chronic colitis in mice. Moreover, COSLow treatment improved the probiotic microflora thereby restoring the gut homeostasis. In conclusion, this is the first study where microbial dysbiosis and pro-inflammatory responses were modulated by chronic COSLow treatment against DSS-induced chronic colitis in Balb/c mice. Therefore, COS supplementation at a relatively low dose could be efficacious for chronic inflammatory bowel disease.
Collapse
Affiliation(s)
- K M Rajesh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Goutam Mohan Pawaskar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
42
|
Yu T, Yan J, Wang R, Zhang L, Hu X, Xu J, Li F, Sun Q. Integrative Multiomics Profiling Unveils the Protective Function of Ulinastatin against Dextran Sulfate Sodium-Induced Colitis. Antioxidants (Basel) 2024; 13:214. [PMID: 38397811 PMCID: PMC10886110 DOI: 10.3390/antiox13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Ulcerative colitis is an inflammatory bowel disease with multiple pathogeneses. Here, we aimed to study the therapeutic role of ulinastatin (UTI), an anti-inflammatory bioagent, and its associated mechanisms in treating colitis. Dextran sulfate sodium was administrated to induce colitis in mice, and a subgroup of colitis mice was treated with UTI. The gut barrier defect and inflammatory manifestations of colitis were determined via histological and molecular experiments. In addition, transcriptomics, metagenomics, and metabolomics were employed to explore the possible mechanisms underlying the effects of UTI. We found that UTI significantly alleviated the inflammatory manifestations and intestinal barrier damage in the mice with colitis. Transcriptome sequencing revealed a correlation between the UTI treatment and JAK-STAT signaling pathway. UTI up-regulated the expression of SOCS1, which subsequently inhibited the phosphorylation of JAK2 and STAT3, thus limiting the action of inflammatory mediators. In addition, 16S rRNA sequencing illustrated that UTI maintained a more stable intestinal flora, protecting the gut from dysbiosis in colitis. Moreover, metabolomics analysis demonstrated that UTI indeed facilitated the production of some bile acids and short-chain fatty acids, which supported intestinal homeostasis. Our data provide evidence that UTI is effective in treating colitis and support the potential use of UTI treatment for patients with ulcerative colitis.
Collapse
Affiliation(s)
- Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (T.Y.); (J.Y.); (L.Z.); (X.H.)
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (T.Y.); (J.Y.); (L.Z.); (X.H.)
| | - Ruochen Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (T.Y.); (J.Y.); (L.Z.); (X.H.)
| | - Xiake Hu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (T.Y.); (J.Y.); (L.Z.); (X.H.)
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (T.Y.); (J.Y.); (L.Z.); (X.H.)
| |
Collapse
|
43
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2024; 11:1307394. [PMID: 38323035 PMCID: PMC10845338 DOI: 10.3389/fmed.2024.1307394] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Interleukin 1β (IL-1β) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1β and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1β as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1β, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1β-related inflammatory responses in IBD. Current evidence indicates that IL-1β is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1β is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1β, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1β-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1β in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1β-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
44
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
45
|
Ortiz-Cerda T, Argüelles-Arias F, Macías-García L, Vázquez-Román V, Tapia G, Xie K, García-García MD, Merinero M, García-Montes JM, Alcudia A, Witting PK, De-Miguel M. Effects of polyphenolic maqui ( Aristotelia chilensis) extract on the inhibition of NLRP3 inflammasome and activation of mast cells in a mouse model of Crohn's disease-like colitis. Front Immunol 2024; 14:1229767. [PMID: 38283356 PMCID: PMC10811055 DOI: 10.3389/fimmu.2023.1229767] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Crohn's disease (CD) involves activation of mast cells (MC) and NF-кB in parallel with the PPAR-α/NLRP3 inflammasome/IL-1β pathway in the inflamed colon. Whether polyphenols from maqui (Aristotelia chilensis) represent a natural alternative treatment for CD is unclear. Therefore, we used an animal model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD-like colitis to investigate protective effects of maqui extract through monitoring NLRP3 inflammasome and MC activation in colon tissue. Methods Maqui extract was administered via orogastric route to mice after (post-Treatment group) or prior (pre-Treatment group) to TNBS-induction. Colon pathology was characterized by histoarchitectural imaging, disease activity index (DAI), and assessing NF-кB, p-NF-кB, PPAR-α/NLRP3 expression and IL-1β levels. Results Compared to mice treated with TNBS alone administration of anthocyanin-rich maqui extract improved the DAI, colon histoarchitecture and reduced both colon wet-weight and transmural inflammation. Induction with TNBS significantly increased colonic NLPR3 inflammasome activation, while co-treatment with maqui extract (either post- or pre-Treatment) significantly downregulated NLRP3, ASC and caspase-1 levels, which manifested as reduced colonic IL-1β levels. Supplemented maqui extract marginally diminished NF-кB activity in epithelial cells but reached statistical significance in immune cells (as judged by decreased NF-кB phosphorylation). PPAR-α signaling was largely unaffected by Maqui whereas MC infiltration into the colon mucosa and submucosa decreased and their level of degranulation was suppressed. Conclusion These outcomes show the post- and pre- Treatment effect of a polyphenolic extract rich in anthocyanins from maqui the acute phase of TNBS- induced CD-like colitis is linked to suppression of the NLRP3 inflammasome and reduced MC responses. These data indicate that maqui extract represents a potential nutraceutical for the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tamara Ortiz-Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
- Redox Biology Group, The Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Federico Argüelles-Arias
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Department of Gastroenterology, University Hospital Virgen Macarena, Seville, Spain
| | - Laura Macías-García
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| | - Victoria Vázquez-Román
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| | - Gladys Tapia
- Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Kangzhe Xie
- Redox Biology Group, The Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Manuel Merinero
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, Seville, Spain
| | | | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, Seville, Spain
| | - Paul K. Witting
- Redox Biology Group, The Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Manuel De-Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
46
|
Wang X, Wang J, Okyere SK, Huang R, Shao C, Yousif M, Deng J, Hu Y. Ageratina adenophora damages the rumen epithelium via inducing the expression of inflammatory factors in goats. J Anim Sci 2024; 102:skad418. [PMID: 38142130 PMCID: PMC10781442 DOI: 10.1093/jas/skad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023] Open
Abstract
The aim of this experiment was to investigate the effects of Ageratina adenophora on the expression of epithelium tight junction proteins and inflammatory factors in the rumen of goats. Twelve goats were randomly divided into three groups. The first group was the blank control group (n = 3, C) which was fed normal diet. The second group was fistulas control group (n = 3, RFC), which was fitted with rumen fistulas, and fed normal diet. The third group was the A. adenophora test group (n = 6, AA), which was fitted with rumen fistulas and fed a mixture of 60% of normal diet and 40% of A. adenophora grass powder. The feeding experiment lasted for 90 d, after which all goats were sacrificed and samples were collected from the rumen dorsal sac and ventral sac. The relative expression of mRNA of inflammatory factors in the rumen epithelium (tumor necrosis factor alpha [TNF-α], interferon gamma [IFN-γ], interleukin 1 beta [IL-1β], IL-2, IL-4, IL-6, and IL-10) and tight junction protein genes (occludin, claudin-1, and ZO-1) was measured by quantitative real-time fluorescence PCR. Expression of tight junction proteins in the rumen epithelium was measured by Western blot. A correlation was established between the expression of inflammatory factors and tight junction protein genes using Graph Pad Prism. The results showed that A. adenophora caused a significant increase in the mRNA expression levels of TNF-α, IFN-γ, IL-1β, IL-2, IL-6, and IL-10 in the rumen epithelial (P < 0.05 or P < 0.01). The expression of tight junction proteins at both gene and protein levels was significantly decreased (P < 0.05 or P < 0.01). Furthermore, the correlation analysis revealed that the changes in tight junction protein expression in the test group were closely related to the upregulation of the expression of inflammatory factors TNF-α and IFN-γ in rumen epithelial cells. In conclusion, the expression of inflammatory factors was increased and the expression of tight junction proteins was decreased in goats after feeding on A. adenophora, which caused some damage to the rumen epithelium.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| | - Chenyang Shao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| | - Muhammad Yousif
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| |
Collapse
|
47
|
Ali Mohammed S, Elbaramawy A, Hassan Abd-Allah S, Elkholy A, Ibrahim Elsayed N, Hussein S. Therapeutic potentials of mesenchymal stem cells in the treatment of inflammatory bowel disease in rats. J Biochem Mol Toxicol 2024; 38:e23532. [PMID: 37676835 DOI: 10.1002/jbt.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Interleukin-1beta (IL-1β) and interleukin-17A (IL-17A) have strong pro-inflammatory activities that are involved in inflammatory bowel diseases (IBDs). Mesenchymal stem cell (MSC) therapy is considered a promising treatment for IBD. This study was performed to understand the role of rat Nlrp3 inflammasome, Hmgb1, and pro-inflammatory cytokines (IL-1β and IL-17a) in the pathogenesis of IBD. Also, to evaluate the role of human umbilical cord blood-MSCs (hUCB-MSCs) in the management of IBD. The rats were in four groups: normal controls, indomethacin-induced IBD group, indomethacin-induced IBD rats that received phosphate-buffered saline (PBS), and the IBD group that received hUCB-MSCs as a treatment. The messenger RNA (mRNA) expression levels of rat Nlrp3, Hmgb1, IL-1β, and IL-17a were evaluated by quantitative real-time polymerase chain reaction. Histopathological examination of the small intestinal tissues of the studied rats was performed. There was a significant upregulation of the rat Nlrp3, IL-1β, IL-17a mRNA expression (p < 0.001 for the three parameters), and Hmgb1 (p < 0.05) in the untreated IBD group compared to the normal control group. In the MSC-treated group, IL-1β, IL-17a, and rat Nlrp3 mRNA expression significantly decreased compared to both the untreated IBD group and PBS group (p < 0.05 for all). hUCB-MSCs ameliorated IBD in rats by downregulating the pro-inflammatory cytokines (IL-1β and IL-17a) and other inflammatory mediators such as Hmgb1 and rat Nlrp3.
Collapse
Affiliation(s)
- Shuzan Ali Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Azza Elbaramawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Somia Hassan Abd-Allah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Elkholy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nashwa Ibrahim Elsayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
48
|
Paroni M, Leccese G, Ranzani V, Moschetti G, Chiara M, Perillo F, Ferri S, Clemente F, Noviello D, Conforti FS, Ferrero S, Karnani B, Bosotti R, Vasco C, Curti S, Crosti MC, Gruarin P, Rossetti G, Conte MP, Vecchi M, Pagani M, Landini P, Facciotti F, Abrignani S, Caprioli F, Geginat J. An Intestinal Th17 Subset is Associated with Inflammation in Crohn's Disease and Activated by Adherent-invasive Escherichia coli. J Crohns Colitis 2023; 17:1988-2001. [PMID: 37462681 PMCID: PMC10798865 DOI: 10.1093/ecco-jcc/jjad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.
Collapse
Affiliation(s)
- Moira Paroni
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Valeria Ranzani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Giorgia Moschetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sara Ferri
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Clemente
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Simone Conforti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Bhavna Karnani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Roberto Bosotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Chiara Vasco
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Serena Curti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Maria Cristina Crosti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Paola Gruarin
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Grazisa Rossetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Pagani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Sergio Abrignani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Mohamed ME, El-Shafae AM, Fikry E, Elbaramawi SS, Elbatreek MH, Tawfeek N. Casuarina glauca branchlets' extract as a potential treatment for ulcerative colitis: chemical composition, in silico and in vivo studies. Front Pharmacol 2023; 14:1322181. [PMID: 38196993 PMCID: PMC10774231 DOI: 10.3389/fphar.2023.1322181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is often resistant to current treatment options, leading to a need for alternative therapies. Herbal products have shown promise in managing various conditions, including UC. However, the potential of Casuarina glauca branchlets ethanolic extract (CGBRE) in treating UC has not been explored. This study aimed to analyze the chemical composition of CGBRE and evaluate its efficacy in UC treatment through in silico and in vivo experiments. LC-ESI-MS/MS was used to identify 86 compounds in CGBRE, with 21 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 171 potential UC targets for the bioactive compounds, including EGFR, LRRK2, and HSP90 as top targets, which were found to bind to key CGBRE compounds through molecular docking. Molecular docking findings suggested that CGBRE may be effective in the prevention or treatment of ulcerative colitis mediated by these proteins, where key CGBRE compounds exhibited good binding affinities through formation of numerous interactions. In vivo studies in rats with acetic acid-induced UC demonstrated that oral administration of 300 mg/kg CGBRE for 6 days reduced UC symptoms and colonic expression of EGFR, LRRK2, and HSP90. These findings supported the therapeutic potential of CGBRE in UC and suggested the need for further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar S. Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
50
|
Sharifinejad N, Mahmoudi E. Dual function of fungi-derived cytokines in inflammatory bowel diseases: protection or inflammation. Gastroenterol Rep (Oxf) 2023; 11:goad068. [PMID: 38058517 PMCID: PMC10697736 DOI: 10.1093/gastro/goad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition involving both the innate and adaptive immune systems. Recently, the role of intestinal fungal flora and their downstream immune pathways has been highlighted in the pathogenesis of IBD. Cytokines as primary immune mediators require a delicate balance for maintaining intestinal homeostasis. Although most cytokines have a predictable role in either amplifying or attenuating inflammation in IBD, a few cytokines have shown a dual function in the inflammatory state of the intestine. Some of these dual-faced cytokines are also involved in mucosal anti-microbial defense pathways, particularly against intestinal fungal residents. Here, we reviewed the role of these cytokines in IBD pathogenesis to achieve a better understanding of the fungal interactions in the development of IBD.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elaheh Mahmoudi
- Department of Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|