1
|
Wu T, Chen S, Zhu X, Ma J, Luo M, Wang Y, Tian Y, Sun Q, Guo X, Zhang J, Zhang X, Zhu Y, Wu L. Dynamic regulation of innate lymphoid cell development during ontogeny. Mucosal Immunol 2024; 17:1285-1300. [PMID: 39159846 DOI: 10.1016/j.mucimm.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The helper-like ILC contains various functional subsets, such as ILC1, ILC2, ILC3 and LTi cells, mediating the immune responses against viruses, parasites, and extracellular bacteria, respectively. Among them, LTi cells are also crucial for the formation of peripheral lymphoid tissues, such as lymph nodes. Our research, along with others', indicates a high proportion of LTi cells in the fetal ILC pool, which significantly decreases after birth. Conversely, the proportion of non-LTi ILCs increases postnatally, corresponding to the need for LTi cells to mediate lymphoid tissue formation during fetal stages and other ILC subsets to combat diverse pathogen infections postnatally. However, the regulatory mechanism for this transition remains unclear. In this study, we observed a preference for fetal ILC progenitors to differentiate into LTi cells, while postnatal bone marrow ILC progenitors preferentially differentiate into non-LTi ILCs. Particularly, this differentiation shift occurs within the first week after birth in mice. Further analysis revealed that adult ILC progenitors exhibit stronger activation of the Notch signaling pathway compared to fetal counterparts, accompanied by elevated Gata3 expression and decreased Rorc expression, leading to a transition from fetal LTi cell-dominant states to adult non-LTi ILC-dominant states. This study suggests that the body can regulate ILC development by modulating the activation level of the Notch signaling pathway, thereby acquiring different ILC subsets to accommodate the varying demands within the body at different developmental stages.
Collapse
Affiliation(s)
- Tao Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China
| | - Sijie Chen
- MOE Key Lab of Bioinformatics/Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xinyi Zhu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Maocai Luo
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yuanhao Wang
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yujie Tian
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Qingqing Sun
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jianhong Zhang
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics/Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Li Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
2
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Horn V, Sonnenberg GF. Group 3 innate lymphoid cells in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:428-443. [PMID: 38467885 PMCID: PMC11144103 DOI: 10.1038/s41575-024-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The gastrointestinal tract is an immunologically rich organ, containing complex cell networks and dense lymphoid structures that safeguard this large absorptive barrier from pathogens, contribute to tissue physiology and support mucosal healing. Simultaneously, the immune system must remain tolerant to innocuous dietary antigens and trillions of normally beneficial microorganisms colonizing the intestine. Indeed, a dysfunctional immune response in the intestine underlies the pathogenesis of numerous local and systemic diseases, including inflammatory bowel disease, food allergy, chronic enteric infections or cancers. Here, we discuss group 3 innate lymphoid cells (ILC3s), which have emerged as orchestrators of tissue physiology, immunity, inflammation, tolerance and malignancy in the gastrointestinal tract. ILC3s are abundant in the developing and healthy intestine but their numbers or function are altered during chronic disease and cancer. The latest studies provide new insights into the mechanisms by which ILC3s fundamentally shape intestinal homeostasis or disease pathophysiology, and often this functional dichotomy depends on context and complex interactions with other cell types or microorganisms. Finally, we consider how this knowledge could be harnessed to improve current treatments or provoke new opportunities for therapeutic intervention to promote gut health.
Collapse
Affiliation(s)
- Veronika Horn
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
4
|
Omar SZ, van Hoeven V, Haverkate NJE, Van der Meer JMR, Voermans C, Blom B, Hazenberg MD. Source of hematopoietic progenitor cells determines their capacity to generate innate lymphoid cells ex vivo. Cytotherapy 2024; 26:334-339. [PMID: 38363249 DOI: 10.1016/j.jcyt.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AIMS The success of allogeneic hematopoietic cell transplantation (HCT) as therapy for hematologic conditions is negatively impacted by the occurrence of graft-versus-host disease (GVHD). Tissue damage, caused, for example, by chemotherapy and radiotherapy, is a key factor in GVHD pathogenesis. Innate lymphoid cells (ILCs) are important mediators of tissue repair and homeostasis. The presence of ILCs before, and enhanced ILC reconstitution after, allogeneic HCT is associated with a reduced risk to develop mucositis and GVHD. However, ILC reconstitution after allogeneic HCT is slow and often incomplete. A way to replenish the pool of ILC relies on the differentiation of hematopoietic progenitor cells (HPCs) into ILC. METHODS We developed an ex vivo stromal cell-containing culture system to study the capacity of HPCs to differentiate into all mature helper ILC subsets. RESULTS ILC development depended on the source of HPCs. ILCs developed at high frequencies from umbilical cord blood- and fetal liver-derived HPC and at low frequencies when HPCs were obtained from allogeneic or autologous adult HCT grafts or healthy adult bone marrow. Although all helper ILC subsets could be generated from adult HPC sources, development of tissue protective ILC2 and NKp44+ ILC3 was notoriously difficult. CONCLUSIONS Our data suggest that slow ILC recovery after allogeneic HCT may be related to an intrinsic incapability of adult HPC to develop into ILC.
Collapse
Affiliation(s)
- Said Z Omar
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Vera van Hoeven
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Nienke J E Haverkate
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Jolien M R Van der Meer
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Carlijn Voermans
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Mette D Hazenberg
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
You X, Koop K, Weigert A. Heterogeneity of tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1286850. [PMID: 38111571 PMCID: PMC10725932 DOI: 10.3389/fimmu.2023.1286850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The success of immunotherapy approaches, such as immune checkpoint blockade and cellular immunotherapy with genetically modified lymphocytes, has firmly embedded the immune system in the roadmap for combating cancer. Unfortunately, the majority of cancer patients do not yet benefit from these therapeutic approaches, even when the prognostic relevance of the immune response in their tumor entity has been demonstrated. Therefore, there is a justified need to explore new strategies for inducing anti-tumor immunity. The recent connection between the formation of ectopic lymphoid aggregates at tumor sites and patient prognosis, along with an effective anti-tumor response, suggests that manipulating the occurrence of these tertiary lymphoid structures (TLS) may play a critical role in activating the immune system against a growing tumor. However, mechanisms governing TLS formation and a clear understanding of their substantial heterogeneity are still lacking. Here, we briefly summarize the current state of knowledge regarding the mechanisms driving TLS development, outline the impact of TLS heterogeneity on clinical outcomes in cancer patients, and discuss appropriate systems for modeling TLS heterogeneity that may help identify new strategies for inducing protective TLS formation in cancer patients.
Collapse
Affiliation(s)
- Xin You
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
| | - Kristina Koop
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
7
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Zhang Y, Feng X, Chen J, Liu J, Wu J, Tan H, Mi Z, Rong P. Controversial role of ILC3s in intestinal diseases: A novelty perspective on immunotherapy. Front Immunol 2023; 14:1134636. [PMID: 37063879 PMCID: PMC10090672 DOI: 10.3389/fimmu.2023.1134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ILC3s have been identified as crucial immune regulators that play a role in maintaining host homeostasis and modulating the antitumor response. Emerging evidence supports the idea that LTi cells play an important role in initiating lymphoid tissue development, while other ILC3s can promote host defense and orchestrate adaptive immunity, mainly through the secretion of specific cytokines and crosstalk with other immune cells or tissues. Additionally, dysregulation of ILC3-mediated overexpression of cytokines, changes in subset abundance, and conversion toward other ILC subsets are closely linked with the occurrence of tumors and inflammatory diseases. Regulation of ILC3 cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for treating tumors and intestinal or extraintestinal inflammatory diseases. Herein, we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the correlation of ILC3s and adaptive immunity, crosstalk with the intestinal microenvironment, controversial roles of ILC3s in intestinal diseases and potential applications for treatment.
Collapse
Affiliation(s)
- Yunshu Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuefei Feng
- Department of Government & Public Administration, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| |
Collapse
|
9
|
van de Pavert SA. Layered origins of lymphoid tissue inducer cells. Immunol Rev 2023; 315:71-78. [PMID: 36705244 DOI: 10.1111/imr.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
10
|
Li Y, Ge J, Zhao X, Xu M, Gou M, Xie B, Huang J, Sun Q, Sun L, Bai X, Tan S, Wang X, Dong C. Cell autonomous expression of BCL6 is required to maintain lineage identity of mouse CCR6+ ILC3s. J Exp Med 2023; 220:213808. [PMID: 36651876 PMCID: PMC9856750 DOI: 10.1084/jem.20220440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Innate lymphoid cells (ILC) are similar to T helper (Th) cells in expression of cytokines and transcription factors. For example, RORγt is the lineage-specific transcription factor for both ILC3 and Th17 cells. However, the ILC counterpart for BCL6-expressing T follicular helper (Tfh) cells has not been defined. Here, we report that in the ILC compartment, BCL6 is selectively co-expressed with not only CXCR5 but also RORγt and CCR6 in ILC3 from multiple tissues. BCL6-deficient ILC3 produces enhanced levels of IL-17A and IL-22. More importantly, phenotypic and single-cell ATAC-seq analysis show that absence of BCL6 in mature ILC3 increases the numbers of ILC1 and transitional cells co-expressing ILC3 and ILC1 marker genes. A lineage-tracing experiment further reveals BCL6+ ILC3 to ILC1 trans-differentiation under steady state. Finally, microbiota promote BCL6 expression in colonic CCR6+ ILC3 and thus reinforce their stability. Collectively, our data have demonstrated that CCR6+ ILC3 have both Th17 and Tfh programs and that BCL6 expression in these cells functions to maintain their lineage identity.
Collapse
Affiliation(s)
- Yuling Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China,Tsinghua University-Peking University Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Miao Xu
- Broad institute of MIT and Harvard, Cambridge, MA, USA
| | - Mengting Gou
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Bowen Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jinling Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Qinli Sun
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Sangnee Tan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China,Tsinghua University-Peking University Center for Life Sciences, Tsinghua University, Beijing, China,Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China,Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China,Correspondence to Chen Dong:
| |
Collapse
|
11
|
Abstract
Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| | | | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Hernández-Torres DC, Stehle C. Embryonic ILC-poiesis across tissues. Front Immunol 2022; 13:1040624. [PMID: 36605193 PMCID: PMC9807749 DOI: 10.3389/fimmu.2022.1040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The family of innate lymphoid cells (ILCs), consisting of Group 1 ILCs (natural killer cells and ILC1), ILC2, and ILC3, are critical effectors of innate immunity, inflammation, and homeostasis post-natally, but also exert essential functions before birth. Recent studies during critical developmental periods in the embryo have hinted at complex waves of tissue colonization, and highlighted the breadth of multipotent and committed ILC progenitors from both classic fetal hematopoietic organs such as the liver, as well as tissue sites such as the lung, thymus, and intestine. Assessment of the mechanisms driving cell fate and function of the ILC family in the embryo will be vital to the understanding ILC biology throughout fetal life and beyond.
Collapse
Affiliation(s)
- Daniela Carolina Hernández-Torres
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| |
Collapse
|
13
|
Xie M, Zhang M, Dai M, Yue S, Li Z, Qiu J, Lu C, Xu W. IL-18/IL-18R Signaling Is Dispensable for ILC Development But Constrains the Growth of ILCP/ILCs. Front Immunol 2022; 13:923424. [PMID: 35874724 PMCID: PMC9304618 DOI: 10.3389/fimmu.2022.923424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) develop from ILC progenitors in the bone marrow. Various ILC precursors (ILCPs) with different ILC subset lineage potentials have been identified based on the expression of cell surface markers and ILC-associated key transcription factor reporter genes. This study characterized an interleukin (IL)-7Rα+IL-18Rα+ ILC progenitor population in the mouse bone marrow with multi-ILC lineage potential on the clonal level. Single-cell gene expression analysis revealed the heterogeneity of this population and identified several subpopulations with specific ILC subset-biased gene expression profiles. The role of IL-18 signaling in the regulation of IL-18Rα+ ILC progenitors and ILC development was further investigated using Il18- and Il18r1-deficient mice, in vitro differentiation assay, and adoptive transfer model. IL-18/IL-18R-mediated signal was found to not be required for early stages of ILC development. While Il18r1-/- lymphoid progenitors were able to generate all ILC subsets in vitro and in vivo like the wild-type counterpart, increased IL-18 level, as often occurred during infection or under stress, suppressed the growth of ILCP/ILC in an IL-18Ra-dependent manner via inhibiting proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Mengying Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingying Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyuan Dai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shan Yue
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhao Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| |
Collapse
|
14
|
Ma S, Patel SA, Abe Y, Chen N, Patel PR, Cho BS, Abbasi N, Zeng S, Schnabl B, Chang JT, Huang WJM. RORγt phosphorylation protects against T cell-mediated inflammation. Cell Rep 2022; 38:110520. [PMID: 35294872 PMCID: PMC8982147 DOI: 10.1016/j.celrep.2022.110520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/03/2022] [Accepted: 02/18/2022] [Indexed: 01/13/2023] Open
Abstract
RAR-related orphan receptor-γ (RORγt) is an essential transcription factor for thymic T cell development, secondary lymphoid tissue organogenesis, and peripheral immune cell differentiation. Serine 182 phosphorylation is a major post-translational modification (PTM) on RORγt. However, the in vivo contribution of this PTM in health and disease settings is unclear. We report that this PTM is not involved in thymic T cell development and effector T cell differentiation. Instead, it is a critical regulator of inflammation downstream of IL-1β signaling and extracellular signal regulated kinases (ERKs) activation. ERKs phosphorylation of serine 182 on RORgt serves to simultaneously restrict Th17 hyperactivation and promote anti-inflammatory cytokine IL-10 production in RORγt+ Treg cells. Phospho-null RORγtS182A knockin mice experience exacerbated inflammation in models of colitis and experimental autoimmune encephalomyelitis (EAE). In summary, the IL-1β-ERK-RORγtS182 circuit protects against T cell-mediated inflammation and provides potential therapeutic targets to combat autoimmune diseases. A balanced mucosal T cell population is essential for tissue homeostasis and wound healing post-injury and infection. In this study, Ma et al. report a surprising role for the phosphorylated transcription factor RORγt as a cell-intrinsic regulator for maintaining mucosal T cell heterogeneity and promoting inflammation resolution.
Collapse
Affiliation(s)
- Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nicholas Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Parth R Patel
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Benjamin S Cho
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nazia Abbasi
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Suling Zeng
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Serafini N, Jarade A, Surace L, Goncalves P, Sismeiro O, Varet H, Legendre R, Coppee JY, Disson O, Durum SK, Frankel G, Di Santo JP. Trained ILC3 responses promote intestinal defense. Science 2022; 375:859-863. [PMID: 35201883 PMCID: PMC10351749 DOI: 10.1126/science.aaz8777] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are innate immune effectors that contribute to host defense. Whether ILC3 functions are stably modified after pathogen encounter is unknown. Here, we assess the impact of a time-restricted enterobacterial challenge to long-term ILC3 activation in mice. We found that intestinal ILC3s persist for months in an activated state after exposure to Citrobacter rodentium. Upon rechallenge, these "trained" ILC3s proliferate, display enhanced interleukin-22 (IL-22) responses, and have a superior capacity to control infection compared with naïve ILC3s. Metabolic changes occur in C. rodentium-exposed ILC3s, but only trained ILC3s have an enhanced proliferative capacity that contributes to increased IL-22 production. Accordingly, a limited encounter with a pathogen can promote durable phenotypic and functional changes in intestinal ILC3s that contribute to long-term mucosal defense.
Collapse
Affiliation(s)
- Nicolas Serafini
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Angélique Jarade
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Laura Surace
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Pedro Goncalves
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris, France
| | - Jean-Yves Coppee
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Scott K Durum
- Laboratory of Cancer and Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - James P Di Santo
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| |
Collapse
|
16
|
Huang J, Fu L, Huang J, Zhao J, Zhang X, Wang W, Liu Y, Sun B, Qiu J, Hu X, Liu Z, Guo X. Group 3 Innate Lymphoid Cells Protect the Host from the Uropathogenic Escherichia coli Infection in the Bladder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103303. [PMID: 35018740 PMCID: PMC8867143 DOI: 10.1002/advs.202103303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/01/2021] [Indexed: 05/09/2023]
Abstract
Innate lymphoid cells (ILCs) are crucial in orchestrating immunity and maintaining tissue homeostasis in various barrier tissues, but whether ILCs influence immune responses in the urinary tract remains poorly understood. Here, bladder-resident ILCs are comprehensively explored and identified their unique phenotypic and developmental characteristics. Notably, bladder-resident ILCs rapidly respond to uropathogenic Escherichia coli (UPEC) infection. It is found that ILC3 is necessary for early protection against UPEC infection in the bladder. Mechanistically, UPEC infection leads to interleukin (IL)-1β production in the bladder via a MyD88-dependent pathway, which promotes ILC3 activation. ILC3-expressed IL-17A further recruits neutrophils and controls UPEC infection in the bladder. Together, these results demonstrate a critical role for bladder ILCs in the host defense against UPEC infection.
Collapse
Affiliation(s)
- Jiaoyan Huang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Liuhui Fu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Jida Huang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Jie Zhao
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Xin Zhang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenyan Wang
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Yeyang Liu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Bowen Sun
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Xiaoyu Hu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Zhihua Liu
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
| | - Xiaohuan Guo
- Institute for ImmunologyTsinghua UniversityBeijing100084China
- Department of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| |
Collapse
|
17
|
Das A, Harly C, Ding Y, Bhandoola A. ILC Differentiation from Progenitors in the Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:7-24. [DOI: 10.1007/978-981-16-8387-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Yan J, Yu J, Liu K, Liu Y, Mao C, Gao W. The Pathogenic Roles of IL-22 in Colitis: Its Transcription Regulation by Musculin in T Helper Subsets and Innate Lymphoid Cells. Front Immunol 2021; 12:758730. [PMID: 34992594 PMCID: PMC8724035 DOI: 10.3389/fimmu.2021.758730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
IL-22 plays a crucial role in promoting inflammation, antimicrobial immunity and tissue repair at barrier surfaces. The role of IL-22 in colitis is still controversial: while IL-22 has a protective effect on gut epithelium in acute injuries, it also enhances colitis in a context-dependent manner. Here, we summarize the Yin and Yang of IL-22 in colitis. Particularly, we emphasize the role of innate lymphoid cells (ILCs) in IL-22 production and regulation. A previously underappreciated transcription factor, Musculin (MSC), has been recently identified to be expressed in not only Th17 cells, but also RORγt+/Id2+ IL-22-producing group 3 ILCs in the gut of naïve mice. We hypothesize that the co-expression and interaction of MSC with the key transcription repressor Id2 in developing lymphoid cells (e.g., in LTi cells) and ILC precursors might fine tune the developmental programs or regulate the plasticity of adaptive Th subset and innate ILCs. The much-elevated expression of IL-22 in MSC-/- ILC3s suggests that MSC may function as: 1) a transcription suppressor for cytokines, particularly for IL-22, and/or 2) a gatekeeper for specific lineages of Th cells and innate ILCs as well. Amelioration of colitis symptoms in MSC-/- mice by IL-22-blocking agent IL-22BP-Fc suggests a counterintuitive pathogenic role of IL-22 in the absence of MSC as a checkpoint. The theory that exuberant production of IL-22 under pathological conditions (e.g., in human inflammatory bowel disease, IBD) may cause epithelial inflammation due to endoplasmic reticulum (ER) stress response is worth further investigation. Rheostatic regulation of IL-22 may be of therapeutic value to restore homeostatic balance and promote intestinal health in human colitis.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yijia Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | - Wenda Gao
- Antagen Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
19
|
Lujan RA, Vrba SM, Hickman HD. Antiviral Activities of Group I Innate Lymphoid Cells. J Mol Biol 2021; 434:167266. [PMID: 34562465 PMCID: PMC8938296 DOI: 10.1016/j.jmb.2021.167266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Even before the adaptive immune response initiates, a potent group of innate antiviral cells responds to a wide range of viruses to limit replication and virus-induced pathology. Belonging to a broader family of recently discovered innate lymphoid cells (ILCs), antiviral group I ILCs are composed of conventional natural killer cells (cNK) and tissue-resident ILCs (ILC1s) that can be distinguished based on their location as well as by the expression of key cell surface markers and transcription factors. Functionally, blood-borne cNK cells recirculate throughout the body and are recruited into the tissue at sites of viral infection where they can recognize and lyse virus-infected cells. In contrast, ILC1s are poised in uninfected barrier tissues and respond not through lysis but with the production of antiviral cytokines. From their frontline tissue locations, ILC1s can even induce an antiviral state in uninfected tissue to preempt viral replication. Mounting evidence also suggests that ILC1s may have enhanced secondary responses to viral infection. In this review, we discuss recent findings demonstrating that ILC1s provide several critical layers of innate antiviral immunity and the mechanisms (when known) underlying protection.
Collapse
Affiliation(s)
- Ramon A Lujan
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sophia M Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Kinker GS, Vitiello GAF, Ferreira WAS, Chaves AS, Cordeiro de Lima VC, Medina TDS. B Cell Orchestration of Anti-tumor Immune Responses: A Matter of Cell Localization and Communication. Front Cell Dev Biol 2021; 9:678127. [PMID: 34164398 PMCID: PMC8215448 DOI: 10.3389/fcell.2021.678127] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
The immune system plays a crucial role in cancer development either by fostering tumor growth or destroying tumor cells, which has open new avenues for cancer immunotherapy. It was only over the last decade that the role of B cells in controlling anti-tumor immune responses in the tumor milieu has begun to be appreciated. B and plasma cells can exert anti-tumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade, even though their effector functions extend beyond the classical humoral immunity. In tumor tissues, B cells can be found in lymphoid aggregates, known as tertiary lymphoid structures (TLSs), well-organized non-encapsulated structures composed of immune and stromal cells. These structures reflect a process of lymphoid neogenesis occurring in peripheral tissues upon long-lasting exposure to inflammatory signals. The TLS provides an area of intense B cell antigen presentation that can lead to optimal T cell activation and effector functions, as well as the generation of effector B cells, which can be further differentiated in either antibody-secreting plasma cells or memory B cells. Of clinical interest, the crosstalk between B cells and antigen-experienced and exhausted CD8+ T cells within mature TLS was recently associated with improved response to immune checkpoint blockade (ICB) in melanoma, sarcoma and lung cancer. Otherwise, B cells sparsely distributed in the tumor microenvironment or organized in immature TLSs were found to exert immune-regulatory functions, inhibiting anti-tumor immunity through the secretion of anti-inflammatory cytokines. Such phenotype might arise when B cells interact with malignant cells rather than T and dendritic cells. Differences in the spatial distribution likely underlie discrepancies between the role of B cells inferred from human samples or mouse models. Many fast-growing orthotopic tumors develop a malignant cell-rich bulk with reduced stroma and are devoid of TLSs, which highlights the importance of carefully selecting pre-clinical models. In summary, strategies that promote TLS formation in close proximity to tumor cells are likely to favor immunotherapy responses. Here, the cellular and molecular programs coordinating B cell development, activation and organization within TLSs will be reviewed, focusing on their translational relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Gabriela Sarti Kinker
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Pathological Sciences, Londrina State University, Londrina, Brazil
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | - Alexandre Silva Chaves
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
21
|
STING Gain-of-Function Disrupts Lymph Node Organogenesis and Innate Lymphoid Cell Development in Mice. Cell Rep 2021; 31:107771. [PMID: 32553167 DOI: 10.1016/j.celrep.2020.107771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
STING gain-of-function causes autoimmunity and immunodeficiency in mice and STING-associated vasculopathy with onset in infancy (SAVI) in humans. Here, we report that STING gain-of-function in mice prevents development of lymph nodes and Peyer's patches. We show that the absence of secondary lymphoid organs is associated with diminished numbers of innate lymphoid cells (ILCs), including lymphoid tissue inducer (LTi) cells. Although wild-type (WT) α4β7+ progenitors differentiate efficiently into LTi cells, STING gain-of-function progenitors do not. Furthermore, STING gain-of-function impairs development of all types of ILCs. Patients with STING gain-of-function mutations have fewer ILCs, although they still have lymph nodes. In mice, expression of the STING mutant in RORγT-positive lineages prevents development of lymph nodes and reduces numbers of LTi cells. RORγT lineage-specific expression of STING gain-of-function also causes lung disease. Since RORγT is expressed exclusively in LTi cells during fetal development, our findings suggest that STING gain-of-function prevents lymph node organogenesis by reducing LTi cell numbers in mice.
Collapse
|
22
|
Mirpuri J. The emerging role of group 3 innate lymphoid cells in the neonate: interaction with the maternal and neonatal microbiome. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab009. [PMID: 34151271 PMCID: PMC8208228 DOI: 10.1093/oxfimm/iqab009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) are critical for host defense and are notably important in the context of the newborn when adaptive immunity is immature. There is an increasing evidence that development and function of group 3 ILCs (ILC3) can be modulated by the maternal and neonatal microbiome and is involved in neonatal disease pathogenesis. In this review, we explore the evidence that supports a critical role for ILC3 in resistance to infection and disease pathogenesis in the newborn, with a focus on microbial factors that modulate ILC3 function. We then briefly explore opportunities for research that are focused on the fetus and newborn.
Collapse
Affiliation(s)
- Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Suite F3.302, Dallas, TX 75390-9063, USA
| |
Collapse
|
23
|
Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol 2021; 18:1161-1171. [PMID: 33850311 PMCID: PMC8093302 DOI: 10.1038/s41423-020-00625-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
A mounting body of evidence indicates that dietary fiber (DF) metabolites produced by commensal bacteria play essential roles in balancing the immune system. DF, considered nonessential nutrients in the past, is now considered to be necessary to maintain adequate levels of immunity and suppress inflammatory and allergic responses. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are the major DF metabolites and mostly produced by specialized commensal bacteria that are capable of breaking down DF into simpler saccharides and further metabolizing the saccharides into SCFAs. SCFAs act on many cell types to regulate a number of important biological processes, including host metabolism, intestinal functions, and immunity system. This review specifically highlights the regulatory functions of DF and SCFAs in the immune system with a focus on major innate and adaptive lymphocytes. Current information regarding how SCFAs regulate innate lymphoid cells, T helper cells, cytotoxic T cells, and B cells and how these functions impact immunity, inflammation, and allergic responses are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology and Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Han AR, Lee JE, Lee MJ, Ko SY, Shin HS, Lee JY, Lee DR. Distinct Repopulation Activity in Hu-Mice Between CB- and LPB-CD34 + Cells by Enrichment of Transcription Factors. Int J Stem Cells 2021; 14:203-211. [PMID: 33906982 PMCID: PMC8138658 DOI: 10.15283/ijsc21015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Human CD34+ hematopoietic stem cells can reconstitute the human hematopoietic system when transplanted into immunocompromised mice after irradiation. Human leukapheresis peripheral blood (LPB)- and cord blood (CB)-derived CD34+ cells have a similar capacity to reconstitute myeloid lineage cells in a humanized mice (hu-mice) model. However, potent stem cells, such as CB-CD34+ cells, efficiently reconstitute the lymphoid system in vivo compared to LPB-CD34+ cells. Modeling the human hematolymphoid system is vital for studying immune cell crosstalk in human xenografted mice, with CB-CD34+ cells used as an optimized cell source because they are essential in reconstituting lymphoid lineage cells. Methods and Results In this study, we established hu-mice that combined human characteristics with long-term survival and investigated the efficiency of the engraftment of lymphoid lineage cells derived from LPB- and CB-CD34+ cells in the bone marrow, spleen, and LPB. We found an overall increase in the transcriptional activity of lymphoid lineage genes in CB-CD34+ cells. Our results revealed that potent CB-CD34+ cells displaying a general upregulation of the expression of genes involved in lymphopoiesis could contribute to the hematolymphoid system in the humanized mice model with longevity. Conclusions Our data suggest that humanized mouse model by usage of CB-CD34+ cells displaying high expression of TFs for lymphoid lineage cells can contribute to study the immune response against lymphocytes.
Collapse
Affiliation(s)
- A-Reum Han
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Jeong Eun Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Min Ji Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Seung Young Ko
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun Soo Shin
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ji Yoon Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
25
|
Piperoglou C, Larid G, Vallentin B, Balligand L, Crinier A, Banzet N, Farnarier C, Gomez-Massa E, Adalia AC, Michel G, Galambrun C, Barlogis V, Vivier E, Vély F. Innate lymphoid cell recovery and occurrence of GvHD after hematopoietic stem cell transplantation. J Leukoc Biol 2021; 111:161-172. [PMID: 33847423 DOI: 10.1002/jlb.5a1019-522rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
Lymphocytes are essential for microbial immunity, tumor surveillance, and tissue homeostasis. However, the in vivo development and function of helper-like innate lymphoid cells (ILCs) in humans remain much less well understood than those of T, B, and NK cells. We monitored hematopoietic stem cell transplantation (HSCT) to determine the kinetics of ILC development in both children and adults. It was found that, unlike NK cells, helper-like ILCs recovered slowly, mirroring the pattern observed for T cells, with normalization achieved at 1 year. The type of graft and the proportion of CD34+ cells in the graft did not significantly affect ILC reconstitution. As HSCT is often complicated by acute or chronic graft-versus-host disease (GVHD), the potential role of ILC subsets in maintaining tissue integrity in these conditions was also analyzed. It was found that GVHD was associated with lower levels of activated and gut-homing NKp44+ ILCP, consistent with a non-redundant role of this ILC subset in preventing this life-threatening disorder in lymphopenic conditions.
Collapse
Affiliation(s)
- Christelle Piperoglou
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Guillaume Larid
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Blandine Vallentin
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Laura Balligand
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | | | - Nathalie Banzet
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Catherine Farnarier
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | | | | | -
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France
| | - Gérard Michel
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Claire Galambrun
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Vincent Barlogis
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Eric Vivier
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France.,Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Frédéric Vély
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopole, Marseille, France.,Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
26
|
de Lucía Finkel P, Xia W, Jefferies WA. Beyond Unconventional: What Do We Really Know about Group 2 Innate Lymphoid Cells? THE JOURNAL OF IMMUNOLOGY 2021; 206:1409-1417. [PMID: 33753565 DOI: 10.4049/jimmunol.2000812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 01/20/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a set of effectors that mediate the expulsion of helminthic parasites but also drive allergic lung inflammation. As innate agents, they do not recognize Ag, instead, they are sensitive to alarmin engagement, upon which they produce type 2 cytokines that amplify adaptive immunity. Their lymphoid identity appoints them as an intriguing group of unconventional cells; however, increasing evidence is unraveling a series of unprecedented functions that <5 years ago were unthinkable for ILC2s, such as acquiring a proinflammatory identity that enables them to support TH1 immune responses. Their plastic nature has allowed the characterization of ILC2s in more detail than ever; however, the novelty of ILC2 biology requires constant updates and recapitulations. This review provides an overview of ILC2s and describes memory ILC2, regulatory ILC2, inflammatory ILC2, and type 1 ILC2 subsets based on activation status, tissue environments, and function.
Collapse
Affiliation(s)
- Pablo de Lucía Finkel
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; .,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and.,Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
27
|
van de Pavert SA. Lymphoid Tissue inducer (LTi) cell ontogeny and functioning in embryo and adult. Biomed J 2021; 44:123-132. [PMID: 33849806 PMCID: PMC8178546 DOI: 10.1016/j.bj.2020.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Innate Lymphoid Cells (ILC) are involved in homeostasis and immunity. Their dynamic differentiation and characterization depend on their tissue of residency and is adapted to their role within these tissues. Lymphoid Tissue inducer (LTi) cells are an ILC member and essential for embryonic lymph node (LN) formation. LNs are formed at pre-defined and strategic positions throughout the body and how LTi cells are initially attracted towards these areas is under debate. Besides their role in LN formation, LTi-like and the closely related ILC type 3 (ILC3) cells have been observed within the embryonic gut. New studies have now shown more information on their origin and differentiation within the embryo. This review will evaluate the embryonic LTi cell origin from a specific embryonic hemogenic wave, which has recently been described in mouse. Moreover, I will discuss their differentiation and similarities with the closely related ILC3 cells in embryo and adult.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), National Institute for Health and Medical Research (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.
| |
Collapse
|
28
|
Fernando N, Sciumè G, O'Shea JJ, Shih HY. Multi-Dimensional Gene Regulation in Innate and Adaptive Lymphocytes: A View From Regulomes. Front Immunol 2021; 12:655590. [PMID: 33841440 PMCID: PMC8034253 DOI: 10.3389/fimmu.2021.655590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
The precise control of cytokine production by innate lymphoid cells (ILCs) and their T cell adaptive system counterparts is critical to mounting a proper host defense immune response without inducing collateral damage and autoimmunity. Unlike T cells that differentiate into functionally divergent subsets upon antigen recognition, ILCs are developmentally programmed to rapidly respond to environmental signals in a polarized manner, without the need of T cell receptor (TCR) signaling. The specification of cytokine production relies on dynamic regulation of cis-regulatory elements that involve multi-dimensional epigenetic mechanisms, including DNA methylation, transcription factor binding, histone modification and DNA-DNA interactions that form chromatin loops. How these different layers of gene regulation coordinate with each other to fine tune cytokine production, and whether ILCs and their T cell analogs utilize the same regulatory strategy, remain largely unknown. Herein, we review the molecular mechanisms that underlie cell identity and functionality of helper T cells and ILCs, focusing on networks of transcription factors and cis-regulatory elements. We discuss how higher-order chromatin architecture orchestrates these components to construct lineage- and state-specific regulomes that support ordered immunoregulation.
Collapse
Affiliation(s)
- Nilisha Fernando
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Giuseppe Sciumè
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Michieletto MF, Henao-Mejia J. Ontogeny and heterogeneity of innate lymphoid cells and the noncoding genome. Immunol Rev 2021; 300:152-166. [PMID: 33559175 DOI: 10.1111/imr.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Since their discovery a decade ago, it has become evident that innate lymphoid cells (ILCs) play critical roles in protective immune responses against intracellular and extracellular pathogens but are also central regulators of epithelial barrier integrity and tissue homeostasis. ILCs populate almost every tissue in mammalian organisms; therefore, not surprisingly, dysregulation of their functions contributes to the development and progression of multiple inflammatory and metabolic diseases. Our knowledge of the transcriptional programs governing the development, differentiation, and functions of the different groups of ILCs has increased dramatically in the last ten years. However, with the advent of new technologies, an unprecedented level of heterogeneity, plasticity, and developmental complexity has started to be revealed. In this review, we highlight recent advances in our understanding of ILC development and their biological functions. In particular, we aim to emphasize how our increasing knowledge of the chromatin landscape and the noncoding genome of these innate lymphocytes is allowing us to better understand their development and functions in different contexts during homeostasis and inflammation. Moreover, we propose that the design of more refined genetic tools to study tissue-specific ILCs and their functions can be accomplished by leveraging our understanding of how specific noncoding elements of the genome regulate gene expression in ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Golub R. The Notch signaling pathway involvement in innate lymphoid cell biology. Biomed J 2020; 44:133-143. [PMID: 33863682 PMCID: PMC8178581 DOI: 10.1016/j.bj.2020.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The role of Notch in the immune system was first described in the late 90s. Reports revealed that Notch is one of the most conserved developmental pathways involved in diverse biological processes such as the development, differentiation, survival and functions of many immune populations. Here, we provide an extended view of the pleiotropic effects of the Notch signaling on the innate lymphoid cell (ILC) biology. We review the current knowledge on Notch signaling in the regulation of ILC differentiation, plasticity and functions in diverse tissue types and at both the fetal and adult developmental stages. ILCs are early responder cells that secrete a large panel of cytokines after stimulation. By controlling the abundance of ILCs and the specificity of their release, the Notch pathway is also implicated in the regulation of their functions. The Notch pathway is therefore an important player in both ILC cell fate decision and ILC immune response.
Collapse
Affiliation(s)
- Rachel Golub
- Unit of Lymphocytes and Immunity, Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
31
|
Liu Q, Kim MH, Friesen L, Kim CH. BATF regulates innate lymphoid cell hematopoiesis and homeostasis. Sci Immunol 2020; 5:eaaz8154. [PMID: 33277375 PMCID: PMC8375455 DOI: 10.1126/sciimmunol.aaz8154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
Early hematopoietic progenitors undergo sophisticated developmental processes to become committed innate lymphoid cell (ILC) progenitors and ultimately mature ILC subsets in the periphery. Basic leucine zipper ATF-like transcription factor (Batf) plays important roles in lymphocyte biology. We report here that Batf regulates the production of bone marrow ILC progenitors and maintenance of peripheral ILCs. The expression of Batf is induced during ILC development at the α-lymphoid progenitor stage in response to the cytokine IL-7. As a potential mechanism, up-regulated Batf binds and activates transcription of the Nfil3 gene to promote ILC hematopoiesis. Batf is necessary to maintain normal numbers of early and late ILC progenitors in the bone marrow and mature ILC1, ILC2, ILC3, and NK cells in most peripheral tissues. Batf deficiency causes ILC lymphopenia, leading to defective ILC responses to inflammatory cytokines and defective immunity to enteric bacterial infections. Thus, Batf plays critical roles in bone marrow hematopoiesis, peripheral homeostasis, and effector functions of ILCs.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Myung H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Leon Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Kasal DN, Bendelac A. Multi-transcription factor reporter mice delineate early precursors to the ILC and LTi lineages. J Exp Med 2020; 218:211499. [PMID: 33104170 PMCID: PMC7590509 DOI: 10.1084/jem.20200487] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/07/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
Transcription factor (TF) reporter mice have proved integral to the characterization of murine innate lymphoid cell (ILC) development and function. Here, we implemented a CRISPR/Cas9-generated combinatorial reporter approach for the simultaneous resolution of several key TFs throughout ILC development in both the fetal liver and adult bone marrow. We demonstrate that the Tcf7-expressing early innate lymphoid precursor (EILP) and the common helper ILC precursor (CHILP) both contain a heterogeneous mixture of specified ILC and lymphoid tissue inducer (LTi) precursors with restricted lineage potential rather than a shared precursor. Moreover, the earliest specified precursor to the LTi lineage was identified upstream of these populations, before Tcf7 expression. These findings match dynamic changes in chromatin accessibility associated with the expression of key TFs (i.e., GATA3 and RORγ(t)), highlighting the distinct origins of ILC and LTi lineages at the epigenetic and functional levels, and provide a revised map for ILC development.
Collapse
Affiliation(s)
- Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL.,Department of Pathology, University of Chicago, Chicago, IL
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL.,Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
33
|
Cherrier M, Ramachandran G, Golub R. The interplay between innate lymphoid cells and T cells. Mucosal Immunol 2020; 13:732-742. [PMID: 32651476 DOI: 10.1038/s41385-020-0320-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
ILCs and T cells are closely related functionally but they significantly differ in their ability to circulate, expand, and renew. Cooperation and reciprocal functional regulation suggest that these cell types are more complementary than simply redundant during immune responses. How ILCs shape T-cell responses is strongly dependent on the tissue and inflammatory context. Likewise, indirect regulation of ILCs by adaptive immunity is induced by environmental cues such as the gut microbiota. Here, we review shared requirements for the development and function of both cell types and divergences in the orchestration of prototypic immune functions. We discuss the diversity of functional interactions between T cells and ILCs during homeostasis and immune responses. Identifying the location and the nature of the tissue microenvironment in which these interactions are taking place may uncover the remaining mysteries of their close encounters.
Collapse
Affiliation(s)
- Marie Cherrier
- Laboratoire d'Immunité Intestinale, Institut Imagine, INSERM U1163, Université Sorbonne Paris Cité, Paris, France.
| | - Gayetri Ramachandran
- Host-Microbiota Interaction, Institut Necker Enfants Malades, INSERM U1151, Université Sorbonne Paris Cité, Paris, France
| | - Rachel Golub
- Unité Lymphocytes et Immunité, Institut Pasteur, Paris, France. .,INSERM U1223, Paris, France. .,Université de Paris, F-75006, Paris, France.
| |
Collapse
|
34
|
Belz GT, Denman R, Seillet C, Jacquelot N. Tissue-resident lymphocytes: weaponized sentinels at barrier surfaces. F1000Res 2020; 9. [PMID: 32695313 PMCID: PMC7348522 DOI: 10.12688/f1000research.25234.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident immune cells stably localize in tissues largely independent of the circulatory system. While initial studies have focused on the recognition of CD8
+ tissue-resident memory T (CD8 T
RM) cells, it is now clear that numerous cell types such as CD4
+ T cells, gd T cells, innate lymphoid cells and mucosal-associated invariant T (MAIT) cells form stable populations in tissues. They are enriched at the barrier surfaces and within non-lymphoid compartments. They provide an extensive immune network capable of sensing local perturbations of the body’s homeostasis. This positioning enables immune cells to positively influence immune protection against infection and cancer but paradoxically also augment autoimmunity, allergy and chronic inflammatory diseases. Here, we highlight the recent studies across multiple lymphoid immune cell types that have emerged on this research topic and extend our understanding of this important cellular network. In addition, we highlight the areas that remain gaps in our knowledge of the regulation of these cells and how a deeper understanding may result in new ways to ‘target’ these cells to influence disease outcome and treatments.
Collapse
Affiliation(s)
- Gabrielle T Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, 4102, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Renae Denman
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, 4102, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
35
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
36
|
Abstract
Although, as the major organ of gas exchange, the lung is considered a nonlymphoid organ, an interconnected network of lung-resident innate cells, including epithelial cells, dendritic cells, macrophages, and natural killer cells is crucial for its protection. These cells provide defense against a daily assault by airborne bacteria, viruses, and fungi, as well as prevent the development of cancer, allergy, and the outgrowth of commensals. Our understanding of this innate immune environment has recently changed with the discovery of a family of innate lymphoid cells (ILCs): ILC1s, ILC2s, and ILC3s. All lack adaptive antigen receptors but can provide a substantial and rapid source of IFN-γ, IL-5 and IL-13, and IL-17A or IL-22, respectively. Their ability to afford immediate protection to the lung and to influence subsequent adaptive immune responses highlights the importance of understanding ILC-regulated immunity for the design of future therapeutic interventions.
Collapse
Affiliation(s)
- Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| |
Collapse
|
37
|
Wang W, Li Y, Hao J, He Y, Dong X, Fu YX, Guo X. The Interaction between Lymphoid Tissue Inducer-Like Cells and T Cells in the Mesenteric Lymph Node Restrains Intestinal Humoral Immunity. Cell Rep 2020; 32:107936. [DOI: 10.1016/j.celrep.2020.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/07/2023] Open
|
38
|
Antonioli L, Fornai M, Pellegrini C, Masi S, Puxeddu I, Blandizzi C. Ectopic Lymphoid Organs and Immune-Mediated Diseases: Molecular Basis for Pharmacological Approaches. Trends Mol Med 2020; 26:1021-1033. [PMID: 32600794 DOI: 10.1016/j.molmed.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is the result a persistent increase in the expression of several proinflammatory pathways with impaired inflammatory resolution. Ectopic lymphoid organs (ELOs), untypical lymphoid annexes, emerge during chronic inflammation and contribute to the physiopathology of chronic inflammatory disorders. This review discusses the pathophysiological role of ELOs in the progression of immune-mediated inflammatory diseases (IMIDs), including multiple sclerosis (MS), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), atherosclerosis, and Sjögren syndrome (SSj). The molecular pathways underlying the emergence of ELOs are of interest for the development of novel pharmacological approaches for the management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Puxeddu
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
39
|
Yang J, Restori KH, Xu M, Song EH, Zhao L, Hu S, Lyu P, Wang WB, Xiong N. Preferential Perinatal Development of Skin-Homing NK1.1 + Innate Lymphoid Cells for Regulation of Cutaneous Microbiota Colonization. iScience 2020; 23:101014. [PMID: 32283522 PMCID: PMC7155142 DOI: 10.1016/j.isci.2020.101014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Proper immune cell development at early ontogenic stages is critical for life-long health. How resident immune cells are established in barrier tissues at neonatal stages to provide early protection is an important but still poorly understood question. We herein report that a developmentally programmed preferential generation of skin-homing group 1 innate lymphoid cells (ILC1s) at perinatal stages helps regulate early skin microbiota colonization. We found that a population of skin-homing NK1.1+ ILC1s was preferentially generated in the perinatal thymi of mice. Unique thymic environments and progenitor cells are responsible for the preferential generation of skin-homing NK1.1+ ILC1s at perinatal stages. In the skin, NK1.1+ ILC1s regulate proper microbiota colonization and control the opportunistic pathogen Pseudomonas aeruginosa in neonatal mice. These findings provide insight into the development and function of tissue-specific immune cells at neonatal stages, a critical temporal window for establishment of local tissue immune homeostasis.
Collapse
Affiliation(s)
- Jie Yang
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - Katherine H Restori
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - Ming Xu
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Eun Hyeon Song
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - Shaomin Hu
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - Pingyun Lyu
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - Wei-Bei Wang
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
40
|
Zhou S, Li Q, Wu H, Lu Q. The pathogenic role of innate lymphoid cells in autoimmune-related and inflammatory skin diseases. Cell Mol Immunol 2020; 17:335-346. [PMID: 32203190 PMCID: PMC7109064 DOI: 10.1038/s41423-020-0399-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Innate lymphoid cells (ILCs), as an important component of the innate immune system, arise from a common lymphoid progenitor and are located in mucosal barriers and various tissues, including the intestine, skin, lung, and adipose tissue. ILCs are heterogeneous subsets of lymphocytes that have emerging roles in orchestrating immune response and contribute to maintain metabolic homeostasis and regulate tissue inflammation. Currently, more details about the pathways for the development and differentiation of ILCs have largely been elucidated, and cytokine secretion and downstream immune cell responses in disease pathogenesis have been reported. Recent research has identified that several distinct subsets of ILCs at skin barriers are involved in the complex regulatory network in local immunity, potentiating adaptive immunity and the inflammatory response. Of note, additional studies that assess the effects of ILCs are required to better define how ILCs regulate their development and functions and how they interact with other immune cells in autoimmune-related and inflammatory skin disorders. In this review, we will distill recent research progress in ILC biology, abnormal functions and potential pathogenic mechanisms in autoimmune-related skin diseases, including systemic lupus erythematosus (SLE), scleroderma and inflammatory diseases, as well as psoriasis and atopic dermatitis (AD), thereby giving a comprehensive review of the diversity and plasticity of ILCs and their unique functions in disease conditions with the aim to provide new insights into molecular diagnosis and suggest potential value in immunotherapy.
Collapse
Affiliation(s)
- Suqing Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Qianwen Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
41
|
Kee BL, Morman RE, Sun M. Transcriptional regulation of natural killer cell development and maturation. Adv Immunol 2020; 146:1-28. [PMID: 32327150 DOI: 10.1016/bs.ai.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer cells are lymphocytes that respond rapidly to intracellular pathogens or cancer/stressed cells by producing pro-inflammatory cytokines or chemokines and by killing target cells through direct cytolysis. NK cells are distinct from B and T lymphocytes in that they become activated through a series of broadly expressed germ line encoded activating and inhibitory receptors or through the actions of inflammatory cytokines. They are the founding member of the innate lymphoid cell family, which mirror the functions of T lymphocytes, with NK cells being the innate counterpart to CD8 T lymphocytes. Despite the functional relationship between NK cells and CD8 T cells, the mechanisms controlling their specification, differentiation and maturation are distinct, with NK cells emerging from multipotent lymphoid progenitors in the bone marrow under the control of a unique transcriptional program. Over the past few years, substantial progress has been made in understanding the developmental pathways and the factors involved in generating mature and functional NK cells. NK cells have immense therapeutic potential and understanding how to acquire large numbers of functional cells and how to endow them with potent activity to control hematopoietic and non-hematopoietic malignancies and autoimmunity is a major clinical goal. In this review, we examine basic aspects of conventional NK cell development in mice and humans and discuss multiple transcription factors that are known to guide the development of these cells.
Collapse
Affiliation(s)
- Barbara L Kee
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States.
| | - Rosmary E Morman
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Mengxi Sun
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
42
|
An Z, Flores-Borja F, Irshad S, Deng J, Ng T. Pleiotropic Role and Bidirectional Immunomodulation of Innate Lymphoid Cells in Cancer. Front Immunol 2020; 10:3111. [PMID: 32117199 PMCID: PMC7010811 DOI: 10.3389/fimmu.2019.03111] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue resident and respond rapidly toward the environmental signals from surrounding tissues and other immune cells. The pleiotropic function of ILCs in diverse contexts underpins its importance in the innate arm of immune system in human health and disease. ILCs derive from common lymphoid progenitors but lack adaptive antigen receptors and functionally act as the innate counterpart to T-cell subsets. The classification of different subtypes is based on their distinct transcription factor requirement for development as well as signature cytokines that they produce. The discovery and subsequent characterization of ILCs over the past decade have mainly focused on the regulation of inflammation, tissue remodeling, and homeostasis, whereas the understanding of the multiple roles and mechanisms of ILCs in cancer is still limited. Emerging evidence of the potent immunomodulatory properties of ILCs in early host defense signifies a major advance in the use of ILCs as promising targets in cancer immunotherapy. In this review, we will decipher the non-exclusive roles of ILCs associated with both protumor and antitumor activities. We will also dissect the heterogeneity, plasticity, genetic evidence, and dysregulation in different cancer contexts, providing a comprehensive understanding of the complexity and diversity. These will have implications for the therapeutic targeting in cancer.
Collapse
Affiliation(s)
- Zhengwen An
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
| | - Fabian Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sheeba Irshad
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
| | - Tony Ng
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
43
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Dutton EE, Withers DR. Identification of Murine Innate Lymphoid Cell Subsets in Barrier Tissues and Their Draining Lymph Nodes Using Flow Cytometry. Methods Mol Biol 2020; 2121:23-36. [PMID: 32147783 DOI: 10.1007/978-1-0716-0338-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are present in most tissues within the body but have been most extensively studied within mucosal barriers such as the lung and intestine. Isolation of immune cells from such tissues requires enzymatic digestion, and the number and composition of the cells released are dependent upon robust protocols tailored to the tissue of study. Here, detailed methodologies to isolate ILCs from various barrier sites and their draining lymph nodes (LNs) are described. Flow cytometry staining and gating strategies for identification and quantification of ILCs are then provided. Combined, these provide an efficient means to study ILCs within the small intestine lamina propria, lung, ear skin, and LNs.
Collapse
Affiliation(s)
- Emma E Dutton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
45
|
Ganal-Vonarburg SC, Duerr CU. The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology 2019; 159:39-51. [PMID: 31777064 PMCID: PMC6904614 DOI: 10.1111/imm.13138] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunity is shaped by commensal microbiota. From early life onwards, microbes colonize mucosal surfaces of the body and thereby trigger the establishment of immune homeostasis and defense mechanisms. Recent evidence reveals that the family of innate lymphoid cells (ILCs), which are mainly located in mucosal tissues, are essential in the maintenance of barrier functions as well as in the initiation of an appropriate immune response upon pathogenic infection. In this review, we summarize recent insights on the functional interaction of microbiota and ILCs at steady‐state and throughout life. Furthermore, we will discuss the interplay of ILCs and the microbiota in mucosal infections focusing on intestinal immunity.
Collapse
Affiliation(s)
- Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Bern University Hospital, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
| | - Claudia U Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
46
|
Willinger T. Metabolic Control of Innate Lymphoid Cell Migration. Front Immunol 2019; 10:2010. [PMID: 31507605 PMCID: PMC6713999 DOI: 10.3389/fimmu.2019.02010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are specialized immune cells that rapidly respond to environmental challenges, such as infection and tissue damage. ILCs play an important role in organ homeostasis, tissue repair, and host defense in the mucosal tissues intestine and lung. ILCs are sentinels of healthy tissue function, yet it is poorly understood how ILCs are recruited, strategically positioned, and maintained within tissues. Accordingly, ILC migration is an area that has recently come into focus and it is important to define the signals that control ILC migration to and within tissues. In this context, signals from the local tissue microenvironment are relevant. For example, ILCs in the intestine are exposed to an environment that is rich in dietary, microbial, and endogenous metabolites. It has been shown that the Vitamin A metabolite retinoic acid promotes ILC1 and ILC3 homing to the intestine. In addition, recent studies have discovered cholesterol metabolites (oxysterols) as a novel class of molecules that regulate ILC migration through the receptor GPR183. ILCs are considered to be largely tissue-resident cells, yet recent data indicate that ILCs actively migrate during inflammation. Furthermore, the discovery of circulating ILC precursors in humans and their presence within tissues has fueled the concept of local ILC-poiesis. However, it is unclear how circulating ILCs enter tissue during embryogenesis and inflammation and how they are directed to local tissue niches. In this review, I will discuss the metabolic signals that regulate ILC homing and their strategic positioning in healthy and inflamed tissues. It is becoming increasingly clear that ILC function is closely linked to their tissue localization. Therefore, understanding the tissue signals that control ILC migration could open new avenues for the treatment of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Abstract
Innate lymphoid cells (ILCs) are an emerging family of innate immune cells and have been found to have an important role in infection, inflammation and tissue repair. In particular, recent work has identified significant alterations of ILC responses in tumor patients, suggesting potential roles of ILCs in tumor development. In this paper, we have focused on the basic features of ILCs and their interaction with other immune cells. Importantly, as the role of cytotoxic natural killer cells, assigned to ILC1 family, in cancer has been well established, we have summarized the new findings that showcase the potential role and mechanism of helper ILCs in different tumors. Helper ILCs might promote or inhibit tumor growth and metastasis, which depends on tumor type and ILC subset.
Collapse
Affiliation(s)
- Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.,School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong, 250021, China
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW A growing body of evidence supports the relevance of the interleukin-23/interleukin-17 (IL-23/IL-17) pathway for the pathogenesis of axial spondyloarthritis (axSpA) and its treatment. Recently, innate lymphoid cells (ILC), a heterogeneous family of immune effector cells, have been identified as a relevant contributor in tissue homeostasis, partially via IL-23/IL-17 axis. This review describes the biology and the origins of the group 3 ILCs (ILC3s) in humans, focusing on their role in the pathogenesis of axSpA. RECENT FINDINGS Clinical trials showed the effectiveness of IL23/IL-17 axis inhibition in both spondyloarthritis (SpA) and Inflammatory Bowel Disease (IBD). Recent findings confirm the high prevalence of subclinical gut inflammation in patients with SpA. Translational data in humans have demonstrated an increase in the number of ILC3s responsive to IL-23 and producing either IL-22 or IL-17 in the gut of SpA patients. The observation of gut-derived ILC3s in circulation and at inflamed tissues in patients with SpA suggest a recirculation of ILCs from mucosal site to lymphoid tissues and possibly enthesis and joints. Multiple observations demonstrate the expansion of IL-17- and IL-22-producing ILC3 in the subclinically inflamed gut of SpA patients. These innate immune cells, also observed in normal entheses, seem to be able to re-circulate from the gut to inflamed tissues of SpA patients, thus contributing to the disease perpetuation. The development of tools that can provide access to diseased tissue from sacroiliac joint and spinal entheses will provide valuable knowledge on the role of ILC3 in axSpA pathogenesis.
Collapse
|
49
|
Castellanos JG, Longman RS. The balance of power: innate lymphoid cells in tissue inflammation and repair. J Clin Invest 2019; 129:2640-2650. [PMID: 31180335 DOI: 10.1172/jci124617] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the last ten years, immunologists have recognized the central importance of an emerging group of innate lymphoid cells (ILCs) in health and disease. Characterization of these cells has provided a molecular definition of ILCs and their tissue-specific functions. Although the lineage-defining transcription factors, cytokine production, and nomenclature parallel those of T helper cells, ILCs do not require adaptive immune programming. Both environmental and host-derived signals shape the function of these evolutionarily ancient cells, which provide pathogen protection and promote tissue restoration. As such, ILCs function as a double-edged sword, balancing the inflammatory and reparative responses that arise during injury and disease. This Review highlights our recent understanding of tissue-resident ILCs and the signals that regulate their contribution to inflammation and tissue repair in health and disease.
Collapse
|
50
|
Shao L, Pan S, Zhang QP, Jamal M, Chen LH, Yin Q, Wu YJ, Xiong J, Xiao RJ, Kwong YL, Zhou FL, Lie AKW. An Essential Role of Innate Lymphoid Cells in the Pathophysiology of Graft-vs.-Host Disease. Front Immunol 2019; 10:1233. [PMID: 31244831 PMCID: PMC6563595 DOI: 10.3389/fimmu.2019.01233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is the only curative treatment for multiple hematologic malignancies and non-malignant hematological diseases. However, graft-vs.-host disease (GVHD), one of the main complications after allo-HSCT, remains the major reason for morbidity and non-relapse mortality. Emerging evidence has demonstrated that innate lymphoid cells (ILCs) play a non-redundant role in the pathophysiology of GVHD. In this review, we will summarize previously published data regarding the role of ILCs in the pathogenesis of GVHD.
Collapse
Affiliation(s)
- Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qiu-Ping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Hua Chen
- Department of Medicine, Li Ka Shing Faculty of Medicine, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ying-Jie Wu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Rui-Jing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yok-Lam Kwong
- Division of Hematology & BMT Center, Queen Mary Hospital, Hong Kong, China
| | - Fu-Ling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Albert K W Lie
- Division of Hematology & BMT Center, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|